JP2007296463A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2007296463A5 JP2007296463A5 JP2006126029A JP2006126029A JP2007296463A5 JP 2007296463 A5 JP2007296463 A5 JP 2007296463A5 JP 2006126029 A JP2006126029 A JP 2006126029A JP 2006126029 A JP2006126029 A JP 2006126029A JP 2007296463 A5 JP2007296463 A5 JP 2007296463A5
- Authority
- JP
- Japan
- Prior art keywords
- hydroxyapatite
- calcium
- less
- molar ratio
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
本発明は、以下に示す構成によって上記課題を解決したヒドロキシアパタイトシリカ複合体多孔質吸着剤とその製造方法に関する。
〔1〕 結晶質ヒドロキシアパタイトと多孔質シリカとの複合体からなり、カルシウムとリンのモル比(Ca/P)が1.9未満であることを特徴とするヒドロキシアパタイトシリカ複合多孔質体吸着剤。
〔2〕 通液60分経過後の残留Pb濃度が0.25ppm以下である上記[1]に記載するヒドロキシアパタイトシリカ複合多孔質体吸着剤。
〔3〕 カルシウムとリンのモル比(Ca/P)が1.3を上回り〜1.67以下であり、カルシウム溶解度2.69以下である上記[1]または上記[2]に記載するヒドロキシアパタイトシリカ複合多孔質体吸着剤。
〔4〕 全細孔容積0.5ml/g以上、透水率1〜100×10-4cm/s、平均粒径10〜60μm、BET比表面積100m2/g以上である上記[1]〜上記[3]の何れかに記載するヒドロキシアパタイトシリカ複合多孔質体吸着剤。
〔5〕 (Ca/Si)モル比が0.1〜2.0の珪酸カルシウム化合物に、(Ca/P)モル比が1.9未満である量のリン酸を加えることにより、珪酸カルシウム化合物のカルシウム分を結晶質ヒドロキシアパタイトに転化させると共に、シリカ分を多孔質シリカに転化させ、(Ca/P)モル比が1.9未満のヒドロキシアパタイトシリカ複合多孔質を製造することを特徴とする製造方法。
〔6〕 pH7.0以上になるようにリン酸を徐々に添加し、0.5時間〜12時間反応させる請求項5に記載する製造方法。
〔7〕 珪酸カルシウムスラリーまたは珪酸カルシウム化合物を温水に浸漬したものに、(Ca/P)モル比が1.9未満である量のリン酸を加温下で撹拌しながら、pH7.0以上になるようにリン酸を徐々に添加して0.5時間〜12時間反応させ、ヒドロキシアパタイトシリカ複合多孔質体を製造する上記[5]〜上記[6]の何れかに記載する製造方法。
〔8〕 珪酸カルシウム化合物にまず酸を反応させて珪酸カルシウム化合物のカルシウムを部分的に溶解除去し、次いでリン酸を反応させて結晶質ヒドロキシアパタイトを生成させてヒドロキシアパタイトシリカ複合多孔質体を製造する上記[5]〜上記[7]の何れかに記載する製造方法。
The present invention relates to a hydroxyapatite silica composite porous adsorbent and a method for producing the same, which have solved the above-described problems with the following configuration.
[1] Hydroxyapatite silica composite porous material adsorbent comprising a composite of crystalline hydroxyapatite and porous silica, wherein the molar ratio of calcium to phosphorus (Ca / P) is less than 1.9 .
[2] The hydroxyapatite silica composite porous material adsorbent according to the above [1], wherein the residual Pb concentration after passage of 60 minutes is 0.25 ppm or less.
[3] Hydroxyapatite according to [1] or [2] above, wherein the molar ratio of calcium to phosphorus (Ca / P) is more than 1.3 to 1.67 or less and calcium solubility is 2.69 or less. Silica composite porous material adsorbent.
[4] The above-mentioned [1] -above having a total pore volume of 0.5 ml / g or more, a water permeability of 1-100 × 10 −4 cm / s, an average particle size of 10-60 μm, and a BET specific surface area of 100 m 2 / g or more. The hydroxyapatite silica composite porous material adsorbent according to any one of [3].
[5] Calcium silicate compound by adding an amount of phosphoric acid having a (Ca / P) molar ratio of less than 1.9 to a calcium silicate compound having a (Ca / Si) molar ratio of 0.1 to 2.0 The calcium content is converted to crystalline hydroxyapatite and the silica content is converted to porous silica to produce a hydroxyapatite silica composite porous material having a (Ca / P) molar ratio of less than 1.9. Production method.
[6] The production method according to claim 5, wherein phosphoric acid is gradually added so as to have a pH of 7.0 or more, and the reaction is performed for 0.5 hours to 12 hours .
