JP2005255441A - Method for producing layered double hydroxide having ion-exchangeable anion by removing carbonate ion from hydrotalcite and use of the hydroxide - Google Patents

Method for producing layered double hydroxide having ion-exchangeable anion by removing carbonate ion from hydrotalcite and use of the hydroxide Download PDF

Info

Publication number
JP2005255441A
JP2005255441A JP2004067514A JP2004067514A JP2005255441A JP 2005255441 A JP2005255441 A JP 2005255441A JP 2004067514 A JP2004067514 A JP 2004067514A JP 2004067514 A JP2004067514 A JP 2004067514A JP 2005255441 A JP2005255441 A JP 2005255441A
Authority
JP
Japan
Prior art keywords
layered double
anion
double hydroxide
ion
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067514A
Other languages
Japanese (ja)
Other versions
JP4228077B2 (en
Inventor
Nobuo Ii
伸夫 井伊
Yoshiro Kaneko
芳郎 金子
Hiroteru Matsumoto
太輝 松本
Kenji Kitamura
健二 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004067514A priority Critical patent/JP4228077B2/en
Publication of JP2005255441A publication Critical patent/JP2005255441A/en
Application granted granted Critical
Publication of JP4228077B2 publication Critical patent/JP4228077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practical and extremely-easy chemical method for synthesizing a layered double hydroxide containing an easily-exchangeable anion (for example, a nitrate ion and a chlorine ion) from hydrotalcite or its analogues containing a hard-to-exchange carbonate ion in an interlayer without varying the particle size and uniformity of hydrotalcite. <P>SOLUTION: This method for producing the layered double hydroxide comprises the steps of: using dilute hydrochloric acid whose function of removing the carbonate ion is low but which does not vary the particle size, external form and uniformity of hydrotalcite; and adding neutral hydrochloride (for example, sodium chloride) to the dilute hydrochloric acid system so that the neutral hydrochloride-added dilute hydrochloric acid acts on hydrotalcite at room temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、層間に難イオン交換性の炭酸イオンを有したハイドロタルサイト、もしくは、類似の構造を持つ層状複水酸化物の処理により易イオン交換性の陰イオンを有する層状複水酸化物の製造方法、およびそれらの用途発明に関する。   The present invention relates to a layered double hydroxide having an easily ion-exchangeable anion by treating a hydrotalcite having a difficult ion-exchangeable carbonate ion between layers or a layered double hydroxide having a similar structure. The present invention relates to manufacturing methods and inventions of their use.

従来、粘土鉱物などの層状化合物を使用し、各種の陽イオンや陽イオン性の機能性有機物を包接することによって多くの層状化合物が開発されてきた(非特許文献1)。ハイドロタルサイトは、粘土鉱物と異なり、層自体が陽電荷を持ち、層間に陰イオンを有し、陰イオン交換性を有する無機化合物である。陰イオン性交換性の物質は、陽イオン交換性の化合物に比べ種類が極端に少なく、ハイドロタルサイトもしくは、層状複水酸化物はその代表的なものである。   Conventionally, many layered compounds have been developed by using a layered compound such as a clay mineral and including various cations and cationic functional organic substances (Non-patent Document 1). Unlike clay minerals, hydrotalcite is an inorganic compound having a positive charge in the layer itself, having an anion between layers, and having anion exchange properties. There are extremely few types of anionic exchangeable substances compared to cation exchangeable compounds, and hydrotalcite or layered double hydroxides are typical examples.

近年、層状複水酸化物の陰イオン交換性を利用して、二酸化炭素の捕捉に使用されており、また、層間に他の陰イオンを導入することにより、層間に機能性の分子や有機物をナノレベルで包接したナノ層状化合物が合成されており、さらに、表面積とその触媒作用から、触媒もしくは、触媒の担体としても多くの研究が行われている(非特許文献2)。   In recent years, it has been used to capture carbon dioxide by utilizing the anion exchange properties of layered double hydroxides, and by introducing other anions between layers, functional molecules and organic substances can be introduced between layers. Nano-layered compounds that have been included at the nano level have been synthesized, and many studies have been conducted on catalysts or catalyst carriers based on their surface area and their catalytic action (Non-patent Document 2).

通常、合成され生産されているハイドロタルサイトは、炭酸イオンを層間に有している層状複水酸化物であり、最近では、特に「尿素」を用いて、均一に核形成を行い、粒径の均一で制御されたハイドロタルサイトが合成されている(非特許文献3)。通常、炭酸イオン以外の陰イオンを含む層状複水酸化物では、包接させたい陰イオンを大量に含む溶液中でイオン交換させることにより、構造を変化させずに、当該陰イオンを含む層状複水酸化物に変換することができる。   The hydrotalcite that is usually synthesized and produced is a layered double hydroxide that has carbonate ions between the layers. Recently, using “urea” in particular, nucleation is performed uniformly, and the particle size is reduced. A uniform and controlled hydrotalcite is synthesized (Non-patent Document 3). Usually, in layered double hydroxides containing anions other than carbonate ions, the layered double hydroxides containing the anions are exchanged in a solution containing a large amount of anions to be included, without changing the structure. Can be converted to hydroxide.

しかし、炭酸イオンを含むハイドロタルサイトのような層状複水酸化物の場合、炭酸イオンが安定に層間に存在するためイオン交換性が極めて低く、ほとんどイオン交換が起こらないことから、その陰イオン交換剤としての用途は、極めて限られていた(非特許文献4)。   However, in the case of layered double hydroxides such as hydrotalcite containing carbonate ions, carbonate ions are stably present between the layers, so the ion exchange property is extremely low and almost no ion exchange occurs. The use as an agent has been extremely limited (Non-Patent Document 4).

そのため、陰イオン交換性の層状複水酸化物を合成するため、二酸化炭素を溶解していない脱炭酸の蒸留水を用い、窒素気流中など二酸化炭素の無い雰囲気で例えば、マグネシウム・アルミニウム層状複水酸化物の場合、マグネシウム塩、アルミニウム塩、と水酸化ナトリウム水溶液との共沈反応により、炭酸以外の陰イオン(例えば、硝酸イオン、塩素イオンなど)で、交換が容易な陰イオンを含む、層状複水酸化物を合成していた(非特許文献5)。   Therefore, in order to synthesize an anion-exchange layered double hydroxide, for example, magnesium / aluminum layered double water is used in a carbon dioxide-free atmosphere such as a nitrogen stream using decarboxylated distilled water that does not dissolve carbon dioxide In the case of oxides, a layer containing an anion other than carbonic acid (for example, nitrate ion, chlorine ion, etc.) and easily exchangeable by coprecipitation reaction of magnesium salt, aluminum salt and sodium hydroxide aqueous solution. A double hydroxide was synthesized (Non-patent Document 5).

また、別法では、加熱による構造変化を利用している。すなわち、500℃程度の加熱により、ハイドロタルサイトは、構造変化を起こし、脱炭酸するが、得られた生成物を炭酸イオン以外の陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む水溶液に投入することによって、その陰イオンを含む層状複水酸化物が再構築されることが知られている(非特許文献6)。この方法を用いて、二酸化炭素の捕捉という目的でこの反応を用いたり、また、この再構築で、任意の陰イオンが層間に入ることより、層間に機能性の分子や有機物をナノレベルで包接したナノ層状化合物が合成されてきたのである。   Another method uses structural changes caused by heating. That is, the hydrotalcite undergoes a structural change and decarboxylates by heating at about 500 ° C., but the obtained product is converted into an aqueous solution containing anions other than carbonate ions (for example, nitrate ions, chlorine ions, etc.). It is known that the layered double hydroxide containing the anion is reconstructed by introducing (Non-patent Document 6). Using this method, this reaction can be used for the purpose of capturing carbon dioxide, and any anion can enter the interlayer by this reconstruction, so that functional molecules and organic substances can be encapsulated between the layers at the nano level. Nanolayered compounds in contact have been synthesized.

しかし、前者の方法では、各々の組み合わせによって、粒径や均一性の条件が異なるた
め、合成条件の最適化が困難である。また、反応自体も雰囲気制御や二酸化炭素を除去した反応系の構築などで煩雑である。また、後者の方法では、加熱によって構造が変化しているため、再構築後の方向性が、出発物と同一とはいえず粒径や均一性に変化を起こし、また、500℃の高温を利用するため、脱炭酸の意味でもかなり激しい条件を利用しており、エネルギー的にも時間的にも実用的でなく、不利であった。
However, in the former method, the conditions of particle size and uniformity differ depending on the combination, so it is difficult to optimize the synthesis conditions. Also, the reaction itself is complicated due to atmosphere control and construction of a reaction system from which carbon dioxide is removed. In the latter method, since the structure is changed by heating, the direction after the reconstruction is not the same as that of the starting material, and the particle size and uniformity are changed. In order to use it, it uses rather severe conditions in terms of decarboxylation, which is not practical in terms of energy and time and is disadvantageous.

もし、合成が比較的楽な、粒径が制御された、しかも均一なハイドロタルサイトから、簡単な化学的手法によって、交換が容易な陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む層状複水酸化物を、粒径や均一性に変化を及ぼすことがなく合成できるならば、工業的にもまた、研究・試験レベルにも広い応用が期待できる。これに関しては、確かに、これまで、0.01規定の塩酸を用いた方法が、報告されている(非特許文献7)。また、150℃の塩化水素ガスによる処理の報告もある(非特許文献8)。しかし、後者の方法は、危険性や反応条件の過激なことから、簡便な方法とは言えず、また、前者の方法においても、実際に反応を行ってみると、[実施例2]でも示したように、必ずしも脱炭酸イオンと溶解による重量減少のバランスがあり、重量減少なく脱炭酸イオンを行うことが事実上、不可能であり、完全な方法ではなかった。   If it is relatively easy to synthesize, particle size is controlled, and uniform hydrotalcite contains anions (eg, nitrate ions, chloride ions, etc.) that can be easily exchanged by simple chemical methods. If double hydroxides can be synthesized without changing the particle size and uniformity, a wide range of applications can be expected industrially as well as at research and test levels. In this regard, a method using 0.01 N hydrochloric acid has been reported to date (Non-Patent Document 7). There is also a report of treatment with hydrogen chloride gas at 150 ° C. (Non-patent Document 8). However, the latter method cannot be said to be a simple method due to the extreme risk and reaction conditions. Also, when the reaction is actually performed in the former method, it is also shown in [Example 2]. As described above, there is always a balance between decarboxylation ions and weight loss due to dissolution, and it is virtually impossible to perform decarboxylation ions without weight reduction, and this is not a complete method.

