JP2007296440A - Organic waste treatment method and apparatus - Google Patents

Organic waste treatment method and apparatus Download PDF

Info

Publication number
JP2007296440A
JP2007296440A JP2006125204A JP2006125204A JP2007296440A JP 2007296440 A JP2007296440 A JP 2007296440A JP 2006125204 A JP2006125204 A JP 2006125204A JP 2006125204 A JP2006125204 A JP 2006125204A JP 2007296440 A JP2007296440 A JP 2007296440A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
organic waste
treated
water
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125204A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kamiya
俊行 神谷
Seiji Furukawa
誠司 古川
Hiroshi Kuroki
洋志 黒木
Naoki Nakatsugawa
直樹 中津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006125204A priority Critical patent/JP2007296440A/en
Publication of JP2007296440A publication Critical patent/JP2007296440A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an organic waste treatment method which enables a reduction in the volume of organic waste at lower temperature, and efficiently recover useful substances. <P>SOLUTION: Organic waste-containing water to be treated is supplied to a reaction tank 2 by a water to be treated supply means I. Hydrogen peroxide is supplied to the reaction tank 2 by a hydrogen peroxide supply means II to add the hydrogen peroxide to the organic waste. A heating means 14, the water to be treated supply means I, and discharge means III are controlled by using a control means 18 to regulate temperature and pressure in the reaction tank 2 so that hydrothermal reaction of the water to be treated is carried out. The reacted water is discharged from the reaction tank 2 by the discharge means III to recover the useful substances, such as acetic acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エネルギー資源回収型かつ省エネ型の有機性廃棄物の処理方法および有機性廃棄物の処理装置に関するものである。   The present invention relates to an energy resource recovery type and energy saving type organic waste processing method and an organic waste processing apparatus.

有機性廃棄物の処理に要するエネルギーが比較的低い処理方法として、有機性廃棄物に苛性ソーダ等の薬液を混入した後に、亜臨界水(300℃、10MPa)を利用して処理する方法がある(例えば特許文献1参照)。
また、未利用バイオマス利活用の見地から、有機性廃棄物の処理過程で有用物を回収する処理方法として、第1工程において、有機性廃棄物を酸素の供給を制限した条件下で、250℃〜350℃で水熱反応させて分解して酢酸の中間体を生成し、第2の工程において、上記酢酸の中間体を酸素を供給して、250℃〜350℃で水熱反応させて酢酸を生成する方法がある(例えば特許文献2参照)。
As a processing method with relatively low energy required for processing organic waste, there is a method of processing using subcritical water (300 ° C., 10 MPa) after mixing a chemical solution such as caustic soda with organic waste ( For example, see Patent Document 1).
Further, from the viewpoint of utilizing unused biomass, as a processing method for recovering useful materials in the process of treating organic waste, in the first step, the organic waste is treated at 250 ° C. under a condition in which supply of oxygen is limited. It is hydrothermally reacted at ˜350 ° C. to produce an intermediate of acetic acid, and in the second step, the intermediate of acetic acid is supplied with oxygen and hydrothermally reacted at 250 ° C. to 350 ° C. to produce acetic acid. There is a method of generating (see, for example, Patent Document 2).

特開2002−113348号公報(第2頁)JP 2002-113348 A (page 2) 特開2003−145090号公報(第1頁)Japanese Patent Laying-Open No. 2003-145090 (first page)

従来の水熱反応を利用した処理方法は、処理時の温度が超臨界水を利用する場合に比べて低温であり、加熱に要するエネルギーは小さいものの、実用的な観点からは依然多くのエネルギーが必要になるという課題があった。   The conventional treatment method using hydrothermal reaction is a lower temperature than the case of using supercritical water and the energy required for heating is small, but still a lot of energy from a practical point of view. There was a problem that it was necessary.

本発明は、かかる課題を解決するためになされたものであり、より低い温度で、有機性廃棄物の減容とともに、有用物質の回収が可能な有機性廃棄物の処理方法を得ることを目的とする。また、有機性廃棄物の処理装置を得ることを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to obtain a method for treating organic waste capable of recovering useful substances while reducing the volume of organic waste at a lower temperature. And Moreover, it aims at obtaining the processing apparatus of organic waste.

本発明に係る有機性廃棄物の処理方法は、有機性廃棄物に過酸化水素を添加して、水熱反応させる方法である。   The organic waste processing method according to the present invention is a method in which hydrogen peroxide is added to the organic waste and a hydrothermal reaction is performed.

有機性廃棄物に過酸化水素を加えて水熱反応させることにより、有機性廃棄物の分解が促進されて従来より低温で分解できるだけでなく、有用物である酢酸等の回収率が向上する。   By adding hydrogen peroxide to the organic waste and causing a hydrothermal reaction, the decomposition of the organic waste is promoted and not only can be decomposed at a lower temperature than before, but also the recovery rate of useful acetic acid and the like is improved.

実施の形態1.
従来は、有機性廃棄物を超臨界水または亜臨界水に溶解して反応処理することにより減容していた。処理温度を高くすれば有機性廃棄物の溶解率は向上し減容の効果が上がるが、有機性廃棄物から有用物を回収しようとする場合、処理温度が高いと回収すべき有用物が反応によって別の物質に変換されるため有用物の回収率が低下する。
そこで、本発明の実施の形態の有機性廃棄物の処理方法においては、処理工程において、OHラジカルやOラジカル等のラジカル種が関与する反応を促進させることにより処理温度を低下させようとするもので、上記ラジカル種の発生源となる過酸化水素を有機性廃棄物に添加して水熱反応させるのである。
Embodiment 1 FIG.
Conventionally, the volume of organic waste has been reduced by dissolving it in supercritical water or subcritical water and subjecting it to a reaction treatment. Increasing the treatment temperature improves the dissolution rate of organic waste and increases the volume reduction effect. However, when recovering useful materials from organic waste, the useful materials to be recovered react when the treatment temperature is high. As a result, the recovery rate of useful substances decreases.
Therefore, in the method for treating organic waste according to the embodiment of the present invention, in the treatment step, the treatment temperature is lowered by promoting a reaction involving radical species such as OH radical and O radical. Then, hydrogen peroxide, which is a generation source of the above radical species, is added to the organic waste to cause a hydrothermal reaction.

