JP2007296585A - Method of manufacturing bearing device - Google Patents

Method of manufacturing bearing device Download PDF

Info

Publication number
JP2007296585A
JP2007296585A JP2006124131A JP2006124131A JP2007296585A JP 2007296585 A JP2007296585 A JP 2007296585A JP 2006124131 A JP2006124131 A JP 2006124131A JP 2006124131 A JP2006124131 A JP 2006124131A JP 2007296585 A JP2007296585 A JP 2007296585A
Authority
JP
Japan
Prior art keywords
grinding
ball transfer
grinding surface
bearing device
transfer groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006124131A
Other languages
Japanese (ja)
Inventor
Yutaka Kamezawa
豊 亀沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006124131A priority Critical patent/JP2007296585A/en
Publication of JP2007296585A publication Critical patent/JP2007296585A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a bearing device, which restrains the occurrence of grinding burning, improves stability in quality, and also improves product load capacity. <P>SOLUTION: The manufacturing method of the bearing device is provided for grinding ball transfer grooves 5 and 6 of an external member 4 of the bearing device, by rotating a grinding wheel member 3 having projecting grinding surface parts 1 and 2 around its axis. The ball transfer grooves 5 and 6 are ground by obliquely notching by the projecting grinding surface parts 1 and 2 in the direction forming a predetermined inclination to the axis of the external member 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受装置の製造方法に関する。 The present invention relates to a method for manufacturing a bearing device.

軸受装置には車輪用軸受装置があり、車輪用軸受装置には、ハブ輪に一対の内輪が装着(圧入)された第1世代や第2世代と呼ばれるもの、ハブ輪の外周に直接軌道面(転走面)を形成した第3世代と呼ばれるもの、さらには、ハブ輪と等速自在継手の外側継手部材の外周にそれぞれ直接軌道面(転走面)を形成した第4世代と呼ばれるものがある。   The bearing device includes a wheel bearing device. The wheel bearing device is a so-called first generation or second generation in which a pair of inner rings are mounted (press-fitted) on a hub ring, and a raceway surface directly on the outer periphery of the hub ring. What is called the 3rd generation that formed (rolling surface), and what is called the 4th generation that formed the raceway surface (rolling surface) directly on the outer periphery of the outer joint member of the hub wheel and constant velocity universal joint, respectively. There is.

例えば、第3世代と呼ばれる車輪用軸受装置(特許文献1及び特許文献2)は、図7に示すように、外径方向に延びるフランジ101を有するハブ輪102と、ハブ輪102の筒部113の外周側に配設される軸受構造部100とを備える。そして、このハブ輪102に図示省略の等速自在継手の外側継手部材が固定される。   For example, as shown in FIG. 7, the wheel bearing device called the third generation (Patent Document 1 and Patent Document 2) includes a hub wheel 102 having a flange 101 extending in the outer diameter direction, and a cylindrical portion 113 of the hub wheel 102. The bearing structure part 100 arrange | positioned at the outer peripheral side of this is provided. An outer joint member of a constant velocity universal joint (not shown) is fixed to the hub wheel 102.

また、ハブ輪102は、筒部113と前記フランジ101とを有し、フランジ101の外端面(ホイール取付面)114には、図示省略のホイールおよびブレーキロータが装着される短筒状のパイロット部115が突設されている。パイロット部115は、大径の第1部115aと小径の第2部115bとからなり、第1部115aにブレーキロータが外嵌され、第2部115bにホイールが外嵌される。   The hub wheel 102 has a cylindrical portion 113 and the flange 101, and a short cylindrical pilot portion in which a wheel and a brake rotor (not shown) are mounted on the outer end surface (wheel mounting surface) 114 of the flange 101. 115 protrudes. The pilot portion 115 includes a large-diameter first portion 115a and a small-diameter second portion 115b. A brake rotor is externally fitted to the first portion 115a, and a wheel is externally fitted to the second portion 115b.

そして、筒部113の反フランジ側に切欠部116が設けられ、この切欠部116に軸受構造部100の内輪117が嵌合されている。また、ハブ輪102のフランジ101にはボルト装着孔112が設けられて、このボルト装着孔112に、ホイールおよびブレーキロータをフランジ101に固定するためのハブボルト106が装着されている。   A notch 116 is provided on the opposite side to the flange portion of the cylindrical portion 113, and the inner ring 117 of the bearing structure portion 100 is fitted into the notch 116. Further, a bolt mounting hole 112 is provided in the flange 101 of the hub wheel 102, and a hub bolt 106 for fixing the wheel and the brake rotor to the flange 101 is mounted in the bolt mounting hole 112.

軸受構造部100は、前記内輪117と、外方部材(外輪)105と、転動体としてのボール122とを備える。外方部材105は、その内周に2列の外側軌道面120、121が設けられると共に、その外周にフランジ(車体取付フランジ)132が設けられている。また、ハブ輪102の筒部113の外周面のフランジ近傍には第1内側軌道面118が設けられ、内輪117の外周面に第2内側軌道面119が設けられている。   The bearing structure unit 100 includes the inner ring 117, an outer member (outer ring) 105, and balls 122 as rolling elements. The outer member 105 is provided with two rows of outer raceway surfaces 120 and 121 on its inner periphery, and a flange (vehicle body mounting flange) 132 on its outer periphery. A first inner raceway surface 118 is provided in the vicinity of the flange on the outer peripheral surface of the tubular portion 113 of the hub wheel 102, and a second inner raceway surface 119 is provided on the outer peripheral surface of the inner ring 117.

