JP2007295922A - Cell fusion device and method for cell fusion using the same - Google Patents

Cell fusion device and method for cell fusion using the same Download PDF

Info

Publication number
JP2007295922A
JP2007295922A JP2007010810A JP2007010810A JP2007295922A JP 2007295922 A JP2007295922 A JP 2007295922A JP 2007010810 A JP2007010810 A JP 2007010810A JP 2007010810 A JP2007010810 A JP 2007010810A JP 2007295922 A JP2007295922 A JP 2007295922A
Authority
JP
Japan
Prior art keywords
cell
cell fusion
cells
micropore
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010810A
Other languages
Japanese (ja)
Other versions
JP4910716B2 (en
Inventor
Tatsu Futami
達 二見
Atsushi Morimoto
篤史 森本
Takahiro Maruyama
高廣 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007010810A priority Critical patent/JP4910716B2/en
Publication of JP2007295922A publication Critical patent/JP2007295922A/en
Application granted granted Critical
Publication of JP4910716B2 publication Critical patent/JP4910716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell fusion device for efficiently carrying out a cell fusion with a pair of two types of cells, and to provide a method for the cell fusion using the device. <P>SOLUTION: The cell fusion device includes a pair of electrodes formed by an electrically conducting member and disposed opposite to each other in the cell fusion region in which the cell fusion is carried out, a cell fusion container formed by flat plate-like electrical insulators disposed via a flat plate-like spacer in between the pair of electrodes and provided with one or more fine pores penetrated in the direction of the electrodes disposed opposite to each other, and an electric source for applying an alternating voltage to the pair of electrodes. The method for the cell fusion using the device comprises the following practice: A first cell is introduced into the cell fusion region followed by application of an alternating voltage with the above-mentioned waveform to immobilize the first cell in the fine pore(s). Thereafter, a second cell is introduced into the cell fusion region followed by application of an alternating voltage with the above-mentioned waveform to contact the second cell with the first cell at the position of the fine pore(s) to accomplish the objective cell fusion chemically. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、細胞融合を効率的に行うための細胞融合装置とそれを用いた細胞融合方法に関する。   The present invention relates to a cell fusion apparatus for efficiently performing cell fusion and a cell fusion method using the same.

従来より、異なる細胞同士を融合させ1つの交雑細胞とする細胞融合技術として、主にポリエチレングリコール(PEG)を用いる化学的融合法が用いられているが、この方法では(i)PEGは細胞に対して強い毒性を持っている、(ii)融合するにあたりPEGの重合度、添加量などの最適な諸条件を見出すのに手間がかかる、(iii)融合に際して高度な技術が要求され、特定の技術に習熟した人にしか使えない、(iv)2細胞の接触は偶発的であり、2細胞1対での細胞融合の制御が困難なため細胞融合確率が極めて低い、等の解決すべき課題があった。   Conventionally, a chemical fusion method mainly using polyethylene glycol (PEG) has been used as a cell fusion technique in which different cells are fused to form one hybrid cell. In this method, (i) PEG is added to cells. (Ii) It takes time and effort to find the optimum conditions such as the degree of polymerization of PEG and the amount added, and (iii) Advanced technology is required for the fusion. Can only be used by those skilled in the art, (iv) 2 cell contact is accidental, and it is difficult to control cell fusion with a pair of 2 cells, so the cell fusion probability is extremely low, etc. was there.

上記課題を解決するために、PEGを用いる化学的融合法と、電圧を印加することで細胞を数珠状に整列させて融合させる電気的細胞融合法を組み合わせた方法が報告されている(例えば、特許文献1参照)。電気的細胞融合法は、高度な技術が不要で、簡単に効率よく融合させることができ、細胞に与える毒性がなく、高活性をもったままの状態で細胞を融合させることができるという利点がある。   In order to solve the above problems, a method has been reported that combines a chemical fusion method using PEG and an electric cell fusion method in which cells are aligned and fused by applying a voltage (for example, Patent Document 1). The electric cell fusion method has the advantage that it does not require advanced technology, can be easily and efficiently fused, has no toxicity to cells, and can fuse cells with high activity. is there.

電気的細胞融合法は、1981年西ドイツのZimmermannが確立したものであり、その原理は次の通りである。すなわち、平行電極間に交流電圧を印加し、そこに細胞を導入すると、細胞は電流密度の高い方へ引き寄せられ数珠状にならぶ。なお、細胞が数珠状にならんだ状態を一般にパールチェーンと呼ぶ。この状態で数μsec〜数十μsec単位のパルス電圧を電極間に印加することにより細胞膜の電気伝導度が瞬間的に低下し、脂質二重層により構成される細胞膜の可逆的乱れとその再構成が行われ、その結果細胞融合が起こるものである。特許文献1に記載された方法では、細胞を入れたPEGの溶媒を電極間に導入し、電極間に交流電圧を印加し細胞を数珠状にならべることで、細胞を秩序よく配列させることを試みている。   The electric cell fusion method was established by Zimmermann in West Germany in 1981, and the principle is as follows. That is, when an alternating voltage is applied between parallel electrodes and cells are introduced therein, the cells are attracted toward the higher current density and form a bead shape. A state in which cells are arranged in a bead shape is generally called a pearl chain. In this state, by applying a pulse voltage of several μsec to several tens of μsec between the electrodes, the electric conductivity of the cell membrane is instantaneously lowered, and the reversible disturbance of the cell membrane constituted by the lipid bilayer and its reconfiguration are performed. Done, and as a result, cell fusion occurs. In the method described in Patent Document 1, an attempt is made to arrange cells in an orderly manner by introducing a solvent of PEG containing cells between the electrodes and applying an alternating voltage between the electrodes to arrange the cells in a bead shape. ing.

しかしながら、細胞は数珠状に連なるものの、その順番を制御することができないため、化学的融合法を単独で用いた場合よりは改善されるものの、依然として2細胞の接触は偶発的であり、2細胞1対での細胞融合の確実な制御が難しいという課題があり、さらなる改善が望まれていた。   However, although the cells are arranged in a beaded manner, the order of the cells cannot be controlled. Therefore, although the chemical fusion method is improved more than when used alone, the contact between the two cells is still incidental, and the two cells There has been a problem that it is difficult to reliably control cell fusion in a pair, and further improvement has been desired.

特開昭60−9490号公報JP 60-9490 A

本発明の目的は、かかる従来の実状に鑑みて提案されたものであり、2細胞一対での細胞融合を効率的に行う細胞融合装置とそれを用いた細胞融合方法を提供することを目的とする。   An object of the present invention has been proposed in view of the conventional situation, and an object of the present invention is to provide a cell fusion device that efficiently performs cell fusion in a pair of two cells and a cell fusion method using the same. To do.

本発明は上記課題を解決するものとして、細胞融合領域内に対向するように配置された導電部材よりなる一対の電極と、前記一対の電極方向に貫通した微細孔を形成した絶縁体からなり、化学的に細胞を融合する細胞融合容器であって、前記絶縁体の表面が親水性であり、前記絶縁体が前記電極のうちどちらか一方の電極の細胞融合領域側の電極面上に配置されており、前記微細孔の平面形状が少なくとも1以上の角を有する形状である細胞融合容器と、前記一対の電極に交流電圧を印加するための交流電源からなり、前記交流電源により前記電極間に印加する交流電圧の波形が、前記細胞の充電と放電を周期的に繰り返す波形であることを特徴とする細胞融合装置を用いて、前記細胞融合領域内に第1の細胞を導入し、前記波形を有する交流電圧を印加することで前記微細孔内に前記第1の細胞を固定した後、前記細胞融合領域内に第2の細胞を導入して、前記波形を有する交流電圧を印加することで前記第1の細胞に前記第2の細胞を微細孔の位置において接触させ化学的に細胞を融合することを特徴とする細胞融合方法を用いることにより、上記の従来技術の課題を解決することができることを見出し、遂に本発明を完成するに至った。以下、本発明を詳細に説明する。   The present invention, as a solution to the above problems, comprises a pair of electrodes made of conductive members arranged so as to face each other in the cell fusion region, and an insulator formed with fine holes penetrating in the direction of the pair of electrodes, A cell fusion container for chemically fusing cells, wherein the surface of the insulator is hydrophilic, and the insulator is disposed on the electrode surface on the cell fusion region side of one of the electrodes. A planar cell shape of the micropore has a shape having at least one or more corners and an AC power source for applying an AC voltage to the pair of electrodes, and the AC power source is connected between the electrodes. The waveform of the alternating voltage to be applied is a waveform in which charging and discharging of the cells are periodically repeated, and a first cell is introduced into the cell fusion region using the cell fusion device, and the waveform Having sex After fixing the first cell in the micropore by applying a voltage, the second cell is introduced into the cell fusion region, and the first voltage is applied by applying an AC voltage having the waveform. It is found that the above-mentioned problems of the prior art can be solved by using a cell fusion method characterized in that the cell is chemically fused by bringing the second cell into contact with the cell at the position of the micropore. Finally, the present invention has been completed. Hereinafter, the present invention will be described in detail.

本発明は、細胞融合領域内に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した1または複数の微細孔を形成した平板状の絶縁体からなる細胞融合容器と、前記一対の電極に交流電圧を印加する電源と、を備えた細胞融合装置である。   The present invention relates to a pair of electrodes made of conductive members arranged opposite to each other in a cell fusion region, and a plate-like spacer arranged between the pair of electrodes, and the electrodes arranged opposite to each other A cell fusion device comprising a cell fusion container made of a flat insulator having one or more fine holes penetrating in a direction, and a power source for applying an alternating voltage to the pair of electrodes.

また本発明は、上記記載の絶縁体に形成される微細孔が、1つの微細孔につき1つの細胞を固定できる形状である細胞融合装置である。   The present invention also provides a cell fusion device in which the micropores formed in the insulator described above have a shape capable of fixing one cell per micropore.

また本発明は、上記記載の電源により、1つの微細孔につき1つの細胞を微細孔に固定する波形を有する交流電圧が前記電極間に印加される細胞融合装置である。   The present invention is also a cell fusion device in which an AC voltage having a waveform for fixing one cell to one micropore is applied between the electrodes by the power source described above.

また本発明は、上記記載の電源により、前記微粒子の充電と放電を周期的に繰り返す波形を有する交流電圧が前記電極間に印加される細胞融合装置である。   In addition, the present invention is a cell fusion device in which an AC voltage having a waveform in which charging and discharging of the fine particles are periodically repeated is applied between the electrodes by the power source described above.

また本発明は、上記記載の交流電圧の波形が、0以外の値を有する電圧が一定時間変化しない時間を半周期内に少なくとも1以上有する波形である細胞融合装置である。   Further, the present invention is the cell fusion device, wherein the waveform of the AC voltage described above is a waveform having at least one time in a half cycle in which a voltage having a value other than 0 does not change for a certain period of time.

また本発明は、上記記載の交流電圧の波形が、矩形波、台形波、またはこれらを組み合わせた波形である細胞融合装置である。   In addition, the present invention is a cell fusion device in which the waveform of the AC voltage described above is a rectangular wave, a trapezoidal wave, or a combination of these.

また本発明は、上記記載の交流電圧の波形が、0以外の値を有する電圧が一定時間変化しない時間が細胞の静電容量と細胞を含有する細胞懸濁液の抵抗の積からなる時定数以上である細胞融合装置である。   The present invention also provides a time constant in which the time when the voltage having a value other than 0 does not change for a certain period of time is a product of the capacitance of the cell and the resistance of the cell suspension containing the cell. This is the cell fusion device as described above.

また本発明は、微細孔の平面形状に内接する最大円の直径が、微細孔に固定する細胞の直径の1以上2倍未満の範囲であり、かつ微細孔の深さが、微細孔に固定する細胞の直径の以下である上記記載の細胞融合装置である。   In the present invention, the diameter of the maximum circle inscribed in the planar shape of the micropore is in the range of 1 to less than twice the diameter of the cell fixed to the micropore, and the depth of the micropore is fixed to the micropore. The cell fusion device according to the above, wherein the cell fusion device has a diameter less than or equal to a cell diameter.

また本発明は、上記記載の絶縁体が、電極のうちどちらか一方の電極の細胞融合領域側の電極面上に配置されている細胞融合装置である。   In addition, the present invention is a cell fusion device in which the insulator described above is disposed on the electrode surface on the cell fusion region side of one of the electrodes.

また本発明は、上記記載の絶縁体に形成される複数の微細孔が、絶縁体の面において、いずれの微細孔からも隣合う微細孔の位置が同じ位置に形成されている細胞融合装置である。   Further, the present invention is a cell fusion device in which a plurality of micropores formed in the insulator described above are formed in the same position on the surface of the insulator, the positions of micropores adjacent to any micropore. is there.

また本発明は、上記記載の絶縁体に形成される複数の微細孔が、絶縁体の面においてアレイ状に形成されている細胞融合装置である。   The present invention also provides a cell fusion device in which a plurality of micropores formed in the insulator described above are formed in an array on the surface of the insulator.

また本発明は、上記記載の微細孔の隣合う間隔が、微細孔に入れる細胞の直径の0.5倍以上6倍以下の範囲である細胞融合装置である。   In addition, the present invention is a cell fusion device in which the interval between the micropores described above is in the range of 0.5 to 6 times the diameter of the cells to be inserted into the micropores.

また本発明は、上記記載のスペーサーが、細胞融合領域を形成する貫通孔を有する細胞融合装置である。   In addition, the present invention is a cell fusion device in which the spacer described above has a through-hole forming a cell fusion region.

また本発明は、上記記載のスペーサーが、細胞を導入する導入流路および排出する排出流路を有する細胞融合装置である。   The present invention also provides a cell fusion device in which the spacer described above has an introduction channel for introducing cells and a discharge channel for discharging cells.

また本発明は、上記記載の絶縁体が親水性であることを特徴とする細胞融合装置である。
また本発明は、上記記載の微細孔の平面形状が、1以上の角を有する形状であることを特徴とする細胞融合装置である。
また本発明は、上記記載の微細孔の平面形状が、四辺形であることを特徴とする細胞融合装置である。
The present invention also provides a cell fusion device characterized in that the insulator described above is hydrophilic.
The present invention also provides a cell fusion device, wherein the planar shape of the micropore described above is a shape having one or more corners.
The present invention also provides a cell fusion device characterized in that the planar shape of the micropore described above is a quadrilateral.

