JP2007296572A - Cooling structure of die - Google Patents

Cooling structure of die Download PDF

Info

Publication number
JP2007296572A
JP2007296572A JP2006128253A JP2006128253A JP2007296572A JP 2007296572 A JP2007296572 A JP 2007296572A JP 2006128253 A JP2006128253 A JP 2006128253A JP 2006128253 A JP2006128253 A JP 2006128253A JP 2007296572 A JP2007296572 A JP 2007296572A
Authority
JP
Japan
Prior art keywords
cooling chamber
refrigerant
cooling
space portion
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006128253A
Other languages
Japanese (ja)
Other versions
JP4624300B2 (en
Inventor
Kumar Bosh Swapon
クマル ボシュ スワポン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ahresty Corp
Original Assignee
Ahresty Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahresty Corp filed Critical Ahresty Corp
Priority to JP2006128253A priority Critical patent/JP4624300B2/en
Publication of JP2007296572A publication Critical patent/JP2007296572A/en
Application granted granted Critical
Publication of JP4624300B2 publication Critical patent/JP4624300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the cooling structure of a die in which control such that a portion desired to be cooled can selectively be cooled, a part in direct contact with molten metal and heated can be cooled at a proper temperature, and a part other than the above part and almost unnecessary to be cooled is not cooled so much, is made possible. <P>SOLUTION: In the cooling structure of the die, in which the surrounding of a cooling chamber is cooled by circulating a cooling medium having fluidity in the cooling chamber arranged in the inner part of the die, a flow control means 5 for controlling the flow of the cooling medium in the cooling chamber is installed in the inner part of the cooling chamber. The structure is constituted so as to have partial difference in the heat drawing amount from the die in the surrounding of this cooling chamber by generating a relatively fast flowing portion and a not-so-fast flowing portion in the cooling medium flow circulating in the cooling chamber by the flow control means 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ダイカスト鋳造等に用いられる金型の冷却構造に関し、更に詳しくは、金型の内部に設けられた冷却室内に流動性を有する冷媒を流通させることにより当該冷却室周辺を冷却する金型の冷却構造に関し、特に、射出スリーブ内を前進して溶湯を押圧するプランジャチップの前進対向位置に設けられ、該プランジャチップで押圧された溶湯をランナーへと導くための金型分流子に適用すると好適な金型の冷却構造に関するものである。   The present invention relates to a mold cooling structure used for die casting and the like, and more specifically, a mold for cooling the periphery of a cooling chamber by circulating a fluid refrigerant in a cooling chamber provided inside the mold. With regard to the cooling structure of the mold, in particular, it is provided at a forwardly opposed position of the plunger tip that advances the inside of the injection sleeve and presses the molten metal, and is applied to a mold diverter for guiding the molten metal pressed by the plunger tip to the runner Then, it is related with the cooling structure of a suitable metal mold | die.

ダイカスト鋳造では、射出スリーブ内に注湯された溶湯をプランジャチップで金型キャビティ内に射出充填した後に引き続きプランジャチップを前進させてキャビティ内の溶湯に対する増圧を行い、これにより、溶湯が凝固する際の引け巣等の鋳造欠陥の発生を防いでいる。   In die casting, after the molten metal poured into the injection sleeve is injected and filled into the mold cavity with the plunger tip, the plunger tip is continuously advanced to increase the pressure on the molten metal in the cavity, thereby solidifying the molten metal. This prevents casting defects such as shrinkage cavities.

この際、分流子とプランジャチップとの間でビスケットと称される円盤状の凝固片が形成されるが、このビスケットは比較的厚いので、凝固に時間がかかり鋳造サイクルを長引かせる原因の一つになっている。
そこで従来から、当該ビスケットの凝固に要する時間を短縮させる工夫がいろいろとなされている(例えば、特許文献1および特許文献2参照。)。
これらの先行技術は、分流子の内部に冷却空間を形成し、その空間内に冷却水を供給して分流子を冷却することによりビスケットの凝固に要する時間を短縮させようとするものである。
At this time, a disc-shaped solidified piece called a biscuit is formed between the diverter and the plunger tip, but this biscuit is relatively thick, so it takes time to solidify and prolongs the casting cycle. It has become.
In view of this, various attempts have been made to shorten the time required for solidification of the biscuits (see, for example, Patent Document 1 and Patent Document 2).
These prior arts attempt to shorten the time required for solidification of the biscuits by forming a cooling space inside the flow divider and supplying cooling water into the space to cool the flow divider.

特許第3097515号公報Japanese Patent No. 3097515 特開2005−74445号公報JP-A-2005-74445 特開2003−191063号公報JP 2003-191063 A

然しながら、実際問題として一般的なダイカスト機において分流子は、溶湯と直接接触する先端面部分(プランジャチップと対向する前面部分)およびランナー直下部分は極端に加熱されるがそれ以外の部分は溶湯で加熱されることがないため、溶湯を射出して製品を鋳造するたびに、溶湯と直接接触する部分とそうでない部分とで熱応力による極端な歪が生じ、その繰り返しによって分流子が割れることがあった。
すなわち、前記した先行文献2では、溶湯と直接接触して加熱される先端面部分およびランナー直下部分を適正温度に冷却しようとすると、溶湯で加熱されない他の部分も同様に冷却されてしまうので当該部分が過冷却となってしまい、その結果、溶湯と直接接触する部分とそうでない部分との間で極端な熱応力による歪が生じてしまう。
However, as a practical matter, in a general die-casting machine, the diverter is heated extremely at the tip surface part (front part facing the plunger tip) and the part directly under the runner that is in direct contact with the molten metal. Because it is not heated, every time a product is cast by injecting molten metal, extreme strain due to thermal stress occurs between the part that is in direct contact with the molten metal and the part that is not, and the shunt may be broken by repetition of that. there were.
That is, in the above-mentioned prior art document 2, when trying to cool the tip surface portion heated directly in contact with the molten metal and the portion directly below the runner to an appropriate temperature, other portions that are not heated by the molten metal are also cooled in the same manner. The portion is supercooled, and as a result, distortion due to extreme thermal stress occurs between the portion that is in direct contact with the molten metal and the portion that is not.

このような冷却構造の場合は、極端な熱応力による歪に耐えられるようにするためにその加工コストが非常に高くなるだけではなく、溶湯が接するために強制的に冷却しなければならない部位に冷却水が流れる時間は総流通時間の半分程度であり、冷却効率は決してよくない。   In the case of such a cooling structure, not only the processing cost becomes very high in order to be able to withstand the distortion caused by extreme thermal stress, but also in a part that must be cooled forcibly because the molten metal contacts. The cooling water flow time is about half of the total circulation time, and the cooling efficiency is never good.

また、前記した先行文献3に記載の冷却手段では、冷却開始時に冷却チャンバ内に空気が大量に存在する。この冷却チャンバ内の空気は、冷却チャンバ内に流通させる冷却水の水圧を上げたり通水時間を長くしても当該冷却チャンバから排出され難く、該冷却チャンバの上部に滞留してしまう。その為に、冷却チャンバ内に冷却水を通水してもその上部周辺において十分な冷却能力を発揮し得ない。   Further, in the cooling means described in the above-mentioned prior art document 3, a large amount of air exists in the cooling chamber at the start of cooling. The air in the cooling chamber is not easily discharged from the cooling chamber even if the pressure of the cooling water flowing through the cooling chamber is increased or the water flow time is increased, and the air stays in the upper part of the cooling chamber. For this reason, even if cooling water is passed through the cooling chamber, sufficient cooling capacity cannot be exhibited around the upper part.