そして、外方部材105の第1外側軌道面(ボール転送溝)120とハブ輪102の第1内側軌道面(ボール転送溝)118とが対向し、外方部材105の第2外側軌道面121と、内輪117の軌道面119とが対向し、これらの間にボール122が介装される。   The first outer raceway surface (ball transfer groove) 120 of the outer member 105 and the first inner raceway surface (ball transfer groove) 118 of the hub wheel 102 face each other, and the second outer raceway surface 121 of the outer member 105. And the raceway surface 119 of the inner ring 117 face each other, and a ball 122 is interposed therebetween.

ところで、外方部材105のボール転送溝120、121は前記特許文献1に記載の研削装置等にて研削形成される。すなわち、この研削装置は、図8に示すように、軸部125とこの軸部125の外径部に配設される一対の突隆研削面部126、127を有する砥石部材128が使用される。また、砥石部材128は、その突隆研削面部126、127間に、外方部材105の内径面131を研削する内径研削面部132が形成されている。   By the way, the ball transfer grooves 120 and 121 of the outer member 105 are ground and formed by the grinding apparatus described in Patent Document 1. That is, as shown in FIG. 8, this grinding apparatus uses a grindstone member 128 having a shaft portion 125 and a pair of protruding grinding surface portions 126 and 127 disposed on the outer diameter portion of the shaft portion 125. Further, the grindstone member 128 has an inner diameter grinding surface portion 132 that grinds the inner diameter surface 131 of the outer member 105 between the ridge grinding surface portions 126 and 127.

この場合、外方部材105はベース部材130に装着され、ベース部材130がその軸心L廻りに回転すれば、外方部材105もほぼこの軸心L廻りに回転する。また、砥石部材128の軸心Lは前記軸心Lと平行に偏心した位置に配置される。   In this case, the outer member 105 is mounted on the base member 130, and if the base member 130 rotates about its axis L, the outer member 105 also rotates about this axis L. Further, the shaft center L of the grindstone member 128 is arranged at a position eccentric in parallel with the shaft center L.

溝研削時には、外方部材105を軸心L廻りに回転させるとともに、砥石部材128をその軸心L1廻りに外方部材105の回転方向と反対または同方向に回転させる。これによって、砥石部材128の各突隆研削面部126、127にてボール転送溝120、121を研削することができる。また、このボール転送溝120、121の研削時には内径研削面部132にて、突隆研削面部126、127間の内径面131が研削される。
特開2005−325903号公報 実開2004−52784号公報
At the time of groove grinding, the outer member 105 is rotated around the axis L, and the grindstone member 128 is rotated around the axis L1 in the opposite direction or the same direction as the rotation direction of the outer member 105. Accordingly, the ball transfer grooves 120 and 121 can be ground by the ridge grinding surface portions 126 and 127 of the grindstone member 128. Further, when the ball transfer grooves 120 and 121 are ground, the inner diameter surface 131 between the protruding grinding surface portions 126 and 127 is ground by the inner diameter grinding surface portion 132.
JP 2005-325903 A Japanese Utility Model Publication No. 2004-52784

しかしながら、前記のように従来では、図6に示すように、突隆研削面部が外方部材105の軸線に対して直交する方向に切り込むため、溝中心部位置で取代(削り代)がX0である場合に、溝肩部121aの取代(削り代)がX1となる。この際、X1>X0となる。   However, as described above, conventionally, as shown in FIG. 6, since the ridge grinding surface portion is cut in a direction perpendicular to the axis of the outer member 105, the machining allowance (cutting allowance) is X 0 at the groove center position. In some cases, the allowance (cutting allowance) of the groove shoulder 121a is X1. At this time, X1> X0.

ところで、このような軸受装置において、負荷能力を向上させるためには、ボール転送溝を深くする必要がある。このため、前記のような従来の方法によって、ボール転送溝を深くすれば、溝肩部121aの取代(削り代)がさらに大きくなる。このため、研削サイクルタイムの増大、研削焼けが発生する。また、研削焼けを防止するためには、切り込み位置に余裕を持たせる必要があり、サイクルタイムダウンとなり生産性に劣ることになっていた。   By the way, in such a bearing device, it is necessary to deepen the ball transfer groove in order to improve the load capacity. For this reason, if the ball transfer groove is deepened by the conventional method as described above, the allowance (cutting allowance) of the groove shoulder 121a is further increased. For this reason, an increase in grinding cycle time and grinding burn occur. Further, in order to prevent grinding burn, it is necessary to provide a margin for the cutting position, resulting in a cycle time reduction and inferior productivity.

このように、図5に示すように、研削焼けとサイクルタイムの制約から溝深さをHとし、ボール径(直径)をDとしたときの(H/D)は一般には0.38が限界とされる。しかしながら、製品負荷能力向上のためには、(H/D)を大きくする必要がある。   Thus, as shown in FIG. 5, (H / D) is generally limited to 0.38 when the groove depth is H and the ball diameter (diameter) is D due to grinding burn and cycle time restrictions. It is said. However, in order to improve the product load capacity, it is necessary to increase (H / D).