このように、ハイドロタルサイトから、簡単な化学的手法によって、交換が容易な陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む層状複水酸化物を、粒径や均一性に変化を及ぼすことがなく、合成する方法は、従来存在していなかった。その結果、異なる無機の陰イオンを層間に導入したり、また、新規な機能性材料を合成する手法であるイオン交換法によってイオン性を持つ機能性有機物を導入して機能性層状複合体とするといったような、ソフト化学的な手法によって新規材料を合成し提供する試みは、ハイドロタルサイトから導出された層状複水酸化物を用いて行われることは、なされていなかった。   In this way, the layered double hydroxide containing anions (for example, nitrate ions, chlorine ions, etc.) that can be easily exchanged from hydrotalcite by a simple chemical method changes the particle size and uniformity. There has been no conventional method for synthesis. As a result, different inorganic anions are introduced between layers, or functional organic substances having ionicity are introduced by ion exchange, which is a technique for synthesizing new functional materials, to form functional layered composites. Attempts to synthesize and provide new materials by soft chemical techniques such as those described above have not been made using layered double hydroxides derived from hydrotalcite.

また、二酸化炭素は、地球温暖化の原因の大きな要素であり、排出の際の捕捉が、必要である。層状複水酸化物は、その目的で使用されており、無機の脱炭酸材料の代表的なものである。その脱炭酸には、既に述べたような、「再構築」という現象を利用したもので、500℃程度の加熱によりハイドロタルサイトが構造変化を起こし、脱炭酸し、この生成物を二酸化炭素の捕捉に使うというものであり、エネルギー的にも時間的にも不利であった。しかし、この脱炭酸が、室温のような温和な条件で、しかも簡単な化学的手法によって達成され、さらに、陰イオン交換が容易な陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む層状複水酸化物に変換して、繰り返し使用できるならば、二酸化炭素の捕捉サイクルとしても有望である。   Carbon dioxide is a major factor in causing global warming and needs to be captured when discharged. Layered double hydroxides are used for that purpose and are representative of inorganic decarboxylation materials. The decarboxylation uses the phenomenon of “reconstruction” as described above, and the hydrotalcite undergoes a structural change by heating at about 500 ° C. and decarboxylates. It was used for capture and was disadvantageous in terms of energy and time. However, this decarboxylation is achieved by a simple chemical method under mild conditions such as room temperature, and further, a layered complex containing anions (for example, nitrate ions, chloride ions, etc.) that can be easily anion-exchanged. If it can be converted to hydroxide and used repeatedly, it is also promising as a carbon dioxide capture cycle.

また、2次元の層状物は、他にも汎用ポリマーの機械的強度を向上させるためのフィラーとして注目されており、例えば粘土鉱物など2次元レイヤーを含む化合物が用いられているが、レイヤーの剥離が完全に行なわれない点やマトリックスとの親和性が充分でない点で問題があり、分散性などに多くの解決すべき課題が残っているものであった。層状複水酸化物の層は、粘土鉱物と異なり、陽イオン性であり、粘土では対応できない陰イオン性のモノマーを包接することができる。もし、層間に高分子のモノマーを包接し、反応を起こさせることができるなら、粘土鉱物の使用できないような高分子についても、用いることが可能となり、また、レイヤーまでの剥離が期待でき、機械的強度、ガスバリアー性の改善がおおいに期待できる。   Two-dimensional layered materials are also attracting attention as fillers for improving the mechanical strength of other general-purpose polymers. For example, compounds containing two-dimensional layers such as clay minerals are used. However, there is a problem in that the process is not completely performed and the affinity with the matrix is not sufficient, and many problems to be solved remain in dispersibility. Unlike clay minerals, the layered double hydroxide layer is cationic and can include anionic monomers that cannot be handled by clay. If a polymer monomer can be included between layers to cause a reaction, a polymer that cannot be used with clay minerals can be used, and peeling to the layer can be expected. The improvement of mechanical strength and gas barrier property can be greatly expected.

このようにハイドロタルサイトから、簡単な化学的手法によって、交換が容易な陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む層状複水酸化物を、粒径や均一性に変化を及ぼすことがなく、合成出来るならば、実験室レベルから工業レベルまで、また、環境問題からナノテクノロジーまで広い分野で、ブレークスルーが期待できるが、従来、このような手法は開発されていなかった。
小森佳彦、黒田一幸「無機層状物質と有機物との相互作用」化学総説(日本化学会編、学会出版センター)42, p33-44, (1994). Cavani, F.; Trifiro, F.; Vaccari, A.Catal.Today 1991, 11,173. Ogawa, M.; Kaiho, H.Langmuir 2002,18,4240. Miyata, S. Clays Clay Miner.1983,31,305. Reichle, W. T. Solid States Ionics 1986, 22,135. 鈴木榮一、小野嘉夫「ハイドロタルサイトのインターカレーション化学」、化学総説(日本化学会編、学会出版センター)21, p49-55, (1994). Bish, D. L., Bull.Mineral.1980, 103,170. Adachi-Pagano, M.; Forano, C.; Besse, J-P. J.Mat.Chem. 1988,13,1988.
In this way, layered double hydroxides containing easily exchangeable anions (eg, nitrate ions, chlorine ions, etc.) can be changed from hydrotalcite to the particle size and uniformity by a simple chemical method. If synthesis is possible, breakthroughs can be expected in a wide range of fields from laboratory level to industrial level and from environmental problems to nanotechnology. However, such a method has not been developed so far.
Yoshihiko Komori and Kazuyuki Kuroda “Interaction between Inorganic Layered Substances and Organic Substances” Chemistry Review (The Chemical Society of Japan, Society Publishing Center) 42, p33-44, (1994). Cavani, F .; Trifiro, F .; Vaccari, A. Catal. Today 1991, 11,173. Ogawa, M .; Kaiho, H. Langmuir 2002, 18, 4240. Miyata, S. Clays Clay Miner. 1983, 31, 305. Reichle, WT Solid States Ionics 1986, 22,135. Junichi Suzuki, Yoshio Ono “Intercalation Chemistry of Hydrotalcite”, Review of Chemistry (Edited by The Chemical Society of Japan, Society Publishing Center) 21, p49-55, (1994). Bish, DL, Bull.Mineral. 1980, 103,170. Adachi-Pagano, M .; Forano, C .; Besse, JP. J. Mat. Chem. 1988, 13, 1988.

本発明は、難イオン交換性の炭酸イオンを層間に含むハイドロタルサイトから、簡単で温和な化学的手法によって、交換が容易な陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む層状複水酸化物を、粒径や均一性に変化を及ぼすことなく得るための、実用性に富んだ極めて簡便な化学的合成手法を提供しようというものである。また、それにより、実用性に富んだ新たなハイドロタルサイトの脱炭酸手法を提供し、繰り返し二酸化炭素の脱着が可能なシステムの構築に資するものである。このようにして得られた易陰イオン交換性を示す層状複水酸化物は、陰イオン交換性を備えているためイオン交換によって容易に、炭酸イオンを含む他の陰イオンや、陽イオン性の機能性有機物質などの陰イオンと交換することが可能となるものである。   The present invention relates to a layered double water containing anions (for example, nitrate ions, chloride ions, etc.) that can be easily exchanged from a hydrotalcite containing hardly ion-exchangeable carbonate ions between layers by a simple and mild chemical method. The purpose of the present invention is to provide a practical and extremely simple chemical synthesis method for obtaining an oxide without changing the particle size and uniformity. In addition, it provides a new hydrotalcite decarboxylation method that is highly practical and contributes to the construction of a system that can repeatedly desorb carbon dioxide. The thus obtained layered double hydroxide exhibiting easy anion exchangeability has anion exchangeability, so it can be easily exchanged with other anions including carbonate ions and cationic anions. It can be exchanged for anions such as functional organic substances.

前記プロセスを簡便で実用的な脱炭酸プロセスとして利用することは勿論、それによってできた易陰イオン交換性を示す層状複水酸化物のイオン交換性を生かすことによって、該層状化合物に、簡単に機能性分子を導入することができ、これまでに存在しなかった新規な機能性層状化合物を提供することも可能となるものであり、その利用可能性は、新規化合物を提供する意味でも、また、環境問題の分野でも、極めて優れ実用性に富んでおり、意義が大きいといえる。   Of course, the above-mentioned process can be used as a simple and practical decarboxylation process, and by making use of the ion exchange property of the layered double hydroxide showing the easy anion exchange property produced thereby, the layered compound can be easily obtained. Functional molecules can be introduced, and it is also possible to provide a novel functional layered compound that has not existed before, and its availability is also in the sense of providing a new compound, In the field of environmental problems, it is extremely excellent and practical, and can be said to have great significance.