[7] While the calcium silicate slurry or the calcium silicate compound is immersed in warm water, the amount of phosphoric acid having a (Ca / P) molar ratio of less than 1.9 is stirred while heating to a pH of 7.0 or higher. The production method according to any one of [5] to [6] above, wherein phosphoric acid is gradually added and reacted for 0.5 to 12 hours to produce a hydroxyapatite silica composite porous body.
[8] Calcium silicate compound is first reacted with acid to partially dissolve and remove calcium of calcium silicate compound, then phosphoric acid is reacted to produce crystalline hydroxyapatite to produce a hydroxyapatite silica composite porous body The manufacturing method according to any one of [5] to [7] above.
一方、本発明の製造方法では、ヒドロキシアパタイトの生成と共に多孔質なシリカが生成するので、多孔性を損なうことなく、ヒドロキシアパタイトと多孔質シリカとの複合体が形成される。また、珪酸カルシウム化合物とリン酸との反応方法を工夫することにより、珪酸カルシウム化合物の酸分解により生じる多孔質シリカを、もとの珪酸カルシウム化合物粒子から遊離させず、その粒子表面にヒドロキシアパタイトと同時に析出させることによって、良好な濾過性、沈降性、透水性を有する複合多孔質体を得ることができる。さらに、本発明の製造方法によって生成するヒドロキシアパタイトは結晶性が良いため、水に対する溶解性も低いという利点を有する。
On the other hand, in the production method of the present invention, porous silica is generated together with the generation of hydroxyapatite, so that a composite of hydroxyapatite and porous silica is formed without impairing the porosity. In addition, by devising a reaction method between the calcium silicate compound and phosphoric acid, the porous silica generated by acid decomposition of the calcium silicate compound is not released from the original calcium silicate compound particles, and hydroxyapatite and By depositing at the same time, a composite porous body having good filterability , sedimentation and water permeability can be obtained. Furthermore, since the hydroxyapatite produced by the production method of the present invention has good crystallinity, it has an advantage of low solubility in water.
以下、本発明の製造方法を具体的に説明する。
本発明のヒドロキシアパタイトシリカ複合体の基材となる珪酸カルシウムは、珪酸原料と石灰原料とを水性スラリーとしたものを、例えば、オートクレーブ中において水熱反応(実施例1〜9ではオートクレーブ中、180℃〜220℃の水熱反応)を行なって合成した一般的によく知られているものを好適に用いることができる。その種類としては、珪酸カルシウム化合物であれば特に限定されず、例えば、トバモライト、ジャイロライト、ゾノトライトなどの結晶質珪酸カルシウム、あるいは非晶質珪酸カルシウムなど何れの珪酸カルシウムも用いることができる。これらは単独で用いても良いし、2種以上を組み合わせて用いても良い。また、これらの珪酸カルシウム化合物は粉体の状態だけではなく、これらの珪酸カルシウム化合物を適当な方法で成型した板状物あるいは塊状物を用いることができる。
Hereinafter, the production method of the present invention will be specifically described.
The calcium silicate used as the base material of the hydroxyapatite silica composite of the present invention is obtained by hydrothermal reaction in an autoclave (for example, in the autoclave in Examples 1-9, 180) A generally well-known one synthesized by carrying out a hydrothermal reaction between ℃ and 220 ℃ can be suitably used. As the kind is not particularly limited as long as it is a calcium silicate compound, for example, tobermorite, gyro light, can be used crystalline calcium silicate or any calcium silicate such as amorphous calcium silicate, such as xonotlite. These may be used alone or in combination of two or more. These calcium silicate compounds can be used not only in the form of powder, but also in the form of plates or lumps obtained by molding these calcium silicate compounds by an appropriate method.
本発明のヒドロキシアパタイトシリカ複合体の基材となる珪酸カルシウムは、実施例1〜10に示すように、カルシウムとシリカのモル比(Ca/Si)が0.1〜2.0であるものが好ましく、0.4〜0.8のものがより好ましい。カルシウムとシリカのモル比(Ca/Si)が上記範囲であるものは、丸味を帯びた粒子形になり、透水性の良い多孔質複合体を得ることができる。
As shown in Examples 1 to 10, the calcium silicate used as the base material of the hydroxyapatite silica composite of the present invention has a calcium to silica molar ratio (Ca / Si) of 0.1 to 2.0. Preferably, the thing of 0.4-0.8 is more preferable. When the molar ratio of calcium to silica (Ca / Si) is in the above range, the particles are rounded and a porous composite with good water permeability can be obtained.