本発明の実施の形態1においては、有機性廃棄物である下水汚泥{固形物の濃度が20000mg/l、上記固形物中の有機成分(VSS)の割合が80%}を含有する被処理水を反応槽に封入し、上記下水汚泥の固形物1g当り、0.1〜3.5gの過酸化水素を添加し、上記反応槽内において、100℃、200℃、250℃または300℃で、30分間水熱反応させて処理した。なお、過酸化水素は、35%濃度の過酸化水素水溶液を用いて上記所定量を添加した。
また、反応槽内の気相空間の比率(被処理水が封入された反応槽における、反応槽容積に対する気相空間容積の比率)を50%とした。
In the first embodiment of the present invention, sewage sludge that is organic waste {concentration of solids is 20000 mg / l, and the proportion of organic component (VSS) in the solids is 80%} is treated water. In a reaction tank, 0.1 to 3.5 g of hydrogen peroxide is added per 1 g of the solid matter of the sewage sludge, and in the reaction tank at 100 ° C., 200 ° C., 250 ° C. or 300 ° C., Treated by hydrothermal reaction for 30 minutes. The predetermined amount of hydrogen peroxide was added using a 35% strength aqueous hydrogen peroxide solution.
Further, the ratio of the gas phase space in the reaction tank (ratio of the gas phase space volume to the reaction tank volume in the reaction tank in which the water to be treated was sealed) was set to 50%.

図1は、本発明の実施の形態1の有機性廃棄物の処理方法において、各処理温度における、上記固形物1g当りの過酸化水素の添加量(g)と、上記固形物中の有機成分(VSS)量に対する溶解した有機成分量の割合(VSS溶解率)(%)との相関を示す特性図で、VSS溶解率は、有機性廃棄物の減容の指標となるものであり、図中、a1、b1、c1、d1は、各々処理温度が100℃、200℃、250℃、300℃の場合の特性である。なお、図1中、処理温度が300℃で、過酸化水素の添加量がゼロでの処理は、従来の亜臨界水を用いた水熱反応処理に相当する。
図1に示すように、各処理温度において、被処理水に過酸化水素を添加することにより、VSS溶解率が増加し、過酸化水素の添加量が増加するにしたがってVSS溶解率が増加するが、上記固形物1g当たりの過酸化水素の添加量が2.5gで飽和する(200℃ではVSS溶解率は約80%)。
また、従来の亜臨界水を用いた水熱反応処理に相当する、過酸化水素を添加しないで300℃で処理した場合は、VSS溶解率が40%程度であるのに対して、上記固形物1g当りの過酸化水素が0.1gであると、100℃での処理によっても、上記従来と同程度のVSS溶解率が得られることから、処理温度が従来よりも大幅に低い100℃においても、過酸化水素添加の効果が大きいことがわかる。また、処理温度が100℃を越えるとVSS溶解率が大幅に増加し、減容の効果が大きくなる。
FIG. 1 shows the amount of hydrogen peroxide added per gram of the solid matter (g) and the organic components in the solid matter at each treatment temperature in the organic waste treatment method of Embodiment 1 of the present invention. (VSS) The characteristic figure which shows the correlation with the ratio (VSS dissolution rate) (%) of the amount of dissolved organic components with respect to the amount, and the VSS dissolution rate is an index for reducing the volume of organic waste. Among them, a1, b1, c1, and d1 are characteristics when the processing temperatures are 100 ° C., 200 ° C., 250 ° C., and 300 ° C., respectively. In FIG. 1, the treatment at a treatment temperature of 300 ° C. and the addition amount of hydrogen peroxide of zero corresponds to a conventional hydrothermal reaction treatment using subcritical water.
As shown in FIG. 1, at each treatment temperature, by adding hydrogen peroxide to the water to be treated, the VSS dissolution rate increases, and the VSS dissolution rate increases as the amount of hydrogen peroxide added increases. The amount of hydrogen peroxide added per 1 g of the solid is saturated at 2.5 g (at 200 ° C., the VSS dissolution rate is about 80%).
In addition, when treated at 300 ° C. without adding hydrogen peroxide, which corresponds to a conventional hydrothermal reaction treatment using subcritical water, the VSS dissolution rate is about 40%, whereas the solids If the hydrogen peroxide per gram is 0.1 g, even at 100 ° C., the same VSS dissolution rate can be obtained as above, so even at a treatment temperature of 100 ° C., which is significantly lower than the conventional temperature. It can be seen that the effect of hydrogen peroxide addition is great. On the other hand, when the processing temperature exceeds 100 ° C., the VSS dissolution rate is greatly increased, and the effect of volume reduction is increased.