また本発明は、上記記載の細胞融合装置を用いた細胞融合方法であって、細胞融合領域内に第1の細胞を導入し、交流電圧を印加することで微細孔内に前記第1の細胞を固定した後、細胞融合領域内に第2の細胞を導入して、交流電圧を印加することで第1の細胞に第2の細胞を微細孔の位置において接触させ化学的に細胞を融合する細胞融合方法である。
また、本発明は、前記交流電圧の波形が上記記載の波形を有する交流電圧である上記記載の細胞融合方法である。
The present invention is also a cell fusion method using the above-described cell fusion device, wherein the first cell is introduced into the cell fusion region and an alternating voltage is applied to the first cell in the micropore. After fixing the cell, the second cell is introduced into the cell fusion region, and an AC voltage is applied to bring the second cell into contact with the first cell at the position of the micropore to chemically fuse the cell. Cell fusion method.
The present invention is also the above cell fusion method, wherein the waveform of the AC voltage is an AC voltage having the waveform described above.

また本発明は、上記記載の細胞を細胞膜の流動性を高める物質を加えた細胞懸濁液に入れる細胞融合方法である。   The present invention is also a cell fusion method in which the cells described above are placed in a cell suspension to which a substance that enhances the fluidity of the cell membrane is added.

また本発明は、上記記載の細胞膜の流動性を高める物質が、ポリエチレングリコールである細胞融合方法である。   The present invention is also the cell fusion method, wherein the substance that enhances the fluidity of the cell membrane described above is polyethylene glycol.

以下では、図を用いて本発明の細胞融合装置をさらに詳細に説明する。   Hereinafter, the cell fusion device of the present invention will be described in more detail with reference to the drawings.

本発明の細胞融合装置は、細胞融合領域内に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した1または複数の微細孔を形成した平板状の絶縁体からなる細胞融合容器と、前記一対の電極に交流電圧を印加する電源と、を備えた細胞融合装置であり、好ましくは細胞融合容器が化学的に細胞を融合する容器を備えた細胞融合装置である。   The cell fusion device of the present invention includes a pair of electrodes made of a conductive member arranged to face each other in a cell fusion region, a flat spacer disposed between the pair of electrodes, and the face to face A cell fusion device comprising: a cell fusion container made of a flat insulator having one or more fine holes penetrating in the direction of the electrodes formed; and a power source for applying an AC voltage to the pair of electrodes. Preferably, the cell fusion container is a cell fusion device provided with a container for chemically fusing cells.

ここで、化学的に細胞を融合するとは、ポリエチレングリコールのような細胞膜の流動性を高める化学物質を加えた懸濁液に細胞を入れて融合させることを意味し、一般に、細胞膜の流動性が高まった状態で細胞が接触すると膜融合が容易に起こることを利用した細胞融合の一つである。   Here, chemically fusing cells means that cells are fused in a suspension added with a chemical substance that increases the fluidity of the cell membrane, such as polyethylene glycol, and generally the fluidity of the cell membrane is low. This is one type of cell fusion utilizing the fact that membrane fusion occurs easily when cells come into contact in an elevated state.

また本発明は、上記記載の細胞膜の流動性を高める物質が、ポリエチレングリコールである細胞融合方法である。   The present invention is also the cell fusion method, wherein the substance that enhances the fluidity of the cell membrane described above is polyethylene glycol.

図1に本発明の細胞融合装置の概念図を示す。本発明の細胞融合装置は大きく分けて、細胞融合容器(13)と電源(4)から構成される。細胞融合容器は、図1に示すように上部電極(14)と下部電極(15)の間に、スペーサー(16)を配置し、微細孔(9)を形成した絶縁体(8)を下部電極の細胞融合領域側に配置した構造を有する。   FIG. 1 shows a conceptual diagram of the cell fusion device of the present invention. The cell fusion device of the present invention is roughly divided into a cell fusion container (13) and a power source (4). As shown in FIG. 1, in the cell fusion container, the insulator (8) in which the spacer (16) is arranged between the upper electrode (14) and the lower electrode (15) and the micropore (9) is formed is used as the lower electrode. It has a structure arranged on the cell fusion region side.

上部電極と下部電極の材質は導電部材であって化学的に安定な部材であればとくに制限はなく、白金、金、銅などの金属やステンレスなどの合金及び、ITO(Indium Tin Oxide:酸化インジウムスズ)等の透明導電性材料を成膜したガラス基板などでもよいが、細胞融合を観察するには、ITOなどの透明導電性材料を成膜したガラス基板を電極として用いることが好ましい。上部電極と下部電極の面積には特に制限はないが、取り扱いやすいサイズとして、例えば、縦70mm×横40mm×厚さ1mm程度のサイズが好ましい。   The material of the upper electrode and the lower electrode is not particularly limited as long as it is a conductive member and is a chemically stable member. An alloy such as platinum, gold, copper or an alloy such as stainless steel or ITO (Indium Tin Oxide) Although a glass substrate on which a transparent conductive material such as tin) is formed may be used, in order to observe cell fusion, it is preferable to use a glass substrate on which a transparent conductive material such as ITO is formed as an electrode. The area of the upper electrode and the lower electrode is not particularly limited, but as a size that is easy to handle, for example, a size of about 70 mm long × 40 mm wide × 1 mm thick is preferable.

スペーサーは、上部電極と下部電極が直接接触しないように設けられ、かつ細胞融合容器に細胞懸濁液を入れておくスペースを確保するための細胞融合領域を形成する貫通孔を有しているものであり、その材質は絶縁材料であればよく、例えばガラス、セラミック、樹脂等がある。またスペーサーには、細胞融合容器に細胞を導入、排出するため、細胞を導入する導入流路とそれに連通する導入口(19)と、細胞を排出する排出流路とそれに連通する排出口(20)が設けられていてもよい。スペーサーのサイズは上部電極と下部電極が接触しなければ特に制限はないが、前記電極に合わせたサイズが好ましい。例えば、電極サイズが縦70mm×横40mm程度であれば、スペーサーのサイズは例えば縦40mm×横40mm程度が好ましい。細胞融合領域(1)を形成するスペーサーの内側の空間と厚みも特に制限はないが、細胞懸濁液を例えば数μL〜数mL程度入れる容量があればよく、例えば、スペーサーのサイズが縦40mm×横40mm程度の場合、スペーサーの内側の空間は、縦20mm×横20mm程度であればよく、スペーサーの厚みは0.5〜2.0mm程度であればよい。   The spacer is provided so that the upper electrode and the lower electrode are not in direct contact with each other, and has a through-hole that forms a cell fusion region for securing a space for storing the cell suspension in the cell fusion container The material may be any insulating material, such as glass, ceramic, resin, and the like. In addition, in the spacer, in order to introduce and discharge cells to and from the cell fusion container, an introduction flow path for introducing cells, an introduction port (19) communicating with the cells, a discharge flow path for discharging cells and a discharge port (20) communicating therewith ) May be provided. The size of the spacer is not particularly limited as long as the upper electrode and the lower electrode are not in contact with each other, but a size matched to the electrode is preferable. For example, if the electrode size is about 70 mm long × 40 mm wide, the spacer size is preferably about 40 mm long × 40 mm wide, for example. The space and thickness inside the spacer forming the cell fusion region (1) are not particularly limited, but it is sufficient that the cell suspension has a capacity for storing several μL to several mL, for example, the spacer size is 40 mm in length. X In the case of about 40 mm in width, the space inside the spacer may be about 20 mm in length x about 20 mm in width, and the thickness of the spacer may be about 0.5 to 2.0 mm.

絶縁体(8)には微細孔(9)が形成されている。絶縁体(8)の材質は、例えばガラス、セラミック、樹脂等の絶縁材料であれば特に制限はないが、貫通した微細孔を形成させる必要があることから、樹脂等の比較的加工が容易な材料が好ましい。   A fine hole (9) is formed in the insulator (8). The material of the insulator (8) is not particularly limited as long as it is an insulating material such as glass, ceramic, resin, etc. However, since it is necessary to form through holes, it is relatively easy to process the resin or the like. Material is preferred.

また、絶縁体の材質は、細胞を絶縁体に形成した微細孔に引き寄せて固定することから、細胞と親和性のある材質が好ましく、一般的に、細胞の表面が親水性であることから、絶縁体の表面が親水性であることが好ましい。ここで親水性とは、細胞融合を行う際に用いる細胞の懸濁液もしくは純水の親和性が高いことを意味し、一般的には、絶縁体の表面に前記懸濁液もしくは純水を滴下したときに形成される液滴と前記絶縁体の表面との接触角で示される(接触角が小さいほど絶縁体の表面と細胞懸濁液もしくは純水との親和性が高く、すなわち、細胞との親和性が高い)。また、細胞の懸濁液とは、マンニトールやグルコース、スクロース等の糖類の水溶液及びその水溶液に塩化カルシウムや塩化マグネシウムなどの電解質やBSA(ウシ血清アルブミン)等のタンパク質と、ポリエチレングリコールのような細胞膜の流動性を高める化学物質を含有した水溶液に融合させる細胞を含有させた懸濁液を意味する。親水性の比較的高い絶縁膜としては、ガラスや酸化チタン等があり、これらの材料を絶縁体として用いればよい。あるいは、樹脂等の親水性の低い材料を前記絶縁体に用いる場合は、親水化処理することにより絶縁体の表面を親水性に改質すればよい。ここで、絶縁体の表面を親水化処理する方法としては、プラズマ処理、化学修飾、タンパク質の物理吸着などによる修飾、或いはこれらの方法を任意に組み合わせた方法などを用いればよい。   In addition, the material of the insulator is preferably a material having affinity with the cell because the cell is attracted and fixed to the micropores formed in the insulator, and generally the surface of the cell is hydrophilic. It is preferable that the surface of the insulator is hydrophilic. Here, hydrophilic means that the affinity of the cell suspension or pure water used for cell fusion is high, and generally the suspension or pure water is applied to the surface of the insulator. Indicated by the contact angle between the droplet formed when dropped and the surface of the insulator (the smaller the contact angle, the higher the affinity between the surface of the insulator and the cell suspension or pure water, that is, the cell High affinity). The cell suspension is an aqueous solution of saccharides such as mannitol, glucose and sucrose, an electrolyte such as calcium chloride and magnesium chloride, a protein such as BSA (bovine serum albumin), and a cell membrane such as polyethylene glycol. This means a suspension containing cells to be fused with an aqueous solution containing a chemical substance that enhances the fluidity of the cells. Examples of the insulating film having relatively high hydrophilicity include glass and titanium oxide, and these materials may be used as an insulator. Alternatively, when a low hydrophilic material such as a resin is used for the insulator, the surface of the insulator may be modified to be hydrophilic by performing a hydrophilic treatment. Here, as a method for hydrophilizing the surface of the insulator, plasma treatment, chemical modification, modification by protein physical adsorption, or any combination of these methods may be used.

ここで、絶縁体の表面のプラズマ処理とは、電子・イオン・ラジカルなどの活性種が存在する電気的に中性な電離気体(プラズマ)を絶縁体の表面に照射することにより、絶縁体の表面における有機汚染物の除去や化学結合状態を変化させ、絶縁体の表面を改質する処理である。プラズマ処理には、非重合性ガス(Ar、Oなど)を用いるプラズマ表面処理と有機モノマーを用いて絶縁体の表面を高分子薄膜でコーティング処理するプラズマ重合がある。プラズマ表面処理は、Arなどの非反応性ガスによる表面架橋層の形成、Oなどの反応性ガスによる官能基の導入などがあり、酸素プラズマ処理により−COOHや−COを導入し、絶縁体の表面の親水性を向上させることで細胞との親和性を高めることが可能である。 Here, the plasma treatment of the surface of the insulator means that the surface of the insulator is irradiated with an electrically neutral ionized gas (plasma) in which active species such as electrons, ions, and radicals are present. This is a process for modifying the surface of the insulator by removing organic contaminants on the surface and changing the chemical bonding state. Plasma treatment includes plasma surface treatment using a non-polymerizable gas (Ar, O 2, etc.) and plasma polymerization in which an insulator surface is coated with a polymer thin film using an organic monomer. Plasma surface treatment includes formation of a surface cross-linked layer with a non-reactive gas such as Ar, introduction of a functional group with a reactive gas such as O 2, etc., and —COOH or —CO is introduced by oxygen plasma treatment, and an insulator It is possible to increase the affinity with cells by improving the hydrophilicity of the surface.

また、絶縁体の表面の化学修飾とは、水酸基やカルボキシル基、アミノ基、スルホン基などの親水基を有する誘導体やシランカップリング剤などを絶縁体の表面へ結合させることで親水化する方法である。シランカップリング剤は有機物とケイ素から構成される化合物であり、分子中に親水性を示す反応基(水酸基、カルボキシル基、アミノ基、スルホン基など)と、疎水性を示す反応基(ビニル基、メチル基、エチル基、プロピル基など)の2種以上の異なった反応基を有している。そのため、シランカップリング剤の希薄溶液に疎水性の絶縁体を浸漬すれば、疎水性を示す反応基が疎水性の絶縁体の表面に化学的に結合し、親水性を示す反応基が絶縁体の表面を覆うため、絶縁体の表面を均一に親水化することが可能である。   Further, the chemical modification of the surface of the insulator is a method of making the surface hydrophilic by bonding a derivative having a hydrophilic group such as a hydroxyl group, a carboxyl group, an amino group or a sulfone group or a silane coupling agent to the surface of the insulator. is there. A silane coupling agent is a compound composed of an organic substance and silicon, and has a reactive group (hydroxyl group, carboxyl group, amino group, sulfone group, etc.) having hydrophilicity in the molecule and a reactive group (vinyl group, (Methyl group, ethyl group, propyl group, etc.) having two or more different reactive groups. Therefore, if a hydrophobic insulator is immersed in a dilute solution of a silane coupling agent, the reactive group exhibiting hydrophobicity is chemically bonded to the surface of the hydrophobic insulator, and the reactive group exhibiting hydrophilicity is the insulator. Since the surface of the insulator is covered, the surface of the insulator can be uniformly hydrophilized.

さらに、BSA(ウシ血清アルブミン)などのタンパク質含有溶液に絶縁体を数分〜数時間を浸漬することで、タンパク質を物理吸着させ、絶縁体の表面を親水化することができる。   Furthermore, the surface of the insulator can be hydrophilized by physically adsorbing the protein by immersing the insulator in a protein-containing solution such as BSA (bovine serum albumin) for several minutes to several hours.