本発明はこのような現状に鑑みてなされたものであり、冷却したい部分を選択的に冷却することが可能であり、溶湯と直接接触して加熱される部分を適正な温度に冷却することが出来、それ以外の冷却をほとんど必要としない部分においてはさほど冷却せずとも済むといった制御が可能であり、その結果、溶湯と直接接触する部分とそうでない部分との間で極端な熱応力による歪の発生を抑制することが出来、しかも、冷却室内に存在する気泡ないしは蒸気種等の泡を冷却開始後瞬時に且つそれ以降も迅速に排出することが出来る金型の冷却構造を提供せんとするものである。   The present invention has been made in view of such a current situation, and can selectively cool a portion to be cooled, and can cool a portion heated in direct contact with molten metal to an appropriate temperature. It is possible to control that it is not necessary to cool much in other parts that require little cooling, and as a result, distortion due to extreme thermal stress between the part that is in direct contact with the molten metal and the part that is not so. It is possible to suppress the generation of bubbles, and to provide a mold cooling structure that can quickly discharge bubbles such as bubbles or vapor species existing in the cooling chamber immediately after the start of cooling and thereafter. Is.

この種の冷却構造では、金型内部に形成された冷却室内に存在する冷媒に熱を奪われることにより当該冷却室周辺が冷却されるので、冷却室内において冷媒を流通させた方が良いし、しかも冷媒を金型の被冷却面に接触させて流し、その流速を速くした方が良い。そうすれば、金型の熱を奪った冷媒の入れ替わりが速くなることで金型との熱交換率がよく金型(の冷却室周辺)からの奪取熱量が多くなり、その分金型(の冷却室周辺)の冷却効果を高めることが出来るようになる。   In this type of cooling structure, the periphery of the cooling chamber is cooled by taking heat away from the refrigerant present in the cooling chamber formed inside the mold, so it is better to circulate the refrigerant in the cooling chamber, In addition, it is better to flow the coolant in contact with the surface to be cooled of the mold and increase the flow velocity. Then, the replacement of the refrigerant that has taken away the heat of the mold will be faster, the heat exchange rate with the mold will be better, the amount of heat taken from the mold (around the cooling chamber) will be increased, and the mold ( The cooling effect around the cooling chamber can be enhanced.

本発明はこの様な知見に基づいてなされたものであり、冷却室の内壁面に沿って流通する冷媒の流れに相対的に速く流れる部分とそうでない部分とを生じせしめることにより、当該冷却室周辺における金型からの奪取熱量に部分的に差を付けられるように構成したものである。
すなわち、本発明の金型の冷却構造は、金型の内部に設けられた冷却室内に流動性を有する冷媒を流通させることにより当該冷却室周辺を冷却する金型の冷却構造であって、前記冷却室の内部に当該冷却室内における冷媒の流れを制御する流れ制御手段を設置し、該流れ制御手段でもって当該冷却室の内壁面に沿って流通する冷媒の流れに相対的に速く流れる部分とそうでない部分とを生じせしめることにより、当該冷却室周辺における金型からの奪取熱量に部分的に差を付けられるように構成したことを特徴としたものである(請求項1)。
ちなみに、冷媒としては、通常使用されている冷却水や冷却オイルなどを使用することが出来る。
The present invention has been made on the basis of such knowledge, and by generating a portion that flows relatively quickly and a portion that does not relatively flow in the flow of the refrigerant flowing along the inner wall surface of the cooling chamber, the cooling chamber is provided. In this configuration, the amount of heat taken from the mold in the vicinity can be partially differentiated.
That is, the mold cooling structure of the present invention is a mold cooling structure for cooling the periphery of the cooling chamber by circulating a fluid refrigerant through a cooling chamber provided inside the mold, A flow control means for controlling the flow of the refrigerant in the cooling chamber is installed inside the cooling chamber, and a portion that flows relatively fast with the flow control means relative to the flow of the refrigerant flowing along the inner wall surface of the cooling chamber; It is characterized in that a part of the amount of heat taken from the mold around the cooling chamber can be partially differentiated by generating a portion that is not so (Claim 1).
Incidentally, as the refrigerant, commonly used cooling water, cooling oil, or the like can be used.

本発明が適用される好適な実施態様としては、射出スリーブ内を前進して溶湯を押圧するプランジャチップの前進対向位置に設けられる金型分流子が考えられる。すなわち、前記冷却室が、金型分流子の内部に形成され、前記流れ制御手段が、前記冷却室の内部空間を上部空間部と下部空間部とに画成する横仕切り材と上記下部空間部を左右に画成する縦仕切り材とから形成され、冷媒の吐出口を、前記縦仕切り材を貫通させて当該縦仕切り材と冷却室の前方壁との間で形成される前方空間部に臨ませると共に、冷媒の排出口を当該冷却室の開口を封止する封止壁部材に設け、前記冷媒吐出口から吐出された冷媒を前記前方空間部から上部空間部を通って前記冷媒排出口に向け流通させて当該前方空間部から上部空間部にわたる部分を流通する冷媒の流速を相対的に速くすることにより、当該前方空間部から上部空間部にわたる冷却室周辺と他の部分の冷却室周辺とで金型からの奪取熱量に差を付けられるように構成するものである(請求項2)。
この際、前記冷却室の上部空間部に対応した部分における前記封止壁部材に、当該冷却室内に発生する泡を室外へ排出するための冷媒排出兼用排気口を設けることが好ましい(請求項3)。
As a preferred embodiment to which the present invention is applied, a mold diverter provided at a forwardly facing position of a plunger tip that moves forward in the injection sleeve and presses the molten metal is conceivable. That is, the cooling chamber is formed inside a mold shunt, and the flow control means includes a partition material that defines the internal space of the cooling chamber as an upper space portion and a lower space portion, and the lower space portion. The refrigerant discharge port faces the front space formed between the vertical partition material and the front wall of the cooling chamber through the vertical partition material. In addition, a refrigerant discharge port is provided in a sealing wall member that seals the opening of the cooling chamber, and the refrigerant discharged from the refrigerant discharge port passes from the front space portion through the upper space portion to the refrigerant discharge port. The refrigerant flowing in the direction from the front space portion to the upper space portion is relatively increased in flow rate so that the periphery of the cooling chamber extending from the front space portion to the upper space portion and the periphery of the other cooling chamber To make a difference in the amount of heat taken from the mold. And it constitutes as (claim 2).
At this time, it is preferable that the sealing wall member in a portion corresponding to the upper space portion of the cooling chamber is provided with a refrigerant discharge / exhaust port for discharging bubbles generated in the cooling chamber to the outside. ).

また、前記前方空間部に面した前記縦仕切り材に、前記冷媒吐出口よりも下部位置に当該冷却室の前方壁に向けて第2横仕切り材を突設せしめても良い(請求項4)。
そして、前記冷媒吐出口を備えた冷媒供給管の外側に、冷媒排出管を同心状に配設せしめ、上記冷媒供給管の外周と冷媒排出管の内周との間を冷媒の排出口としても良い(請求項5)。
また、前記下部空間部は、前記複数枚の縦仕切り材を用いて複数の室に画成されていることが好ましい(請求項6)。
Further, a second horizontal partition member may be projected from the vertical partition member facing the front space portion toward the front wall of the cooling chamber at a lower position than the refrigerant discharge port. .
Further, a refrigerant discharge pipe is concentrically disposed outside the refrigerant supply pipe provided with the refrigerant discharge port, and the gap between the outer periphery of the refrigerant supply pipe and the inner periphery of the refrigerant discharge pipe can be used as a refrigerant discharge port. Good (claim 5).
Moreover, it is preferable that the said lower space part is defined in the several chamber using the said several vertical partition material (Claim 6).