本発明は、上記課題に鑑みて、研削焼けの発生を抑えることができ、品質の安定性が向上し、しかも製品負荷能力が向上する軸受装置の製造方法を提供する。   In view of the above problems, the present invention provides a method of manufacturing a bearing device that can suppress the occurrence of grinding burn, improve the stability of quality, and improve the product load capability.

本発明の軸受装置の製造方法は、突隆研削面部を有する砥石部材をその軸心廻りに回転させて、軸受装置の外方部材のボール転送溝を研削する軸受装置の製造方法であって、外方部材の軸線に対して所定傾斜角度をなす方向に沿って突隆研削面部にて斜め方向に切り込んでボール転送溝を研削するものである。   A method for manufacturing a bearing device according to the present invention is a method for manufacturing a bearing device in which a grindstone member having a ridge grinding surface portion is rotated around its axis to grind a ball transfer groove of an outer member of the bearing device, The ball transfer groove is ground by cutting in a slanting direction at the ridge grinding surface along a direction forming a predetermined inclination angle with respect to the axis of the outer member.

本発明の軸受装置の製造方法では、外方部材の軸線に対して所定傾斜角度をなす方向に沿って突隆研削面部にて斜め方向に切り込んでボール転送溝を研削するので、ボール転送溝の肩部の取代(削り代)を溝中心部位置での取代(削り代)と同程度とすることができ、肩部の取代(削り代)を小さくできる。   In the bearing device manufacturing method of the present invention, the ball transfer groove is ground by cutting obliquely at the ridge grinding surface along the direction forming a predetermined inclination angle with respect to the axis of the outer member. The machining allowance (cutting allowance) of the shoulder can be made comparable to the machining allowance (cutting allowance) at the groove center position, and the allowance (cutting allowance) of the shoulder can be reduced.

前記砥石部材は一対の突隆研削面部を有し、この一対の突隆研削面部の軸方向配設ピッチを、研削すべきボール転送溝の軸方向配設ピッチよりも大きくして、一方の突隆研削面部にて一方のボール転送溝を研削すると同時に他方の突隆研削面部にて他方のボール転送溝のカウンタボア部を研削した後、他方の突隆研削面部にて他方のボール転送溝を研削すると同時に一方の突隆研削面部にて一方のボール転送溝のカウンタボア部を研削することができる。   The grindstone member has a pair of ridge grinding surface portions, and the axial arrangement pitch of the pair of ridge grinding surface portions is made larger than the axial arrangement pitch of the ball transfer groove to be ground, so that one projection After grinding one ball transfer groove at the ridge grinding surface portion and simultaneously grinding the counter bore portion of the other ball transfer groove at the other ridge grinding surface portion, the other ball transfer groove is formed at the other ridge grinding surface portion. At the same time as grinding, the counter bore portion of one ball transfer groove can be ground by one ridge grinding surface portion.

一方の突隆研削面部にて一方のボール転送溝を研削しているときに、他方のボール転送溝のカウンタボア部を研削することができ、また、他方の突隆研削面部にて他方のボール転送溝を研削するときに、一方の突隆研削面部にて一方のボール転送溝のカウンタボア部を研削することができる。これによって、2列のボール転送溝の形成を同時に行うことができる。しかも、一対の突隆研削面部の軸方向配設ピッチを、研削すべきボール転送溝の軸方向配設ピッチよりも大きくした砥石部材を使用することによって、外方部材の軸線に対して所定傾斜角度をなす方向に沿って突隆研削面部にて安定して確実に切り込むことができる。   When grinding one ball transfer groove at one ridge grinding surface, the counterbore portion of the other ball transfer groove can be ground, and the other ball at the other ridge grinding surface When grinding the transfer groove, it is possible to grind the counterbore part of one ball transfer groove at one ridge grinding surface part. As a result, two rows of ball transfer grooves can be formed simultaneously. In addition, by using a grindstone member in which the axial arrangement pitch of the pair of ridge grinding surfaces is larger than the axial arrangement pitch of the ball transfer groove to be ground, a predetermined inclination with respect to the axis of the outer member is obtained. It is possible to cut stably and surely at the ridge grinding surface along the direction forming the angle.

本発明の軸受装置の製造方法によれば、肩部の取代(削り代)を小さくできる。このため、切り込み速度を落として、研削焼けの発生を抑えることができ、研削される製品(この場合、外方部材)の品質の安定化を図ることができる。また、切り込み速度を落としても、肩部の取代(削り代)が小さいので、全体としての加工時間(研削時間)を短くでき、作業時間の短縮を図ることができて生産性に優れる。さらに、溝の深さを大きくとることができて、H/D(溝の深さ/ボール径)を大きくとることができるので、製品負荷能力が向上する。   According to the method for manufacturing a bearing device of the present invention, the allowance for the shoulder (cutting allowance) can be reduced. For this reason, it is possible to reduce the cutting speed, suppress the occurrence of grinding burn, and stabilize the quality of the product to be ground (in this case, the outer member). Even when the cutting speed is reduced, the shoulder allowance (cutting allowance) is small, so that the overall processing time (grinding time) can be shortened, the work time can be shortened, and the productivity is excellent. Furthermore, since the depth of the groove can be increased and H / D (groove depth / ball diameter) can be increased, the product load capacity is improved.