また親水性の評価方法としては、以下に記載する一般的な手法を用いた。すなわち、絶縁体表面に純水を滴下し、そのときに絶縁体の表面に形成される液滴と絶縁体の表面との接触角を測定することによって絶縁体の表面の親水性を評価した。ここで、一般的に親水性の厳密な定義はないが、本発明における親水性とは、前記接触角が45°以下、好ましくは30°以下であると定義する。   Moreover, as a hydrophilicity evaluation method, the general method described below was used. That is, pure water was dropped on the surface of the insulator, and the hydrophilicity of the surface of the insulator was evaluated by measuring the contact angle between the droplet formed on the surface of the insulator and the surface of the insulator. Here, although there is generally no strict definition of hydrophilicity, the hydrophilicity in the present invention is defined as that the contact angle is 45 ° or less, preferably 30 ° or less.

樹脂に貫通した微細孔を形成する手段としては、形成する微細孔の位置にレーザーを照射する方法や、微細孔の位置に貫通孔を形成するためのピンを有する金型を用いて成形する方法などの既知の方法を用いればよい。また、絶縁体にUV硬化性樹脂などを用いる場合は、微細孔に相当するパターンを描画した露光用フォトマスクを用いて一般的なフォトリソグラフィー(露光)とエッチング(現像)により貫通した微細孔を形成することができる。絶縁体に複数の微細孔を形成する場合は、絶縁体にUV硬化性樹脂を用いて、一般的なフォトリソグラフィーとエッチングによる方法で微細孔を形成することが好ましい。   As a means for forming fine holes penetrating the resin, a method of irradiating a laser at the position of the fine hole to be formed, or a method of molding using a mold having a pin for forming the through hole at the position of the fine hole A known method such as the above may be used. In addition, when UV curable resin or the like is used for the insulator, a fine hole penetrating through general photolithography (exposure) and etching (development) using an exposure photomask on which a pattern corresponding to the fine hole is drawn is formed. Can be formed. When forming a plurality of fine holes in the insulator, it is preferable to form the fine holes by a general photolithography and etching method using a UV curable resin for the insulator.

なお図2は、図1の細胞融合容器のA−A’断面図を示した概略図である。上部電極(14)、スペーサー(16)、絶縁体(8)、下部電極(15)を図2のように張り合わせる手段としては、それぞれを接着剤で張り合わせたり、加圧した状態で過熱して融着させる方法や、スペーサーを表面粘着性のあるPDMS(poly−dimethylsiloxane)やシリコンシートのような樹脂を用いて作製することで圧着することにより張り合わせる方法など、既知の方法を用いればよい。このようにすることで図2に示した細胞融合領域(1)を形成することができる。   FIG. 2 is a schematic view showing a cross-sectional view of the cell fusion container of FIG. As a means for bonding the upper electrode (14), the spacer (16), the insulator (8), and the lower electrode (15) as shown in FIG. 2, each of them is bonded with an adhesive or heated in a pressurized state. A known method may be used such as a method of fusing or a method in which a spacer is bonded using a surface sticky PDMS (poly-dimethylsiloxane) or a resin such as a silicon sheet. In this way, the cell fusion region (1) shown in FIG. 2 can be formed.

細胞容器の上部電極と下部電極には導電線(3)を介して電源(4)が接続されている。電源(4)は交流電圧の波形を上部電極(14)と下部電極(15)の電極間に印加する交流電源から構成されている。   A power source (4) is connected to the upper and lower electrodes of the cell container via a conductive wire (3). The power source (4) is composed of an AC power source for applying an AC voltage waveform between the upper electrode (14) and the lower electrode (15).

また本発明の細胞融合装置は、前記微細孔の平面形状が、少なくとも1以上の角を有する形状であることを特徴とする細胞融合装置であって、さらには、前記微細孔の平面形状が、四辺形であることを特徴とする細胞融合装置であることが好ましい。また、前記微細孔の平面形状に内接する最大円の直径が、前記微細孔に固定する細胞の直径未満であるか、あるいは、前記微細孔の平面形状に内接する最大円の直径が前記微細孔に固定する細胞の直径の1以上2倍未満の範囲でありかつ前記微細孔の深さが前記微細孔に固定する細胞の直径の以下であることを特徴とする細胞融合装置であり、その際、前記微細孔の隣り合う間隔が、固定する細胞の直径の0.5倍以上6倍以下の範囲である細胞融合装置であることが好ましい。また、絶縁体に形成される複数の微細孔が、絶縁体の面において、いずれの微細孔からも隣合う微細孔の位置が同じ位置に形成されていること、例えば絶縁体の面においてアレイ状に形成されていることが好ましい。   In the cell fusion device of the present invention, the planar shape of the micropore is a shape having at least one or more corners, and further, the planar shape of the micropore is The cell fusion device is preferably a quadrilateral. Further, the diameter of the maximum circle inscribed in the planar shape of the micropore is less than the diameter of the cell fixed in the micropore, or the diameter of the maximum circle inscribed in the planar shape of the micropore is the micropore. A cell fusion device characterized in that it is in the range of 1 or more and less than 2 times the diameter of the cell fixed to the cell, and the depth of the micropore is less than or equal to the diameter of the cell fixed to the micropore, The cell fusion device is preferably such that the interval between adjacent micropores is in the range of 0.5 to 6 times the diameter of the cell to be fixed. In addition, a plurality of micro holes formed in the insulator are formed in the same position on the surface of the insulator, and the positions of the micro holes adjacent to any one of the micro holes are, for example, arrayed on the surface of the insulator. It is preferable to be formed.

図3には、絶縁体(8)に複数の微細孔(9)をアレイ状に形成した場合の本発明の細胞融合装置の概略図を示す。なお図4は、図3の細胞融合容器のB−B’断面図を示した概略図である。ここでアレイ状とは、微細孔の縦と横の間隔がほぼ等間隔に配置されていることを意味する。微細孔をアレイ状に配置することで、電極間に印加した電圧によって生じる電界がすべての微細孔にほぼ均等に生じる。   FIG. 3 shows a schematic diagram of the cell fusion device of the present invention when a plurality of micropores (9) are formed in an array in the insulator (8). FIG. 4 is a schematic view showing a B-B ′ cross-sectional view of the cell fusion container of FIG. 3. Here, the array shape means that the vertical and horizontal intervals of the fine holes are arranged at substantially equal intervals. By arranging the fine holes in an array, an electric field generated by a voltage applied between the electrodes is generated almost uniformly in all the fine holes.

また、1つの微細孔に1つの細胞を固定するためには、アレイ状に形成した微細孔の間隔が狭すぎても広すぎても不適当である。微細孔の間隔が狭すぎる場合は、1つの微細孔に複数の細胞が固定される確率が高くなり結果として細胞の入らない微細孔が生じる確率が高くなる。また、微細孔の間隔が広すぎる場合には、微細孔と微細孔の間に細胞が残されてしまい、細胞の入らない微細孔が生じる確率が高くなる。従ってより具体的には、微細孔の隣合う間隔が、微細孔に入れ固定する細胞の直径の0.5倍以上6倍以下の範囲であることが好ましく、さらには微細孔の間隔が固定する細胞の直径の1以上2倍未満程度であることがより好ましい。   In addition, in order to fix one cell in one micropore, it is inappropriate that the interval between micropores formed in an array is too narrow or too wide. When the interval between the micropores is too narrow, the probability that a plurality of cells are fixed in one micropore is increased, and as a result, the probability that a micropore that does not contain cells is increased. In addition, when the interval between the micropores is too wide, cells are left between the micropores, and the probability that micropores that do not contain cells are increased. Therefore, more specifically, the interval between adjacent micropores is preferably in the range of 0.5 to 6 times the diameter of the cells to be fixed in the micropores, and further, the interval between the micropores is fixed. More preferably, it is about 1 to less than 2 times the diameter of the cell.

以下では、1つの微細孔につき1つの細胞を固定するための交流電圧の波形と微細孔の形状に関して説明する。   Hereinafter, the waveform of the alternating voltage and the shape of the micropores for fixing one cell per micropore will be described.

本発明の細胞融合装置は、1つの微細孔につき1つの細胞を固定するため、前記交流電源により前記電極間に印加する交流電圧の波形が、電源により、前記細胞の充電と放電を周期的に繰り返す波形である細胞融合装置であって、好ましくは、前記交流電圧の波形が、0以外の値を有する電圧が一定時間変化しない時間を半周期内に少なくとも1以上有する波形であり、例えば、前記交流電圧の波形が、矩形波、台形波、またはこれらを組み合わせた波形であることを特徴とする波形であり、さらに好ましくは、前記交流電圧の波形が、0以外の値を有する電圧が一定時間変化しない時間が細胞の静電容量と細胞を含有する細胞懸濁液の抵抗の積からなる時定数以上であることを特徴とする波形の交流電圧を印加する電源からなる細胞融合装置ある。   Since the cell fusion device of the present invention fixes one cell per micropore, the waveform of the AC voltage applied between the electrodes by the AC power source periodically charges and discharges the cell by the power source. A cell fusion device having a repeated waveform, preferably, the waveform of the alternating voltage is a waveform having at least one time in a half cycle in which a voltage having a value other than 0 does not change for a certain period of time, for example, The waveform of the AC voltage is a waveform characterized by being a rectangular wave, a trapezoidal wave, or a combination thereof, and more preferably, the waveform of the AC voltage has a voltage other than 0 for a certain period of time. A cell fusion device comprising a power source that applies a waveform alternating voltage, characterized in that the time during which it does not change is equal to or greater than the time constant consisting of the product of the capacitance of the cell and the resistance of the cell suspension containing the cell A.

また、本発明の細胞融合装置は、前記微細孔の平面形状に内接する最大円の直径が、前期微細孔に固定する細胞の直径の1以上2倍未満の範囲であり、かつ前記微細孔の深さが、前記微細孔に固定する細胞の直径の以下である細胞融合装置あり、さらに前記微細孔の隣り合う間隔が、固定する細胞の直径の0.5倍以上6倍以下の範囲である細胞融合装置である。   In the cell fusion device of the present invention, the diameter of the maximum circle inscribed in the planar shape of the micropore is in the range of 1 to less than twice the diameter of the cell fixed to the micropore in the previous period, and There is a cell fusion device having a depth equal to or less than the diameter of the cell fixed in the micropore, and the interval between adjacent micropores is in the range of 0.5 to 6 times the diameter of the fixed cell. It is a cell fusion device.

上記のような交流電圧の波形を用い、微細孔の形状とすることで、1つの微細孔につき1つの細胞を固定することができ、固定した細胞のさらに上からもう1つの細胞を固定し、2細胞一対を複数の微細孔で接触させることで、一度に複数の微細孔において、2細胞一対での細胞融合を行うことができる。   By using the waveform of the alternating voltage as described above and forming a micropore shape, one cell can be fixed per one micropore, and another cell is fixed from above the fixed cell, By bringing a pair of two cells into contact with each other through a plurality of micropores, cell fusion with a pair of two cells can be performed in a plurality of micropores at a time.

本発明の細胞融合装置に用いる交流電圧の波形は、前記細胞の充電と放電を周期的に繰り返すことが可能であれば特に制限はなく、図5にこの態様の交流電圧の波形の一例を示す。図5の交流電圧の波形の半周期であるT/2ごとに前記細胞の充電と放電が繰り返される。なお図5の場合、半周期ごとに電圧の極性の正と負が反転するため、半周期ごとに前記細胞が充電されたときに電荷の極性が正と負に反転する。なお、本発明の細胞融合装置に用いる交流電圧の波形は、直流成分を有しないことが好ましい。これは、直流成分により発生した静電気力により細胞が特定の方向に偏った力を受けて移動するため誘電泳動力により細胞を微細孔に固定することが困難になること、また細胞を含有する懸濁液に含まれるイオンが電極表面で電気反応を生じることで発熱が起こり、それにより細胞が熱運動を起こすため、誘電泳動力により細胞の動きを制御することができなくなり細胞を微細孔に引き寄せることが困難となるためである。   The waveform of the AC voltage used in the cell fusion device of the present invention is not particularly limited as long as the charging and discharging of the cells can be periodically repeated. FIG. 5 shows an example of the waveform of the AC voltage in this mode. . The charging and discharging of the cells are repeated every T / 2, which is a half cycle of the AC voltage waveform in FIG. In the case of FIG. 5, since the polarity of the voltage is inverted every half cycle, the polarity of the charge is inverted between positive and negative when the cell is charged every half cycle. In addition, it is preferable that the waveform of the alternating voltage used for the cell fusion apparatus of this invention does not have a direct-current component. This is because the cells move by receiving a biased force in a specific direction due to the electrostatic force generated by the DC component, and it becomes difficult to fix the cells in the micropores due to the dielectrophoretic force. The ions contained in the suspension generate an electric reaction on the electrode surface, which generates heat, causing the cells to undergo thermal motion, and the cell movement cannot be controlled by the dielectrophoretic force, attracting the cells to the micropores. This is because it becomes difficult.

またより具体的には、本発明の細胞融合装置に用いる前記交流電圧の波形は、0以外の値を有する電圧が一定時間変化しない時間を半周期内に少なくとも1以上有する波形である。図5におけるS[s]が電圧が一定時間変化しない時間である。本発明では、0以外の値を有する電圧が一定時間変化しない時間S[s]が細胞の静電容量C[F]と細胞を含有する細胞懸濁液の抵抗R[Ω]の積からなる時定数τ[s]以上であることが好ましいことから、S>τ(=C×R)の関係であることが好ましい。なお、本発明における交流電圧の波形は図5に示す波形のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。例えば、交流電圧の波形が、矩形波(図6)、台形波(図7)、またはこれらを組み合わせた波形(図8)であってもよい。   More specifically, the waveform of the AC voltage used in the cell fusion device of the present invention is a waveform having at least one or more times in a half cycle in which a voltage having a value other than 0 does not change for a certain period of time. S [s] in FIG. 5 is a time during which the voltage does not change for a certain time. In the present invention, the time S [s] during which a voltage having a value other than 0 does not change for a certain period of time is the product of the capacitance C [F] of the cell and the resistance R [Ω] of the cell suspension containing the cell. Since it is preferable that the time constant be equal to or greater than τ [s], a relationship of S> τ (= C × R) is preferable. Note that the waveform of the AC voltage in the present invention is not limited to the waveform shown in FIG. 5 and can be arbitrarily changed without departing from the gist of the invention. For example, the waveform of the AC voltage may be a rectangular wave (FIG. 6), a trapezoidal wave (FIG. 7), or a combination of these (FIG. 8).