更に、本発明が好適に適用される金型分流子の別の実施態様としては、前記流れ制御手段が、前記冷却室の内部空間を当該冷却室の上壁部との間で形成される上部空間部と前方壁との間で形成される前方空間部とに画成し残部は当該冷却室の内壁に接触すると共に当該冷却室の開口を封止する封止壁部を備えた画成ブロック材で形成され、該画成ブロック材の前記前方空間部に臨む位置に冷媒吐出口を形成し、前記上部空間部に対応した封止壁部に冷媒排出口を設け、前記冷媒吐出口から吐出された冷媒を前記前方空間部から上部空間部を通って前記冷媒排出口に向け流通させることにより、当該前方空間部から上部空間部にわたる冷却室周辺と他の部分の冷却室周辺とで金型からの奪取熱量に差を付けられるように構成しても良い(請求項7)。
また、前記前方空間部に面し且つ前記冷媒吐出口よりも下部位置に、当該冷却室の前方壁に向けて第2横仕切り材を突設せしめても良い(請求項8)。
Furthermore, as another embodiment of the mold flow divider to which the present invention is preferably applied, the flow control means is an upper portion formed between the internal space of the cooling chamber and the upper wall portion of the cooling chamber. A defining block including a sealing wall portion that defines a front space portion formed between the space portion and the front wall, and the remaining portion contacts the inner wall of the cooling chamber and seals the opening of the cooling chamber. The refrigerant discharge port is formed at a position facing the front space portion of the defined block material, the refrigerant discharge port is provided in the sealing wall portion corresponding to the upper space portion, and the refrigerant discharge port is discharged. The coolant is circulated from the front space portion through the upper space portion to the refrigerant discharge port, so that a mold is formed around the cooling chamber extending from the front space portion to the upper space portion and around the other cooling chamber. It is also possible to make a difference in the amount of heat taken from the ).
Moreover, you may make the 2nd horizontal partition material protrude toward the front wall of the said cooling chamber in the lower position rather than the said refrigerant | coolant discharge port facing the said front space part (Claim 8).

本発明に係る金型の冷却構造によれば、流れ制御手段でもって当該冷却室の内壁面に沿って流通する冷媒の流れに相対的に速く流れる部分とそうでない部分とを生じせしめたので、冷媒が相対的に速く流通する部分における冷却室周辺では金型からの奪取熱量が多くなり冷却効果が高く、それ以外の部分における冷却室周辺では金型からの奪取熱量がさほど多くなく冷却効果が相対的に低くなる。その結果、1つの冷却室においてその周辺全体を強制的に冷却するのではなく、1つの冷却室周辺において部分的に金型からの奪取熱量に差を付けることが出来るようになる。   According to the mold cooling structure of the present invention, the flow control means causes a portion that flows relatively fast and a portion that does not flow relatively to the flow of the refrigerant flowing along the inner wall surface of the cooling chamber. The amount of heat taken from the mold increases in the vicinity of the cooling chamber in the part where the refrigerant flows relatively fast, and the cooling effect is high, and the amount of heat taken from the mold is not so large in the vicinity of the cooling chamber in other parts. Relatively low. As a result, instead of forcibly cooling the entire periphery in one cooling chamber, it becomes possible to make a difference in the amount of heat taken from the mold partially in the vicinity of one cooling chamber.

すなわち、1つの冷却室周辺において冷却したい部分とそうでない部分を峻別して、冷却したい部分は積極的に冷却することが出来、逆にさほど冷却を必要としない部分ではほとんど冷却せずとも済むようになる。   That is, it is possible to distinguish a portion that is desired to be cooled in the vicinity of one cooling chamber from a portion that is not desired, and to actively cool a portion that is desired to be cooled. become.

これを金型分流子に適用した場合、溶湯と直接接触する先端面部分(プランジャチップと対向する面部分)並びにランナー直下部分等、積極的に冷却が必要な部分のみを効果的に且つ適正に冷却することが出来、逆に、溶湯と直接接触しなので冷却をほとんど必要としない部分ではほとんど冷却されることがなくなる。従って、金型(分流子)全体の温度バランスがよくなり、当該部位にかかる熱応力による歪を最小限に抑制することが可能となる。   When this is applied to the mold flow divider, only the part that needs to be actively cooled, such as the tip part (the part facing the plunger tip) that directly contacts the molten metal and the part directly under the runner, is effectively and properly On the contrary, since it is in direct contact with the molten metal, it is hardly cooled at a portion that hardly requires cooling. Therefore, the temperature balance of the entire mold (divider) is improved, and distortion due to thermal stress applied to the part can be minimized.

また、請求項2に記載の金型の冷却構造によれば、金型分流子の内部に形成された冷却室内を画成する流れ制御手段が、前記冷却室の内部空間を上部空間部と下部空間部とに画成する横仕切り材と上記下部空間部を左右に画成する縦仕切り材とから形成され、冷媒の吐出口を、前記縦仕切り材を貫通させて当該縦仕切り材と冷却室の前方壁との間で形成される前方空間部に臨ませると共に、冷媒の排出口を当該冷却室の開口を封止する封止壁部材に設け、前記冷媒吐出口から吐出された冷媒を前記前方空間部から上部空間部を通って前記冷媒排出口に向け流通させて当該前方空間部から上部空間部にわたる部分を流通する冷媒の流速を相対的に速くすることにより、当該前方空間部から上部空間部にわたる冷却室周辺と他の部分の冷却室周辺とで金型からの奪取熱量に差を付けるように構成したので、冷却室の前方空間部から上部空間部にわたる部分と対応している、溶湯と直接接触する先端面部分(プランジャチップと対向する前面部分)並びにランナー直下部分を効果的に且つ適正に冷却することが出来、逆に、冷媒の流通がさほどない下部空間部と対応している部分では余り冷却されることがなくなる。   According to the mold cooling structure of claim 2, the flow control means for defining the cooling chamber formed inside the mold diverter includes the upper space portion and the lower portion of the internal space of the cooling chamber. Formed by a horizontal partition material that defines a space portion and a vertical partition material that defines the lower space portion to the left and right, and a coolant discharge port that penetrates the vertical partition material and the vertical partition material and cooling chamber And the refrigerant discharge port is provided in a sealing wall member that seals the opening of the cooling chamber, and the refrigerant discharged from the refrigerant discharge port is By flowing from the front space part through the upper space part toward the refrigerant discharge port and relatively increasing the flow rate of the refrigerant flowing through the part extending from the front space part to the upper space part, the upper part from the front space part is Around the cooling room over the space and around the cooling room in other parts Because it is configured to make a difference in the amount of heat taken from the mold, the tip surface part that directly contacts the molten metal corresponding to the part extending from the front space part to the upper space part of the cooling chamber (the front surface facing the plunger tip) Part) and the part directly under the runner can be cooled effectively and properly, and conversely, the part corresponding to the lower space where the refrigerant does not flow is not cooled much.

この際、冷媒吐出口をビスケットのセンター位置に合わせて配置することが好ましい。そうすれば、冷却凝固しにくいビスケットのセンター部分をより効果的に冷却し凝固させることが可能となり、冷却不足によるビスケットの破裂事故を防止することが出来る。   At this time, it is preferable to arrange the refrigerant discharge port in accordance with the center position of the biscuit. If it does so, it becomes possible to cool and solidify more effectively the center part of the biscuit which is hard to cool and solidify, and the biscuits bursting accident by insufficient cooling can be prevented.

また、冷却室内に流動性を有する冷媒を流通させると、流通初期時においては冷媒の供給路にあったガス成分(気泡)が、また鋳造時においては溶湯で過熱された冷媒から発生する蒸気種が、それぞれ気泡状になって冷却室内に滞留することがあり、特に金型分流子の場合には、ランナー直下部分に対応する上部空間部に気泡ないしは蒸気種等の泡(以下、単に「泡」と称する。)が滞留しやすくなる。冷却室の上部空間部に泡が滞留すると、冷媒が冷却室の内壁に直接接触することができなくなるので、当然のことながらその周辺部分を効果的に冷却することが出来なくなってしまう。   In addition, when a refrigerant having fluidity is circulated in the cooling chamber, gas components (bubbles) that have been in the refrigerant supply path at the beginning of the circulation, and vapor species generated from the refrigerant superheated by the molten metal at the time of casting. However, in the case of a mold shunt, in particular, in the case of a mold diverter, bubbles such as bubbles or vapor species (hereinafter simply referred to as “bubbles”) are formed in the upper space corresponding to the portion immediately below the runner. ")" Tends to stay. If bubbles stay in the upper space portion of the cooling chamber, the refrigerant cannot directly contact the inner wall of the cooling chamber, and naturally, the peripheral portion cannot be effectively cooled.