既に述べたように、これまで塩酸でハイドロタルサイトの処理を行った例がある。このとき、塩酸中のプロトンは、層間の炭酸イオンに容易に結びついて、炭酸水素イオンとなり、マイナス1価の電荷を持つようになるため、イオン交換性に変化が起こる、即ちよりイオン交換が容易になる、と考えられる。そして、水と層状複水酸化物の2つの相において、炭酸水素イオンと塩素イオンは、平衡状態にあり、平衡係数に応じて両方の相に分布しているといえる。この際、大量の塩素イオンがあるならば、炭酸水素イオンと塩素イオンの平衡が層間に塩素イオンが入るような方向に平衡がずれることは、ル・シャトリエの原理からも充分起こるであろうと考えられる。   As already mentioned, there are examples of hydrotalcite treatment with hydrochloric acid so far. At this time, protons in hydrochloric acid are easily combined with carbonate ions between the layers to become hydrogen carbonate ions and have a minus monovalent charge, so that the ion exchange property changes, that is, the ion exchange is easier. It is thought that it becomes. In the two phases of water and the layered double hydroxide, it can be said that the hydrogen carbonate ions and the chlorine ions are in an equilibrium state and are distributed in both phases according to the equilibrium coefficient. At this time, if there is a large amount of chlorine ions, it is considered that the equilibrium between hydrogen carbonate ions and chlorine ions will shift in the direction in which chlorine ions enter between the layers from Le Chatelier's principle. It is done.

これらのことから、酸処理の際に導入したい陰イオンを多量に添加することにより、ハイドロタルサイトから、脱炭酸が出来るのではとの考えに至った。発明者らは、以上の考えに立脚し、具体的には、ハイドロタルサイトを、塩酸と塩素陰イオンを含む水溶媒中に、投入すれば、高温での加熱や腐食性の強い塩化水素ガスなどの反応系を使わなくとも、脱炭酸イオンと、それにともない、易陰イオン交換性を示す層状複水酸化物への変換が合成可能ではないかとの考えに至った。   From these, it came to the idea that decarboxylation can be performed from hydrotalcite by adding a large amount of anions to be introduced during acid treatment. The inventors based on the above idea, specifically, if hydrotalcite is put into an aqueous solvent containing hydrochloric acid and chlorine anion, hydrogen chloride gas that is highly heated and corrosive is used. Even without using a reaction system such as the above, the inventors have come up with the idea that decarboxylation ions and conversion to layered double hydroxides that exhibit easy anion exchange can be synthesized.

以上の基本方針に基づき鋭意研究した結果、脱炭酸イオンの作用は低いが、ハイドロタ
ルサイトの粒径や外形、均一性が変化しない程度の希薄な塩酸を用い、その系に中性の塩酸塩(たとえば、塩化ナトリウムなど)を添加し、室温で作用させることにより、脱炭酸イオンが著しく促進され、外形・粒径・重量を保ったまま、極めて短時間で脱炭酸イオンが行われ、添加した陰イオンを含む層状複水酸化物に変換することを見出すに至った。
As a result of diligent research based on the basic policy described above, dehydrocarbonate ion has a low action, but dilute hydrochloric acid that does not change the particle size, shape, and uniformity of hydrotalcite, and neutral hydrochloric acid in the system. By adding (for example, sodium chloride) and allowing it to act at room temperature, decarboxylation ions are remarkably accelerated, and decarboxylation ions are added and added in an extremely short time while maintaining the external shape, particle size, and weight. It came to find out that it converted into the layered double hydroxide containing an anion.

また、酸としては、塩酸の他に、同じ規定濃度の他のプロトン性強酸である硝酸や硫酸も同じ効果をもたらし、さらに中性の塩として塩酸塩以外に硝酸塩や硫酸塩を用いることにより、生成物に取り込まれる陰イオンの種類を変化させることが可能であることを見いだした。   In addition to hydrochloric acid, nitric acid and sulfuric acid, which are other protic strong acids with the same specified concentration, also have the same effect as acid, and by using nitrate or sulfate other than hydrochloride as neutral salt, It has been found that the type of anion incorporated into the product can be changed.

以上から、本発明者らにおいては、室温という温和な条件で、しかも極めて短時間で、酸と大量の塩素イオンなどの陰イオンを含む混合溶液により、粒径や均一性に変化を及ぼさずに、難イオン交換性のハイドロタルサイトを、脱炭酸イオンさせ、易交換性陰イオン(例えば、硝酸イオン、塩素イオンなど)を含む層状複水酸化物へ変換することに成功したものである。   From the above, the present inventors do not change the particle size or uniformity with a mixed solution containing anions such as acid and a large amount of chlorine ions under a mild condition of room temperature and in a very short time. The present invention succeeds in converting a hardly ion-exchangeable hydrotalcite into a layered double hydroxide containing an easily exchangeable anion (for example, nitrate ion, chlorine ion, etc.) by decarboxylation.

すなわち、本発明は、以下(1)から(10)に記載する解決手段を講ずることによって達成されたものである。
(1) 一般式;MxN (OH)z(CO3 2-)0.5・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示
す。zは、2(x+1) を示す。M は、2価の金属イオン。Nは、3価の金属イオン。nは、環境の湿度により変化するが、ほぼ2)で表される組成を有し、ハイドロタルサイトに類似した構造を有する炭酸イオンを含む層状複水酸化物に、プロトン性の酸と陰イオン(X)の
塩を含む混合水溶液を接触させて陰イオン交換を行い、層状複水酸化物中の炭酸イオンを水溶液に溶離し、溶離した層状複水酸化物中の炭酸イオンサイトに陰イオン(X)を導入
し、一般式;MxN (OH)z(X)・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示す。zは、2(x+1) を示す。M は、2価の金属イオン。Nは、3価の金属イオン。nは、環境の湿度により変化するが、ほぼ2)で表される組成を有する陰イオン交換性に富む層状複水酸化物を生成させることを特徴とする、陰イオン交換性層状複水酸化物の製造方法。
That is, the present invention has been achieved by taking the solutions described in (1) to (10) below.
(1) General formula; M x N (OH) z (CO 3 2- ) 0.5 · nH 2 O (wherein x represents a numerical range of 1.8 ≦ x ≦ 4.2. Z is 2 (x + 1 M is a divalent metal ion, N is a trivalent metal ion, and n varies depending on the humidity of the environment, but has a composition represented by 2) and is similar to hydrotalcite Carbonate ions in the layered double hydroxide are obtained by contacting the mixed double hydroxide containing carbonate ions having the above structure with a mixed aqueous solution containing a salt of a protic acid and an anion (X) to exchange anions. Is eluted into an aqueous solution, and an anion (X) is introduced into the carbonate ion site in the eluted layered double hydroxide. The general formula: M x N (OH) z (X) · nH 2 O (where, x Represents a numerical range of 1.8 ≦ x ≦ 4.2, z represents 2 (x + 1), M represents a divalent metal ion, N represents a trivalent metal ion, and n represents an environmental humidity. Although it changes, it has a composition represented by 2) Characterized in that to produce the layered double hydroxide-rich-exchange properties, method for producing the anion-exchange layered double hydroxides.

(2) 該陰イオン交換操作が、室温から100℃未満の低温領域で行なわれる、前記(1)項に記載の陰イオン交換性層状複水酸化物の製造方法。
(3) 該プロトン性の酸が塩酸であり、陰イオン(X)の塩が塩化ナトリウム(食塩)
である、前記(1)項に記載の陰イオン交換性層状複水酸化物の製造方法。
(4) 該水溶液中のプロトン性の酸濃度が、0.00005〜0.025規定であり、陰イオン(X)の塩濃度が2重量%以上である、前記(1)または(3)項に記載の陰イ
オン交換性層状複水酸化物の製造方法。
(5) 該一般式で示される出発層状複水酸化物が、式中金属イオンMがマグネシウムイオンMgであり、式中3価の金属イオンNがアルミニウムイオンAlであるハイドロタルサイトである、前記(1)項に記載の陰イオン交換性層状複水酸化物の製造方法。
(6) 該陰イオン交換性層状複水酸化物における陰イオンが塩素イオンである、前記(1)ないし(5)の何れか1項に記載の陰イオン交換性層状複水酸化物の製造方法。
(2) The method for producing an anion-exchange layered double hydroxide as described in (1) above, wherein the anion exchange operation is performed in a low temperature region from room temperature to less than 100 ° C.
(3) The protic acid is hydrochloric acid, and the salt of the anion (X) is sodium chloride (salt)
The method for producing an anion-exchanging layered double hydroxide as described in (1) above.
(4) The above item (1) or (3), wherein the concentration of the protic acid in the aqueous solution is 0.00005 to 0.025 N and the salt concentration of the anion (X) is 2% by weight or more. A process for producing an anion-exchange layered double hydroxide as described in 1.
(5) The starting layered double hydroxide represented by the general formula is a hydrotalcite in which the metal ion M is magnesium ion Mg and the trivalent metal ion N is aluminum ion Al in the formula (1) The manufacturing method of the anion exchange layered double hydroxide as described in the item.
(6) The method for producing an anion-exchange layered double hydroxide according to any one of (1) to (5), wherein the anion in the anion-exchange layered double hydroxide is a chlorine ion. .

(7) 前記(1)ないし(6)記載の何れか1項に記載のプロセスで製造された陰イオン交換性層状複水酸化物を、排出ガス中の炭酸ガス除去プロセスにおける二酸化炭素捕捉剤として使用し、該陰イオン交換性層状複水酸化物を炭酸ガスないし炭酸ガスを含んだ液相と接触させて二酸化炭素を該層状複水酸化物の炭酸塩として固定化することを特徴とする、二酸化炭素除去方法。
(8) 前記二酸化炭素を固定化するプロセスに続き、二酸化炭素を炭酸イオンとして固定した層状複水酸化物を回収し、これをプロトン性の酸と陰イオン(X)の塩を含む水溶
液中に投入して、炭酸イオンと陰イオン(X)とを陰イオン交換し、該回収した層状複水酸
化物を陰イオン交換性層状水酸化物に変換し、回収し、該炭酸ガス除去プロセスに循環使用することを特徴とする、前記(7)に記載の二酸化炭素除去方法。
(7) The anion exchange layered double hydroxide produced by the process according to any one of (1) to (6) is used as a carbon dioxide scavenger in the carbon dioxide removal process in the exhaust gas. And using the anion-exchange layered double hydroxide in contact with a liquid phase containing carbon dioxide or carbon dioxide to fix carbon dioxide as a carbonate of the layered double hydroxide, Carbon dioxide removal method.
(8) Following the process of immobilizing carbon dioxide, a layered double hydroxide in which carbon dioxide is immobilized as carbonate ions is recovered, and this is dissolved in an aqueous solution containing a salt of a protic acid and an anion (X). The carbonated ion and anion (X) are anion-exchanged, and the recovered layered double hydroxide is converted to an anion-exchangeable layered hydroxide, recovered, and recycled to the carbon dioxide removal process. The method for removing carbon dioxide according to (7) above, wherein the method is used.