一対の突隆研削面部の軸方向配設ピッチを、研削すべきボール転送溝の軸方向配設ピッチよりも大きくした砥石部材を使用することによって、外方部材の軸線に対して所定傾斜角度をなす方向に沿って突隆研削面部にて安定して確実に切り込むことができ、しかも、2列のボール転送溝の形成を同時に行うことができる。このため、極めて短時間に外方部材の2列のボール転送溝を研削でき、生産性の向上及び生産コストの低減を図ることができる。   By using a grindstone member in which the axial arrangement pitch of the pair of ridge grinding surface portions is larger than the axial arrangement pitch of the ball transfer groove to be ground, a predetermined inclination angle is set with respect to the axis of the outer member. It is possible to stably and surely cut the protruding grinding surface portion along the formed direction, and to form two rows of ball transfer grooves at the same time. For this reason, it is possible to grind the two rows of ball transfer grooves of the outer member in an extremely short time, thereby improving productivity and reducing production cost.

本発明に係る軸受装置の製造方法の実施形態を図1〜図4に基づいて説明する。   An embodiment of a method for manufacturing a bearing device according to the present invention will be described with reference to FIGS.

図1は本発明に係る軸受装置の製造方法を示し、この方法は、突隆研削面部1、2を有する砥石部材3をその軸心L1廻りに回転させて、軸受装置の外方部材4のボール転送溝5、6を研削するものである。軸受装置は、例えば図6に示すような車輪用軸受装置である。   FIG. 1 shows a method of manufacturing a bearing device according to the present invention. In this method, a grindstone member 3 having protruding grinding surface portions 1 and 2 is rotated around its axis L1, and the outer member 4 of the bearing device is rotated. The ball transfer grooves 5 and 6 are ground. The bearing device is, for example, a wheel bearing device as shown in FIG.

すなわち、外方部材4は、その内径面21に軸線方向に沿って所定のピッチP1で配設され前記ボール転送溝5、6を有するものであって、各ボール転送溝5、6とこれらに対向するハブ輪側のボール転送溝およびハブ輪に装着された内輪のボール転送溝との間に介在される転動体としてのボール9(図2参照)を介して、ハブ輪及び内輪に外嵌される。   That is, the outer member 4 has the ball transfer grooves 5 and 6 disposed on the inner diameter surface 21 thereof at a predetermined pitch P1 along the axial direction. The ball 9 as a rolling element (see FIG. 2) interposed between the opposing ball transfer groove on the hub wheel side and the ball transfer groove on the inner ring mounted on the hub ring is fitted on the hub ring and the inner ring. Is done.

砥石部材3は、一対の前記突隆研削面部1、2と、この突隆研削面部1、2に形成される内径研削面部8とを有し、図示省略の駆動装置にてその軸心L1回りに回転駆動する。すなわち、砥石部材3は、胴部7とこの胴部7の外径面に突設される断面半円状のリング体からなる前記突隆研削面部1、2とを備える。また、この突隆研削面部1、2間は、外方部材4の溝5、6間の内径面21を研削する前記内径研削面部8が形成される。   The grindstone member 3 has a pair of raised grinding surface portions 1 and 2 and an inner diameter grinding surface portion 8 formed on the raised grinding surface portions 1 and 2, and its axis L1 is rotated by a driving device (not shown). To rotate. That is, the grindstone member 3 includes a barrel portion 7 and the ridge grinding surface portions 1 and 2 made of a ring body having a semicircular cross section that protrudes from the outer diameter surface of the barrel portion 7. In addition, the inner diameter grinding surface portion 8 for grinding the inner diameter surface 21 between the grooves 5 and 6 of the outer member 4 is formed between the ridge grinding surface portions 1 and 2.

次に、前記砥石部材3を使用した研削方法を説明する。この研削方法においては、図8に示したベース部材130と同様のベース部材10を使用することになる。すなわち、ベース部材10にこのリング状の外方部材4を装着する。この際、ベース部材10と外方部材4とを同一軸心L上に配置する。ベース部材10は図示省略の駆動装置にて回転駆動する。   Next, the grinding method using the said grindstone member 3 is demonstrated. In this grinding method, the base member 10 similar to the base member 130 shown in FIG. 8 is used. That is, the ring-shaped outer member 4 is attached to the base member 10. At this time, the base member 10 and the outer member 4 are arranged on the same axis L. The base member 10 is rotationally driven by a driving device (not shown).