しかし、本発明の請求項3に記載の金型冷却構造によれば、前記冷却室の上部空間部に対応した部分における前記封止壁部材に、当該冷却室内に発生する泡を室外へ排出するための冷媒排出兼用排気口を設けてなるので、冷却室内に発生した泡は冷却室内を流通する冷媒と共に冷媒排出兼用排気口を通して室外へ速やかに排出されて、冷却室内に滞留するようなことがない。
その結果、冷却室の上部空間部は冷却開始後瞬時に且つそれ以降も冷媒で満たされた状態となるので、冷却室の上部空間部周辺、すなわち溶湯が直接接触するランナー直下部分を有効的に冷却すること出来る。
However, according to the mold cooling structure of the third aspect of the present invention, bubbles generated in the cooling chamber are discharged to the sealing wall member in a portion corresponding to the upper space portion of the cooling chamber. Therefore, bubbles generated in the cooling chamber are quickly discharged to the outside through the refrigerant discharge / exhaust port together with the refrigerant circulating in the cooling chamber, and stay in the cooling chamber. Absent.
As a result, the upper space portion of the cooling chamber is filled with the refrigerant instantaneously after the start of cooling and thereafter, so the area around the upper space portion of the cooling chamber, that is, the portion directly below the runner where the molten metal directly contacts is effectively Can be cooled.

また、請求項4及び8に記載の金型冷却構造によれば、冷却室の前方空間部に面し且つ冷媒吐出口よりも下部位置に、当該冷却室の前方壁に向けて第2横仕切り材を突設せしめてなるので、冷媒吐出口より吐出された冷媒は第2横仕切り材に阻まれて前方空間部から上部空間部を通り冷媒排出口に向けて他の部分よりも速い速度で流通されることになるので、第2横仕切り材と冷却室の前方壁及び縦仕切り材もしくは画成ブロック材で区画された空間部分における冷媒の流通量は相対的に非常に少なくなり、よって当該周辺部分における金型からの奪取熱量は他の部分よりも少なくなる。しかも当該周辺部分は、射出スリーブ内に注湯された直後に溶湯が接触する部位に相当する部位であり、冷媒が常に存在しているので、冷媒の流通量を少なくすることにより射出スリーブ内に注湯された溶湯の冷し過ぎを防止し得、従って、金型キャビティに射出される溶湯の破断チル層の発生を抑制することが可能となる。   According to the mold cooling structure of claims 4 and 8, the second horizontal partition facing the front space of the cooling chamber and at a position lower than the coolant discharge port toward the front wall of the cooling chamber. Since the material is protruded, the refrigerant discharged from the refrigerant discharge port is blocked by the second horizontal partition material, passes from the front space portion to the upper space portion toward the refrigerant discharge port at a higher speed than the other portions. Therefore, the amount of refrigerant flowing in the space part partitioned by the second horizontal partition material and the front wall of the cooling chamber and the vertical partition material or the defined block material is relatively very small, The amount of heat taken from the mold in the peripheral portion is smaller than in other portions. In addition, the peripheral portion is a portion corresponding to a portion where the molten metal comes into contact immediately after pouring into the injection sleeve, and since the refrigerant is always present, the amount of refrigerant flowing in the injection sleeve is reduced. It is possible to prevent the poured molten metal from being overcooled, and thus it is possible to suppress the generation of a broken chill layer of the molten metal injected into the mold cavity.

更に、請求項5に記載の金型の冷却構造によれば、冷媒吐出口を備えた冷媒供給管の外側に、冷媒排出管を同心状に配設せしめ、上記冷媒供給管の外周と冷媒排出管の内周との間を冷媒の排出口としたので、市販されている安価な二重パイプ型の冷却パイプを使用することができる。   Further, according to the mold cooling structure of the fifth aspect, the refrigerant discharge pipe is concentrically arranged outside the refrigerant supply pipe provided with the refrigerant discharge port, and the outer periphery of the refrigerant supply pipe and the refrigerant discharge are arranged. Since the refrigerant outlet is formed between the pipe and the inner periphery, a commercially available inexpensive double pipe type cooling pipe can be used.

また、請求項6に記載の金型の冷却構造によれば、冷却室の下部空間部が、複数枚の縦仕切り材で複数の室に画成されているので、前方空間部から上部空間部を通って冷媒排出口に向け流通している冷媒が、冷却室の開口を封止している封止壁部材に反射して下部空間部側に流れた場合でも、複数枚の縦仕切り材で緩衝されてしまうので、下部空間部における冷媒の動きは非常に少なくなる。従って、下部空間部における冷却室周辺の冷却効果が著しく低下し、その結果、溶湯が直接接触していないのでさほど冷やす必要がない冷却室の下部空間部の周辺部分を冷却せずとも済む。   Further, according to the mold cooling structure of claim 6, since the lower space portion of the cooling chamber is defined in the plurality of chambers by the plurality of vertical partition members, the front space portion and the upper space portion are defined. Even when the refrigerant circulating through the refrigerant outlet is reflected by the sealing wall member that seals the opening of the cooling chamber and flows to the lower space side, a plurality of vertical partition members are used. Since it is buffered, the movement of the refrigerant in the lower space becomes very small. Therefore, the cooling effect around the cooling chamber in the lower space is remarkably reduced. As a result, the molten metal is not in direct contact, and therefore it is not necessary to cool the peripheral portion of the lower space of the cooling chamber that does not require much cooling.

そして、請求項7に記載の冷却構造によれば、冷却室内を画成する流れ制御手段が、冷却室の内部空間を当該冷却室の上壁部との間で形成される上部空間部と前方壁との間で形成される前方空間部とに画成し残部は当該冷却室の内壁に接触すると共に当該冷却室の開口を封止する封止壁部を備えた画成ブロック材で形成され、該画成ブロック材の前記前方空間部に臨む位置に冷媒吐出口を形成し、前記上部空間部に対応した封止壁部に冷媒排出口を設けてなるので、構造が簡素なものとなり、製造が容易で安価に提供し得る。   According to the cooling structure of the seventh aspect, the flow control means that defines the cooling chamber includes an upper space portion that is formed between the inner space of the cooling chamber and the upper wall portion of the cooling chamber, and the front portion. The remaining space defined by the front space formed with the wall is formed of a defined block material having a sealing wall portion that contacts the inner wall of the cooling chamber and seals the opening of the cooling chamber. Since the refrigerant discharge port is formed at a position facing the front space portion of the defined block material and the refrigerant discharge port is provided in the sealing wall portion corresponding to the upper space portion, the structure becomes simple, Manufacture is easy and can be provided at low cost.

しかも、特に本冷却構造を分流子に適用した場合、冷却室内の前方空間部から上部空間部にわたる部分を流通する冷媒の流速を相対的に速くすれば良いだけのことであるので、冷却室内を画成する流れ制御手段をさほど加工精度良く成形せずとも済み、簡便且つ安価に提供することが出来る。   In addition, particularly when the present cooling structure is applied to the shunt, it is only necessary to relatively increase the flow rate of the refrigerant flowing through the portion from the front space portion to the upper space portion in the cooling chamber. The defining flow control means does not need to be molded with such a high processing accuracy, and can be provided simply and inexpensively.

以下、本発明の具体的な好適実施例を、図面を参照しながら詳細に説明するが、本発明は図示した実施例のものに限定されるものではなく、その要旨を越えない範囲において自由に変更可能である。
なお、全図面を通して同様の構成部材には同一の符号を付してある。
Hereinafter, specific preferred embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the illustrated embodiments, and can be freely set within the scope of the invention. It can be changed.
In addition, the same code | symbol is attached | subjected to the same structural member through all drawings.