(9) 前記(1)ないし(6)に記載のプロセスで製造された陰イオン交換性層状複水酸化物ないしはこれを含む材料を、陰イオンを有する機能性有機化合物のモノマーと接触させて該モノマーを層状複水酸化物に導入し、次いでモノマーを重合させることを特徴とする、機能性有機化合物で修飾、変性されてなる無機有機複合体。
(10) 該無機有機複合体が分散性を高める機能を有する有機化合物によって修飾、変性されたことを特徴とする、前記(9)項に記載の無機有機複合体。
(11) 該無機有機複合体がフィラーとして使用されることを特徴とした、前記(10)項に記載の無機有機複合体。
(9) The anion exchange layered double hydroxide produced by the process according to the above (1) to (6) or a material containing the anion exchange material is brought into contact with a monomer of a functional organic compound having an anion. An inorganic organic composite modified and modified with a functional organic compound, wherein a monomer is introduced into a layered double hydroxide and then the monomer is polymerized.
(10) The inorganic-organic composite according to (9), wherein the inorganic-organic composite is modified and modified with an organic compound having a function of improving dispersibility.
(11) The inorganic-organic composite according to (10), wherein the inorganic-organic composite is used as a filler.

以上において、一般式で示される出発原料である層状複水酸化物の化学式について、炭酸イオン(CO3 2-)を〜0.5としたのは、0.5において最も炭酸イオンが多く、イオン交換が最も困難な組成を規定したものであり、本発明はこの領域も含め実施可能な領域を規定しているものである。 In the above, regarding the chemical formula of the layered double hydroxide, which is the starting material represented by the general formula, the carbonate ion (CO 3 2- ) is set to be ~ 0.5. The most difficult composition is defined, and the present invention defines a feasible region including this region.

さらに、(1)及びその実施態様項である(2)〜(5)、及び(7)において生成する陰イオン交換性層状複水酸化物は、一般式;MxN (OH)z(CO3 2-)〜0.5・nH2Oで表される
出発物質の(CO3 2-)炭酸イオンが、陰イオン(X)と陰イオン交換したものであるので、その交換の程度によって、完全に(X)によって置換された状態のものから(CO3 2-)が残存しているものまで広い領域のものが得られ、本発明の陰イオン交換性層状複水酸化物は、陰イオン(X)が導入されたことによって炭酸イオンが残存しているものでも、その生成物
は陰イオン交換が容易であることから、発明の態様として含むものである。完全に脱炭酸イオン処理されてなる生成物は、一般式;MxN (OH)z(X)・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示す。zは、2(x+1) を示す。M は、2価の金属イオン。Nは、3価の金属イ
オン。nは、環境の湿度により変化するが、ほぼ2)で表されるが、この組成のみに限定
する趣旨ではない。
Further, the anion-exchange layered double hydroxide produced in (1) and its embodiment items (2) to (5) and (7) has a general formula: M x N (OH) z (CO Since the starting material (CO 3 2- ) carbonate ion represented by 3 2- ) to 0.5 · nH 2 O is anion-exchanged with an anion (X), it depends on the degree of exchange. A wide range from the state substituted by (X) to the one in which (CO 3 2- ) remains is obtained, and the anion-exchange layered double hydroxide of the present invention has an anion (X Even if the carbonate ions remain due to the introduction of), the product is included as an embodiment of the invention because the anion exchange is easy. The product completely treated with decarbonated ions has a general formula: M x N (OH) z (X) · nH 2 O (wherein x represents a numerical range of 1.8 ≦ x ≦ 4.2. Z is , 2 (x + 1), M is a divalent metal ion, N is a trivalent metal ion, and n varies depending on the humidity of the environment, but is expressed by 2). It is not meant to be limited to only.

本発明は、上記の構成を講ずることによって、ハイドロタルサイトの外形・粒径・重量を保ったまま、極めて短時間で脱炭酸イオンが起こり、添加した陰イオンを含む層状複水酸化物に変換することに成功したものである。そして、この成功によって、二酸化炭素除去プロセスあるいは無機有機複合体を提供することにも成功したものである。   By adopting the above configuration, the present invention generates decarbonated ions in a very short time while maintaining the external shape, particle size, and weight of the hydrotalcite, and converts it into a layered double hydroxide containing the added anion. Has been successful. And with this success, we have also succeeded in providing a carbon dioxide removal process or inorganic-organic composite.

本発明は、従来知られていなかった、炭酸イオンを層間に有するハイドロタルサイトに代表される層状複水酸化物の簡便な脱炭酸イオンに成功したものであり、そのプロセス自体産業上利用しうるもので、その意義は大きい。加えて、得られる陰イオンを含む層状複水酸化物は、陰イオン交換が可能なため、他の陰イオンへの変換が可能であり、有機無機ナノ複合体を含む新化合物が合成でき、今後各種分野に大いに利用されることが期待される。例えば、再度、炭酸イオンと結びつくと、二酸化炭素の捕捉分離剤としての利用、が考えられる。さらに、このような二酸化炭素の捕捉剤としての用途のほかにも、陰イオン性機能性有機分子をイオン交換プロセスといった極めて簡単な操作によるいわゆるソフトケミカル的な反応によって、粒径や形状の制御された層状複水酸化物の層間に包接することができるため、新規な機能を有する新規物質の開発・促進につながるものと期待される。   The present invention has succeeded in simple decarboxylation of a layered double hydroxide represented by a hydrotalcite having carbonate ions between layers, which has not been conventionally known, and the process itself can be used industrially. It is significant. In addition, since the layered double hydroxide containing anions can be anion exchanged, it can be converted to other anions, and new compounds containing organic-inorganic nanocomposites can be synthesized. Expected to be widely used in various fields. For example, when combined with carbonate ions again, use as a carbon dioxide capture and separation agent can be considered. In addition to its use as a carbon dioxide scavenger, the particle size and shape are controlled by so-called soft chemical reactions by an extremely simple operation such as an ion exchange process for anionic functional organic molecules. Therefore, it is expected to lead to the development and promotion of new substances having new functions.

さらに、本発明は、任意の均一粒径の製造が可能となっている炭酸イオンを含む層状複水酸化物より、簡単な反応により、粒径・外形・重量を変化させること無く、任意の陰イオンを含む層状複水酸化物を提供できることを示しており、基板上に配向膜を形成するこ
とが可能であり、近年、注目されているような、配向性の高いナノデバイスの構築といった新しい応用分野にまで発展し、及ぶことが考えられ、そのもたらす作用効果は技術的に極めて大きな意義を有するものである。
Furthermore, the present invention provides a simple reaction from a layered double hydroxide containing carbonate ions, which can be produced with an arbitrary uniform particle size, without any change in particle size, external shape, and weight. It has been shown that layered double hydroxides containing ions can be provided, and it is possible to form an alignment film on a substrate, and new applications such as the construction of highly oriented nanodevices that have attracted attention in recent years It is conceivable to develop and extend to the field, and the effects brought about by it are extremely technically significant.

本発明の解決手段は、前述した通りであるが、以下、実施例に基づいて具体的に説明する。但しこれら実施例は、本発明を容易に理解するための一助として示したものであり、決して本発明を限定する趣旨ではない。また、当該製造方法の優位性を示すため、実施例2においては、単独で塩酸を用いた比較実験を示している。   The solution of the present invention is as described above, and will be specifically described below based on examples. However, these examples are shown as an aid for easily understanding the present invention, and are not intended to limit the present invention. Further, in order to show the superiority of the production method, in Example 2, a comparative experiment using hydrochloric acid alone is shown.

一般式;Mg3Al (OH)8(CO3 2-)0.5・2H2Oで示される市販のハイドロタルサイト(DHT-6、協和化学工業株式会社製。平均粒径約0.5〜1μm)を20mgとり、それに、濃度0.005Nの塩酸濃度でかつ、塩化ナトリウム濃度を13.3重量%に調整した水溶液10ml加
えて、25℃で15秒から24時間放置した。その後、窒素気流中、0.2ミクロンのメン
ブランフィルターでろ過し、煮沸により脱炭酸ガスを行った蒸留水で、沈殿物を充分に洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。
A commercially available hydrotalcite (DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd., average particle diameter of about 0.5 to 1 μm) represented by the general formula: Mg 3 Al (OH) 8 (CO 3 2- ) 0.5 · 2H 2 O 20 mg was taken, and 10 ml of an aqueous solution having a hydrochloric acid concentration of 0.005 N and a sodium chloride concentration adjusted to 13.3% by weight was added, and the mixture was allowed to stand at 25 ° C. for 15 seconds to 24 hours. Thereafter, the precipitate was sufficiently washed with distilled water that was filtered through a 0.2 micron membrane filter in a nitrogen stream and decarboxylated by boiling. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.