また、印加する電圧値や周波数は、細胞融合容器の電極間距離や、融合対象となる細胞の種類や大きさ、細胞を含有する細胞懸濁液の種類によって適切な値を設定すればよい。例えば、細胞融合容器の面積が2cm×2cm程度、電極間距離が1mm程度、融合対象の細胞が直径10μm程度の細胞、懸濁腋の成分が300mMのマンニトール水溶液の場合、直径10μm程度の細胞の静電容量は一般に1pF程度、面積2cm×2cm程度、電極間距離1mm程度の細胞融合容器に300mMのマンニトール水溶液を入れたときの抵抗値が5kΩ程度であることから、細胞の静電容量C[F]と細胞を含有する細胞懸濁液の抵抗R[Ω]の積からなる時定数τ[s]は5nsとなる。従って電極間に印加する交流電圧の波形が、0以外の値を有する電圧が少なくとも5nsだけ変化しない時間を半周期内に少なくとも1以上有する交流電圧波形であることが好ましい。例えば、図6に示した矩形波交流電圧波形を用いた場合、Sの時間が5nsより長くなる、すなわち、周波数が100MHz(=1/(2×5ns))未満であることが好ましく、さらには電気的な取り扱いのしやすさや市販の信号発生器で容易に扱うことができることを考慮すると、周波数は1〜3MHz程度の矩形波交流電圧波形が好ましい。またこの場合の矩形波交流電圧波形の電圧は、微細孔に細胞を引き寄せるのに十分な誘電泳動力を発生させるため、10〜20Vpp程度であることが好ましい。なお、この例の条件の場合、微細孔に細胞が引き寄せられる時間は1〜5秒程度であり、瞬時に細胞を微細孔に固定することができる。   The voltage value and frequency to be applied may be set appropriately depending on the distance between the electrodes of the cell fusion container, the type and size of cells to be fused, and the type of cell suspension containing cells. For example, when the area of the cell fusion container is about 2 cm × 2 cm, the distance between the electrodes is about 1 mm, the cell to be fused is a cell having a diameter of about 10 μm, and the suspension cage component is a 300 mM mannitol aqueous solution, the cell having a diameter of about 10 μm The capacitance is generally about 1 pF, the area is about 2 cm × 2 cm, and the resistance value when a 300 mM mannitol aqueous solution is put into a cell fusion container having a distance between electrodes of about 1 mm is about 5 kΩ. The time constant τ [s] consisting of the product of F] and the resistance R [Ω] of the cell suspension containing the cells is 5 ns. Therefore, it is preferable that the waveform of the AC voltage applied between the electrodes is an AC voltage waveform having at least one or more time within a half cycle in which a voltage having a value other than 0 does not change by at least 5 ns. For example, when the rectangular wave AC voltage waveform shown in FIG. 6 is used, the S time is preferably longer than 5 ns, that is, the frequency is preferably less than 100 MHz (= 1 / (2 × 5 ns), Considering the ease of electrical handling and the ease of handling with a commercially available signal generator, a rectangular wave AC voltage waveform with a frequency of about 1 to 3 MHz is preferable. In this case, the voltage of the rectangular AC voltage waveform is preferably about 10 to 20 Vpp in order to generate a dielectrophoretic force sufficient to attract the cells to the micropores. In the case of the conditions of this example, the time for attracting cells to the micropores is about 1 to 5 seconds, and the cells can be fixed in the micropores instantaneously.

次に、上記態様の交流電圧の波形と上記態様の微細孔を用いた場合に、1つの微細孔につき1つの細胞が固定される理由を図9〜図11を用いて説明する。   Next, the reason why one cell is fixed per one minute hole when the waveform of the alternating voltage of the above aspect and the minute hole of the above aspect is used will be described with reference to FIGS.

図9〜図11には本発明の細胞融合装置において、微細孔に細胞が入る過程の概念図を示した。絶縁体(8)の厚みは細胞A(10)及び細胞B(11)の直径とほぼ等しく、微細孔の内径は細胞A及び細胞Bの直径の1以上2倍未満の範囲であり、図10に示すように微細孔A(17)に細胞Aが入った後、図11に示すように微細孔B(21)に細胞Bが入る場合を想定している。図12〜図14には、それぞれ図9〜図11を電気的な等価回路で表現した図を示した。細胞を含有する細胞懸濁液は抵抗(抵抗値:5kΩ)、細胞はコンデンサー(容量:1pF)で表現することができる。   9 to 11 show conceptual diagrams of processes in which cells enter micropores in the cell fusion device of the present invention. The thickness of the insulator (8) is substantially equal to the diameters of the cells A (10) and B (11), and the inner diameter of the micropores is in the range of 1 to less than 2 times the diameter of the cells A and B. FIG. It is assumed that after the cell A enters the micropore A (17) as shown in FIG. 11, the cell B enters the micropore B (21) as shown in FIG. FIGS. 12 to 14 show diagrams in which FIGS. 9 to 11 are expressed by electrical equivalent circuits, respectively. A cell suspension containing cells can be expressed by resistance (resistance value: 5 kΩ), and a cell can be expressed by a capacitor (capacity: 1 pF).

図15に示す、周波数f[Hz]の矩形波形の交流電圧を図9の上部電極(14)と下部電極(15)の電極間に印加すると、図9の微細孔において、微細孔A(17)の部分に示すように電気力線の集中が生じることで細胞に対して誘電泳動力が発生し、図10に示すように細胞A(10)が微細孔A(17)に引き寄せられ、微細孔Aに細胞Aが固定され細胞Aが微細孔Aを塞ぐ。なお細胞は誘電泳動力以外にも重力及び電極からの静電気力によっても微細孔に誘導される。細胞Aで塞がれた微細孔Aの部分は、図13に示すようにコンデンサーA(29)と電気的に等価となる。   When an AC voltage having a rectangular waveform with a frequency f [Hz] shown in FIG. 15 is applied between the upper electrode (14) and the lower electrode (15) in FIG. 9, in the fine hole in FIG. ), A concentration of electric lines of force is generated, so that a dielectrophoretic force is generated on the cell, and the cell A (10) is attracted to the micropore A (17) as shown in FIG. The cells A are fixed in the holes A, and the cells A block the micropores A. In addition to the dielectrophoretic force, the cells are induced into the micropores by gravity and electrostatic force from the electrodes. The portion of the micropore A closed by the cell A is electrically equivalent to the capacitor A (29) as shown in FIG.

図15に示す電圧波形を印加した場合、図13のコンデンサーAにおける電圧波形を図16、電流波形を図17に示す。図16のようにコンデンサーAは細胞Aの容量C[F]と細胞を含む細胞懸濁液の抵抗値R[Ω]の積で求められる時定数τ[s](=C×R)の時間を要して充電される。なお、0以外の値を有する電圧が一定時間変化しない時間が細胞の静電容量と細胞を含有する細胞懸濁液の抵抗の積からなる時定数以下が好ましいことから、τ<1/2fを満たす周波数の矩形波交流電圧を用いる事が好ましい。コンデンサーAが充電されると電流は流れなくなるため、図17に示すように、コンデンサーAに流れる電流は、時定数τの時間だけパルス状に電流が流れるものの、その後は電流が流れなくなり絶縁体と電気的に等価になる。このため細胞Aの入った微細孔Aでは、電気力線の集中が生じなくなり、微細孔Aが新たに細胞を引き寄せる確率は低くなる。   When the voltage waveform shown in FIG. 15 is applied, the voltage waveform in the capacitor A of FIG. 13 is shown in FIG. 16, and the current waveform is shown in FIG. As shown in FIG. 16, the capacitor A has a time constant τ [s] (= C × R) determined by the product of the capacity C [F] of the cell A and the resistance value R [Ω] of the cell suspension containing the cell. Need to be charged. Since the time during which the voltage having a value other than 0 does not change for a certain period of time is preferably equal to or less than the time constant formed by the product of the capacitance of the cell and the resistance of the cell suspension containing the cell, τ <1 / 2f is set. It is preferable to use a rectangular wave AC voltage having a frequency to satisfy. Since the current stops flowing when the capacitor A is charged, as shown in FIG. 17, the current flowing in the capacitor A flows in a pulse shape only for the time of the time constant τ. It becomes electrically equivalent. For this reason, in the micropore A containing the cells A, the concentration of the electric lines of force does not occur, and the probability that the micropores A attract new cells becomes low.

一方、微細孔Bには電気力線の集中が生じているため、細胞Bが誘電泳動力により引き寄せられ微細孔Bに細胞Bが固定され細胞Bが微細孔Bを塞ぐ。これを繰り返すことにより、空の微細孔につぎつぎと細胞が入っていくことで、1つの微細孔に1つの細胞を固定することができる。微細孔の内径が細胞の直径より大きいと、細胞は微細孔を十分塞ぐことができず、電気力線の集中が発生し細胞が誘電泳動力により引き寄せられるため、1つの微細孔に2以上の細胞が入る確率が高くなる。2以上の細胞を微細孔に固定した状態で細胞融合を行う場合は、微細孔の直径が微細孔に固定する細胞の直径よりも大きくてもよい。しかしながら、1つの微細孔に1つの細胞を固定した状態で細胞融合を行う場合は、微細孔の平面形状に内接する最大円の直径は、前記微細孔の平面形状に内接する最大円の直径が、微細孔に固定する細胞の直径の1以上2倍未満の範囲であり、かつ前記微細孔の深さが微細孔に固定する細胞の直径の以下であることが好ましく、また微細孔の直径が固定する細胞の直径以下であってもよい。   On the other hand, since the electric lines of force are concentrated in the micropore B, the cell B is attracted by the dielectrophoretic force, the cell B is fixed to the micropore B, and the cell B closes the micropore B. By repeating this, one cell can be fixed to one minute hole by successively entering cells into empty minute holes. If the inner diameter of the micropore is larger than the diameter of the cell, the cell cannot sufficiently close the micropore, the electric field lines are concentrated, and the cell is attracted by the dielectrophoretic force. The probability that cells will enter increases. When cell fusion is performed in a state where two or more cells are fixed in the micropores, the diameter of the micropores may be larger than the diameter of the cells fixed in the micropores. However, when cell fusion is performed with one cell fixed in one micropore, the diameter of the maximum circle inscribed in the planar shape of the micropore is the diameter of the maximum circle inscribed in the planar shape of the micropore. The diameter of the cells fixed in the micropores is preferably in the range of 1 to less than 2 times, and the depth of the micropores is preferably less than or equal to the diameter of the cells fixed in the micropores. It may be less than the diameter of the cell to be fixed.

また、本発明の細胞融合装置は、前記微細孔(9)の平面形状が、少なくとも1以上の角を有する形状であることを特徴とする細胞融合装置であって、さらには、前記微細孔の平面形状が、四辺形であることを特徴とする細胞融合装置である。ここで、角とは微細孔の形状を構成する2辺が鋭角あるいは鈍角で交わる部分であり、角の先端が若干丸みを帯びた形状も含む。図26に、微細孔の平面形状が少なくとも1以上の角を有する代表的な形状を示した。また、四辺形とは、前記微細孔の形状が前記角を4つ有しており、前記4つの角は、角の先端が若干丸みを帯びた形状なども含む。また、4本の辺は直線であってもよいし、4本全ての辺あるいは4本のうち任意の辺が微細孔の中心あるいは外側に向かって若干湾曲していてもよい。図27に、本発明における四辺形の微細孔の形状の代表的な例を示した。   The cell fusion device of the present invention is a cell fusion device characterized in that the planar shape of the micropore (9) is a shape having at least one corner, and further, The cell fusion device is characterized in that the planar shape is a quadrilateral. Here, the corner is a portion where two sides constituting the shape of the microhole intersect at an acute angle or an obtuse angle, and includes a shape in which the tip of the corner is slightly rounded. FIG. 26 shows a typical shape in which the planar shape of the micropore has at least one corner. In addition, the quadrilateral includes the shape of the fine hole having the four corners, and the four corners include a shape in which the tip of the corner is slightly rounded. Further, the four sides may be straight lines, or any of the four sides or any of the four sides may be slightly curved toward the center or outside of the microhole. In FIG. 27, the typical example of the shape of the quadrilateral micropore in this invention was shown.

上述したように、微細孔の平面形状の一部に角が存在していれば、前記角の部分において電気力線の集中が生じ誘電泳動力が強くなり、より強い誘電泳動力で細胞が引き寄せられる結果、細胞が微細孔に固定される確率が向上する。角は微細孔に少なくとも1箇所存在すればよいが、複数存在していた方がより好ましい。しかしながら、角の形状は鈍角よりも鋭角の方が電気力線の集中が生じやすく誘電泳動力が強いため、五角形以上の多角形よりも四角形以下の多角形の方がより好ましい。また、四角形であれば特に制限はなく、例えば図27に示すように台形や菱形、平行四辺形などの態様があるが、四辺形の微細孔の形状が4つの角を結ぶ辺の長さが4本ともほぼ等しく、微細孔の中心において90度の角度で点対称であれば、四辺形の微細孔の4つの辺に生じる誘電泳動力が4つとも等しく、4つの角に生じる誘電泳動力も4つとも等しくなり、微細孔の方向によらず微細孔の誘電泳動力の分布が点対称となるため、微細孔に対する細胞の位置によらず、偏りの少ない誘電泳動力を作用させることが可能となるため、微細孔の形状は図27の(a)〜(d)のような正方形あるいは正方形に近い形状であることがより好ましい。図28には、微細孔の形状が正方形の場合の、本発明における細胞融合装置の一例を示した。   As described above, if corners are present in a part of the planar shape of the micropores, the electric force lines concentrate at the corners and the dielectrophoretic force becomes strong, and the cells are attracted by the stronger dielectrophoretic force. As a result, the probability that the cells are fixed in the micropores is improved. It is sufficient that at least one corner exists in the micropore, but it is more preferable that a plurality of corners exist. However, since the corner shape is more acute than the obtuse angle, electric lines of force are more likely to be concentrated, and the dielectrophoretic force is stronger, and therefore, a polygon less than a quadrangle is more preferable than a polygon more than a pentagon. In addition, there is no particular limitation as long as it is a quadrangle. For example, as shown in FIG. 27, there are trapezoids, rhombuses, parallelograms, and the like. If all four lines are substantially equal and point-symmetrical at an angle of 90 degrees at the center of the micropore, all four dielectrophoretic forces generated on the four sides of the quadrangular micropore are equal, and the dielectrophoretic forces generated on the four corners are also equal. Since all four are equal and the distribution of dielectrophoretic force of the micropores is point-symmetric regardless of the direction of the micropores, it is possible to apply a dielectrophoretic force with little bias regardless of the position of the cells with respect to the micropores. Therefore, the shape of the fine holes is more preferably a square as shown in FIGS. 27A to 27D or a shape close to a square. FIG. 28 shows an example of the cell fusion device in the present invention when the shape of the micropores is square.