まず、一方のボール転送溝5を一方の突隆研削面部1にて研削する。この際、ベース部材10を軸心L廻りに回転させるとともに、砥石部材3をその軸心L1廻りにベース部材10の回転方向と反対方向に回転させる。そして、砥石部材3をその軸心L1廻りに回転させつつ外方部材4の軸心に対して所定傾斜角度θ1(例えば45度)をなす方向(図1に矢印A方向)に沿って斜め方向に切り込む。これによって、図2に示すように、ボール転送溝5の肩部11の取代(削り代)X1を溝中心位置での取代(削り代)X0と同程度とすることができ、肩部11の取代(削り代)X1を小さくできる。   First, one ball transfer groove 5 is ground by one ridge grinding surface portion 1. At this time, the base member 10 is rotated about the axis L, and the grindstone member 3 is rotated about the axis L1 in the direction opposite to the rotation direction of the base member 10. Then, the grindstone member 3 is rotated around its axis L1 and obliquely along a direction (in the direction of arrow A in FIG. 1) that forms a predetermined inclination angle θ1 (for example, 45 degrees) with respect to the axis of the outer member 4. Cut into. As a result, as shown in FIG. 2, the allowance (cutting allowance) X1 of the shoulder portion 11 of the ball transfer groove 5 can be made substantially equal to the allowance (cutting allowance) X0 at the groove center position. The machining allowance (cutting allowance) X1 can be reduced.

このとき他方の突隆研削面部2にて、図1(a)に示すように、他方のボール転送溝5のカウンタボア部(肩おとし部)12を研削する。   At this time, as shown in FIG. 1A, the counter bore portion (shoulder portion) 12 of the other ball transfer groove 5 is ground at the other protruding grinding surface portion 2.

次に、他方のボール転送溝6を他方の突隆研削面部2にて研削する。この際、砥石部材3をその軸心L1廻りに回転させつつ外方部材4の軸心に対して所定傾斜角度θ2(例えば45度)をなす方向(図2に矢印B方向)に沿って斜め方向に切り込む。これによって、ボール転送溝6の肩部13の取代(削り代)X1を溝中心位置での取代(削り代)X0と同程度とすることができ、肩部13の取代(削り代)X1を小さくできる。   Next, the other ball transfer groove 6 is ground by the other protruding grinding surface portion 2. At this time, the grindstone member 3 is rotated along its axis L1 and obliquely along a direction (in the direction of arrow B in FIG. 2) forming a predetermined inclination angle θ2 (for example, 45 degrees) with respect to the axis of the outer member 4. Cut in the direction. As a result, the machining allowance (cutting allowance) X1 of the shoulder 13 of the ball transfer groove 6 can be made substantially equal to the allowance (cutting allowance) X0 at the groove center position. Can be small.

このとき他方の突隆研削面部1にて、図1(b)に示すように、他方のボール転送溝5のカウンタボア部(肩おとし部)14を研削する。   At this time, as shown in FIG. 1B, the counter bore portion (shoulder shoulder portion) 14 of the other ball transfer groove 5 is ground by the other protruding grinding surface portion 1.

このため、一方のボール転送溝5側においては、図3に示すように、突隆研削面部1にて第1研削面15と第2研削面16(カウンタボア部14)とが形成される。すなわち、第1研削面15は第1円弧15aに沿って形成され、第2研削面16は第2円弧16aに沿って形成される。なお、第1研削面15と第2研削面16との間に形成される突部17を除去してストレートに形成することもできる。   For this reason, on one ball transfer groove 5 side, as shown in FIG. 3, a first grinding surface 15 and a second grinding surface 16 (counter bore portion 14) are formed in the protruding grinding surface portion 1. That is, the first grinding surface 15 is formed along the first arc 15a, and the second grinding surface 16 is formed along the second arc 16a. In addition, the protrusion 17 formed between the 1st grinding surface 15 and the 2nd grinding surface 16 can be removed, and it can also form in straight.

また、他方のボール転送溝5側においても、図4に示すように、突隆研削面部2にて、第1円弧18aに沿って形成される第1研削面18と、第2円弧19aに沿って形成される第2研削面19(カウンタボア部12)とが形成される。なお、第1研削面18と第2研削面19との間に形成される突部20を除去してストレートに形成することもできる。   Further, also on the other ball transfer groove 5 side, as shown in FIG. 4, in the ridge grinding surface portion 2, the first grinding surface 18 formed along the first arc 18a and the second arc 19a. The second grinding surface 19 (counter bore portion 12) formed in this manner is formed. In addition, the protrusion 20 formed between the 1st grinding surface 18 and the 2nd grinding surface 19 can be removed, and it can also form in straight.

また、このようにボール転送溝5、6が研削されている際に、内径研削面部8にてこの外方部材4の内径面21を研削することになる。   Further, when the ball transfer grooves 5 and 6 are ground in this way, the inner diameter surface 21 of the outer member 4 is ground by the inner diameter grinding surface portion 8.

ところで、前記研削作業は、例えばNC装置が使用される。すなわち、ベース部材10や砥石部材3の駆動装置の動作を制御する制御手段を、あらかじめプログラム化された数値指令によってディジタル制御を行うようにしている。   By the way, for the grinding operation, for example, an NC device is used. That is, the control means for controlling the operation of the driving device for the base member 10 and the grindstone member 3 is digitally controlled by numerical commands programmed in advance.