図1は本発明に係る金型の冷却構造が適用される横射出式のダイカストマシンを模式的に現した断面図であり、図中の符号1aは固定型を、符号1bは可動型を、符号2は射出スリーブを、そして符号3はプランジャチップをそれぞれ示し、射出スリーブ2内を前進して溶湯を押圧するプランジャチップ3の前進対向位置に金型分流子4が設けられている。   FIG. 1 is a cross-sectional view schematically showing a side injection type die casting machine to which a mold cooling structure according to the present invention is applied. In the figure, reference numeral 1a represents a fixed mold, reference numeral 1b represents a movable mold, Reference numeral 2 denotes an injection sleeve, and reference numeral 3 denotes a plunger tip. A mold diverter 4 is provided at a forward facing position of the plunger tip 3 that moves forward in the injection sleeve 2 to press the molten metal.

そして、注湯口2aから射出スリーブ2内に給湯された後プランジャチップ3で押圧された溶湯は、金型分流子4の前方壁41正面部から上壁部42の上面部を通り、固定型1aと可動型1bの間に形成されたランナー1cを経てキャビティ1d内に充満加圧されて製品となる。   The molten metal that has been supplied from the pouring port 2a into the injection sleeve 2 and then pressed by the plunger tip 3 passes from the front surface 41 of the mold diverter 4 through the upper surface of the upper wall portion 42 and passes through the fixed mold 1a. The cavity 1d is filled and pressurized through a runner 1c formed between the movable mold 1b and a product is obtained.

本発明に係る金型の冷却構造は、金型の内部の適所に設けられた冷却室内に、冷却水や冷却オイル等の流動性を有する冷媒を流通させることにより当該冷却室の周辺を冷却するものであり、前記冷却室の内部に当該冷却室内における冷媒の流れを制御するための流れ制御手段を設置し、該流れ制御手段でもって当該冷却室の内壁面に沿って流通する冷媒の流れに相対的に速く流れる部分とそうでない部分とを生じせしめることにより、当該冷却室周辺における金型からの奪取熱量に部分的に差を生じさせるように構成されるものであり、従来の冷却構造と同様に、固定型1aや可動型1bに適用し得る。
ちなみに、図示実施例では可動型1bの一部を構成している分流子4に適用したものである。
The mold cooling structure according to the present invention cools the periphery of the cooling chamber by circulating a coolant having fluidity such as cooling water or cooling oil in a cooling chamber provided at an appropriate position inside the mold. The flow control means for controlling the flow of the refrigerant in the cooling chamber is installed in the cooling chamber, and the flow of the refrigerant flows along the inner wall surface of the cooling chamber by the flow control means. It is configured to cause a difference in the amount of heat taken from the mold around the cooling chamber by generating a relatively fast flowing portion and a non-flowing portion. Similarly, it can be applied to the fixed mold 1a and the movable mold 1b.
Incidentally, in the illustrated embodiment, the present invention is applied to the diverter 4 constituting a part of the movable mold 1b.

分流子4の内部には、冷却水やオイルなどの冷媒を流通させてその周辺を冷却するための冷却室43が軸方向に抉るように形成される。従って、この冷却室43の前方壁41と反対側の開口は、別形成された封止壁部材6或は流れ制御手段5の一部(封止壁部53)でもって、後加工により水密状に封止される。
そして冷却室43の内部には、当該冷却室43内における冷媒の流れを制御するための流れ制御手段5が設置される。
A cooling chamber 43 for circulating a coolant such as cooling water or oil and cooling the periphery thereof is formed in the shunt 4 so as to extend in the axial direction. Therefore, the opening opposite to the front wall 41 of the cooling chamber 43 is formed in a watertight state by post-processing with a separately formed sealing wall member 6 or a part of the flow control means 5 (sealing wall portion 53). Sealed.
Inside the cooling chamber 43, a flow control means 5 for controlling the flow of the refrigerant in the cooling chamber 43 is installed.

流れ制御手段5は、冷却室43の内部を流通する冷媒の流れを制御して、冷却室43内を流通する冷媒の流れに相対的に速く流れる部分とそうでない部分とを生じせしめるためのものであり、図2ないし図4に示した第1実施例では、冷却室43の内部空間を上部空間部7aと下部空間部7bとに画成するための横仕切り材51と、上記下部空間部7bを更に左右に画成するための縦仕切り材52とから形成され、図5ないし図7に示した第2実施例では、冷却室43の内部空間を当該冷却室の上壁部42との間で形成される上部空間部7aと前方壁41との間で形成される前方空間部7cとに画成し残部は当該冷却室の内壁に接触すると共に当該冷却室の開口を封止する封止壁部53を備えた画成ブロック材で形成されている。   The flow control means 5 controls the flow of the refrigerant flowing through the inside of the cooling chamber 43 so as to generate a portion that flows relatively quickly and a portion that does not flow in the flow of the refrigerant flowing through the cooling chamber 43. In the first embodiment shown in FIG. 2 to FIG. 4, a horizontal partition member 51 for defining the internal space of the cooling chamber 43 into an upper space portion 7a and a lower space portion 7b, and the lower space portion described above. In the second embodiment shown in FIGS. 5 to 7, the internal space of the cooling chamber 43 is connected to the upper wall portion 42 of the cooling chamber. The upper space portion 7a formed therebetween and the front space portion 7c formed between the front wall 41 and the remaining portion contact the inner wall of the cooling chamber and seal the opening of the cooling chamber. It is formed of a defined block material provided with a stop wall portion 53.

図2ないし図4に示した第1実施例の流れ制御手段5において、横仕切り材51は、剛性及び耐熱性を備えた金属板等を用いて正面から見て断面略船底形に形成され、その長手方向に沿う両端縁51aを冷却室43の上壁部42内面に当接するように設置することにより、冷却室43の内部空間を上部空間部7aと下部空間部7bとに画成するものであり、その基端側は封止壁部材6に近接ないしは当接させ、先端側は冷却室43の前方壁41近傍まで水平状に延設させる。   In the flow control means 5 of the first embodiment shown in FIGS. 2 to 4, the transverse partition member 51 is formed in a substantially ship bottom shape in cross section when viewed from the front using a metal plate or the like having rigidity and heat resistance, The inner space of the cooling chamber 43 is defined as an upper space portion 7a and a lower space portion 7b by installing both end edges 51a along the longitudinal direction so as to contact the inner surface of the upper wall portion 42 of the cooling chamber 43. The base end side is brought close to or in contact with the sealing wall member 6, and the tip end side is extended horizontally to the vicinity of the front wall 41 of the cooling chamber 43.

縦仕切り材52は、横仕切り材51で画成された下部空間部7bを更に左右に画成するためのものであり、横仕切り材51と同様の金属板等を用いて、冷却室43を輪切りした内周形状とほぼ同じ大きさに形成すると共に、上部空間部7aに当たる部分を切り欠いて形成し、その1枚以上を横仕切り材51の下面に垂直状に垂下突設する。
その際、横仕切り材51の最先端側に配設した縦仕切り材52を冷却室43の前方壁41と対向させて、当該縦仕切り材52と前方壁41とで前方空間部7cを画成せしめ、当該縦仕切り材52と封止壁部材6との間で形成された下部空間部7bを、別の1枚又は2枚の縦仕切り材52でもって左右に画成する。
The vertical partition member 52 is used to further define the lower space portion 7b defined by the horizontal partition member 51 on the left and right sides, and the cooling chamber 43 is formed by using the same metal plate as the horizontal partition member 51. It is formed to have substantially the same size as the inner peripheral shape that has been cut, and a portion corresponding to the upper space portion 7a is formed by notching, and one or more of them are vertically projected from the lower surface of the horizontal partition member 51.
At that time, the vertical partition member 52 disposed on the most front side of the horizontal partition member 51 is opposed to the front wall 41 of the cooling chamber 43, and the vertical partition member 52 and the front wall 41 define the front space portion 7c. The lower space portion 7b formed between the vertical partition member 52 and the sealing wall member 6 is defined on the left and right by another one or two vertical partition members 52.