さらにまた、1つの微細孔に1つの細胞を固定するためには、微細孔の間隔が狭すぎても広すぎても不適当である。微細孔の間隔が狭すぎる場合は、1つの微細孔に複数の細胞が固定される確率が高くなり結果として細胞の入らない微細孔が生じる確率が高くなる。また、微細孔の間隔が広すぎる場合には、微細孔と微細孔の間に細胞が残されてしまい、細胞の入らない微細孔が生じる確率が高くなる。従って具体的には、微細孔の間隔は、固定する細胞の直径の0.5倍以上6倍以下程度の範囲であることが好ましく、さらには微細孔の間隔が固定する細胞の直径の1以上2倍未満程度であることがより好ましい。   Furthermore, in order to fix one cell in one micropore, it is inappropriate that the interval between micropores is too narrow or too wide. When the interval between the micropores is too narrow, the probability that a plurality of cells are fixed in one micropore is increased, and as a result, the probability that a micropore that does not contain cells is increased. In addition, when the interval between the micropores is too wide, cells are left between the micropores, and the probability that micropores that do not contain cells are increased. Therefore, specifically, the interval between the micropores is preferably in the range of about 0.5 to 6 times the diameter of the cells to be fixed, and further, the interval between the micropores is 1 or more than the diameter of the cells to be fixed. More preferably, it is less than about twice.

なお、0以外の値を有する電圧が一定時間変化しない時間が細胞の静電容量と細胞を含有する細胞懸濁液の抵抗の積からなる時定数以下である場合、図13におけるコンデンサーAが十分充電されないため、コンデンサーAに電流が流れ続け、細胞Aが入った微細孔Aにおいて引き続き電流が流れ電気力線の集中が生じる。よって、細胞Bは細胞Aの入った微細孔Aに引き寄せられる可能性があるため、1つの微細孔に2以上の細胞が固定される確率が高くなる。   When the time during which the voltage having a value other than 0 does not change for a certain time is equal to or less than the time constant formed by the product of the capacitance of the cell and the resistance of the cell suspension containing the cell, the capacitor A in FIG. Since the battery is not charged, the current continues to flow through the capacitor A, and the current continues to flow in the micropore A containing the cells A, causing the electric field lines to concentrate. Therefore, since the cell B may be attracted to the micropore A containing the cell A, the probability that two or more cells are fixed in one micropore increases.

次に、図18に示す周波数f[Hz]の正弦波形の交流電圧を印加すると、図9に示した場合と同様に微細孔において電気力線の集中が生じることで細胞に対して誘電泳動力が発生し、図10に示すように細胞が誘電泳動力により微細孔に引き寄せられ、細胞Aが微細孔Aを塞ぐ。細胞Aが塞いだ微細孔Aの部分は、図13に示すようにコンデンサーAと等価となる。図18に示す電圧波形を印加した場合、コンデンサーAにおける電圧波形と電流波形を図19に示す。図19に示すように印加する交流電圧の波形が正弦波の場合は、正弦波の位相が90度すすむだけで、正弦波の波形は変化しないため、細胞Aが入った微細孔Aにおいて引き続き電流が流れ、電気力線の集中が生じる。このため、細胞Bは細胞Aの入った微細孔Aに引き寄せられる可能性があるため、1つの微細孔に2以上の細胞が固定される確率が高くなる。従って、正弦波や三角波のように常に電圧が連続的に変化する交流電圧の波形では、複数の細胞が集中して固定される微細孔と、細胞が全く固定されない微細孔があり、1つの微細孔につき1つの細胞を固定することが難しい。なお、印加する電圧が直流の場合は、細胞を含有する細胞懸濁液に含まれるイオンが電極表面で電気反応を生じることで発熱が起こり、それにより細胞が熱運動を起こすため、誘電泳動力により細胞の動きを制御することができなくなり細胞を微細孔に引き寄せることが困難となる。   Next, when an AC voltage having a sinusoidal waveform with a frequency f [Hz] shown in FIG. 18 is applied, the electric force lines concentrate in the micropores as in the case shown in FIG. As shown in FIG. 10, the cells are attracted to the micropores by the dielectrophoretic force, and the cells A block the micropores A. The portion of the micropore A closed by the cell A is equivalent to the capacitor A as shown in FIG. When the voltage waveform shown in FIG. 18 is applied, the voltage waveform and current waveform in the capacitor A are shown in FIG. As shown in FIG. 19, when the waveform of the applied AC voltage is a sine wave, the phase of the sine wave only advances 90 degrees and the waveform of the sine wave does not change. Flows and concentration of electric lines of force occurs. For this reason, since there exists a possibility that the cell B may be attracted | sucked to the micropore A containing the cell A, the probability that two or more cells will be fixed to one micropore becomes high. Therefore, in the waveform of the AC voltage in which the voltage continuously changes like a sine wave or a triangular wave, there are fine holes in which a plurality of cells are concentrated and fixed, and fine holes in which the cells are not fixed at all. It is difficult to fix one cell per hole. When the applied voltage is direct current, the ions contained in the cell suspension containing the cells generate an electric reaction on the electrode surface, which generates heat, causing the cells to undergo thermal motion. This makes it impossible to control the movement of the cells, making it difficult to draw the cells into the micropores.

以上の理由から、本発明の細胞融合装置は、前記交流電源により前記電極間に印加する交流電圧の波形が、前記細胞の充電と放電を周期的に繰り返すことを特徴とする波形であり、またより具体意的には、前記交流電圧の波形が、0以外の値を有する電圧が一定時間変化しない時間を半周期内に少なくとも1以上有する波形であり、例えば矩形波、台形波、またはこれらを組み合わせた波形であって、さらに好ましくは、0以外の値を有する電圧が一定時間変化しない時間が細胞の静電容量と細胞を含有する細胞懸濁液の抵抗の積からなる時定数以上であることを特徴とする細胞融合装置であって、絶縁体を貫通する微細孔の平面形状に内接する最大円の直径は、微細孔に固定する細胞の直径未満であるか、もしくは、微細孔に固定する細胞の直径の1以上2倍未満の範囲でありかつ微細孔の深さが細胞の直径と同等であり、さらに複数の微細孔の隣り合う間隔が、固定する細胞の直径の0.5倍以上6倍以下の範囲であることで、絶縁体上にアレイ状に形成した複数の微細孔において、1つの微細孔につき1つの細胞を固定することが可能となる。   For the above reasons, in the cell fusion device of the present invention, the waveform of the AC voltage applied between the electrodes by the AC power source is a waveform characterized by periodically repeating charging and discharging of the cells, More specifically, the waveform of the AC voltage is a waveform having at least one time in a half cycle in which a voltage having a value other than 0 does not change for a certain period of time, such as a rectangular wave, a trapezoidal wave, or the like More preferably, the time when the voltage having a value other than 0 does not change for a certain period of time is equal to or more than the time constant formed by the product of the capacitance of the cell and the resistance of the cell suspension containing the cell. The diameter of the maximum circle inscribed in the planar shape of the micropore penetrating the insulator is less than the diameter of the cell fixed to the micropore, or fixed to the micropore. Cells The micropore depth is in the range of 1 to less than 2 times the diameter and the micropore depth is equal to the cell diameter, and the interval between adjacent micropores is 0.5 to 6 times the diameter of the cell to be fixed. By being in the following range, it becomes possible to fix one cell per minute hole in the plurality of minute holes formed in an array on the insulator.

ところで、本発明の細胞融合方法では、1つの微細孔に第1の細胞を固定した後、固定した第1の細胞のさらに上から第2の細胞を固定する。第2の細胞には誘電泳動力、重力、及び第1の細胞の静電気力が作用し第1の細胞と接触する。しかしながら、前述した理由により、微細孔を第1の細胞が塞いでしまうため電流が流れにくくなることで電気力線の発生が抑制され、第2の細胞に作用する誘電泳動力が弱くなる。従って、第2の細胞を、微細孔に固定した第1の細胞に1つずつ接触させる確率が低下する。しかしながら、第1の細胞の濃度を第2の細胞の濃度よりも高くし、細胞融合領域に過剰に導入することで、第1の細胞と第2の細胞の接触確率を上げることが可能である。   By the way, in the cell fusion method of the present invention, after fixing the first cell in one micropore, the second cell is fixed further from above the fixed first cell. Dielectric migration force, gravity, and electrostatic force of the first cell act on the second cell and come into contact with the first cell. However, for the reasons described above, the first cells block the micropores, making it difficult for the current to flow, thereby suppressing the generation of electric lines of force and weakening the dielectrophoretic force acting on the second cells. Therefore, the probability of bringing the second cells into contact with the first cells fixed in the micropores one by one is reduced. However, it is possible to increase the contact probability between the first cell and the second cell by making the concentration of the first cell higher than the concentration of the second cell and introducing it excessively into the cell fusion region. .

次に、図を用いて本発明における細胞融合方法に関してさらに詳細に説明する。   Next, the cell fusion method in the present invention will be described in more detail with reference to the drawings.

本発明の細胞融合方法は、前記細胞融合装置を用いた細胞融合方法であって、前記細胞融合領域内に第1の細胞を導入し、交流電圧を印加することで前記微細孔内に前記第1の細胞を固定した後、前記細胞融合領域内に第2の細胞を導入して、交流電圧を印加することで前記第1の細胞に前記第2の細胞を微細孔の位置において接触させ化学的に細胞を融合する細胞融合方法である。なお、前記交流電圧の波形は、上記記載の波形を有する交流電圧であることがより好ましい。ここで、本発明の細胞融合方法の概略図を図20〜図22に示す。   The cell fusion method of the present invention is a cell fusion method using the cell fusion device, wherein the first cell is introduced into the cell fusion region, and an alternating voltage is applied to the first cell in the micropore. After fixing one cell, a second cell is introduced into the cell fusion region, and an alternating voltage is applied to bring the second cell into contact with the first cell at the position of the micropore. Cell fusion method in which cells are fused together. The AC voltage waveform is more preferably an AC voltage having the waveform described above. Here, schematic views of the cell fusion method of the present invention are shown in FIGS.

図20〜図22には、いずれも第1の細胞の直径が第2の細胞の直径よりも小さい例を示している。本発明の細胞融合方法は、第1の細胞の直径が第2の細胞の直径よりも小さいことが好ましいが、本質的には第1の細胞の直径が第2の細胞の直径と等しいか大きくてもよく、また、本発明の細胞融合方法は、第1の細胞と第2の細胞が微細孔表面の近傍で細胞融合することが好ましいが、本質的には微細孔の中で第1の細胞と第2の細胞を融合してもよく、図20〜図22に示したいずれの態様以外であっても、発明の要旨を逸脱しない範囲で、任意に変更が可能である。   20 to 22 show examples in which the diameter of the first cell is smaller than the diameter of the second cell. In the cell fusion method of the present invention, the diameter of the first cell is preferably smaller than the diameter of the second cell, but the diameter of the first cell is essentially equal to or larger than the diameter of the second cell. In the cell fusion method of the present invention, it is preferable that the first cell and the second cell are fused in the vicinity of the surface of the micropore. The cells and the second cells may be fused, and any modifications other than those shown in FIGS. 20 to 22 can be arbitrarily made without departing from the scope of the invention.

図20は、微細孔(9)の直径と深さが、第1の細胞(18)の直径とほぼ等しく第1の細胞がちょうど微細孔の中に入る程度の場合であり、図21は、微細孔(9)の直径と深さが、第1の細胞(18)の直径よりも大きい場合であり、図22は、微細孔(9)の直径と深さが第1の細胞(18)の直径よりも小さい場合である。   FIG. 20 shows a case where the diameter and depth of the micropore (9) are approximately equal to the diameter of the first cell (18), and the first cell just enters the micropore, and FIG. FIG. 22 shows the case where the diameter and depth of the micropore (9) are larger than the diameter of the first cell (18), and FIG. 22 shows the case where the diameter and depth of the micropore (9) are the first cell (18). Is smaller than the diameter of

以下に本発明の融合方法が好ましい理由を説明する。本発明の最良の形態は、図20に示す細胞融合方法である。まず、第1の細胞(18)として、直径の小さい細胞を細胞懸濁液(6)とともに細胞融合領域(1)に導入し、前述した波形を有する交流電圧(34)を印加して1つの微細孔(9)につき第1の細胞1つを固定する。この場合、第1の細胞は主に誘電泳動力、重力、電極からの静電気力によって微細孔に誘導される。微細孔の直径と深さは第1の細胞の直径とほぼ等しく、第1の細胞がちょうど微細孔の中に入る。このようにすることで、微細孔の底面の電極面と第1の細胞に静電気力が発生し、第1の細胞は微細孔に確実に固定される。第1の細胞の数に特に制限はないが、第1の細胞を有効に使用することを考慮すると、微細孔の数と同等であることが好ましい。次に、第2の細胞(22)として、直径の大きい細胞を細胞懸濁液(6)とともに細胞融合領域(1)に導入する。このとき、第1の細胞(18)は電極との静電気力で固定されている上、周囲を微細孔(9)で囲まれているため、第2の細胞を送液することにより第1の細胞が微細孔から離脱することはほとんどない。   The reason why the fusion method of the present invention is preferred will be described below. The best mode of the present invention is the cell fusion method shown in FIG. First, as the first cell (18), a cell having a small diameter is introduced into the cell fusion region (1) together with the cell suspension (6), and the AC voltage (34) having the above-described waveform is applied to obtain one cell. Fix one first cell per micropore (9). In this case, the first cell is guided to the micropore mainly by dielectrophoretic force, gravity, and electrostatic force from the electrode. The diameter and depth of the micropore is approximately equal to the diameter of the first cell, and the first cell just enters the micropore. By doing so, electrostatic force is generated on the electrode surface of the bottom surface of the micropore and the first cell, and the first cell is reliably fixed to the micropore. Although there is no restriction | limiting in particular in the number of 1st cells, When considering using the 1st cell effectively, it is preferable that it is equivalent to the number of micropores. Next, as the second cell (22), a cell having a large diameter is introduced into the cell fusion region (1) together with the cell suspension (6). At this time, since the first cell (18) is fixed by electrostatic force with the electrode and is surrounded by the micropore (9), the first cell (18) is fed by feeding the second cell. Cells rarely detach from the micropores.