図2は、本実施の形態において、各処理温度における、上記固形物1g当たりの過酸化水素の添加量(g)と、上記固形物1g当たりの酢酸生成量(mg)との相関を示す特性図であり、図2中、a2〜d2は各々処理温度が100℃、200℃、250℃、300℃の場合の特性である。
図2に示すように、各処理温度において、被処理水に過酸化水素を添加することにより、酢酸の生成量が増加し、過酸化水素の添加量が増加するにしたがって酢酸の生成量が増加する。即ち、上記固形物1g当たり、過酸化水素を0.1g添加した場合でも、上記各処理温度において、上記固形物1g当たり、18〜40mgの酢酸が生成され、また、上記固形物1g当たり、過酸化水素を1.5〜2.5g添加した場合には約40〜60mgの酢酸が生成され、過酸化水素の添加により、下水汚泥の固形物が溶解し酢酸の生成が促進されることがわかる。一方、上記固形物1g当りの過酸化水素の添加量が2.5gを越えると、酢酸の生成量が低下する傾向が顕著となり、生成した酢酸の分解が優勢になることが示唆される。
また、従来の亜臨界水を用いた水熱反応処理に相当する、過酸化水素を添加しないで300℃で処理した場合は、上記固形物1g当りの酢酸の生成量が20mg程度であるのに対して、上記固形物1g当り、過酸化水素を0.1〜3g添加することにより、100℃での処理によっても従来と同程度の酢酸の生成量が得られ、処理温度が従来よりも大幅に低い100℃においても、過酸化水素添加の効果が大きいことがわかる。また、処理温度が100℃を越えると酢酸の生成量が大幅に増加する。
以上のように、本実施の形態において、下水汚泥の固形物1g当り、過酸化水素の添加範囲を0.1〜3gとすることにより、従来よりも低い処理温度で、従来以上の溶解率と酢酸の生成量が得られるという効果がある。
FIG. 2 is a graph showing the correlation between the amount of hydrogen peroxide added per gram of the solid matter (g) and the amount of acetic acid produced per gram of the solid matter (mg) at each processing temperature in the present embodiment. In FIG. 2, a <b> 2 to d <b> 2 are characteristics when the processing temperatures are 100 ° C., 200 ° C., 250 ° C., and 300 ° C., respectively.
As shown in FIG. 2, at each treatment temperature, the amount of acetic acid increased by adding hydrogen peroxide to the water to be treated, and the amount of acetic acid increased as the amount of hydrogen peroxide added increased. To do. That is, even when 0.1 g of hydrogen peroxide is added per 1 g of the above solid matter, 18 to 40 mg of acetic acid is produced per 1 g of the above solid matter at each processing temperature. When 1.5 to 2.5 g of hydrogen oxide is added, about 40 to 60 mg of acetic acid is produced, and it can be seen that the addition of hydrogen peroxide promotes the production of acetic acid by dissolving solids of sewage sludge. . On the other hand, when the amount of hydrogen peroxide added per gram of the solid exceeds 2.5 g, the tendency of the amount of acetic acid to decrease becomes remarkable, suggesting that the decomposition of the generated acetic acid becomes dominant.
In addition, when treated at 300 ° C. without adding hydrogen peroxide, which corresponds to the conventional hydrothermal reaction treatment using subcritical water, the amount of acetic acid produced per gram of the solid is about 20 mg. On the other hand, by adding 0.1 to 3 g of hydrogen peroxide per 1 g of the above-mentioned solid matter, the amount of acetic acid produced can be obtained by the treatment at 100 ° C., and the treatment temperature is much higher than before. It can be seen that the effect of hydrogen peroxide addition is large even at a low temperature of 100 ° C. In addition, when the treatment temperature exceeds 100 ° C., the amount of acetic acid produced is greatly increased.
As described above, in the present embodiment, by adding 0.1 to 3 g of hydrogen peroxide per 1 g of sewage sludge solids, at a treatment temperature lower than that of the conventional method, There is an effect that the amount of acetic acid produced can be obtained.

実施の形態2.
本発明の実施の形態2においては、実施の形態1と同様の下水汚泥を含有する被処理水を反応槽に封入し、上記下水汚泥の固形物(以下、単に固形物と記載する。)1g当り、過酸化水素を0.1g、1.5gまたは2.5g添加するか、過酸化水素を添加しないで、室温〜360℃間の所定の温度で、30分間水熱反応させて処理した。なお、反応槽内の気相空間の比率(被処理水が封入された反応槽における、反応槽の容積に対する気相空間容積の比率)は50%とした。
図3は、本実施の形態における、各過酸化水素の添加量における、処理温度と上記VSS溶解率(%)との相関を示す特性図で、図中、e1、f1、g1、h1は、各々過酸化水素無添加、並びに0.1g、1.5g、2.5g添加の特性である。なお、図3中、処理温度が300℃で、過酸化水素の添加量がゼロは、従来の亜臨界水を用いた水熱反応処理に相当する。
図3に示すように、各過酸化水素の添加量において、処理温度が100℃になると急激にVSS溶解率が上昇し、処理温度の上昇にともなってVSS溶解率も増加し、温度が250℃の場合には高い溶解率(上記固形物1g当りの過酸化水素の添加量が2.4gではVSS溶解率が約80%)が得られ、過酸化水素を添加しない場合に比べて溶解率が約2〜3倍と大幅に増加しており、過酸化水素添加の効果が顕著である。
また、従来の亜臨界水を用いた水熱反応処理に相当する、過酸化水素を添加しないで、300℃で処理した場合は、VSS溶解率が40%程度となるのに対して、上記固形物1g当りの過酸化水素が0.1gであると、100℃での処理によっても、上記従来と同程度のVSS溶解率が得られることから、処理温度が従来よりも大幅に低い100℃においても、過酸化水素添加の効果が大きいことがわかる。また、処理温度が100℃を越えるとVSS溶解率が大幅に増加し、減容の効果が大きくなる。
Embodiment 2. FIG.
In Embodiment 2 of the present invention, treated water containing sewage sludge similar to that in Embodiment 1 is sealed in a reaction tank, and 1 g of the sewage sludge solids (hereinafter simply referred to as solids) 1 g. The hydrogen peroxide was treated by hydrothermal reaction for 30 minutes at a predetermined temperature between room temperature and 360 ° C. with 0.1 g, 1.5 g or 2.5 g of hydrogen peroxide added or without hydrogen peroxide. The ratio of the gas phase space in the reaction tank (the ratio of the gas phase space volume to the volume of the reaction tank in the reaction tank in which the water to be treated was sealed) was 50%.
FIG. 3 is a characteristic diagram showing the correlation between the treatment temperature and the VSS dissolution rate (%) at the added amount of each hydrogen peroxide in the present embodiment. In the figure, e1, f1, g1, and h1 are: The characteristics are as follows: no addition of hydrogen peroxide, and addition of 0.1 g, 1.5 g, and 2.5 g. In FIG. 3, the treatment temperature of 300 ° C. and the addition amount of hydrogen peroxide of zero correspond to the conventional hydrothermal reaction treatment using subcritical water.
As shown in FIG. 3, when the treatment temperature reaches 100 ° C., the VSS dissolution rate increases abruptly with the addition amount of each hydrogen peroxide. In this case, a high dissolution rate (VSS dissolution rate is about 80% when the amount of hydrogen peroxide added per 1 g of the above solids is 2.4 g) is obtained, which is higher than that in the case where hydrogen peroxide is not added. The increase is about 2-3 times, and the effect of hydrogen peroxide addition is remarkable.
In addition, when treated at 300 ° C. without adding hydrogen peroxide, which corresponds to a hydrothermal reaction treatment using conventional subcritical water, the VSS dissolution rate is about 40%, whereas the solid solution When the hydrogen peroxide per gram of the substance is 0.1 g, even at the treatment at 100 ° C., the VSS dissolution rate similar to the conventional one can be obtained. Therefore, at 100 ° C., the treatment temperature is significantly lower than the conventional one. It can also be seen that the effect of hydrogen peroxide addition is great. On the other hand, when the processing temperature exceeds 100 ° C., the VSS dissolution rate is greatly increased, and the effect of volume reduction is increased.