図1に示すように、比較例3、4、6では20分経過後のPb濃度は何れも20ppm以上であるが、本発明の実施例1、3、7、8、9、10は何れも10分経過後には10ppm以下、20分経過後のPb濃度は実質的にゼロであり、重金属に対して短時間に優れた吸着効果を有することが判る。この傾向は図2においても同様であり、ヒドロキシアパタイトのカルシウムとリンのモル比(Ca/P)が1.90である比較例1は60分経過後のPb濃度が40ppm以上であるのに対して、本発明の実施例1、5、6は20分経過後のPb濃度は実質的にゼロであり、優れた吸着効果を有している。具体的には、表1に示すように、(Ca/P)モル比1.90の比較例1(No.21)は通液60分経過後のPb濃度は44.3ppmであるが、(Ca/P)モル比1.67以下の実施例1〜10は通液60分経過後のPb濃度は何れも0.25ppm以下であり比較例1〜3より低い。また、実施例1〜10の蛋白質吸着率は何れも53.5%以上であり、比較例1〜3および市販品より大幅に高い。なお、比較例2(No.22)はリン酸量が(Ca/P)モル比1.67であるが、リン酸の反応時間が2分間であるため、通液60分経過後のPb濃度0.39ppmおよび蛋白質吸着35.6%であり、何れも実施例1〜10よりかなり低い。さらに、比較例3(No.23)はコンクリート廃材をリン酸中に浸漬して表面をヒドロキシアパタイト化したものであり、通液60分経過後のPb濃度および蛋白質吸着は何れも実施例1〜10よりかなり低い。
As shown in FIG. 1, in Comparative Examples 3, 4, and 6, the Pb concentration after 20 minutes is 20 ppm or more, but in Examples 1, 3, 7, 8, 9, and 10 of the present invention, After 10 minutes, 10 ppm or less, and the Pb concentration after 20 minutes is substantially zero, indicating that the heavy metal has an excellent adsorption effect in a short time. This tendency is the same in FIG. 2, whereas in Comparative Example 1 in which the molar ratio of calcium to phosphorus (Ca / P) of hydroxyapatite is 1.90, the Pb concentration after 60 minutes is 40 ppm or more. In Examples 1, 5, and 6 of the present invention, the Pb concentration after 20 minutes is substantially zero, and has an excellent adsorption effect. Specifically, as shown in Table 1, Comparative Example 1 (No. 21) having a (Ca / P) molar ratio of 1.90 has a Pb concentration of 44.3 ppm after passage of 60 minutes. In Examples 1 to 10 having a Ca / P) molar ratio of 1.67 or less, the Pb concentration after passing through the liquid for 60 minutes is 0.25 ppm or less, which is lower than those of Comparative Examples 1 to 3. Moreover, all the protein adsorption rates of Examples 1-10 are 53.5% or more, and are significantly higher than Comparative Examples 1-3 and a commercial item. In Comparative Example 2 (No. 22), the amount of phosphoric acid was (Ca / P) molar ratio 1.67, but the reaction time of phosphoric acid was 2 minutes, so the Pb concentration after 60 minutes passed through 0.39 ppm and protein adsorption 35.6%, both of which are considerably lower than in Examples 1-10. Further, Comparative Example 3 (No. 23) was obtained by dipping concrete waste material in phosphoric acid to make the surface hydroxyapatite. Both the Pb concentration and the protein adsorption after 60 minutes passed were in Examples 1 to 3. Much lower than 10.
〔図1〕実施例および比較例について、経過時間によるPb濃度を示すグラフ
〔図2〕実施例および比較例について、経過時間によるPb濃度を示すグラフ
〔図3〕実施例1の本発明試料について、X線回折結果を示すグラフ
[Fig. 1] Graph showing Pb concentration by elapsed time for Example and Comparative Example [Fig. 2] Graph showing Pb concentration by elapsed time for Example and Comparative Example [Fig. 3] Sample of the present invention of Example 1 , Graph showing X-ray diffraction results
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006126029A JP4423645B2 (en) | 2006-04-28 | 2006-04-28 | Hydroxyapatite silica composite porous material adsorbent and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006126029A JP4423645B2 (en) | 2006-04-28 | 2006-04-28 | Hydroxyapatite silica composite porous material adsorbent and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007296463A JP2007296463A (en) | 2007-11-15 |
JP2007296463A5 true JP2007296463A5 (en) | 2009-06-18 |
JP4423645B2 JP4423645B2 (en) | 2010-03-03 |
Family
ID=38766408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006126029A Active JP4423645B2 (en) | 2006-04-28 | 2006-04-28 | Hydroxyapatite silica composite porous material adsorbent and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4423645B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5476537B2 (en) * | 2009-08-19 | 2014-04-23 | 独立行政法人産業技術総合研究所 | Method for producing porous structure |
JP5574745B2 (en) * | 2010-02-23 | 2014-08-20 | 幸雄 柳沢 | Calcium phosphate water purification material and method for producing the same |
JP5436405B2 (en) * | 2010-12-24 | 2014-03-05 | 日本インシュレーション株式会社 | Composition for heat insulating material and molded body for heat insulating material |