導入された第2の細胞は、前述した波形を有する交流電圧(34)を印加することにより、微細孔に固定された第1の細胞の上から接触し固定される。この場合、第2の細胞には、微細孔での誘電泳動力も作用するが、主に重力、第1の細胞からの静電気力によって微細孔に固定された第1の細胞に誘導される。第2の細胞の数に特に制限はないが、第2の細胞を有効に使用することを考慮すると、微細孔の数と同等であることが好ましいが、微細孔の数よりも過剰に導入することで、第1の細胞と第2の細胞の接触確率を上げることが可能である。   The introduced second cell is contacted and fixed from above the first cell fixed in the micropore by applying the AC voltage (34) having the waveform described above. In this case, the dielectrophoretic force in the micropores also acts on the second cells, but is induced by the first cells fixed in the micropores mainly by gravity and electrostatic force from the first cells. The number of the second cells is not particularly limited, but considering the effective use of the second cells, it is preferably equal to the number of micropores, but introduced in excess of the number of micropores. Thus, it is possible to increase the contact probability between the first cell and the second cell.

また、本発明の細胞融合方法は、前記細胞融合方法において、細胞を細胞膜の流動性を高める物質を加えた細胞懸濁液に入れることを特徴とする細胞融合方法である。細胞膜の流動性が高まった状態で細胞が接触すると膜融合が容易に起こるので、前述したように微細孔において2細胞一対が接触すれば、2細胞一対での細胞融合が生じる。ここで、細胞膜の流動性を高める物質は、接触した細胞同士に膜融合を起こさせる物質であれば特に制限はないが、例えばポリエチレングリコールやリゾチウムなどがあり、特に、ポリエチレングリコールであることが好ましい。またさらに、平均分子量1000〜6000程度のポリエチレングリコールが好ましい。   The cell fusion method of the present invention is a cell fusion method characterized in that, in the cell fusion method, the cells are placed in a cell suspension added with a substance that enhances the fluidity of the cell membrane. Membrane fusion occurs easily when cells come into contact with the fluidity of the cell membrane being increased. Therefore, as described above, when two cell pairs come into contact with each other in a micropore, cell fusion occurs in a pair of two cells. Here, the substance that enhances the fluidity of the cell membrane is not particularly limited as long as it is a substance that causes membrane fusion between the contacted cells. Examples thereof include polyethylene glycol and lysotium, and polyethylene glycol is particularly preferable. . Furthermore, polyethylene glycol having an average molecular weight of about 1000 to 6000 is preferable.

本発明によれば、以下の効果を奏することができる。
(1)本発明の細胞融合装置においては、微細孔を形成した絶縁体を細胞融合領域側の電極面上に配置することで、微細孔に細胞を確実に固定し、微細孔近傍にある2細胞一対を選択的に細胞融合させることができ、2細胞一対での化学的な細胞の融合を効率的に行うことが可能となる。
(2)本発明の細胞融合装置においては、微細孔の平面形状に内接する最大円の直径が、微細孔に固定する細胞の直径の1以上2倍未満の範囲であり、かつ微細孔の深さが、微細孔に固定する細胞の直径の以下である細胞融合装置であり、このようにすることで、微細孔に確実に細胞を固定することができる。
(3)本発明の細胞融合装置においては、微細孔が絶縁体上に複数個、アレイ状に形成されており、このようにすることで、複数の微細孔に固定した2細胞一対の細胞を同時に細胞融合させることが可能となり、2細胞一対での化学的な細胞の融合を効率的に行うことが可能となる。
(4)本発明の細胞融合装置においては、微細孔の隣り合う間隔が、微細孔に入れる細胞の直径の0.5倍以上6倍以下の範囲であることを特徴とする細胞融合装置であり、このようにすることで、1つの微細孔に1つの細胞を固定する確率を高めることができ、微細孔において2細胞を一対で接触させる確率を上げることが可能になる。
(5)本発明の細胞融合装置においては、交流電源により電極間に印加する交流電圧の波形を制御することで、1つの微細孔に1つの細胞を固定することが可能となる。
(6)本発明の細胞融合装置においては、細胞融合領域側の電極面上に配置した微細孔を形成した絶縁体の表面を親水化処理することで、1つの微細孔に1つの細胞を固定する確率をより高めることができ、微細孔において2細胞を一対で接触させる確率を上げることが可能になる。
(7)本発明の細胞融合装置においては、微細孔の平面形状が角を有することで、角部において電気力線の集中が生じ、誘電泳動力が高められることにより1つの微細孔に1つの細胞を固定する確率をさらに高めることができ、微細孔において2細胞を一対で接触させる確率を上げることが可能になる。
(8)本発明の細胞融合方法は、上記記載の細胞融合装置を用いた細胞融合方法であって、細胞融合領域内に第1の細胞を導入し、交流電圧を印加することで微細孔内に第1の細胞を固定した後、細胞を導入して、前述した波形を有する交流電圧を印加することで第1の細胞に第2の細胞を微細孔の位置において接触させ化学的に細胞を融合する細胞融合方法であり、交流電圧の波形は、上記記載の波形を有する交流電圧であることがより好ましく、ポリエチレングリコール等の細胞を細胞膜の流動性を高める物質を加えた細胞懸濁液に入れる細胞融合方法である。このようにすることで、微細孔近傍にある2細胞一対を選択的に細胞融合させることができ、2細胞一対での細胞融合を効率的に行うことが可能となる。なお、前記交流電圧は、2細胞一対を微細孔に固定するために使用するが、2細胞一対を微細孔に固定した後も前記交流電圧を印加しつづけることで、接触した2細胞が誘電泳動力と静電気力及び重力により押し付けられるので、2細胞一対がさらに細胞融合しやすくなる。
According to the present invention, the following effects can be obtained.
(1) In the cell fusion device of the present invention, by disposing the insulator having the micropores on the electrode surface on the cell fusion region side, the cells are reliably fixed in the micropores, and 2 located near the micropores. A pair of cells can be selectively fused, and chemical cell fusion between two pairs of cells can be efficiently performed.
(2) In the cell fusion device of the present invention, the diameter of the maximum circle inscribed in the planar shape of the micropore is in the range of 1 to 2 times the diameter of the cell fixed to the micropore, and the depth of the micropore Is a cell fusion device having a diameter equal to or less than the diameter of the cells to be fixed in the micropores, and in this way, the cells can be reliably fixed in the micropores.
(3) In the cell fusion device of the present invention, a plurality of micropores are formed in an array on the insulator, and in this way, a pair of two cells fixed in the plurality of micropores can be obtained. Cell fusion can be performed simultaneously, and chemical cell fusion using a pair of two cells can be efficiently performed.
(4) In the cell fusion device of the present invention, the cell fusion device is characterized in that the interval between adjacent micropores is in the range of 0.5 to 6 times the diameter of the cells to be inserted into the micropores. By doing so, it is possible to increase the probability of fixing one cell in one micropore, and it is possible to increase the probability of making a pair of two cells contact in the micropore.
(5) In the cell fusion device of the present invention, it is possible to fix one cell in one minute hole by controlling the waveform of the AC voltage applied between the electrodes by the AC power source.
(6) In the cell fusion device of the present invention, one cell is fixed to one micropore by hydrophilizing the surface of the insulator formed with the micropore arranged on the electrode surface on the cell fusion region side. It is possible to further increase the probability that the two cells come into contact with each other in the micropore.
(7) In the cell fusion device of the present invention, since the planar shape of the micropores has corners, electric field lines are concentrated at the corners, and the dielectrophoretic force is increased, so that one micropore has one. The probability of fixing the cells can be further increased, and the probability of bringing two cells into contact with each other in the micropores can be increased.
(8) The cell fusion method of the present invention is a cell fusion method using the cell fusion device described above, wherein the first cell is introduced into the cell fusion region, and an alternating voltage is applied to the inside of the micropore. After fixing the first cell to the cell, the cell is introduced, and an AC voltage having the waveform described above is applied to bring the second cell into contact with the first cell at the position of the micropore, thereby chemically More preferably, the AC voltage waveform is an AC voltage having the waveform described above, and the cells such as polyethylene glycol are added to a cell suspension added with a substance that enhances the fluidity of the cell membrane. This is a cell fusion method. By doing in this way, two cell pairs in the vicinity of the micropores can be selectively fused, and cell fusion with two cell pairs can be performed efficiently. The AC voltage is used to fix a pair of two cells in a micropore. Even after fixing a pair of two cells in a micropore, the two cells in contact with each other can be dielectrophoresised by continuing to apply the AC voltage. Since it is pressed by force, electrostatic force, and gravity, a pair of two cells is more easily fused.

以下、本発明を実施例により詳細に説明する。なお本発明は、これらの実施例のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。   Hereinafter, the present invention will be described in detail with reference to examples. Needless to say, the present invention is not limited to these examples, and can be arbitrarily changed without departing from the scope of the invention.

(実施例1)
図3に実施例1に用いた細胞融合装置の概念図を示す。細胞融合装置は大きく分けて、細胞融合容器(13)と電源(4)から構成される。細胞融合容器は、図3に示すように上部電極(14)と下部電極(15)の間に、スペーサー(16)を配置し、複数の微細孔をアレイ状に形成した絶縁体(8)をスペーサーと下部電極で挟んだ構造を有する。
Example 1
FIG. 3 shows a conceptual diagram of the cell fusion device used in Example 1. The cell fusion device is roughly divided into a cell fusion container (13) and a power source (4). As shown in FIG. 3, the cell fusion container has an insulator (8) in which a spacer (16) is arranged between an upper electrode (14) and a lower electrode (15), and a plurality of micropores are formed in an array. It has a structure sandwiched between a spacer and a lower electrode.

なお、本実施例では、後述するように一般的なフォトリソグラフィーとエッチングにより、下部電極(15)と複数の微細孔をアレイ状に形成した絶縁体を一体形成した微細孔付き絶縁体一体型下部電極(28)を用いた。   In this embodiment, as will be described later, an insulator-integrated lower part with a fine hole in which a lower electrode (15) and an insulator in which a plurality of fine holes are formed in an array are integrally formed by general photolithography and etching. An electrode (28) was used.

上部電極と下部電極は、縦70mm×横40mm×厚さ1mmのパイレックス(登録商標)基板に、ITOを成膜(膜厚150nm)したものを用いた。スペーサーは、縦40mm×横40mm×厚さ1.5mmのシリコンシートの中央を縦20mm×横20mmにくりぬいた形状にして用いた。   The upper electrode and the lower electrode were formed by depositing ITO (film thickness 150 nm) on a Pyrex (registered trademark) substrate 70 mm long × 40 mm wide × 1 mm thick. The spacer was used by hollowing out the center of a silicon sheet having a length of 40 mm, a width of 40 mm, and a thickness of 1.5 mm into a length of 20 mm and a width of 20 mm.

また、図3に示すように、細胞が含有した細胞懸濁液を導入、排出するための導入口(19)と排出口(20)を設けた。複数の微細孔を有する絶縁体(8)は、図23に示すフォトリソグラフィーとエッチングによる方法により下部電極に一体形成することで作製した。   Further, as shown in FIG. 3, an introduction port (19) and a discharge port (20) for introducing and discharging a cell suspension containing cells were provided. The insulator (8) having a plurality of fine holes was produced by integrally forming on the lower electrode by a photolithography and etching method shown in FIG.

まずはじめにITO(23)を成膜したパイレックス(登録商標)ガラス(24)のITO成膜面にレジスト(25)を2.5μmの膜厚になるようスピンコーターを用いて塗布し、45分自然乾燥後、ホットプレートを用いてプリベーク(80℃、15分)を行った。レジストにはキシレン系のネガタイプレジストを用いた。次に、縦30mm×横30mmのエリアに、微細孔と微細孔の縦と横の間隔が30μmで、縦1000個×横1000個のアレイ状に並べた直径φ7μmの微細孔パターンを描いた露光用フォトマスク(26)を用いて、UV露光機にてレジストを露光(27)し、現像液(7)で現像した。露光時間と現像時間は、微細孔の深さがレジストの膜厚と等しい2.5μmになるように調整し、微細孔の底面にITOが露出するようにした。現像後、ホットプレートを用いてポストベーク(115℃、30分)を行いレジストを固めた。このようにして作製した上部電極(14)、スペーサー(16)、微細孔付き絶縁体一体型下部電極(28)を図4のように積層し圧着した。図4は、図3に示した細胞融合容器のB−B’断面図である。シリコンシートの表面は粘着性があり、圧着することで各部品は密着し、細胞を含有した細胞懸濁液を漏れなく細胞融合容器の中に入れることができた。スペーサーをくりぬいた面積が縦20mm×横20mmであることから、この空間に存在する微細孔の数は約40万個である。また、電極間に電圧を印加する電源は、交流電源として信号発生器(エヌエフ回路設計ブロック製、WF1966)を導電線(3)を介して接続した。   First, a resist (25) was applied to the ITO film-forming surface of Pyrex (registered trademark) glass (24) on which ITO (23) was formed using a spin coater so as to have a film thickness of 2.5 μm. After drying, pre-baking (80 ° C., 15 minutes) was performed using a hot plate. A xylene negative resist was used as the resist. Next, an exposure depicting a microhole pattern having a diameter of 7 μm arranged in an array of 1000 vertical x 1000 horizontal in an area of 30 mm vertical by 30 mm horizontal and the vertical and horizontal spacing of the micropores is 30 μm. The resist was exposed (27) with a UV exposure machine using a photomask (26), and developed with a developer (7). The exposure time and development time were adjusted so that the depth of the micropores was 2.5 μm, which is equal to the film thickness of the resist, so that the ITO was exposed on the bottom surfaces of the micropores. After development, the resist was hardened by post-baking (115 ° C., 30 minutes) using a hot plate. The upper electrode (14), the spacer (16), and the insulator-integrated lower electrode (28) with fine holes were laminated and pressure-bonded as shown in FIG. 4 is a B-B ′ cross-sectional view of the cell fusion container shown in FIG. 3. The surface of the silicon sheet was sticky, and the parts were brought into close contact with each other by pressure bonding, and the cell suspension containing the cells could be put into the cell fusion container without leakage. Since the area where the spacer is hollowed is 20 mm long × 20 mm wide, the number of micropores existing in this space is about 400,000. Moreover, the power supply which applies a voltage between electrodes connected the signal generator (NF circuit design block make, WF1966) as an alternating current power supply via the conductive wire (3).