これを赤外線分光分析、粉末X線解析、元素分析(CHN分析など)、熱分析などの方法により分析した。その結果、赤外スペクトルは、1368cm-1の炭酸イオンのC-O
伸縮振動による吸収が、わずかな残留を残すのみとなった。さらに、炭酸イオンのC-O変角振動による668cm-1付近の消失し、627cm-1付近の吸収があらわれた。また、水と炭酸イオンとの相互作用によるとされている3000cm-1付近のブロードなピークも消失していた(図1)。食塩、塩酸単独では、ほとんど、脱炭酸イオンが起こっていなかった(図1)。
This was analyzed by methods such as infrared spectroscopic analysis, powder X-ray analysis, elemental analysis (CHN analysis, etc.), thermal analysis and the like. As a result, the infrared spectrum is 1368 cm −1 carbonate C—O
Absorption due to stretching vibration left only a slight residue. Further, disappearance in the vicinity of 668 cm −1 due to carbon dioxide O—O bending vibration and absorption near 627 cm −1 appeared. In addition, a broad peak near 3000 cm −1, which was attributed to the interaction between water and carbonate ions, was also lost (FIG. 1). Almost no decarboxylation occurred with sodium chloride and hydrochloric acid alone (FIG. 1).

また、粉末X線回折(PXRD)では、001反射の鋭いピークが観察され、層間隔が、0.780nmから0.797nmに変化したことが分かった。この底面間隔の値は、既に報告されているClイオンを包接することによるマグネシウム・アルミニウム層状複水酸化物の底面間隔の変化の値とよく一致している。得られた、化合物の重量は、ろ過等の操作による重量減やイオン交換による分子量の変化を考慮すると、定量的に回収できたことがわかった。CHN分析では、含有するCの重量%は、0.3%以下であり、出発物であるDHT-6では、2.3%であるため、かなりの脱炭酸イオンが生じていた。生成物の塩素イオンの
分析値は、11重量%であり、理論値の11.5重量%にほぼ、一致しており、層間に塩素イオンが確かに包接されていることを示している。また、走査型電子顕微鏡で得られた像においても、その粒径や外形に変化の無い生成物であることが確認された(図2-1、
図2-2)。
Further, in powder X-ray diffraction (PXRD), a sharp peak of 001 reflection was observed, and it was found that the layer spacing was changed from 0.780 nm to 0.797 nm. This value of the bottom surface spacing is in good agreement with the value of the change in the bottom surface spacing of the magnesium / aluminum layered double hydroxide by the inclusion of Cl ions already reported. It was found that the weight of the obtained compound could be recovered quantitatively in consideration of weight loss due to operations such as filtration and changes in molecular weight due to ion exchange. In the CHN analysis, the weight% of C contained was 0.3% or less, and in the starting material DHT-6, it was 2.3%, so that considerable decarboxylation ions were generated. The analysis value of chlorine ions in the product is 11% by weight, which is almost coincident with the theoretical value of 11.5% by weight, indicating that the chloride ions are surely included between the layers. Also, in the image obtained with a scanning electron microscope, it was confirmed that the product had no change in its particle size and outer shape (Fig. 2-1,
Fig. 2-2).

次に反応時間を調べるため、塩酸−食塩の混合溶液の添加からろ別までの時間を変化させて、赤外分光により脱炭酸イオンの進行度を調べたところ、反応時間が極めて早く、添加からろ別まで、最も短い15秒の反応によっても20時間の反応と変わらない同程度の脱炭酸イオンが達成されていることがわかった(図3)。
なお、出発物質の粒径は、比較的、この化合物の粒径としては、大きい部類に属しているため、粒径の小さなものにも充分に適応可能である。
Next, in order to investigate the reaction time, the time from the addition of the hydrochloric acid-salt mixed solution to the filtration was changed, and when the progress of decarboxylation ion was examined by infrared spectroscopy, the reaction time was extremely fast. Until filtration, it was found that even the shortest 15-second reaction achieved the same degree of decarboxylation ion as the 20-hour reaction (FIG. 3).
In addition, since the particle size of the starting material belongs to a relatively large class as the particle size of this compound, it can be sufficiently applied to those having a small particle size.

塩酸のみの効果を調べるため、一般式;Mg3Al (OH)8(CO3 2-)0.5・2H2Oで示される市販
のハイドロタルサイト(DHT-6、協和化学工業株式会社製。粒径平均は約1μm)を
20mgとり、それに、0.1〜0.001Nの各種塩酸濃度に調整した水溶液10ml加えて、25℃で20時間放置した。その後、窒素気流中、0.2ミクロンのメンブレンフ
ィルターでろ過し、煮沸により脱炭酸ガスを行った蒸留水で、沈殿物を充分に洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。
In order to investigate the effect of hydrochloric acid alone, a commercially available hydrotalcite (DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) represented by the general formula; Mg 3 Al (OH) 8 (CO 3 2- ) 0.5 · 2H 2 O 10 mg of an aqueous solution adjusted to various hydrochloric acid concentrations of 0.1 to 0.001 N was added thereto, and the mixture was allowed to stand at 25 ° C. for 20 hours. Thereafter, the precipitate was sufficiently washed with distilled water filtered through a 0.2 micron membrane filter in a nitrogen stream and decarboxylated by boiling. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.

これを赤外線分光分析、および重量測定により脱炭酸イオンの程度と重量変化・回収率を調べた(図4-1、図4-2)。その結果、0.008規定以上の塩酸濃度では、50%以上の炭酸イオンが減少していたが、0.005規定以下の塩酸濃度では、40%未満の程度しか炭酸イオンが減少していなかった(図4-1)。
一方、0.005規定以下の塩酸濃度では、重量減なく、定量的に回収されたが、0.008規定以上の塩酸濃度では、10%以上の重量減少が生じ、0.05規定超の濃度では、ほとんど溶解して回収できなかった(図4-2)。
The extent of decarboxylation, weight change, and recovery rate were examined by infrared spectroscopic analysis and weight measurement (FIGS. 4-1, 4-2). As a result, at a hydrochloric acid concentration of 0.008 N or more, carbonate ions of 50% or more were reduced, but at a hydrochloric acid concentration of 0.005 N or less, carbonate ions were reduced only to a degree of less than 40%. (Figure 4-1).
On the other hand, at a hydrochloric acid concentration of 0.005 N or less, it was quantitatively recovered without weight reduction, but at a hydrochloric acid concentration of 0.008 N or more, a weight reduction of 10% or more occurred, and a concentration of more than 0.05 N Then, it was hardly dissolved and could not be recovered (Fig. 4-2).

塩添加の効果を調べるため、一般式;Mg3Al (OH)8(CO3 2-)0.5・2H2Oで示される市販の
ハイドロタルサイト(DHT-6,協和化学工業株式会社製。粒径平均は約0.5〜1μm)を20mgとり、それに、0.005及び0.0025Nの2つの塩酸濃度で、かつ、各種の塩化ナトリウム濃度に調整した水溶液を10ml加えて、25℃で20時間放置した。各々の試料を、その後、窒素気流中、0.2ミクロンのメンブランフィルターでろ過し、煮沸により脱炭酸ガスを行った蒸留水で、沈殿物を充分に洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。
In order to investigate the effect of salt addition, a commercial hydrotalcite (DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd.) represented by the general formula: Mg 3 Al (OH) 8 (CO 3 2- ) 0.5 · 2H 2 O Take 20 mg of the average diameter (approx. 0.5-1 μm), add 10 ml of two hydrochloric acid concentrations of 0.005 and 0.0025 N and various sodium chloride concentrations, and let stand at 25 ° C. for 20 hours. did. Each sample was then filtered through a 0.2 micron membrane filter in a nitrogen stream, and the precipitate was thoroughly washed with distilled water subjected to decarbonation by boiling. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.

これを赤外線分光分析、および重量測定により脱炭酸イオンの程度と重量変化・回収率を調べた(図5)。その結果、0.005及び0.0025Nの2つの塩酸濃度において、食塩添加すなわち塩素イオン添加による顕著な効果が観察され、例えば、0.0025Nの濃度の塩酸では、炭酸イオンは20%程度しか減少しないが、25重量%程度までの食塩濃度に調整すると、90%位の顕著な減少が観察された。これらのいずれの試料においても、回収率は、ほぼ100%であった。   This was examined by infrared spectroscopic analysis and gravimetric measurement for the degree of decarbonated ions, weight change and recovery (FIG. 5). As a result, at two hydrochloric acid concentrations of 0.005 and 0.0025N, a remarkable effect is observed by adding salt, that is, adding chlorine ions. For example, in the case of hydrochloric acid having a concentration of 0.0025N, carbonate ions are reduced by about 20%. However, when the salt concentration was adjusted to about 25% by weight, a remarkable decrease of about 90% was observed. In any of these samples, the recovery rate was almost 100%.

塩酸−食塩の混合溶液による処理で得られた塩素イオンを含む層状複水酸化物のイオン交換能を調べるため、一般式;Mg3Al (OH)8(CO3 2-)0.5・2H2Oで示される市販のハイドロ
タルサイト(DHT-6、協和化学工業株式会社製。粒径平均は約0.5〜1μm)を20mgとり、それに、0.005Nの塩酸濃度で、かつ、13重量%の塩化ナトリウム濃度に調整した食塩水溶液を10ml加えて、25℃で20時間放置した。各々の試料を、その後、窒素気流中、0.2ミクロンのメンブレンフィルターでろ過し、煮沸により脱炭酸ガスを行った蒸留水で、沈殿物を充分に洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。これを再度、硫酸ナトリウム、及び炭酸ナトリウムを2種類の水溶液10mlに、投入し、25℃で20時間放置した。各々の試料を、その後、窒素気流中、0.2ミクロンのメンブレンフィルターでろ過し、煮沸により脱炭酸ガスを行った蒸留水で、沈殿物を充分に洗浄した。ろ別した沈殿物をかき集め、直ちに減圧し、真空下で1時間以上、乾燥して、白色粉末を得た。
In order to investigate the ion exchange ability of layered double hydroxides containing chlorine ions obtained by treatment with a mixed solution of hydrochloric acid and sodium chloride, a general formula; Mg 3 Al (OH) 8 (CO 3 2- ) 0.5 · 2H 2 O 20 mg of a commercially available hydrotalcite (DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd., average particle size is about 0.5 to 1 μm) is taken, and hydrochloric acid concentration of 0.005N and 13% by weight of chloride are taken. 10 ml of a saline solution adjusted to a sodium concentration was added, and the mixture was allowed to stand at 25 ° C. for 20 hours. Each sample was then filtered through a 0.2 micron membrane filter in a nitrogen stream, and the precipitate was thoroughly washed with distilled water subjected to decarbonation by boiling. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder. This was again charged with sodium sulfate and sodium carbonate in 10 ml of two aqueous solutions and left at 25 ° C. for 20 hours. Each sample was then filtered through a 0.2 micron membrane filter in a nitrogen stream, and the precipitate was thoroughly washed with distilled water subjected to decarbonation by boiling. The precipitate collected by filtration was collected, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.