図4は、本実施の形態において、各過酸化水素の添加量における、処理温度と上記固形物1g当たりの酢酸生成量(mg)の相関を示す特性図で、図中、e2、f2、g2、h2は、各々過酸化水素無添加、および過酸化水素の添加量が0.1g、1.5g、2.5gの特性である。
図4に示すように、各過酸化水素の添加量において、処理温度が上昇するにしたがって酢酸の生成量が増加し、処理温度が100〜250℃では、上記各過酸化水素の添加量において、上記固形物1g当たり、20〜60mgの酢酸が生成される。また、上記のように、処理温度を上昇させるにともなって酢酸生成量は増加するが、いずれの過酸化水素添加量の場合も200℃でピークを示し、処理温度をさらに上昇させても酢酸生成量はこれ以上増加せず、逆に、低下する傾向が顕著で、高温での処理によって生成した酢酸の分解反応が優勢になることが示唆される。
また、従来の亜臨界水を用いた水熱反応処理に相当する、過酸化水素を添加しないで300℃で処理した場合は、上記固形物1g当り、酢酸の生成量が20mg程度であるのに対して、処理温度を100〜250℃とすることにより、上記固形物1g当り、過酸化水素を0.1g添加するだけで、従来以上の酢酸の生成量が得られ、過酸化水素添加の効果が大きいことがわかる。また、上記過酸化水素の添加量が増加するとVSS溶解率が大幅に増加し、減容の効果が大きくなっている。
以上のように、本実施の形態において、過酸化水素を添加する水熱反応においては、温度範囲を従来よりも低い、100℃〜250℃とすることによって、従来を越える溶解率と酢酸の生成量が得られるという効果がある。
FIG. 4 is a characteristic diagram showing the correlation between the treatment temperature and the amount of acetic acid produced (g) per gram of the solid matter in the amount of hydrogen peroxide added in the present embodiment. In the figure, e2, f2, g2 , H2 are characteristics in which hydrogen peroxide is not added and hydrogen peroxide is added in amounts of 0.1 g, 1.5 g, and 2.5 g, respectively.
As shown in FIG. 4, in the amount of each hydrogen peroxide added, the amount of acetic acid generated increased as the processing temperature increased. When the processing temperature was 100 to 250 ° C., the amount of each hydrogen peroxide added was 20-60 mg of acetic acid is produced per gram of the solid. In addition, as described above, acetic acid production increases with increasing processing temperature, but at any hydrogen peroxide addition amount, it shows a peak at 200 ° C., and acetic acid generation is achieved even when the processing temperature is further increased. The amount does not increase any more, and conversely, the tendency to decrease is remarkable, suggesting that the decomposition reaction of acetic acid produced by the treatment at high temperature becomes dominant.
In addition, when treated at 300 ° C. without adding hydrogen peroxide, which corresponds to a conventional hydrothermal reaction process using subcritical water, the amount of acetic acid produced is about 20 mg per 1 g of the solid. On the other hand, by setting the treatment temperature to 100 to 250 ° C., it is possible to obtain acetic acid production more than conventional by adding 0.1 g of hydrogen peroxide per 1 g of the solid matter, and the effect of hydrogen peroxide addition. It can be seen that is large. Further, as the amount of hydrogen peroxide added increases, the VSS dissolution rate increases significantly, and the effect of volume reduction increases.
As described above, in the present embodiment, in the hydrothermal reaction in which hydrogen peroxide is added, the temperature range is set to 100 ° C. to 250 ° C., which is lower than the conventional one, so There is an effect that the amount is obtained.