細胞は、マウス抗体産生細胞(φ5μm)とマウスミエローマ細胞(φ10μm)を用いた。両方の細胞を培地から取り出し、遠心分離で細胞と培地を分離し、取り出した細胞をそれぞれ分子量4000のポリエチレングリコール50%水溶液に懸濁させ、0.7×10個/mLの密度になるように細胞懸濁液を調整した。 As the cells, mouse antibody-producing cells (φ5 μm) and mouse myeloma cells (φ10 μm) were used. Remove both cells from the medium, separate the cells from the medium by centrifugation, and suspend the removed cells in a 50% aqueous polyethylene glycol solution with a molecular weight of 4000 to a density of 0.7 × 10 6 cells / mL. A cell suspension was prepared.

まずはじめに、上記マウス抗体産生細胞の細胞懸濁液600μL(マウス抗体産生細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入し、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔に1つずつ、1〜2個ののマウス抗体産生細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1つのマウス抗体産生細胞が入る確率は35%であった。ここで細胞固定率とは、顕微鏡の視野に縦15個×横15個の225個の微細孔が見えるようにし、細胞を導入して固定したときの、1〜2個の細胞が入った微細孔数を225個の微細孔数で割った値で定義した。なお、以下の実施例2及び比較例での細胞固定率も同じ定義である。   First, 600 μL of the mouse antibody-producing cell suspension (number of mouse antibody-producing cells: about 400,000) was injected from the introduction port of the spacer using a syringe, and a rectangular wave with a voltage of 10 Vpp and a frequency of 3 MHz was supplied from an AC power source. When an alternating voltage is applied between the electrodes, one or two mouse antibody-producing cells can be fixed one by one in a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds. A plurality of cells could be arranged in an array. At this time, the probability of one mouse antibody-producing cell entering one micropore was 35%. Here, the cell fixation rate means that 225 fine pores of 15 vertical x 15 horizontal are visible in the field of view of the microscope, and the fine cells containing 1-2 cells when cells are introduced and fixed. It was defined as a value obtained by dividing the number of holes by the number of fine holes of 225. In addition, the cell fixation rate in the following Example 2 and a comparative example is also the same definition.

続いて、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記マウスミエローマ細胞の細胞懸濁液600μL(マウスミエローマ細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔に1つずつ、1つのマウスミエローマ細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1〜2個のマウスミエローマ細胞が入る確率は55%であった。マウスミエローマ細胞を導入する際に、先に入れたマウス抗体産生細胞が微細孔から脱離する様子はほとんど観察されなかったことから、微細孔においてマウス抗体産生細胞とマウスミエローマ細胞が2細胞一対で接触している確立は、約20%(=35%×55%)であると推定される。   Subsequently, 600 μL of the cell suspension of mouse myeloma cells (number of mouse myeloma cells: about 400,000) was applied to the spacer inlet while a rectangular wave AC voltage of 10 Vpp and frequency 3 MHz was applied between the electrodes by an AC power source. When injected with a syringe, one mouse myeloma cell can be fixed one by one in a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds. It was possible to arrange in the shape. At this time, the probability that one or two mouse myeloma cells enter one micropore was 55%. When the mouse myeloma cells were introduced, it was hardly observed that the mouse antibody-producing cells put in the micropores were detached from the micropores. Therefore, the mouse antibody-producing cells and the mouse myeloma cells were paired in pairs in the micropores. Estimated contact is estimated to be about 20% (= 35% × 55%).

次に、この状態のまま1分間静置したあと細胞融合容器内の細胞懸濁液を取り出し培地で希釈後、遠心分離で細胞と細胞懸濁液を分離し、取り出した細胞をHAT培地(H:ヒポキサンチン(hypoxanthine)、A:アミノプテリン(aminopterine)、T:チミジン(thymidine)を成分とする培地)に入れ、融合細胞の培養を行った。なお、HAT培地は、融合細胞のみを選択的に増殖させる培地である。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、20個の融合細胞を確認することができ、全マウス抗体産生細胞40万個に対して0.5/10000の融合確率を得られた。これは、比較例1に示したポリエチレングリコールを用いた通常の細胞融合における融合確率0.12/10000の約4倍の融合確率であり、効率的な2細胞一対での融合を確認することができた。 Next, after allowing to stand for 1 minute in this state, the cell suspension in the cell fusion container is taken out and diluted with a medium. Then, the cells and the cell suspension are separated by centrifugation, and the removed cells are put into HAT medium (H : Hypoxanthine, A: medium containing aminopterin, T: medium containing thymidine as components, and culturing the fused cells. The HAT medium is a medium for selectively growing only fused cells. The HAT medium containing the cell suspension was placed in a CO 2 incubator, and the cells were cultured. After 6 days, the number of fused cells was counted. As a result, 20 fused cells could be confirmed. A fusion probability of 0.5 / 10000 was obtained. This is a fusion probability that is about four times the fusion probability of 0.12 / 10000 in normal cell fusion using polyethylene glycol shown in Comparative Example 1, and it is possible to confirm efficient fusion in a pair of two cells. did it.

(実施例2)
実施例1に用いた微細孔付き絶縁体の親水性を評価するために、絶縁体表面に純水を滴下し、そのときに絶縁体の表面に形成される液滴と絶縁体の表面との接触角を測定したところ、接触角は約47°であった。そこで、微細孔付き絶縁体を親水化するために、微細孔付き絶縁体一体型下部電極をBSA(1mg/mL)含有の300mM濃度のマンニトール水溶液に約1時間浸し、絶縁体表面にBSAを物理吸着させた。BSAを物理吸着させた後、同様に、絶縁体表面に純水を滴下し、そのときに絶縁体の表面に形成される液滴と絶縁体の表面との接触角を測定したところ、接触角は約27°であり、親水性が向上したことを確認した。
(Example 2)
In order to evaluate the hydrophilicity of the fine holed insulator used in Example 1, pure water was dropped on the surface of the insulator, and the droplet formed on the surface of the insulator at that time and the surface of the insulator When the contact angle was measured, the contact angle was about 47 °. Therefore, in order to make the insulator with micropores hydrophilic, the insulator-integrated lower electrode with micropores is immersed in a 300 mM mannitol aqueous solution containing BSA (1 mg / mL) for about 1 hour, and the BSA is physically applied to the insulator surface. Adsorbed. Similarly, after BSA is physically adsorbed, pure water is dropped on the surface of the insulator, and the contact angle between the droplet formed on the surface of the insulator and the surface of the insulator is measured. Was about 27 °, confirming that the hydrophilicity was improved.

このように親水化処理した微細孔付き絶縁体一体型下部電極を用いて、実施例1と同様に組み立てた細胞融合装置を用いて下記に示したように細胞融合を実施した。   Cell fusion was performed as described below using the cell fusion apparatus assembled in the same manner as in Example 1 using the insulator-integrated lower electrode with micropores thus subjected to hydrophilic treatment.

細胞は、マウス抗体産生細胞(φ5μm)とマウスミエローマ細胞(φ10μm)を用いた。両方の細胞を培地から取り出し、遠心分離で細胞と培地を分離し、取り出した細胞をそれぞれ分子量4000のポリエチレングリコール50%水溶液に懸濁させ、0.7×10個/mLの密度になるように細胞懸濁液を調整した。 As the cells, mouse antibody-producing cells (φ5 μm) and mouse myeloma cells (φ10 μm) were used. Remove both cells from the medium, separate the cells from the medium by centrifugation, and suspend the removed cells in a 50% aqueous solution of polyethylene glycol having a molecular weight of 4000 to a density of 0.7 × 10 6 cells / mL. A cell suspension was prepared.

まずはじめに、上記マウス抗体産生細胞の細胞懸濁液600μL(マウス抗体産生細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入し、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔に1つずつ、1つのマウス抗体産生細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1〜2個のマウス抗体産生細胞が入る確率は70%であった。この結果から、微細孔付絶縁膜を親水化したことにより、微細孔への細胞固定確率が実施例1よりも向上したことがわかった。   First, 600 μL of the mouse antibody-producing cell suspension (number of mouse antibody-producing cells: about 400,000) was injected from the introduction port of the spacer using a syringe, and a rectangular wave with a voltage of 10 Vpp and a frequency of 3 MHz was supplied from an AC power source. When an alternating voltage is applied between the electrodes, one mouse antibody-producing cell can be fixed one by one in a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds. Could be arranged in an array. At this time, the probability that one or two mouse antibody-producing cells enter one micropore was 70%. From this result, it was found that the cell fixing probability to the micropores was improved as compared with Example 1 by making the insulating film with micropores hydrophilic.

続いて、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記マウスミエローマ細胞の細胞懸濁液600μL(マウスミエローマ細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔に1つずつ、1つのマウスミエローマ細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1つのマウスミエローマ細胞が入る確率は65%であった。この結果から、微細孔付絶縁膜を親水化したことにより、微細孔への細胞固定確率が実施例1よりも向上したことがわかった。   Subsequently, 600 μL of the cell suspension of mouse myeloma cells (number of mouse myeloma cells: about 400,000) was applied to the spacer inlet while a rectangular wave AC voltage of 10 Vpp and frequency 3 MHz was applied between the electrodes by an AC power source. When injected with a syringe, one mouse myeloma cell can be fixed one by one in a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds. It was possible to arrange in the shape. At this time, the probability of one mouse myeloma cell entering one micropore was 65%. From this result, it was found that the cell fixing probability to the micropores was improved as compared with Example 1 by making the insulating film with micropores hydrophilic.

マウスミエローマ細胞を導入する際に、先に入れたマウス抗体産生細胞が微細孔から脱離する様子はほとんど観察されなかったことから、微細孔においてマウス抗体産生細胞とマウスミエローマ細胞が2細胞一対で接触している確立は、約46%(=70%×65%)であると推定される。   When the mouse myeloma cells were introduced, it was hardly observed that the mouse antibody-producing cells put in the micropores were detached from the micropores. Therefore, the mouse antibody-producing cells and the mouse myeloma cells were paired in pairs in the micropores. Estimated contact is estimated to be about 46% (= 70% × 65%).

次に、この状態のまま1分間静置したあと細胞融合容器内の細胞懸濁液を取り出し培地で希釈後、遠心分離で細胞と細胞懸濁液を分離し、取り出した細胞をHAT培地(H:ヒポキサンチン(hypoxanthine)、A:アミノプテリン(aminopterine)、T:チミジン(thymidine)を成分とする培地)に入れ、融合細胞の培養を行った。なお、HAT培地は、融合細胞のみを選択的に増殖させる培地である。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、30個の融合細胞を確認することができ、全マウス抗体産生細胞40万個に対して0.75/10000の融合確率を得られた。これは、比較例1に示したポリエチレングリコールを用いた通常の細胞融合における融合確率0.12/10000の約6倍の融合確率であり、効率的な2細胞一対での融合を確認することができた。 Next, after allowing to stand for 1 minute in this state, the cell suspension in the cell fusion container is taken out and diluted with a medium. Then, the cells and the cell suspension are separated by centrifugation, and the removed cells are put into HAT medium (H : Hypoxanthine, A: medium containing aminopterin, T: medium containing thymidine as components, and culturing the fused cells. The HAT medium is a medium for selectively growing only fused cells. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured, and after 6 days, the number of fused cells was counted. As a result, 30 fused cells could be confirmed and 400,000 mouse-producing cells were produced. A fusion probability of 0.75 / 10000 was obtained. This is a fusion probability that is about 6 times the fusion probability of 0.12 / 10000 in normal cell fusion using the polyethylene glycol shown in Comparative Example 1, and it is possible to confirm efficient fusion in a pair of two cells. did it.

(実施例3)
図28に実施例3に用いた細胞融合装置を示した。微細孔の形状が、一辺が10μmの正方形の微細孔パターンとなっている以外は、実施例2に用いた細胞融合装置と同じである。
(Example 3)
FIG. 28 shows the cell fusion device used in Example 3. The shape of the micropores is the same as that of the cell fusion device used in Example 2 except that the shape of the micropores is a square micropore pattern with a side of 10 μm.

細胞は、マウス抗体産生細胞(φ5μm)とマウスミエローマ細胞(φ10μm)を用いた。両方の細胞を培地から取り出し、遠心分離で細胞と培地を分離し、取り出した細胞をそれぞれ分子量4000のポリエチレングリコール50%水溶液に懸濁させ、0.7×10個/mLの密度になるように細胞懸濁液を調整した。 As the cells, mouse antibody-producing cells (φ5 μm) and mouse myeloma cells (φ10 μm) were used. Remove both cells from the medium, separate the cells from the medium by centrifugation, and suspend the removed cells in a 50% aqueous polyethylene glycol solution with a molecular weight of 4000 to a density of 0.7 × 10 6 cells / mL. A cell suspension was prepared.

まずはじめに、上記マウス抗体産生細胞の細胞懸濁液600μL(マウス抗体産生細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入し、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔に1つずつ、1つのマウス抗体産生細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1つのマウス抗体産生細胞が入る確率は75%であった。この結果から、微細孔の平面形状が角を有することで、角部において電気力線の集中が生じ、誘電泳動力が高められるとともに、微細孔付絶縁膜を親水化したことにより、微細孔への細胞固定確率が実施例1さらには実施例2よりもさらに向上したことがわかった。   First, 600 μL of the mouse antibody-producing cell suspension (number of mouse antibody-producing cells: about 400,000) was injected from the introduction port of the spacer using a syringe, and a rectangular wave with a voltage of 10 Vpp and a frequency of 3 MHz was supplied from an AC power source. When an alternating voltage is applied between the electrodes, one mouse antibody-producing cell can be fixed one by one in a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds. Could be arranged in an array. At this time, the probability that one mouse antibody-producing cell enters one micropore was 75%. From this result, the plane shape of the micropores has corners, and the lines of electric force are concentrated at the corners, the dielectrophoretic force is increased, and the insulating film with micropores is made hydrophilic, so that It was found that the cell fixation probability was further improved as compared with Example 1 and Example 2.