これを赤外線分光分析、および重量測定により脱炭酸イオンの程度と重量変化・回収率を調べた。その結果、各々、硫酸イオン、炭酸イオンを含む層状複水酸化物に変換されていた。その赤外吸収スペクトル図6に示す。   This was examined by infrared spectroscopic analysis and gravimetric measurement for the degree of decarboxylated ions, weight change and recovery rate. As a result, each was converted into a layered double hydroxide containing sulfate ions and carbonate ions. Its infrared absorption spectrum is shown in FIG.

以上の結果、脱炭酸イオンの作用は低いが、ハイドロタルサイトの粒径や外形、均一性が変化しない程度の希薄な塩酸を用い、その系に中性の塩酸塩(たとえば、塩化ナトリウムなど)を添加し、室温で作用させることにより、脱炭酸イオンが著しく促進され、外形・粒径・重量を保ったまま、極めて短時間で脱炭酸イオンが行われ、添加した陰イオンを
含む層状複水酸化物に変換することが明らかになった。当該方法によって得られた陰イオンを含む層状複水酸化物は、さらに、簡単な通常のイオン交換で、他の陰イオンを含む層状複水酸化物に外形・粒径・重量を保ったまま、さらに変換することが明らかとなった。
As a result, the action of decarboxylation ions is low, but dilute hydrochloric acid that does not change the particle size, shape, and uniformity of hydrotalcite is used, and neutral hydrochloride (for example, sodium chloride) is used in the system. Is added and allowed to act at room temperature, decarboxylation ions are remarkably accelerated, and decarboxylation ions are carried out in a very short time while maintaining the external shape, particle size and weight, and the layered double water containing the added anions It became clear to convert to oxide. The layered double hydroxide containing anions obtained by the method is further subjected to simple ordinary ion exchange while maintaining the outer shape, particle size and weight of the layered double hydroxide containing other anions. It became clear that further conversion was necessary.

以下、塩酸−食塩の混合水溶液の作用による脱炭酸イオン反応について、実施例から推定されるメカニズムを記載し、補足的に説明する。
ハイドロタルサイトなどのような、炭酸イオンを層間に含む層状複水酸化物は、酸性水溶液に投入すると、その層間の炭酸イオン(CO3 2-)が、プロトンと結びつき、−1価の炭
酸水素イオン(HCO3 -)に変化し、それと同時に、電荷のバランスのため塩素イオン(Cl-)を等量、層間に包接する。この炭酸水素イオンは炭酸イオンと異なり、−1価であるため、層状複水酸化物の陽イオン性の層との結びつきが弱くなり、イオン交換しやすくなるものと考えられる。そのため、水溶液中に大量の陰イオン種があると、そのイオン種とイオン交換を起こす。
Hereinafter, the mechanism presumed from an Example is described and supplementarily demonstrated about the decarboxylation ion reaction by the effect | action of the aqueous solution of hydrochloric acid-salt.
When a layered double hydroxide such as hydrotalcite containing carbonate ions between layers is put into an acidic aqueous solution, the carbonate ions (CO 3 2- ) between the layers combine with protons, and −1 valent hydrogen carbonate changes to, at the same time, chlorine ions for charge balance - ions (HCO 3) - clathrating equal amounts, the interlayer (Cl). Since this hydrogen carbonate ion is −1 valent unlike carbonate ion, it is considered that the bond between the layered double hydroxide and the cationic layer becomes weak, and ion exchange is facilitated. Therefore, if there is a large amount of anionic species in the aqueous solution, ion exchange occurs with the ionic species.

さらに、酸濃度を増していくと、さらに1価の炭酸水素イオン(HCO3 -)は、中性のH2CO3に変化し、層間より液相に脱離していく。このとき、やはり、水溶液中に大量の陰イオン種があると、そのイオン種を取り込む。この様にして、脱炭酸イオンと液相中の陰イオンの取り込みが行われる。層状複水酸化物の金属水酸化物層は、本来は酸に侵されるものであるが、層間の炭酸イオンの方が酸のプロトンと反応しやすいため、その反応が優位に起こり、粒径・外形・重量が減少しないのであろう。しかし、酸濃度が増してくると、酸が層状複水酸化物の金属水酸化物層を、侵すようになり、徐々に溶解を起こし、ついには構造が変化して、溶解してしまうと考えられる。以上のように、当該製造方法は、酸の炭酸イオンに対する反応が、層状複水酸化物の金属水酸化物層への反応よりも、優先されることを利用したものである。 Furthermore, as the acid concentration increases, monovalent hydrogen carbonate ions (HCO 3 ) change to neutral H 2 CO 3 and are desorbed from the interlayer into the liquid phase. At this time, if there is a large amount of anionic species in the aqueous solution, the ionic species are taken up. In this way, decarboxylation ions and anions in the liquid phase are taken up. The metal hydroxide layer of a layered double hydroxide is originally attacked by an acid, but since the carbonate ions between the layers are more likely to react with the protons of the acid, the reaction takes place predominantly, and the particle size / The outer shape and weight will not decrease. However, as the acid concentration increases, the acid begins to attack the metal hydroxide layer of the layered double hydroxide, causing gradual dissolution, eventually changing the structure and dissolving. It is done. As described above, the production method utilizes the fact that the reaction of the acid to the carbonate ion is prioritized over the reaction of the layered double hydroxide to the metal hydroxide layer.

この機構は、単に塩酸は濃度のみならず、その使用する容量も重要であることを示している。すなわち、出発物の層状複酸化物中の炭酸イオンを炭酸水素イオンさらには、脱離させる以上のプロトン量、すなわち塩酸溶液量を用いると、酸濃度が増すのと同じ効果を及ぼし、過剰のプロトンが層状複水酸化物の金属水酸化物層を侵し、溶解を起こすと考えられる。実際、ハイドロタルサイト(DHT−6,協和化学工業株式会社製。粒径平均は約0.5〜1μm)を20mgに対し、0.005Nの塩酸濃度の溶液の量を変化させて、その重量変化を調べたところ、15ml以上の量では顕著に重量減少が見られた。また、炭酸イオンの減少は、同じように15mlを超える塩酸量で顕著であった。この時、プロトン量は炭酸塩量の約2.2倍(モル比)であるが、これは、炭酸イオンが、中性の炭酸ガスにな
る量であり、おおむね、以上に述べた機構と一致している。
このことは、モル数で、層状複水酸化物の炭酸イオン量と水溶液中のプロトン量が1:1〜2という量にして、さらに、塩素イオンを添加することによって、炭酸水素イオンのイオン交換を促進させるのが、重量減少がなく脱炭酸が起こる条件であるといえる。
以上のように、当該製造方法は、炭酸イオンとプロトン量の比の制御と炭酸水素イオンのイオン交換を利用して、金属水酸化物層への反応を最小限に留めながら、最も効率的に脱炭酸イオンを行おうとする方法であり、実際の適応に関しては、以上のようなイオン種の量を考慮して、最適な条件にする必要がある。
This mechanism shows that not only the concentration of hydrochloric acid is important, but also the capacity used. In other words, using carbonate ions in the starting layered double oxide, hydrogen carbonate ions, and protons more than desorbing, ie, hydrochloric acid solution, have the same effect as increasing the acid concentration, and excess protons. It is considered that the metal hydroxide layer of the layered double hydroxide causes the dissolution. Actually, hydrotalcite (DHT-6, manufactured by Kyowa Chemical Industry Co., Ltd., particle size average is about 0.5-1 μm) is changed to 20 mg, and the amount of 0.005N hydrochloric acid solution is changed, and the weight change is examined. As a result, a significant weight reduction was observed when the amount was 15 ml or more. In addition, the decrease of carbonate ion was also remarkable at the amount of hydrochloric acid exceeding 15 ml. At this time, the amount of protons is about 2.2 times the molar amount of carbonate (molar ratio), but this is the amount of carbonate ions that become neutral carbon dioxide, which is generally consistent with the mechanism described above. Yes.
This means that the amount of carbonate ions of the layered double hydroxide and the amount of protons in the aqueous solution is 1: 1 to 2 in terms of moles, and further, by adding chlorine ions, ion exchange of bicarbonate ions It can be said that it is a condition that decarboxylation occurs without weight reduction.
As described above, the production method is most efficient while controlling the ratio of carbonate ions and protons and ion exchange of hydrogen carbonate ions while minimizing the reaction to the metal hydroxide layer. This is a method for decarboxylation, and in terms of actual adaptation, it is necessary to set the optimum conditions in consideration of the amount of ionic species as described above.