そして、冷媒の吐出口53を、縦仕切り材52を貫通させて当該縦仕切り材52と冷却室の前方壁41との間で形成される前方空間部7cに臨ませると共に、冷媒の排出口54を当該冷却室43の開口を封止する封止壁部材6に設けて、冷媒吐出口53から吐出された冷媒を冷却室43の前方空間部7cから上部空間部7aを通って上記冷媒排出口54に向け流通させるようにする。
この際、冷媒吐出口53は、プランジャチップ3と金型分流子4との間で形成されるビスケッとのセンター位置に合わせて配置されている。
Then, the refrigerant discharge port 53 passes through the vertical partition member 52 and faces the front space portion 7c formed between the vertical partition member 52 and the front wall 41 of the cooling chamber, and the refrigerant discharge port 54 Is provided on the sealing wall member 6 that seals the opening of the cooling chamber 43, and the refrigerant discharged from the refrigerant discharge port 53 passes through the upper space portion 7a from the front space portion 7c of the cooling chamber 43 and the refrigerant discharge port. To be distributed to 54.
At this time, the refrigerant discharge port 53 is arranged in accordance with the center position of the screw formed between the plunger tip 3 and the mold flow divider 4.

冷却室43内に冷媒を流通させると、泡(流通初期時においては冷媒の供給路にあったガス成分(気泡)が、また鋳造時においては溶湯で過熱された冷媒から発生する蒸気種)が冷却室43内に滞留することがあるので、これをスムーズに冷却室43の外へ排除し得るように、冷却室43の上部空間部7aに対応した部分における封止壁部材6に、冷媒の排出を兼ねた排気口58を設ける。従って、この排気口58は上部空間部7aにおけるできるだけ上部(封止壁部材6の外周縁にできるだけ近い部分)に配設することが好ましい。   When the refrigerant is circulated in the cooling chamber 43, bubbles (gas components (bubbles) that have been in the refrigerant supply path at the initial stage of distribution, and vapor species generated from the refrigerant superheated by the molten metal at the time of casting) are generated. Since it may stay in the cooling chamber 43, the sealing wall member 6 in the portion corresponding to the upper space portion 7a of the cooling chamber 43 may be filled with the refrigerant so that it can be smoothly removed from the cooling chamber 43. An exhaust port 58 that also serves as a discharge is provided. Therefore, it is preferable that the exhaust port 58 is disposed as high as possible in the upper space portion 7a (a portion as close as possible to the outer peripheral edge of the sealing wall member 6).

また、封止壁部材6に冷媒の排出口54を形成する場合に、図示実施例のごとく、冷媒吐出口53を備えた冷媒供給管55の外側に、冷媒排出管56を同心状に配設せしめ、冷媒供給管55の外周と冷媒排出管56の内周との間を冷媒の排出口54とすれば、市販されている二重パイプ型の冷却パイプを使用して、冷媒の吐出口53と排出口54を形成することができる。この際、冷媒排出管56は冷却室43内に余り突出させないようにすることが好ましい。   Further, when the refrigerant discharge port 54 is formed in the sealing wall member 6, the refrigerant discharge pipe 56 is concentrically disposed outside the refrigerant supply pipe 55 provided with the refrigerant discharge port 53 as in the illustrated embodiment. Assuming that the refrigerant outlet 54 is between the outer circumference of the refrigerant supply pipe 55 and the inner circumference of the refrigerant outlet pipe 56, a commercially available double pipe type cooling pipe is used, and the refrigerant outlet 53 And an outlet 54 can be formed. At this time, it is preferable that the refrigerant discharge pipe 56 does not protrude too much into the cooling chamber 43.

また、冷却室43の前方空間部7cには、冷媒吐出口53よりも下部位置に、当該前方空間部7cを上下に画成するための第2横仕切り材57を設置する。すなわち、前方空間部7cに面している縦仕切り材52に、縦仕切り材52の直径とほぼ同じ長さを有する矩形平板形状に形成された第2横仕切り材57を冷却室43の前方壁41に向けて水平状に突設せしめる。このとき、第2横仕切り材57の先端は冷却室43の前方壁41に当接していても良いし当接せずに少し離れていてもよい。   Further, in the front space portion 7c of the cooling chamber 43, a second horizontal partition member 57 for vertically defining the front space portion 7c is installed at a position below the refrigerant discharge port 53. That is, the second horizontal partition member 57 formed in a rectangular flat plate shape having substantially the same length as the diameter of the vertical partition member 52 is attached to the vertical partition member 52 facing the front space portion 7c. Project horizontally toward 41. At this time, the tip of the second horizontal partition member 57 may be in contact with the front wall 41 of the cooling chamber 43, or may be separated slightly without contacting.

かくして、この第1実施例にかかる金型の冷却構造の場合、冷媒供給管55の冷媒吐出口53から吐出された冷媒は、冷却室43の前方空間部7cにおいて前方壁41に衝突しそこで熱交換しながらその大部分は第2横仕切り材57に誘導されて上部空間部7aに至り、上部空間部7aでは冷却室43の上壁部42内面と接触して熱交換しながら冷媒排出口54に向い、冷媒排出口54を通して外部へ排出される。この際、上部空間部7aに対応した部分の封止壁部材6に冷媒排出兼用排気口58を設けることにより、上部空間部7aの冷媒のほとんどは冷媒排出兼用排気口58を通して外部へ排出されるようになる。   Thus, in the mold cooling structure according to the first embodiment, the refrigerant discharged from the refrigerant discharge port 53 of the refrigerant supply pipe 55 collides with the front wall 41 in the front space portion 7c of the cooling chamber 43 and is heated there. While exchanging, most of it is guided to the second horizontal partition member 57 and reaches the upper space portion 7a. In the upper space portion 7a, the refrigerant discharge port 54 is in contact with the inner surface of the upper wall portion 42 of the cooling chamber 43 while exchanging heat. And is discharged to the outside through the refrigerant outlet 54. At this time, by providing the refrigerant discharge / exhaust outlet 58 in the sealing wall member 6 corresponding to the upper space 7a, most of the refrigerant in the upper space 7a is discharged to the outside through the refrigerant exhaust / exhaust outlet 58. It becomes like this.

この前方空間部7cから上部空間部7aにわたる部分を流通する冷媒の流速は、下部空間部7bや他の第2横仕切り材57で画成された下部前方空間部7dにおける冷媒の流速よりも圧倒的に速くなる。
その結果、冷却室43の前方空間部7cから上部空間部7aにわたる冷却室周辺における金型からの奪取熱量が、他の部分の冷却室周辺よりも多くなるので、当該部分が速く且つ強く冷却される。
The flow rate of the refrigerant flowing through the portion from the front space portion 7c to the upper space portion 7a is overwhelming than the flow rate of the refrigerant in the lower front space portion 7d defined by the lower space portion 7b and other second horizontal partition members 57. Faster.
As a result, the amount of heat taken from the mold in the periphery of the cooling chamber from the front space portion 7c to the upper space portion 7a of the cooling chamber 43 is larger than that in the vicinity of the cooling chamber of other portions, so that the portion is quickly and strongly cooled. The

次に、本発明の第2実施例にかかる金型の冷却構造を、図5ないし図7を参照しながら説明する。
なお、第1実施例にかかる金型の冷却構造と同様の構成部材には同一の符号を付して、重複する説明は省略する。
Next, a mold cooling structure according to a second embodiment of the present invention will be described with reference to FIGS.
In addition, the same code | symbol is attached | subjected to the structural member similar to the cooling structure of the metal mold | die concerning 1st Example, and the overlapping description is abbreviate | omitted.