実施の形態3.
本発明の実施の形態3においては、実施の形態1と同様の下水汚泥を含有する被処理水を、反応槽内の気相空間の比率が5〜95%の間の所定の比率となるように反応槽に封入し、上記下水汚泥の固形物(以下、単に固形物と記載する。)1g当り、過酸化水素を1.5g添加するか、または過酸化水素を添加しないで、200℃で、30分間水熱反応させて処理した。なお、反応槽には被処理水が導入されるため気相空間比率が100%になることはない。
図5は、本実施の形態における、反応槽における気相空間の比率と上記固形物のVSS溶解率との相関を示す特性図であり、図中、j1は過酸化水素添加の特性、k1は過酸化水素無添加の特性である。
図5中、過酸化水素を添加した場合の特性j1に示すように、気相空間の比率が5%の場合のVSS溶解率は10%程度であるのに対し、気相空間の比率を20%にまで増加させると、VSS溶解率は50%となり、これは同じ気相空間比率で過酸化水素無添加の場合k1に比べて大幅に大きな値であり、上記気相空間の比率が20%程度で、過酸化水素を添加することによる上記固形物の溶解率への効果が顕著となる。
さらに、気相空間の比率の増加にともない酸素量および圧力が増加することにより溶解率も増加し、気相空間の比率が80%の場合には80%を超える高い溶解率が得られたが、気相空間の比率を95%に増加させても溶解率のさらなる増加は見られなかった。なお、上記下水汚泥の固形物1g当たり過酸化水素の添加量が0.1〜3g、処理温度が100〜250℃で同様の傾向が見られた。
Embodiment 3 FIG.
In Embodiment 3 of the present invention, the water to be treated containing sewage sludge similar to that in Embodiment 1 is such that the ratio of the gas phase space in the reaction tank is a predetermined ratio between 5 and 95%. In a reaction vessel, 1.5 g of hydrogen peroxide is added per gram of the sewage sludge solid matter (hereinafter simply referred to as “solid matter”) or at 200 ° C. without adding hydrogen peroxide. For 30 minutes. Since water to be treated is introduced into the reaction tank, the gas phase space ratio does not become 100%.
FIG. 5 is a characteristic diagram showing the correlation between the ratio of the gas phase space in the reaction tank and the VSS dissolution rate of the solid matter in the present embodiment, where j1 is the hydrogen peroxide addition characteristic and k1 is This is a characteristic without hydrogen peroxide.
As shown in the characteristic j1 when hydrogen peroxide is added in FIG. 5, the VSS dissolution rate when the ratio of the gas phase space is 5% is about 10%, whereas the ratio of the gas phase space is 20%. %, The VSS dissolution rate becomes 50%, which is a much larger value than k1 when hydrogen peroxide is not added at the same gas phase space ratio, and the gas phase space ratio is 20%. By the extent, the effect on the dissolution rate of the solid matter by adding hydrogen peroxide becomes remarkable.
Furthermore, as the proportion of the gas phase space increases, the amount of oxygen and the pressure increase, so that the dissolution rate also increases. When the ratio of the gas phase space is 80%, a high dissolution rate exceeding 80% was obtained. Even if the ratio of the gas phase space was increased to 95%, no further increase in the dissolution rate was observed. In addition, the same tendency was seen when the addition amount of hydrogen peroxide was 0.1 to 3 g and the treatment temperature was 100 to 250 ° C. per 1 g of the solid matter of the sewage sludge.

図6は、本実施の形態における、各過酸化水素の添加量における、気相空間比率と上記固形物1g当たりの酢酸生成量(mg)の相関を示す特性図で、j2は過酸化水素添加の特性、k2は過酸化水素無添加の特性である。
図6に示すように、過酸化水素を添加した場合j2、気相空間の比率20%での処理において、酢酸生成量は、上記固形物1g当り40mg程度であった。また、気相空間の比率の増加にともない酢酸生成量は増加するが、気相空間の比率を80%にまで増加させると、反応槽における被処理水の絶対量が減少することにより酢酸生成量の低下が顕著になることが示された。
以上の結果より、過酸化水素を添加する水熱反応において気相空間の比率を20%〜80%とすることによって、高い汚泥溶解率を確保できるとともに酢酸の生成を促進することができる。
FIG. 6 is a characteristic diagram showing the correlation between the gas phase space ratio and the amount of acetic acid produced (g) per gram of the solid matter in the amount of hydrogen peroxide added in the present embodiment. The characteristic k2 is a characteristic without addition of hydrogen peroxide.
As shown in FIG. 6, when hydrogen peroxide was added, the amount of acetic acid produced was about 40 mg per 1 g of the solid matter in the treatment at j2 when the ratio of the gas phase space was 20%. In addition, acetic acid production increases with an increase in the gas phase space ratio, but when the gas phase space ratio is increased to 80%, the absolute amount of water to be treated in the reaction tank decreases, resulting in an acetic acid production amount. It has been shown that the decrease in is significant.
From the above results, by making the ratio of the gas phase space 20% to 80% in the hydrothermal reaction in which hydrogen peroxide is added, a high sludge dissolution rate can be secured and the production of acetic acid can be promoted.

上記実施の形態1〜3については、有機性廃棄物として、固形物の濃度が20000mg/lで、上記固形物中の有機成分(VSS)の割合が80%の下水汚泥を対象とした実験結果を示したが、固形物の濃度が10000〜50000mg/lで、上記固形物中の有機成分(VSS)の割合が70〜100%である下水汚泥でも、また、家畜排泄物、食品廃棄物等、他の有機性廃棄物についても、上記実施の形態と同様の結果が得られた。   About the said Embodiment 1-3, as an organic waste, the density | concentration of a solid substance is 20000 mg / l, and the experiment result which made the ratio of the organic component (VSS) in the said solid substance target 80% In the case of sewage sludge in which the solid concentration is 10,000 to 50,000 mg / l and the organic component (VSS) ratio in the solid is 70 to 100%, animal waste, food waste, etc. The same results as in the above embodiment were obtained for other organic wastes.