本発明は、発明の効果の欄でも触れたように、その意義は格別のものがある。すなわち、本発明は、従来容易には得られなかった陰イオン交換性の層状複水酸化物を、短時間に簡単に得ることができる。そして得られる易陰イオン交換性の層状複水酸化物は、それ自体産業上利用しうるもので、その意義は大きい。加えて、その生成物の陰イオン交換性から、今後各種分野に大いに利用されることが期待される。例えば、陰イオン性機能性有機分子をイオン交換プロセスといった極めて簡単な操作によるいわゆるソフトケミカル的な反応によって合成し、提供することができるため、新規な機能を有してなる新規物質開発・促進につながるものと期待される。   As described in the column of the effect of the invention, the significance of the present invention is exceptional. That is, according to the present invention, an anion-exchangeable layered double hydroxide that has not been easily obtained can be easily obtained in a short time. The resulting easily anion-exchangeable layered double hydroxide can be used industrially and has great significance. In addition, the product is expected to be used in various fields in the future due to the anion exchange property of the product. For example, anionic functional organic molecules can be synthesized and provided by a so-called soft chemical reaction by an extremely simple operation such as an ion exchange process, so that new substances having new functions can be developed and promoted. Expected to be connected.

出発原料となる炭酸イオンを含むハイドロタルサイトなどの層状複水酸化物は、アスペクト比の高い平板状の結晶として析出し、結晶のc軸方向が平板と垂直な方向になる。イオン交換によって外形・粒径が変化しないから、出発物として、粒径制御が容易で、結晶のアスペクト比の高い、炭酸イオン含有層状複水酸化物を使用できるため、粒径が制御された有機無機複合体を合成することが可能となり、特定の方向に並んだ配向膜の形成への道が開ける。これにより、基板上への規則正しい配向性をもった累積によるナノデバイスの構築といった新しい応用分野にまで発展し、及ぶことが考えられる。   A layered double hydroxide such as hydrotalcite containing carbonate ions as a starting material precipitates as a flat crystal having a high aspect ratio, and the c-axis direction of the crystal is perpendicular to the flat plate. Since the outer shape and particle size do not change due to ion exchange, it is easy to control the particle size as a starting material, and a carbonate ion-containing layered double hydroxide with a high crystal aspect ratio can be used. It becomes possible to synthesize inorganic composites, opening the way to the formation of alignment films arranged in a specific direction. As a result, it can be considered that it will develop and extend to new application fields such as the construction of nanodevices by accumulation with regular orientation on the substrate.

出発物および生成物の赤外スペクトルを示す図。出発物である炭酸イオンを含むマグネシウム・アルミニウム層状複水酸化物(a)、0.005規定塩酸処理したもの(b)、13重量%食塩のみによって処理したもの(c)、と本発明の実施例で処理作製した生成物(d)の赤外スペクトルを示す図。(図中、νc-o、δc-o は、各々、炭酸イオンによる伸縮振動、および、変角振動による吸収を示す。)The figure which shows the infrared spectrum of a starting material and a product. In the examples of the present invention, magnesium / aluminum layered double hydroxide containing carbonate ions (a), 0.005N hydrochloric acid treated (b), treated with only 13 wt% sodium chloride (c) The figure which shows the infrared spectrum of the process produced product (d). (In the figure, νc-o and δc-o respectively represent stretching vibration due to carbonate ions and absorption due to bending vibration.) 出発物である炭酸イオンを含むマグネシウム・アルミニウム層状複水酸化物(DHT-6)の走査電子顕微鏡写真。Scanning electron micrograph of magnesium-aluminum layered double hydroxide (DHT-6) containing carbonate ions as a starting material. 出発物(DHT-6)を0.005N塩酸濃度でかつ、13重量%の食塩を含有する水溶液で処理して生成した層状複水酸化物の走査電子顕微鏡写真。The scanning electron micrograph of the layered double hydroxide produced by treating the starting material (DHT-6) with an aqueous solution containing 0.005N hydrochloric acid and containing 13% by weight of sodium chloride. 出発物(DHT-6:(a))と0.005N塩酸濃度でかつ、13重量%の食塩を含有する水溶液で15秒、処理して生成した層状複水酸化物(b)の赤外スペクトルを示す図。Infrared spectrum of layered double hydroxide (b) produced by treatment with starting material (DHT-6: (a)) and an aqueous solution containing 0.005N hydrochloric acid and 13 wt% sodium chloride for 15 seconds FIG. 出発物(DHT-6)を各種塩酸濃度で処理して生成した層状複水酸化物の赤外スペクトルより推定した残存炭酸イオンの含有率を示す図。The figure which shows the content rate of the residual carbonate ion estimated from the infrared spectrum of the layered double hydroxide produced | generated by processing a starting material (DHT-6) with various hydrochloric acid concentration. 出発物(DHT-6)を各種塩酸濃度で処理した際の回収率(重量による)を示す図。The figure which shows the collection | recovery rate (by weight) at the time of processing a starting material (DHT-6) with various hydrochloric acid concentrations. 出発物(DHT-6)に対し、塩酸濃度を0.005N(a)ないし0.0025N(b)に固定し、食塩濃度のみを変化させたときの残余炭酸イオン含有率の変化を示す図。The figure which shows the change of residual carbonate ion content when fixing hydrochloric acid concentration to 0.005N (a) thru | or 0.0025N (b) with respect to a starting material (DHT-6), and changing only salt concentration. 出発物(DHT-6:(a))を本発明で開発した陰イオン交換促進剤(0.005N塩酸濃度と13重量%の食塩を含有する水溶液)で処理して生成した層状複水酸化物(b)と、この生成物にイオン交換によって炭酸イオン(CO3 2-)を再び導入した層状複水酸化物(c)と、生成物(b)に、イオン交換によって硫酸イオン(SO4 2-)を導入した層状複水酸化物(d)の各赤外スペクトルを示す図。Layered double hydroxide produced by treating the starting material (DHT-6: (a)) with the anion exchange accelerator developed in the present invention (an aqueous solution containing 0.005N hydrochloric acid concentration and 13% by weight of sodium chloride) (B), a layered double hydroxide (c) in which carbonate ions (CO 3 2− ) have been reintroduced into the product by ion exchange, and sulfate ions (SO 4 2 ) by ion exchange in the product (b). The figure which shows each infrared spectrum of the layered double hydroxide (d) which introduce | transduced-).

Claims (11)

一般式;MxN (OH)z(CO3 2-)0.5・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示す。zは、2(x+1) を示す。M は、2価の金属イオン。Nは、3価の金属イオン。nは、環境の湿度に
より変化するが、ほぼ2)で表される組成を有し、ハイドロタルサイトに類似した構造を有する炭酸イオンを含む層状複水酸化物に、プロトン性の酸と陰イオン(X)の塩を含む
混合水溶液を接触させて陰イオン交換を行い、層状複水酸化物中の炭酸イオンを水溶液に溶離し、溶離した層状複水酸化物中の炭酸イオンサイトに陰イオン(X)を導入し、一般
式;MxN (OH)z(X)・nH2O(式中、xは、1.8≦x≦4.2の数値範囲を示す。zは、2(x+1) を示す。M は、2価の金属イオン。Nは、3価の金属イオン。nは、環境の湿度により変化するが、ほぼ2)で表される組成を有する陰イオン交換性に富む層状複水酸化物を生成させることを特徴とする、陰イオン交換性層状複水酸化物の製造方法。
General formula: M x N (OH) z (CO 3 2− ) 0.5 · nH 2 O (wherein x represents a numerical range of 1.8 ≦ x ≦ 4.2. Z represents 2 (x + 1)) M is a divalent metal ion, N is a trivalent metal ion, and n varies depending on the humidity of the environment, but has a composition represented by 2) and has a structure similar to hydrotalcite. A mixed aqueous solution containing a protonic acid and an anion (X) salt is brought into contact with the layered double hydroxide containing carbonate ions, and anion exchange is performed to convert the carbonate ions in the layered double hydroxide into an aqueous solution. An anion (X) is introduced into the carbonate ion site in the eluted layered double hydroxide, and the general formula; M x N (OH) z (X) · nH 2 O (where x is 1.8) ≤ x ≤ 4.2 Indicates a numerical range, z indicates 2 (x + 1), M is a divalent metal ion, N is a trivalent metal ion, and n varies depending on environmental humidity. , Anion exchange having a composition represented by 2) A method for producing an anion-exchanging layered double hydroxide characterized by producing a layered double hydroxide rich in properties.
該陰イオン交換操作が、室温から100℃未満の低温領域で行なわれる、請求項1に記載の陰イオン交換性層状複水酸化物の製造方法。 The method for producing an anion-exchangeable layered double hydroxide according to claim 1, wherein the anion exchange operation is performed in a low temperature region from room temperature to less than 100 ° C. 該プロトン性の酸が塩酸であり、陰イオン(X)の塩が塩化ナトリウム(食塩)である、
請求項1に記載の陰イオン交換性層状複水酸化物の製造方法。
The protic acid is hydrochloric acid and the salt of the anion (X) is sodium chloride (salt);
The manufacturing method of the anion exchange layered double hydroxide of Claim 1.
該水溶液中のプロトン性の酸濃度が、0.00005〜0.025規定であり、陰イオン(X)の塩濃度が2重量%以上である、請求項1または3に記載の陰イオン交換性層状複
水酸化物の製造方法。
4. The anion exchangeability according to claim 1, wherein the concentration of the protic acid in the aqueous solution is 0.00005 to 0.025 N, and the salt concentration of the anion (X) is 2% by weight or more. A method for producing a layered double hydroxide.
該一般式で示される出発層状複水酸化物が、式中金属イオンMがマグネシウムイオンMgであり、式中3価の金属イオンNがアルミニウムイオンAlであるハイドロタルサイトである、請求項1に記載の陰イオン交換性層状複水酸化物の製造方法。 The starting layered double hydroxide represented by the general formula is a hydrotalcite in which the metal ion M is a magnesium ion Mg and the trivalent metal ion N is an aluminum ion Al in the formula. The manufacturing method of the anion exchange layered double hydroxide of description. 該陰イオン交換性層状複水酸化物における陰イオンが塩素イオンである、請求項1ないし5の何れか1項に記載の陰イオン交換性層状複水酸化物の製造方法。 The method for producing an anion-exchange layered double hydroxide according to any one of claims 1 to 5, wherein the anion in the anion-exchange layered double hydroxide is a chlorine ion. 前記請求項1ないし6記載の何れか1項に記載のプロセスで製造された陰イオン交換性層状複水酸化物を、排出ガス中の炭酸ガス除去プロセスにおける二酸化炭素捕捉剤として使用し、該陰イオン交換性層状複水酸化物を炭酸ガスないし炭酸ガスを含んだ液相と接触させて二酸化炭素を該層状複水酸化物の炭酸塩として固定化することを特徴とする、二酸化炭素除去方法。 The anion-exchange layered double hydroxide produced by the process according to any one of claims 1 to 6 is used as a carbon dioxide scavenger in a carbon dioxide removal process in exhaust gas, A method for removing carbon dioxide, comprising immobilizing carbon dioxide as a carbonate of the layered double hydroxide by bringing the ion-exchangeable layered double hydroxide into contact with a liquid phase containing carbon dioxide or carbon dioxide. 前記二酸化炭素を固定化するプロセスに続き、二酸化炭素を炭酸イオンとして固定した層状複水酸化物を回収し、これをプロトン性の酸と陰イオン(X)の塩を含む水溶液中に投
入して、炭酸イオンと陰イオン(X)とを陰イオン交換し、該回収した層状複水酸化物を陰
イオン交換性層状複水酸化物に変換し、回収し、該炭酸ガス除去プロセスに循環使用することを特徴とする、請求項7に記載の二酸化炭素除去方法。
Following the process of fixing carbon dioxide, the layered double hydroxide in which carbon dioxide is fixed as carbonate ions is recovered, and this is put into an aqueous solution containing a salt of a protic acid and an anion (X). Then, anion exchange between carbonate ion and anion (X) is performed, and the recovered layered double hydroxide is converted into an anion exchangeable layered double hydroxide, which is recovered and recycled for use in the carbon dioxide removal process. The carbon dioxide removing method according to claim 7, wherein:
請求項1ないし6に記載のプロセスで製造された陰イオン交換性層状複水酸化物ないしはこれを含む材料を、陰イオンを有する機能性有機化合物のモノマーと接触させて該モノマーを層状複水酸化物に導入し、次いでモノマーを重合させることを特徴とする、機能性有機化合物で修飾、変性されてなる無機有機複合体。 An anion-exchange layered double hydroxide produced by the process according to claim 1 or 6 or a material containing the anion-exchange layered double hydroxide is brought into contact with a monomer of a functional organic compound having an anion to form the layered double hydroxide. An inorganic-organic composite modified and modified with a functional organic compound, which is introduced into a product and then polymerized with a monomer. 該無機有機複合体が分散性を高める機能を有する有機化合物によって修飾されたことを特徴とする、請求項9記載の無機有機複合体。 The inorganic-organic composite according to claim 9, wherein the inorganic-organic composite is modified with an organic compound having a function of enhancing dispersibility. 該無機有機複合体がフィラーとして使用されることを特徴とした、請求項10記載の無機有機複合体。
The inorganic-organic composite according to claim 10, wherein the inorganic-organic composite is used as a filler.
JP2004067514A 2004-03-10 2004-03-10 Method for producing layered hydroxide having ion-exchangeable anions by decarboxylation of hydrotalcite Expired - Lifetime JP4228077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067514A JP4228077B2 (en) 2004-03-10 2004-03-10 Method for producing layered hydroxide having ion-exchangeable anions by decarboxylation of hydrotalcite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067514A JP4228077B2 (en) 2004-03-10 2004-03-10 Method for producing layered hydroxide having ion-exchangeable anions by decarboxylation of hydrotalcite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008119573A Division JP4873751B2 (en) 2008-05-01 2008-05-01 Carbon dioxide remover and its regeneration method