JP5692587B2 (en) * | 2011-03-14 | 2015-04-01 | 株式会社リコー | Toner, developer, image forming method, and process cartridge |
JP5425326B2 (en) * | 2012-04-11 | 2014-02-26 | 日本インシュレーション株式会社 | Molded body for heat insulating material and manufacturing method thereof |
JP5925034B2 (en) * | 2012-04-20 | 2016-05-25 | 日本インシュレーション株式会社 | Composition for heat insulating material, molded body for heat insulating material, and production method thereof |
US10596547B2 (en) * | 2015-04-22 | 2020-03-24 | Arkema Inc. | Porous article having polymer binder sub-micron particle |
CN105498676B (en) * | 2015-11-30 | 2018-09-11 | 中国科学院合肥物质科学研究院 | Sulfur-bearing hydroxyapatite adsorbents for lead ion pyrolytic and its synthetic method and application |
JP6885055B2 (en) | 2016-12-26 | 2021-06-09 | 日亜化学工業株式会社 | Fillers, resin compositions, packages, light emitting devices and their manufacturing methods |
KR102369230B1 (en) * | 2017-06-07 | 2022-02-28 | 김희준 | Adsorbent manufacturing method, adsorbent and treatment method |
JP7037034B2 (en) | 2017-08-31 | 2022-03-16 | 日亜化学工業株式会社 | Fillers, resin compositions, packages, light emitting devices and methods for manufacturing them |
CN110373199B (en) * | 2019-06-21 | 2021-10-01 | 湖南大学 | Composite soil repairing agent and preparation method and repairing method thereof |
CN111229156B (en) * | 2020-01-20 | 2021-07-13 | 齐鲁工业大学 | Preparation and application of hydroxyapatite modified mesoporous silica adsorption material |
CN111533188B (en) * | 2020-04-22 | 2022-07-12 | 北京泷涛环境修复有限公司 | Repairing agent for heavy metal polluted underground water, preparation method and application method |
CN111495315B (en) * | 2020-04-23 | 2021-05-25 | 齐鲁工业大学 | Pb in water body2+Application and preparation method of adsorbing material |
-
2006
- 2006-04-28 JP JP2006126029A patent/JP4423645B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007296463A5 (en) | ||
JP4423645B2 (en) | Hydroxyapatite silica composite porous material adsorbent and method for producing the same | |
JP4714931B2 (en) | Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same | |
JP4576616B2 (en) | Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range | |
US11472706B2 (en) | Hydroxyapatite composite for use in removal of contaminants from effluents and methods of making | |
Maliyekkal et al. | High yield combustion synthesis of nanomagnesia and its application for fluoride removal | |
WO2012124222A1 (en) | Aluminum silicate, metal ion adsorbent, and method for producing same | |
JP5931369B2 (en) | Phosphorus recovery material and method for producing the same | |
WO2012176579A1 (en) | Method for recovering phosphorus and using same as fertilizer | |
JP5864045B2 (en) | Method for producing phosphorus recovery material | |
JP5458231B2 (en) | Method for producing fluorapatite powder, fluorapatite powder and adsorption device | |
JP2013027865A (en) | Method for recovering phosphorus and making fertilizer from phosphorus | |
JP2014173924A (en) | METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER, AND RADIOACTIVE Cs ABSORBENT AND METHOD FOR PRODUCING THE SAME | |
JP5083748B2 (en) | Method for producing calcium carbonate / zeolite compound composite | |
JP2014115135A (en) | RADIOACTIVE Cs ADSORBENT AND METHOD OF MANUFACTURING THE SAME | |
US11273427B2 (en) | Fabrication of hydroxyapatite based hybrid sorbent media for removal of fluoride and other contaminants | |
JP5946105B2 (en) | Phosphorus recovery material and phosphorus recovery method | |
JP4423646B2 (en) | Humine substance adsorbent and method for producing the same | |
JP2007296464A5 (en) | ||
JP2013248555A (en) | Cesium adsorbing material, and method for manufacturing the same | |
JP6670534B2 (en) | Phosphorus recovery material and method for producing the same | |
JP4753182B2 (en) | Treatment method for fluorine-containing wastewater | |
JP2008184368A (en) | Crystalline aluminum phosphate porous structure and its manufacturing method | |
JP2006256891A (en) | Aluminum silicate and its production method | |
JP2015196146A (en) | Phosphorus recovery material for phosphorus-containing water and phosphorus recovery method using the phosphorus recovery material |