実施の形態4.
図7は、本発明の実施の形態4の有機性廃棄物の処理装置の概略構成図で、実施の形態1〜3の処理方法に用いる装置である。
廃棄物貯留槽1に有機性廃棄物を含有する被処理水を貯留し、廃棄物貯留槽1と反応槽2とは廃棄物投入配管3により接続されている。過酸化水素貯留槽11と反応槽2とは過酸化水素投入配管12により接続され、反応槽2には加熱装置14、温度測定器15、圧力測定器16および水位測定器17が備えられ、反応槽2と処理後廃棄物貯留槽7とは廃棄物排出配管8により接続されている。
また、廃棄物投入配管3には廃棄物投入ポンプ5および廃棄物投入バルブ6が、廃棄物排出配管8には廃棄物排出ポンプ9および廃棄物排出バルブ10が設けられ、廃棄物投入配管3と廃棄物排出配管8とには熱交換器4が設けられている。
廃棄物投入バルブ6と廃棄物排出バルブ10とを開とし、廃棄物投入ポンプ5と廃棄物排出ポンプ9とを運転することにより、廃棄物貯留槽1の被処理水を廃棄物投入配管3を通して反応槽2へ投入する処理水供給手段(I)となり、廃棄物排出配管8を通して反応処理後の処理済み水を、廃棄物排出バルブ10を開として廃棄物排出ポンプ9により排出することにより、処理後廃棄物貯留槽7へ排出する排出手段(III)となるが、この過程で熱交換器4において反応槽2から排出する処理済み水と反応槽2へ投入する被処理水との間で熱交換を行う。
また、過酸化水素投入配管12には過酸化水素投入ポンプ13が設けられ、過酸化水素貯留槽11の過酸化水素溶液を過酸化水素投入配管12を通して反応槽2に供給する過酸化水素供給手段(II)となる。
反応槽2において、被処理水に過酸化水素が添加され、加熱装置により加熱して所定時間、反応槽2に滞留させて水熱反応させる。
加熱装置14、温度測定器15、圧力測定器16および水位測定器17は信号線によって制御装置18に接続されており、制御装置18により、温度測定器15、圧力測定器16および水位測定器17によって測定された測定値に基づき、加熱装置14、廃棄物投入ポンプ5、過酸化水素投入ポンプ13、廃棄物排出ポンプ9の移送流量を調整することにより、反応槽2における被処理水の温度、水位および圧力を調整し、反応槽2内の水熱反応の条件を制御する。
Embodiment 4 FIG.
FIG. 7: is a schematic block diagram of the organic waste processing apparatus of Embodiment 4 of this invention, and is an apparatus used for the processing method of Embodiment 1-3.
Water to be treated containing organic waste is stored in the waste storage tank 1, and the waste storage tank 1 and the reaction tank 2 are connected by a waste input pipe 3. The hydrogen peroxide storage tank 11 and the reaction tank 2 are connected by a hydrogen peroxide charging pipe 12, and the reaction tank 2 includes a heating device 14, a temperature measuring device 15, a pressure measuring device 16, and a water level measuring device 17. The tank 2 and the post-treatment waste storage tank 7 are connected by a waste discharge pipe 8.
The waste input pipe 3 is provided with a waste input pump 5 and a waste input valve 6, and the waste discharge pipe 8 is provided with a waste discharge pump 9 and a waste discharge valve 10. A heat exchanger 4 is provided in the waste discharge pipe 8.
By opening the waste input valve 6 and the waste discharge valve 10 and operating the waste input pump 5 and the waste discharge pump 9, the water to be treated in the waste storage tank 1 is passed through the waste input pipe 3. The treated water supply means (I) to be fed into the reaction tank 2 is processed by discharging the treated water after the reaction treatment through the waste discharge pipe 8 by the waste discharge pump 9 with the waste discharge valve 10 opened. It becomes the discharge means (III) for discharging to the post-waste storage tank 7. In this process, heat is generated between the treated water discharged from the reaction tank 2 in the heat exchanger 4 and the treated water to be charged into the reaction tank 2. Exchange.
The hydrogen peroxide supply pipe 12 is provided with a hydrogen peroxide input pump 13, and hydrogen peroxide supply means for supplying the hydrogen peroxide solution in the hydrogen peroxide storage tank 11 to the reaction tank 2 through the hydrogen peroxide input pipe 12. (II).
In the reaction tank 2, hydrogen peroxide is added to the water to be treated, heated by a heating device and retained in the reaction tank 2 for a predetermined time to cause a hydrothermal reaction.
The heating device 14, the temperature measuring device 15, the pressure measuring device 16 and the water level measuring device 17 are connected to the control device 18 by signal lines, and the temperature measuring device 15, the pressure measuring device 16 and the water level measuring device 17 are connected by the control device 18. The temperature of the water to be treated in the reaction tank 2 is adjusted by adjusting the transfer flow rate of the heating device 14, the waste input pump 5, the hydrogen peroxide input pump 13, and the waste discharge pump 9 based on the measurement value measured by The water level and pressure are adjusted to control the hydrothermal reaction conditions in the reaction tank 2.