Publications (2)

Publication Number Publication Date
JP2005255441A true JP2005255441A (en) 2005-09-22
JP4228077B2 JP4228077B2 (en) 2009-02-25

Family

ID=35081540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067514A Expired - Lifetime JP4228077B2 (en) 2004-03-10 2004-03-10 Method for producing layered hydroxide having ion-exchangeable anions by decarboxylation of hydrotalcite

Country Status (1)

Country Link
JP (1) JP4228077B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055019A1 (en) * 2005-11-11 2007-05-18 Saga University Process for freshwater production
WO2007123264A1 (en) * 2006-04-20 2007-11-01 Mizusawa Industrial Chemicals, Ltd. Novel aluminum complex hydroxide salt and method for producing the same
WO2009072488A2 (en) 2007-12-05 2009-06-11 National Institute For Materials Science Process for producing anion exchange layered double hydroxide
JP2009173482A (en) * 2008-01-23 2009-08-06 National Institute For Materials Science Swellable layered double hydroxide and its manufacturing method, and gel-like substance, sol-like substance and nanosheet using the same
WO2012102151A1 (en) * 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Method for producing anion-exchanging layered double hydroxide and method for substituting carbonate ion of layered double hydroxide containing carbonate ion
JP2016190199A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Treatment method for acid exhaust gas generated from combustion facility, combustion facility and acid exhaust gas treatment agent
US9718698B2 (en) 2006-07-31 2017-08-01 Jdc Corporation Hydrotalcite-like particulate material and method for production thereof
WO2023084917A1 (en) * 2021-11-10 2023-05-19 セトラスホールディングス株式会社 Method for producing ion-exchanged hydrotalcite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545615B2 (en) 2011-01-27 2017-01-17 National Institute For Materials Science Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055019A1 (en) * 2005-11-11 2007-05-18 Saga University Process for freshwater production
WO2007123264A1 (en) * 2006-04-20 2007-11-01 Mizusawa Industrial Chemicals, Ltd. Novel aluminum complex hydroxide salt and method for producing the same
US9718698B2 (en) 2006-07-31 2017-08-01 Jdc Corporation Hydrotalcite-like particulate material and method for production thereof
WO2009072488A2 (en) 2007-12-05 2009-06-11 National Institute For Materials Science Process for producing anion exchange layered double hydroxide
WO2009072488A3 (en) * 2007-12-05 2009-08-06 Nat Inst For Materials Science Process for producing anion exchange layered double hydroxide
JP5317293B2 (en) * 2007-12-05 2013-10-16 独立行政法人物質・材料研究機構 Method for producing anion-exchange layered double hydroxide
EP2228345A4 (en) * 2007-12-05 2016-05-25 Nat Inst For Materials Science Process for producing anion exchange layered double hydroxide
JP2009173482A (en) * 2008-01-23 2009-08-06 National Institute For Materials Science Swellable layered double hydroxide and its manufacturing method, and gel-like substance, sol-like substance and nanosheet using the same
WO2012102151A1 (en) * 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Method for producing anion-exchanging layered double hydroxide and method for substituting carbonate ion of layered double hydroxide containing carbonate ion
JP5867831B2 (en) * 2011-01-27 2016-02-24 国立研究開発法人物質・材料研究機構 Method for producing anion-exchange layered double hydroxide and method for replacing carbonate ion of layered double hydroxide containing carbonate ion
JP2016190199A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Treatment method for acid exhaust gas generated from combustion facility, combustion facility and acid exhaust gas treatment agent
WO2023084917A1 (en) * 2021-11-10 2023-05-19 セトラスホールディングス株式会社 Method for producing ion-exchanged hydrotalcite

Also Published As

Publication number Publication date
JP4228077B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP5317293B2 (en) Method for producing anion-exchange layered double hydroxide
Gupta et al. Microscopic, spectroscopic, and experimental approach towards understanding the phosphate adsorption onto Zn–Fe layered double hydroxide
US9012357B2 (en) Lithium extraction composition and method of preparation thereof
Parashar et al. Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite
Xia et al. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs
Pirmoradi et al. Kinetics and thermodynamics of cyanide removal by ZnO@ NiO nanocrystals
Fronczak et al. Graphitic carbon nitride doped with the s-block metals: adsorbent for the removal of methyl blue and copper (II) ions
Gore et al. Interweaved LDH/PAN nanocomposite films: Application in the design of effective hexavalent chromium adsorption technology
Peng et al. Multipath fabrication of hierarchical CuAl layered double hydroxide/carbon fiber composites for the degradation of ammonia nitrogen
JP5867831B2 (en) Method for producing anion-exchange layered double hydroxide and method for replacing carbonate ion of layered double hydroxide containing carbonate ion
US20130168320A1 (en) Organic templated nanometal oxyhydroxide
JP4228077B2 (en) Method for producing layered hydroxide having ion-exchangeable anions by decarboxylation of hydrotalcite
Chitrakar et al. A new method for synthesis of Mg− Al, Mg− Fe, and Zn− Al layered double hydroxides and their uptake properties of bromide ion
JP5744940B2 (en) Method for treating radioactive Cs-contaminated water, radioactive Cs adsorbent and method for producing the same
JP2005335965A (en) Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use
JP2014020916A (en) METHOD FOR PROCESSING RADIOACTIVE Cs CONTAMINATED WATER
JP4873751B2 (en) Carbon dioxide remover and its regeneration method
JP5653408B2 (en) Radioactive Cs adsorbent and method for producing the same
JPH08511504A (en) Kaolins amorphous derivatives
Qin et al. Tannic acid-assisted prussian blue anchoring on membranes for rapid and recyclable removal of cesium
WO2010137321A1 (en) Water purification material, water purification method, phosphate fertilizer precursor, and method for manufacturing a phosphate fertilizer precursor
KR20230058601A (en) Ion-exchanged regenerative catalyst for carbon dioxide capture
Yuan et al. Facile synthesis and characterization of ZnS polymorphs/Halloysite composite for efficiently selective adsorption of Al (III) from acidic rare earth ions solution
Tadjarodi et al. Synthesis, characterization and adsorption capability of CdO microstructure for congo red from aqueous solution
Saber et al. Preparation of new layered double hydroxide, Co-V LDH

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350