この第2実施例では、流れ制御手段5が1つの画成ブロック材で形成されている。
すなわち、冷却室43の開口を封止し得る封止壁部53を備えると共に、冷却室43の上壁部42との間で上部空間部7aを画成する樋状凹部59を有し、且つその先端部が冷却室43の前方壁41との間で前方空間部7cを画成し、それ以外の部分は冷却室43の内壁に接触する大きさに形成された画成ブロック材の内部に、冷却室43内に冷媒を供給するための冷媒通路60が貫通形成され、その冷媒吐出口53を前方空間部7cに臨ませ、冷媒排出口54が、上部空間部7aに対応している封止壁部53の部分に設けられている。この冷媒排出口54は、冷却室43内の泡を外部へ排出するための排気口も兼ねている。
In this second embodiment, the flow control means 5 is formed of one defined block material.
That is, it has a sealing wall portion 53 that can seal the opening of the cooling chamber 43, and has a bowl-shaped recess 59 that defines the upper space portion 7a with the upper wall portion 42 of the cooling chamber 43, and The front end portion defines the front space portion 7c with the front wall 41 of the cooling chamber 43, and the other portions are formed inside the defining block member formed to be in contact with the inner wall of the cooling chamber 43. The coolant passage 60 for supplying the coolant into the cooling chamber 43 is formed to penetrate the coolant passage 53 so that the coolant discharge port 53 faces the front space portion 7c, and the coolant discharge port 54 corresponds to the upper space portion 7a. It is provided at the portion of the stop wall portion 53. The refrigerant discharge port 54 also serves as an exhaust port for discharging bubbles in the cooling chamber 43 to the outside.

なお、この第2実施例においても第1実施例と同様に、画成ブロック材の先端部に冷媒吐出口53よりも下部位置に、第2横仕切り材57を冷却室43の前方壁41に向けて水平状に突設せしめて、前方空間部7cを上下に画成してある。   In the second embodiment, similarly to the first embodiment, the front end portion of the defining block member is positioned below the refrigerant discharge port 53, and the second horizontal partition member 57 is attached to the front wall 41 of the cooling chamber 43. The front space portion 7c is vertically defined by projecting horizontally.

かくして、この第2実施例にかかる金型の冷却構造の場合、外部パイプ8から冷媒通路60を通して冷媒吐出口53から吐出された冷媒は、冷却室43の前方空間部7cにおいて前方壁41に衝突しそこで熱交換しながら上部空間部7aに至り、上部空間部7aでは冷却室43の上壁部42内面と接触して熱交換しながら冷媒排出口54を通して外部へ排出される。   Thus, in the mold cooling structure according to the second embodiment, the refrigerant discharged from the refrigerant discharge port 53 through the refrigerant passage 60 from the external pipe 8 collides with the front wall 41 in the front space portion 7c of the cooling chamber 43. Then, the heat reaches the upper space portion 7a while exchanging heat. In the upper space portion 7a, it contacts the inner surface of the upper wall portion 42 of the cooling chamber 43 and is discharged outside through the refrigerant discharge port 54 while exchanging heat.

この前方空間部7cから上部空間部7aにわたる部分を流通する冷媒の流れは、冷却室43の内壁に接触している部分における冷媒の動きよりも圧倒的に速く流れるようになる。
その結果、冷却室43の前方空間部7cから上部空間部7aにわたる冷却室周辺における金型からの奪取熱量が、他の部分の冷却室周辺よりも多くなるので、当該部分が速く且つ強く冷却される。
The flow of the refrigerant flowing through the portion from the front space portion 7c to the upper space portion 7a flows much faster than the movement of the refrigerant in the portion in contact with the inner wall of the cooling chamber 43.
As a result, the amount of heat taken from the mold in the periphery of the cooling chamber from the front space portion 7c to the upper space portion 7a of the cooling chamber 43 is larger than that in the vicinity of the cooling chamber of other portions, so that the portion is quickly and strongly cooled. The

本発明に係る金型の冷却構造を適用したダイカストマシンの要部を示す模式図断面。The schematic diagram cross section which shows the principal part of the die-casting machine to which the cooling structure of the metal mold | die which concerns on this invention is applied. 本発明の第1実施例を示す断面図。Sectional drawing which shows 1st Example of this invention. 図2の(X)-(X)線に沿う断面図。Sectional drawing which follows the (X)-(X) line | wire of FIG. 同流れ制御手段の斜視図。The perspective view of the flow control means. 本発明の第2実施例を示す断面図。Sectional drawing which shows 2nd Example of this invention. 図5の(Y)-(Y)線に沿う断面図。Sectional drawing which follows the (Y)-(Y) line | wire of FIG. 同流れ制御手段の斜視図。The perspective view of the flow control means.

符号の説明Explanation of symbols

1a:固定型 1b:可動型
1c:ランナー 1d:キャビティ
2:射出スリーブ 2a:注湯口
3:プランジャチップ 4:金型分流子
41:前方壁 42:上壁部
43:冷却室 44:
5:流れ制御手段 51:横仕切り材
52:縦仕切り材 53:冷媒吐出口
54:冷媒排出口 55:冷媒供給管
56:冷媒排出管 57:第2横仕切り材
58:冷媒排出兼用排気口 59:樋状凹部
60:冷媒通路
6:封止壁部材
7a:上部空間部 7b:下部空間部
7c:前方空間部 7d:下部前方空間部
1a: Fixed type 1b: Movable type
1c: Runner 1d: Cavity 2: Injection sleeve 2a: Pouring gate 3: Plunger tip 4: Mold diverter
41: Front wall 42: Upper wall
43: Cooling room 44:
5: Flow control means 51: Horizontal partition material
52: Vertical partition 53: Refrigerant outlet
54: Refrigerant outlet 55: Refrigerant supply pipe
56: Refrigerant discharge pipe 57: Second horizontal partition
58: Refrigerant discharge / exhaust port 59: Hook-shaped recess
60: Refrigerant passage 6: Sealing wall member
7a: Upper space 7b: Lower space
7c: Front space part 7d: Lower front space part

Claims (8)