実施の形態5.
図8は、本発明の実施の形態5による有機性廃棄物の処理方法に用いる処理装置の概略構成図で、実施の形態4の処理装置における処理後廃棄物貯留槽7の代わりに固液分離装置19が設けられている他は実施の形態4と同様である。
つまり、本実施の形態の処理装置には固液分離装置19が設けられているので、処理済み液を、固体成分である濃縮廃棄物と液体成分である分離液とに分けることができる。
上記分離液は分離液配管21を通して分離液槽20へ導入され、水熱処理によって得られた酢酸等の有価物を多く含む液体成分を分離液として分けることができ、有価物の回収を効率的に行うことが可能となる。
また、上記濃縮廃棄物の一部は濃縮廃棄物配管22を通して廃棄物貯留槽1へ、残りの濃縮廃棄物は濃縮廃棄物配管23を通して処理後廃棄物貯留槽7にそれぞれ投入され、処理後の廃棄物を固液分離し、濃縮廃棄物の一部を再度水熱反応させることで、有機性廃棄物の分解をより一層促進させることができる。
Embodiment 5 FIG.
FIG. 8 is a schematic configuration diagram of a processing apparatus used in the organic waste processing method according to the fifth embodiment of the present invention. Solid-liquid separation is performed instead of the post-treatment waste storage tank 7 in the processing apparatus according to the fourth embodiment. Except that the device 19 is provided, the fourth embodiment is the same as the fourth embodiment.
That is, since the solid-liquid separation device 19 is provided in the processing apparatus of the present embodiment, the processed liquid can be divided into concentrated waste that is a solid component and separated liquid that is a liquid component.
The separation liquid is introduced into the separation liquid tank 20 through the separation liquid pipe 21, and a liquid component containing a large amount of valuable materials such as acetic acid obtained by hydrothermal treatment can be separated as a separation liquid, thereby efficiently collecting valuable materials. Can be done.
A part of the concentrated waste is introduced into the waste storage tank 1 through the concentrated waste pipe 22, and the remaining concentrated waste is supplied into the post-treatment waste storage tank 7 through the concentrated waste pipe 23, respectively. Decomposing organic waste can be further promoted by solid-liquid separation of the waste and hydrothermal reaction of a part of the concentrated waste again.

本発明の実施の形態1において、各処理温度における、下水汚泥の固形物1g当りの過酸化水素の添加量(g)と、下水汚泥の固形物のVSS溶解率(%)との相関を示す特性図である。In Embodiment 1 of this invention, the correlation between the hydrogen peroxide addition amount (g) per gram of sewage sludge solids and the VSS dissolution rate (%) of sewage sludge solids at each treatment temperature is shown. FIG. 本発明の実施の形態1において、各処理温度における、下水汚泥の固形物1g当たりの過酸化水素の添加量(g)と、下水汚泥の固形物1g当たりの酢酸生成量(mg)との相関を示す特性図である。In Embodiment 1 of the present invention, the correlation between the amount of hydrogen peroxide added per gram of sewage sludge solids (g) and the amount of acetic acid produced per gram of sewage sludge solids (mg) at each treatment temperature. FIG. 本発明の実施の形態2において、各過酸化水素の添加量における、処理温度と、下水汚泥の固形物のVSS溶解率(%)との相関を示す特性図である。In Embodiment 2 of this invention, in the addition amount of each hydrogen peroxide, it is a characteristic view which shows the correlation with the processing temperature and VSS melt | dissolution rate (%) of the solid substance of a sewage sludge. 本発明の実施の形態2において、各過酸化水素の添加量における、処理温度と下水汚泥の固形物1g当たりの酢酸生成量(mg)の相関を示す特性図である。In Embodiment 2 of this invention, it is a characteristic view which shows the correlation of the acetic acid production amount (mg) per 1g of solids of a sewage sludge in the addition amount of each hydrogen peroxide. 本発明の実施の形態3において、各過酸化水素の添加量における、反応槽における気相空間の比率と下水汚泥の固形物のVSS溶解率(%)との相関を示す特性図である。In Embodiment 3 of this invention, in the addition amount of each hydrogen peroxide, it is a characteristic view which shows the correlation with the ratio of the gaseous-phase space in a reaction tank, and the VSS dissolution rate (%) of the solid substance of a sewage sludge. 本発明の実施の形態3において、各過酸化水素の添加量における、反応槽における気相空間の比率と、生成された酢酸の絶対量との相関を示す特性図である。In Embodiment 3 of this invention, it is a characteristic view which shows the correlation with the ratio of the gaseous-phase space in the reaction tank in the addition amount of each hydrogen peroxide, and the absolute amount of the produced | generated acetic acid. 本発明の実施の形態4の有機性廃棄物の処理装置の概略構成図である。It is a schematic block diagram of the organic waste processing apparatus of Embodiment 4 of this invention. 本発明の実施の形態5の有機性廃棄物の処理装置の概略構成図である。It is a schematic block diagram of the organic waste processing apparatus of Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 廃棄物貯留槽、2 反応槽、3 廃棄物投入配管、5 廃棄物投入ポンプ、6 廃棄物投入バルブ、I 被処理水供給手段、11 過酸化水素貯留槽、12 過酸化水素投入配管、13 過酸化水素投入ポンプ、II 過酸化水素供給手段、7 処理後廃棄物貯留槽、8 廃棄物排出配管、9 廃棄物排出ポンプ、10 廃棄物排出バルブ、III 排出手段、14 加熱装置(加熱手段)、15 温度測定器、16 圧力測定器、17 水位測定器、18 制御装置(制御手段)、19 固液分離装置。


1 waste storage tank, 2 reaction tank, 3 waste input pipe, 5 waste input pump, 6 waste input valve, I treated water supply means, 11 hydrogen peroxide storage tank, 12 hydrogen peroxide input pipe, 13 Hydrogen peroxide charging pump, II Hydrogen peroxide supply means, 7 Waste storage tank after treatment, 8 Waste discharge piping, 9 Waste discharge pump, 10 Waste discharge valve, III Discharge means, 14 Heating device (heating means) , 15 Temperature measuring device, 16 Pressure measuring device, 17 Water level measuring device, 18 Control device (control means), 19 Solid-liquid separation device.