このように、研削することによって、H/Dを大きくとることができる。Hは溝の深さであり、Dはボール9(図2参照)の径(直径)である。すなわち、図2に示すように、一方のボール転送溝5において、肩部13の取代(削り代)X1を溝中心部の取代X0と同程度とすることによって、溝の深さを大きくとることができて、H/Dを大きくとることができる。また、他方のボール転送溝6においても、肩部13の取代(削り代)X1を溝中心部の取代X0と同程度とすることによって、溝の深さを大きくとることができて、H/Dを大きくとることができる。   Thus, H / D can be increased by grinding. H is the depth of the groove, and D is the diameter (diameter) of the ball 9 (see FIG. 2). That is, as shown in FIG. 2, in one ball transfer groove 5, the allowance (cutting allowance) X <b> 1 of the shoulder 13 is set to be approximately the same as the allowance X <b> 0 of the groove center, thereby increasing the depth of the groove. And H / D can be increased. Also, in the other ball transfer groove 6, by making the allowance (cutting allowance) X <b> 1 of the shoulder portion 13 approximately the same as the allowance X <b> 0 of the groove center, the depth of the groove can be increased. D can be increased.

なお、砥石部材3に使用する砥石には、ビトリファイド砥石等の一般的なものを使用することができる。ここで、ビトリファイド砥石とは、強い砥粒保持力を持つ磁器質結合剤を使用した研削砥石である。しかしながら、このようなビトリファイド砥石を用いれば、ドレッシングを行う必要がある。ドレッシングとは、目つぶれ、目づまりを起こした砥粒を除去し、切れ刃を再生する作業である。   In addition, as a grindstone used for the grindstone member 3, general things, such as a vitrified grindstone, can be used. Here, the vitrified grindstone is a grindstone using a porcelain binder having a strong abrasive grain retention. However, if such a vitrified grindstone is used, it is necessary to perform dressing. Dressing is an operation for removing abrasive grains that are clogged or clogged and regenerating the cutting edge.

ドレッシングを行えば、砥石摩耗ピッチが大きくなるので、その分、NCプログラム補正が必要になる。これに対して、CBN電着砥石を用いると、ドレッシングをせずに済み、NCプログラム補正の必要がなくなり、コスト面で有利となる。このため、前記砥石部材3にこのCBN電着砥石を使用するのが好ましい。 If dressing is performed, the grinding wheel wear pitch increases, and accordingly, NC program correction is required. On the other hand, when the CBN electrodeposition grindstone is used, dressing is not required, and there is no need for NC program correction, which is advantageous in terms of cost. For this reason, it is preferable to use this CBN electrodeposition grindstone for the grindstone member 3.

本発明の軸受装置の製造方法によれば、外方部材4の軸線Lに対して所定傾斜角度をなす方向に沿って突隆研削面部1,2にて切り込んでボール転送溝5、6を研削するので、ボール転送溝5、6の肩部11、13の取代(削り代)を溝中心位置での取代(削り代)と同程度とすることができ、肩部11、13の取代(削り代)を小さくできる。このため、切り込み速度を落として、研削焼けの発生を抑えることができ、研削される製品(この場合外方部材4)の品質の安定化を図ることができる。また、切り込み速度を落としても、肩部11、13の取代(削り代)が小さいので、全体としての加工時間(研削時間)を短くでき、作業時間の短縮を図ることができて生産性に優れる。さらに、溝の深さを大きくとることができ、H/D(溝の深さ/ボール径)を大きくとることができるので、製品負荷能力が向上する。   According to the method for manufacturing a bearing device of the present invention, the ball transfer grooves 5 and 6 are ground by cutting at the ridge grinding surface portions 1 and 2 along a direction forming a predetermined inclination angle with respect to the axis L of the outer member 4. Therefore, the machining allowance (cutting allowance) of the shoulder portions 11 and 13 of the ball transfer grooves 5 and 6 can be made to be approximately the same as the machining allowance (cutting allowance) at the groove center position. Can be made smaller. For this reason, the cutting speed can be reduced to suppress the occurrence of grinding burn, and the quality of the product to be ground (in this case, the outer member 4) can be stabilized. Even if the cutting speed is reduced, the machining allowance (cutting allowance) of the shoulder portions 11 and 13 is small, so that the overall machining time (grinding time) can be shortened, and the working time can be shortened, resulting in productivity. Excellent. Furthermore, since the depth of the groove can be increased and H / D (groove depth / ball diameter) can be increased, the product load capacity is improved.

一対の突隆研削面部1、2の軸方向配設ピッチを、研削すべきボール転送溝5、6の軸方向配設ピッチよりも大きくした砥石部材を使用することによって、外方部材の軸線に対して所定傾斜角度をなす方向に沿って突隆研削面部にて安定して確実に切り込むことができ、しかも、2列のボール転送溝の形成を同時に行うことができる。このため、極めて短時間に外方部材の2列のボール転送溝を研削でき、生産性の向上及び生産コストの低減を図ることができる。   By using a grindstone member in which the pitch in the axial direction of the pair of ridge grinding surfaces 1 and 2 is larger than the pitch in the axial direction of the ball transfer grooves 5 and 6 to be ground, On the other hand, the ridge grinding surface portion can be stably and surely cut along the direction forming a predetermined inclination angle, and two rows of ball transfer grooves can be simultaneously formed. For this reason, it is possible to grind the two rows of ball transfer grooves of the outer member in an extremely short time, thereby improving productivity and reducing production cost.