金型の内部に設けられた冷却室内に流動性を有する冷媒を流通させることにより当該冷却室周辺を冷却する金型の冷却構造であって、
前記冷却室の内部に当該冷却室内における冷媒の流れを制御する流れ制御手段を設置し、該流れ制御手段でもって当該冷却室の内壁面に沿って流通する冷媒の流れに相対的に速く流れる部分とそうでない部分とを生じせしめることにより、当該冷却室周辺における金型からの奪取熱量に部分的に差を付けられるように構成したことを特徴とする金型の冷却構造。
A mold cooling structure that cools the periphery of the cooling chamber by circulating a fluid refrigerant in a cooling chamber provided inside the mold,
A flow control means for controlling the flow of the refrigerant in the cooling chamber is installed inside the cooling chamber, and the flow control means is a portion that flows relatively quickly to the flow of the refrigerant flowing along the inner wall surface of the cooling chamber. A mold cooling structure characterized in that a difference in heat taken from the mold around the cooling chamber can be partially differentiated by generating a portion that is not and a portion that is not.
前記冷却室が、射出スリーブ内を前進して溶湯を押圧するプランジャチップの前進対向位置に設けられる金型分流子の内部に形成され、
前記流れ制御手段が、前記冷却室の内部空間を上部空間部と下部空間部とに画成する横仕切り材と上記下部空間部を左右に画成する縦仕切り材とから形成され、冷媒の吐出口を、前記縦仕切り材を貫通させて当該縦仕切り材と冷却室の前方壁との間で形成される前方空間部に臨ませると共に、冷媒の排出口を当該冷却室の開口を封止する封止壁部材に設け、前記冷媒吐出口から吐出された冷媒を前記前方空間部から上部空間部を通って前記冷媒排出口に向け流通させて当該前方空間部から上部空間部にわたる部分を流通する冷媒の流速を相対的に速くすることにより、当該前方空間部から上部空間部にわたる冷却室周辺と他の部分の冷却室周辺とで金型からの奪取熱量に差を付けられるように構成したことを特徴とする請求項1に記載の分流子の冷却構造。
The cooling chamber is formed inside a mold diverter provided at a forward facing position of a plunger tip that moves forward in the injection sleeve and presses the molten metal,
The flow control means is formed of a horizontal partition material that defines an internal space of the cooling chamber into an upper space portion and a lower space portion, and a vertical partition material that defines the lower space portion to the left and right, and discharge of the refrigerant. The outlet is made to penetrate the vertical partition member and face the front space formed between the vertical partition member and the front wall of the cooling chamber, and the refrigerant discharge port seals the opening of the cooling chamber. Provided on the sealing wall member, the refrigerant discharged from the refrigerant discharge port is circulated from the front space portion through the upper space portion toward the refrigerant discharge port, and the portion extending from the front space portion to the upper space portion is circulated. By making the flow rate of the refrigerant relatively high, the amount of heat taken from the mold can be differentiated between the periphery of the cooling chamber from the front space to the upper space and the cooling chamber of the other part. The shunt according to claim 1, Cooling structure of.
前記冷却室の上部空間部に対応した部分における前記封止壁部材に、当該冷却室内に発生する泡を室外へ排出するための冷媒排出兼用排気口を設けてなることを特徴とする請求項2記載の分流子の冷却構造。   The refrigerant wall exhaust port for discharging bubbles generated in the cooling chamber to the outside of the sealing wall member in a portion corresponding to the upper space portion of the cooling chamber is provided. The cooling structure of the shunt described. 前記前方空間部に面した前記縦仕切り材に、前記冷媒吐出口よりも下部位置に当該冷却室の前方壁に向けて第2横仕切り材を突設せしめてなることを特徴とする請求項2記載の分流子の冷却構造。   3. The second horizontal partition member is protruded from the vertical partition member facing the front space portion toward the front wall of the cooling chamber at a position lower than the refrigerant discharge port. The cooling structure of the shunt described. 前記冷媒吐出口を備えた冷媒供給管の外側に、冷媒排出管を同心状に配設せしめ、上記冷媒供給管の外周と冷媒排出管の内周との間を冷媒の排出口としたことを特徴する請求項2記載の分流子の冷却構造。   A refrigerant discharge pipe is concentrically disposed outside the refrigerant supply pipe provided with the refrigerant discharge port, and a refrigerant discharge port is formed between the outer periphery of the refrigerant supply pipe and the inner circumference of the refrigerant discharge pipe. The cooling structure of the diverter according to claim 2, wherein the structure is a cooling structure. 前記下部空間部が、前記複数枚の縦仕切り材で複数の室に画成されていることを特徴とする請求項2記載の分流子の冷却構造。   3. The cooling structure for a diverter according to claim 2, wherein the lower space is defined in a plurality of chambers by the plurality of vertical partition members. 前記冷却室が、射出スリーブ内を前進して溶湯を押圧するプランジャチップの前進対向位置に設けられる金型分流子の内部に形成され、
前記流れ制御手段が、前記冷却室の内部空間を当該冷却室の上壁部との間で形成される上部空間部と前方壁との間で形成される前方空間部とに画成し残部は当該冷却室の内壁に接触すると共に当該冷却室の開口を封止する封止壁部を備えた画成ブロック材で形成され、該画成ブロック材の前記前方空間部に臨む位置に冷媒吐出口を形成し、前記上部空間部に対応した封止壁部に冷媒排出口を設け、前記冷媒吐出口から吐出された冷媒を前記前方空間部から上部空間部を通って前記冷媒排出口に向け流通させることにより、当該前方空間部から上部空間部にわたる冷却室周辺と他の部分の冷却室周辺とで金型からの奪取熱量に差を付けられるように構成したことを特徴とする請求項1に記載の分流子の冷却構造。
The cooling chamber is formed inside a mold diverter provided at a forward facing position of a plunger tip that moves forward in the injection sleeve and presses the molten metal,
The flow control means defines an internal space of the cooling chamber into an upper space portion formed between the upper wall portion of the cooling chamber and a front space portion formed between the front wall and the remaining portion is The coolant discharge port is formed at a position facing the front space portion of the defined block material, which is formed of a defined block material having a sealing wall portion that contacts the inner wall of the cooling chamber and seals the opening of the cooling chamber. Forming a refrigerant discharge port in the sealing wall corresponding to the upper space, and circulating the refrigerant discharged from the refrigerant discharge port from the front space through the upper space to the refrigerant discharge port 2, wherein the amount of heat taken from the mold can be differentiated between the periphery of the cooling chamber extending from the front space portion to the upper space portion and the periphery of the cooling chamber of other portions. The cooling structure of the shunt described.
前記前方空間部に面し且つ前記冷媒吐出口よりも下部位置に、冷却室の前方壁に向けて第2横仕切り材を突設せしめてなることを特徴する請求項7記載の分流子の冷却構造。   The cooling of the current divider according to claim 7, wherein a second lateral partition member is provided to project toward the front wall of the cooling chamber at a position below the refrigerant discharge port and facing the front space portion. Construction.
JP2006128253A 2006-05-02 2006-05-02 Mold cooling structure Active JP4624300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006128253A JP4624300B2 (en) 2006-05-02 2006-05-02 Mold cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128253A JP4624300B2 (en) 2006-05-02 2006-05-02 Mold cooling structure

Publications (2)

Publication Number Publication Date
JP2007296572A true JP2007296572A (en) 2007-11-15
JP4624300B2 JP4624300B2 (en) 2011-02-02

Family

ID=38766499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128253A Active JP4624300B2 (en) 2006-05-02 2006-05-02 Mold cooling structure

Country Status (1)

Country Link
JP (1) JP4624300B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954155U (en) * 1982-09-30 1984-04-09 株式会社アーレスティ Mold cooling pipe
JPS62193951U (en) * 1986-05-29 1987-12-09
JPH06315751A (en) * 1993-05-10 1994-11-15 Ryobi Ltd Local cooling device for metallic mold
JP2002224809A (en) * 2001-02-07 2002-08-13 Chuo Motor Wheel Co Ltd Metallic mold for casting
JP2004249654A (en) * 2003-02-21 2004-09-09 Mitsubishi Electric Corp Mold for injection molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954155U (en) * 1982-09-30 1984-04-09 株式会社アーレスティ Mold cooling pipe
JPS62193951U (en) * 1986-05-29 1987-12-09
JPH06315751A (en) * 1993-05-10 1994-11-15 Ryobi Ltd Local cooling device for metallic mold
JP2002224809A (en) * 2001-02-07 2002-08-13 Chuo Motor Wheel Co Ltd Metallic mold for casting
JP2004249654A (en) * 2003-02-21 2004-09-09 Mitsubishi Electric Corp Mold for injection molding

Also Published As

Publication number Publication date
JP4624300B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
WO2009113370A1 (en) Multiple-cavity mold
RU2212980C2 (en) Process for pressure die casting of magnesium
JP2010075939A (en) Die-casting die
JP2008137022A (en) Die flow divider and cooling mechanism therefor
JP2006320945A (en) Graphite mold for vertical type continuous casting
JP2020185599A (en) Casting device
JP2013166154A (en) Die casting chill vent
KR101824500B1 (en) Chill Vent for Die Casting
JP2008114235A (en) Die casting apparatus, sleeve, chill vent, and die casting method
JP4624300B2 (en) Mold cooling structure
JP4675932B2 (en) Mold
JP2002224809A (en) Metallic mold for casting
JP5117077B2 (en) Temperature control type
JP2011073020A (en) Mold
JP5575207B2 (en) Chill vent
JP5939834B2 (en) Chill vent and casting mold
JP2003010953A (en) Spool bush for die casting machine
JP2006239721A (en) Chill vent insert
JP2005288450A (en) Casting die, and casting method for forming die using the same casting die
JP3127031U (en) Chill vent
JPH1147903A (en) Gas-vent structure of die-casting die
JP2005193241A (en) Die casting die, and die casting method
JP2010188351A (en) Casting method
JP4813511B2 (en) Casting mold
JP5246939B2 (en) Low pressure casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4624300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250