Claims (7)

有機性廃棄物に過酸化水素を添加して、水熱反応させる有機性廃棄物の処理方法。 A method for treating organic waste, in which hydrogen peroxide is added to organic waste and subjected to hydrothermal reaction. 有機性廃棄物の固形物1g当たり、0.1〜3gの過酸化水素を添加することを特徴とする請求項1に記載の有機性廃棄物の処理方法。 The method for treating organic waste according to claim 1, wherein 0.1 to 3 g of hydrogen peroxide is added per 1 g of solid matter of the organic waste. 100〜250℃で、水熱反応させることを特徴とする請求項1または請求項2に記載の有機性廃棄物の処理方法。 The method for treating organic waste according to claim 1 or 2, wherein a hydrothermal reaction is performed at 100 to 250 ° C. 有機性廃棄物と過酸化水素とを含有する被処理水が封入された反応槽内の気相空間が、20〜80%であることを特徴とする請求項1〜請求項3のいずれかに記載の有機性廃棄物の処理方法。 The gas phase space in the reaction tank in which the water to be treated containing organic waste and hydrogen peroxide is enclosed is 20 to 80%. The organic waste disposal method as described. 反応槽において、有機性廃棄物を含有する被処理水を水熱反応させ、反応処理済み水を回収する有機性廃棄物の処理装置において、上記反応槽に上記被処理水を供給する被処理水供給手段と、上記反応槽に過酸化水素を供給する過酸化水素供給手段と、上記反応槽を加熱する加熱手段と、上記被処理水または上記反応処理済み水を上記反応槽から排出する排出手段と、上記反応槽において被処理水が水熱反応するように、上記加熱手段、被処理水供給手段および排出手段により、上記反応槽内の温度および圧力を制御する制御手段とを備えたことを特徴とする有機性廃棄物の処理装置。 In an organic waste treatment apparatus that hydrothermally reacts water to be treated containing organic waste in a reaction tank and collects the reaction-treated water, the water to be treated is supplied to the reaction tank. A supply means; a hydrogen peroxide supply means for supplying hydrogen peroxide to the reaction tank; a heating means for heating the reaction tank; and a discharge means for discharging the treated water or the reaction-treated water from the reaction tank. And a control means for controlling the temperature and pressure in the reaction tank by the heating means, the treated water supply means and the discharge means so that the water to be treated is hydrothermally reacted in the reaction tank. Organic waste processing equipment. 制御手段が、被処理水が封入された反応槽内の気相空間の比率を、被処理水供給手段および排出手段により制御することを特徴とする請求項5に記載の有機性廃棄物の処理装置。 6. The organic waste treatment according to claim 5, wherein the control means controls the ratio of the gas phase space in the reaction tank in which the water to be treated is sealed by the water to be treated supply means and the discharging means. apparatus. 排出された反応処理済み液を、固体成分と液体成分に分離する固液分離手段を備えたことを特徴とする請求項5に記載の有機性廃棄物の処理装置。
6. The organic waste treatment apparatus according to claim 5, further comprising solid-liquid separation means for separating the discharged reaction-treated liquid into a solid component and a liquid component.
JP2006125204A 2006-04-28 2006-04-28 Organic waste treatment method and apparatus Pending JP2007296440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125204A JP2007296440A (en) 2006-04-28 2006-04-28 Organic waste treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125204A JP2007296440A (en) 2006-04-28 2006-04-28 Organic waste treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2007296440A true JP2007296440A (en) 2007-11-15

Family

ID=38766386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125204A Pending JP2007296440A (en) 2006-04-28 2006-04-28 Organic waste treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2007296440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
US10023512B2 (en) 2009-02-11 2018-07-17 Southern Illinois University Carbondale Production of organic materials using oxidative hydrothermal dissolution method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
US10023512B2 (en) 2009-02-11 2018-07-17 Southern Illinois University Carbondale Production of organic materials using oxidative hydrothermal dissolution method

Similar Documents

Publication Publication Date Title
JP6683843B2 (en) Phosphate recovery method
JP2004058047A (en) Treatment method and equipment for organic waste liquid
CA2660181A1 (en) Method and apparatus using hydrogen peroxide and microwave system for slurries treatment
TWI507363B (en) Treatment of Copper Etching Waste
JP6649769B2 (en) Organic matter processing system and organic matter processing method
JP2004008912A (en) Method and apparatus for treating organic waste
JP4685385B2 (en) Power generation method using surplus sludge
JP2006281074A (en) Organic sludge treatment method
CN105502842A (en) Wastewater Fenton oxidation-biological combined treatment method and device capable of recycling sludge
JP2007296440A (en) Organic waste treatment method and apparatus
CN108383335A (en) High-concentration organic wastewater treatment system and method
JP2014008491A (en) Organic waste treatment apparatus, and organic waste treatment method using the same
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JP2007069053A (en) Method and facility for treating organic sludge
JP4949085B2 (en) Apparatus and method for treating phosphorus-containing organic wastewater
JP4365617B2 (en) Organic waste liquid processing method and processing apparatus
JP2003245628A (en) Treatment method for waste generated in food material processing process and treatment apparatus using the same
JP5441787B2 (en) Organic wastewater treatment method and treatment apparatus
CN108178470B (en) Method for one-step recovery of phosphorus from algae mud by supercritical water gasification
JP2003236594A (en) Apparatus for treating sludge
JP4693337B2 (en) Method and apparatus for treating organic waste liquid
CN107585993A (en) A kind of processing method and processing device of sludge
JP2006075730A (en) Anaerobic treatment device
JP2004275813A (en) Treatment method for sludge
JP2013103156A (en) Biological sludge volume reduction method and apparatus