なお、各ボール転送溝5、6において、カウンタボア部12、14を設けているが、これは、車輪用軸受装置を組み付ける作業において、ボール9と、このボール9を支持する保持器とを外方部材へ仮組した際に落下させないようにするものである。このため、各ボール転送溝5、6には2つの円弧に沿って形成されるので、いわゆる「ガタ」が生じるおそれがあるが、ハブ輪にプリロードをかけて組み込まれるので「ガタ」はなくなる。   In each of the ball transfer grooves 5 and 6, counter bore portions 12 and 14 are provided. This is because the ball 9 and the cage that supports the ball 9 are externally attached when the wheel bearing device is assembled. It is intended not to drop when temporarily assembled to the side member. For this reason, the ball transfer grooves 5 and 6 are formed along two arcs, so that there is a possibility that so-called “backlash” may occur. However, since the hub wheel is preloaded and incorporated, there is no “backlash”.

ところで、前記実施形態と相違して、単一の砥石でもって、一方の溝を形成(研削)した後、他方の溝を形成(研削)することも可能である。このよう単一の砥石を使用するにことによって、(H/D)を大きく(例えば、4.5程度)することができる。しかしながら、単一の砥石で溝を研削すれば、2つの溝を同時に研削できる一体成形砥石を使用する場合に比べて、2つの溝の同時研削、及び溝と溝との間の同時研削ができず、サイクルタイムが長くなる。 By the way, unlike the above embodiment, it is possible to form (grind) one groove after forming (grinding) one groove with a single grindstone. By using such a single grindstone, (H / D) can be increased (for example, about 4.5). However, grinding a groove with a single grindstone allows simultaneous grinding of two grooves and simultaneous grinding between grooves as compared to using an integral grinding wheel that can grind two grooves simultaneously. The cycle time becomes longer.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、軸受装置として、車輪用のハブベアリング(車輪用軸受装置)に限るものではなく、種々の工作機械や油圧ポンプ等に使用される種々のアンギュラ軸受装置であってもよい。車輪用軸受装置としても、前記実施形態では、図7に対応して、ハブ輪の外周に直接軌道面(転走面)を形成した第3世代と呼ばれるものを前提として記載したが、ハブ輪に一対の内輪が装着(圧入)された第1世代や第2世代と呼ばれるもの、ハブ輪と等速自在継手の外側継手部材の外周にそれぞれ直接軌道面(転走面)を形成した第4世代と呼ばれるものであってもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, as a bearing device, a wheel hub bearing (wheel bearing device) is used. The present invention is not limited to this, and various angular bearing devices used for various machine tools, hydraulic pumps, and the like may be used. In the embodiment, the wheel bearing device is also described on the premise of what is called the third generation in which the raceway surface (rolling surface) is directly formed on the outer periphery of the hub wheel, corresponding to FIG. The first generation or the second generation, in which a pair of inner rings are mounted (press-fitted) on the outer ring, and a fourth raceway surface (rolling surface) formed directly on the outer circumference of the outer joint member of the hub wheel and constant velocity universal joint. It may be called a generation.

また、砥石部材3の切り込み方向としても、ボール転送溝5、6の肩部11、13の取代(削り代)を溝中心部位置での取代(削り代)と同程度とすることができる範囲で、種々変更することができる。さらに、前記実施形態では、一方のボール転送溝5を研削した後、他方のボール転送溝6を研削するようにしていたが、逆に、他方のボール転送溝6を研削した後、一方のボール転送溝5を研削するようにしてもよい。   Further, as the cutting direction of the grindstone member 3, the allowance (cutting allowance) of the shoulder portions 11 and 13 of the ball transfer grooves 5 and 6 can be set to the same extent as the allowance (cutting allowance) at the groove center position. Various changes can be made. Further, in the embodiment, after grinding one ball transfer groove 5, the other ball transfer groove 6 is ground, but conversely, after grinding the other ball transfer groove 6, The transfer groove 5 may be ground.

本発明の実施形態を示す軸受装置の製造方法を示し、(a)は一方のボール転送溝を研削している状態の要部断面図であり、(b)は他方のボール転送溝を研削している状態の要部断面図である。1A and 1B show a manufacturing method of a bearing device according to an embodiment of the present invention, in which FIG. 1A is a cross-sectional view of a main part in a state where one ball transfer groove is ground, and FIG. FIG. 砥石部材の研削方向の説明図である。It is explanatory drawing of the grinding direction of a grindstone member. 砥石部材にて研削された一方のボール転送溝を示す要部拡大断面図である。It is a principal part expanded sectional view which shows one ball transfer groove ground by the grindstone member. 砥石部材にて研削された他方のボール転送溝を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the other ball | bowl transfer groove | channel ground by the grindstone member. 溝の深さとボールの径との関係を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the relationship between the depth of a groove | channel, and the diameter of a ball | bowl. 従来の砥石部材の研削方向の説明図である。It is explanatory drawing of the grinding direction of the conventional grindstone member. 車輪用軸受装置の断面図である。It is sectional drawing of the bearing apparatus for wheels. 従来の研削方法を示す断面図である。It is sectional drawing which shows the conventional grinding method.

符号の説明Explanation of symbols

1 突隆研削面部
2 突隆研削面部
3 砥石部材
4 外方部材
5 ボール転送溝
6 ボール転送溝
12、14 カウンタボア部
DESCRIPTION OF SYMBOLS 1 Ridge grinding surface part 2 Ridge grinding surface part 3 Grinding wheel member 4 Outer member 5 Ball transfer groove 6 Ball transfer grooves 12, 14 Counter bore part

Claims (2)

突隆研削面部を有する砥石部材をその軸心廻りに回転させて、軸受装置の外方部材のボール転送溝を研削する軸受装置の製造方法であって、
外方部材の軸線に対して所定傾斜角度をなす方向に沿って突隆研削面部にて斜め方向に切り込んでボール転送溝を研削することを特徴とする軸受装置の製造方法。
A method of manufacturing a bearing device in which a grindstone member having a ridge grinding surface portion is rotated about its axis to grind a ball transfer groove of an outer member of the bearing device,
A method of manufacturing a bearing device, characterized in that a ball transfer groove is ground by cutting in an oblique direction at a ridge grinding surface along a direction that forms a predetermined inclination angle with respect to an axis of an outer member.
前記砥石部材は一対の突隆研削面部を有し、この一対の突隆研削面部の軸方向配設ピッチを、研削すべきボール転送溝の軸方向配設ピッチよりも大きくして、一方の突隆研削面部にて一方のボール転送溝を研削すると同時に他方の突隆研削面部にて他方のボール転送溝のカウンタボア部を研削した後、他方の突隆研削面部にて他方のボール転送溝を研削すると同時に一方の突隆研削面部にて一方のボール転送溝のカウンタボア部を研削することを特徴とする請求項1の軸受装置の製造方法。   The grindstone member has a pair of ridge grinding surface portions, and the axial arrangement pitch of the pair of ridge grinding surface portions is made larger than the axial arrangement pitch of the ball transfer groove to be ground, so that one projection After grinding one ball transfer groove at the ridge grinding surface portion and simultaneously grinding the counter bore portion of the other ball transfer groove at the other ridge grinding surface portion, the other ball transfer groove is formed at the other ridge grinding surface portion. 2. The method of manufacturing a bearing device according to claim 1, wherein the counter bore portion of one ball transfer groove is ground at one ridge grinding surface portion at the same time as grinding.
JP2006124131A 2006-04-27 2006-04-27 Method of manufacturing bearing device Withdrawn JP2007296585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124131A JP2007296585A (en) 2006-04-27 2006-04-27 Method of manufacturing bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124131A JP2007296585A (en) 2006-04-27 2006-04-27 Method of manufacturing bearing device

Publications (1)

Publication Number Publication Date
JP2007296585A true JP2007296585A (en) 2007-11-15

Family

ID=38766509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124131A Withdrawn JP2007296585A (en) 2006-04-27 2006-04-27 Method of manufacturing bearing device

Country Status (1)

Country Link
JP (1) JP2007296585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690620A (en) * 2015-03-04 2015-06-10 新昌县盛大科技有限公司 Method for finishing trench in end face of thrust ball bearing ferrule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690620A (en) * 2015-03-04 2015-06-10 新昌县盛大科技有限公司 Method for finishing trench in end face of thrust ball bearing ferrule

Similar Documents

Publication Publication Date Title
TWI451926B (en) Internal gear machining method
JP5661235B2 (en) Bearing roller processing method
WO2007125927A1 (en) Method of producing bearing unit-use outer race
JP2009142939A (en) Barrel worm-shaped tool
CN100447454C (en) Composite gear and method of manufacturing the same
JP2003019621A (en) Tool for chamfering and deburring end face tooth edge of gear
JP2007196367A (en) Truing device and truing method for grinding wheel
CN103038007B (en) The structuring slidingsurface of cartridge housing
JP6027700B1 (en) How to reuse end mills
CN102713352A (en) Method for manufacturing variator part of continuously variable transmission and chuck device for variator part manufacture
JP4211718B2 (en) Machining method of raceway surface of outer ring of double row angular contact ball bearing
US10105799B2 (en) Hub unit manufacturing apparatus
CN102639270A (en) Method of machining sealing surface
CN101516639B (en) Hub wheel, hub unit, and method of working hub wheel
JP2007296585A (en) Method of manufacturing bearing device
JP2008240825A (en) Machining method, trunnion and tripod type constant velocity universal joint
JP2008169871A (en) Tapered roller bearing and inner ring machining method for tapered roller bearing
KR200496242Y1 (en) Special tools for cutting weld structure section
JP2009275842A (en) Machining method for raceway surface of outer ring and manufacturing method of outer ring for wheel rolling bearing device
JP5085941B2 (en) Cylindrical grinding machine and external grinding method using cylindrical grinding machine
JP2007301700A (en) Grinding wheel having multilayer structure
US10099342B2 (en) Truer, truing apparatus including truer, grinder, and truing method
WO2014010629A1 (en) Tripod-type constant-velocity joint and method for manufacturing same
JP4790253B2 (en) Cylindrical roller bearings for wind power generators
JP2009024859A (en) Method of manufacturing race ring for rolling bearing

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707