続いて、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記マウスミエローマ細胞の細胞懸濁液600μL(マウスミエローマ細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔に1つずつ、1つのマウスミエローマ細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1つのマウスミエローマ細胞が入る確率は70%であった。この結果から、微細孔の平面形状が角を有することで、角部において電気力線の集中が生じ、誘電泳動力が高められるとともに、微細孔付絶縁膜を親水化したことにより、微細孔への細胞固定確率が実施例1さらには実施例2よりもさらに向上したことがわかった。   Subsequently, 600 μL of the cell suspension of mouse myeloma cells (number of mouse myeloma cells: about 400,000) was applied to the spacer inlet while a rectangular wave AC voltage of 10 Vpp and frequency 3 MHz was applied between the electrodes by an AC power source. When injected with a syringe, one mouse myeloma cell can be fixed one by one in a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds. It was possible to arrange in the shape. At this time, the probability of one mouse myeloma cell entering one micropore was 70%. From this result, the plane shape of the micropores has corners, and the lines of electric force are concentrated at the corners, the dielectrophoretic force is increased, and the insulating film with micropores is made hydrophilic, so that It was found that the cell fixation probability was further improved as compared with Example 1 and Example 2.

マウスミエローマ細胞を導入する際に、先に入れたマウス抗体産生細胞が微細孔から脱離する様子はほとんど観察されなかったことから、微細孔においてマウス抗体産生細胞とマウスミエローマ細胞が2細胞一対で接触している確立は、約53%(=75%×70%)であると推定される。   When the mouse myeloma cells were introduced, it was hardly observed that the mouse antibody-producing cells put in the micropores were detached from the micropores. Therefore, the mouse antibody-producing cells and the mouse myeloma cells were paired in pairs in the micropores. Estimated contact is estimated to be about 53% (= 75% × 70%).

次に、この状態のまま1分間静置したあと細胞融合容器内の細胞懸濁液を取り出し培地で希釈後、遠心分離で細胞と細胞懸濁液を分離し、取り出した細胞をHAT培地(H:ヒポキサンチン(hypoxanthine)、A:アミノプテリン(aminopterine)、T:チミジン(thymidine)を成分とする培地)に入れ、融合細胞の培養を行った。なお、HAT培地は、融合細胞のみを選択的に増殖させる培地である。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、30個の融合細胞を確認することができ、全マウス抗体産生細胞40万個に対して0.9/10000の融合確率を得られた。これは、比較例1に示したポリエチレングリコールを用いた通常の細胞融合における融合確率0.12/10000の約7.5倍の融合確率であり、効率的な2細胞一対での融合を確認することができた。 Next, after allowing to stand for 1 minute in this state, the cell suspension in the cell fusion container is taken out and diluted with a medium. Then, the cells and the cell suspension are separated by centrifugation, and the removed cells are put into HAT medium (H : Hypoxanthine, A: medium containing aminopterin, T: medium containing thymidine as components, and culturing the fused cells. The HAT medium is a medium for selectively growing only fused cells. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured, and after 6 days, the number of fused cells was counted. As a result, 30 fused cells could be confirmed and 400,000 mouse-producing cells were produced. A fusion probability of 0.9 / 10000 was obtained. This is a fusion probability that is about 7.5 times the fusion probability of 0.12 / 10000 in normal cell fusion using the polyethylene glycol shown in Comparative Example 1, and confirms efficient two-cell fusion. I was able to.

(比較例1)
比較例1として、ポリエチレングリコールを用いた通常の細胞融合を行った。細胞は、マウス抗体産生細胞(φ5μm)とマウスミエローマ細胞(φ10μm)を用いた。マウス抗体産生細胞とマウスミエローマ細胞を10:1で混合し、両方の細胞を培地から取り出し、遠心分離で細胞と培地を分離し、取り出した細胞をそれぞれ分子量4000のポリエチレングリコール50%水溶液に懸濁させ、1.7×10個/mLの密度になるように細胞懸濁液を調整した。
(Comparative Example 1)
As Comparative Example 1, normal cell fusion using polyethylene glycol was performed. As the cells, mouse antibody-producing cells (φ5 μm) and mouse myeloma cells (φ10 μm) were used. Mouse antibody-producing cells and mouse myeloma cells are mixed at a ratio of 10: 1, both cells are removed from the medium, and the cells and the medium are separated by centrifugation, and the removed cells are each suspended in a 50% aqueous solution of polyethylene glycol having a molecular weight of 4000. The cell suspension was adjusted to a density of 1.7 × 10 7 cells / mL.

上記細胞懸濁液40μL(マウス抗体産生細胞数:約60万個、マウスミエローマ細胞数:6万個)を試験管に入れ、1分間かけて試験管の底を軽くたたいた。その後、約1分静置したあと試験管内の細胞懸濁液をHAT培地に入れた。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、7個の融合細胞を確認することができ、全マウス抗体産生細胞60万個に対して0.12/10000の融合確率を得られた。 40 μL of the above cell suspension (the number of mouse antibody-producing cells: about 600,000, the number of mouse myeloma cells: 60,000) was placed in a test tube, and the bottom of the test tube was tapped for 1 minute. Then, after leaving still for about 1 minute, the cell suspension in a test tube was put into HAT culture medium. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured. After 6 days, the number of fused cells was counted. As a result, 7 fused cells could be confirmed, and 600,000 total mouse antibody-producing cells were produced. A fusion probability of 0.12 / 10000 was obtained.

(比較例2)
実施例と同じ細胞融合装置を用いて、実施例と同じマウス抗体産生細胞の細胞懸濁液600μL(抗体産生細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入し、交流電源により電圧10Vpp、周波数3MHzの正弦波交流電圧を電極間に印加したところ、マウス抗体産生細胞が複数個数珠状に集まる微細孔と細胞が全く固定されない微細孔が生じ、マウス抗体産生細胞をアレイ状に配置させることができなかった。この状態で、交流電源により電圧10Vpp、周波数3MHzの正弦波交流電圧を電極間に印加したまま、実施例と同じマウスミエローマ細胞の細胞懸濁液600μL(マウスミエローマ細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入した。
(Comparative Example 2)
Using the same cell fusion device as in the example, 600 μL of the same cell suspension of mouse antibody-producing cells as in the example (number of antibody-producing cells: about 400,000) was injected from the inlet of the spacer using a syringe, and alternating current When a sine wave AC voltage with a voltage of 10 Vpp and a frequency of 3 MHz is applied between the electrodes by the power source, a plurality of mouse antibody-producing cells gather in a bead shape and a micropore in which the cells are not fixed at all is generated, and the mouse antibody-producing cells are arrayed. It was not possible to arrange in the shape. In this state, 600 μL of the same mouse myeloma cell suspension as in the example (number of mouse myeloma cells: about 400,000) was applied while applying a sinusoidal AC voltage having a voltage of 10 Vpp and a frequency of 3 MHz between the electrodes by an AC power source. The syringe was injected from the introduction port of the spacer.

次に、この状態のまま1分間静置したあと細胞融合容器内の細胞懸濁液を取り出し培地で希釈後、遠心分離で細胞と細胞懸濁液を分離し、取り出した細胞をHAT培地に入れ、融合細胞の培養を行った。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、融合細胞を確認することはできなかった。 Next, after leaving in this state for 1 minute, the cell suspension in the cell fusion container is taken out and diluted with a medium, and then the cells and the cell suspension are separated by centrifugation, and the removed cells are put into a HAT medium. The fused cells were cultured. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cell culture was performed. After 6 days, the number of fused cells was counted. As a result, the fused cells could not be confirmed.

(比較例3)
図24に比較例3に用いた細胞融合装置の概念図を示す。細胞融合装置は大きく分けて、細胞融合容器(13)と電源(4)から構成される。細胞融合容器は、図24に示すように上部電極(14)と下部電極(15)の間に、スペーサー(16)を2枚配置し、複数の微細孔をアレイ状に形成した絶縁体(8)を2枚のスペーサー間に挟んだ構造を有する。
(Comparative Example 3)
FIG. 24 shows a conceptual diagram of the cell fusion device used in Comparative Example 3. The cell fusion device is roughly divided into a cell fusion container (13) and a power source (4). As shown in FIG. 24, the cell fusion container has an insulator (8) in which two spacers (16) are arranged between the upper electrode (14) and the lower electrode (15) and a plurality of micropores are formed in an array. ) Is sandwiched between two spacers.

上部電極と下部電極は、縦70mm×横40mm×厚さ1mmのパイレックス(登録商標)基板に、ITOを成膜(膜厚150nm)したものを用いた。スペーサーは、縦40mm×横40mm×厚さ1mmのシリコンシートの中央を縦20mm×横20mmにくりぬいた形状にして用いた。また、図24に示すように、細胞が含有した細胞懸濁液を導入、排出するための導入口(19)と排出口(20)を設けた。複数の微細孔を有する絶縁体(8)は、縦40mm×横40mm×膜厚25μmのポリイミドフィルムに、フォトリソグラフィーとエッチングによる方法により、中央の縦30mm×横30mmのエリアに、微細孔と微細孔の縦と横の間隔が50μmで、縦300個×横300個のアレイ状に並べた直径φ20μmの微細孔を形成し製作した。   The upper electrode and the lower electrode were formed by depositing ITO (film thickness 150 nm) on a Pyrex (registered trademark) substrate 70 mm long × 40 mm wide × 1 mm thick. The spacer was used by hollowing out the center of a silicon sheet having a length of 40 mm, a width of 40 mm, and a thickness of 1 mm into a length of 20 mm and a width of 20 mm. Moreover, as shown in FIG. 24, the introduction port (19) and the discharge port (20) for introducing and discharging the cell suspension containing the cells were provided. Insulator (8) having a plurality of fine holes is formed in a polyimide film having a length of 40 mm, a width of 40 mm, and a film thickness of 25 μm, by a method using photolithography and etching. Fine holes having a diameter of 20 μm arranged in an array of 300 vertical × 300 horizontal were formed with a space between the vertical and horizontal holes of 50 μm.

このようにして作製した上部電極(14)、スペーサー(16)、微細孔付き絶縁体(36)、下部電極(15)を図25のように積層し圧着した。図25は、図24に示した細胞融合容器のCC’断面図である。シリコンシートの表面は粘着性があり、圧着することで各部品は密着し、細胞を含有した細胞懸濁液を漏れなく細胞融合容器の中に入れることができた。スペーサーをくりぬいた面積が縦20mm×横20mmであることから、この空間に存在する微細孔の数は約4万個である。また、電極間に電圧を印加する電源は、交流電源として信号発生器(エヌエフ回路設計ブロック製、WF1966)を導電線(3)を介して接続し、交流電源とパルス電源は切り換えスイッチにより電極への接続を切り換えられるようにした。   The upper electrode (14), spacer (16), fine-holed insulator (36), and lower electrode (15) thus fabricated were stacked and pressure bonded as shown in FIG. FIG. 25 is a CC ′ sectional view of the cell fusion container shown in FIG. The surface of the silicon sheet was sticky, and the parts were brought into close contact with each other by pressure bonding, and the cell suspension containing the cells could be put into the cell fusion container without leakage. Since the area formed by hollowing out the spacer is 20 mm long × 20 mm wide, the number of micropores existing in this space is about 40,000. The power source for applying a voltage between the electrodes is a signal generator (WF1966, manufactured by NF circuit design block) connected as an AC power source via a conductive wire (3). The connection of can be switched.

細胞は、マウス抗体産生細胞(φ5μm)とマウスミエローマ細胞(φ10μm)を用いた。両方の細胞を培地から取り出し、遠心分離で細胞と培地を分離し、取り出した細胞をそれぞれ分子量4000のポリエチレングリコール50%水溶液に懸濁させ、0.7×10個/mLの密度になるように細胞懸濁液を調整した。 As the cells, mouse antibody-producing cells (φ5 μm) and mouse myeloma cells (φ10 μm) were used. Remove both cells from the medium, separate the cells from the medium by centrifugation, and suspend the removed cells in a 50% aqueous polyethylene glycol solution with a molecular weight of 4000 to a density of 0.7 × 10 6 cells / mL. A cell suspension was prepared.

まずはじめに、上記マウス抗体産生細胞の細胞懸濁液600μL(マウス抗体産生細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入し、矩形波交流電圧により電圧15Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した微細孔にマウス抗体産生細胞を固定することがでた。ただし、1つの微細孔に複数のマウス抗体産生細胞が固定されている微細孔や、マウス抗体産生細胞が全く固定されていない微細孔があり、複数の微細孔1つずつに1つのマウス抗体産生細胞が固定されている微細孔はほとんど確認できなかった。   First, 600 μL of the mouse antibody-producing cell suspension (the number of mouse antibody-producing cells: about 400,000) was injected from the introduction port of the spacer using a syringe, and the voltage was 15 Vpp and the frequency was 3 MHz with a rectangular wave AC voltage. When a rectangular wave AC voltage was applied between the electrodes, mouse antibody-producing cells could be fixed in the micropores formed in an array in an extremely short time of about 2 to 3 seconds. However, there are micropores in which a plurality of mouse antibody-producing cells are fixed in one micropore and micropores in which no mouse antibody-producing cells are fixed at all, and one mouse antibody is produced for each of the plurality of micropores. Micropores in which cells were fixed could hardly be confirmed.

続いて、交流電源により電圧15Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記マウスミエローマ細胞の細胞懸濁液600μL(マウスミエローマ細胞数:約40万個)をスペーサーの導入口よりシリンジを用いて注入したところ、先に微細孔に固定されていたマウス抗体産生細胞が微細孔からほとんど脱離してしまい、マウス抗体産生細胞とマウスミエローマ細胞を微細孔において細胞融合させることはできなかった。   Subsequently, 600 μL of the mouse myeloma cell suspension (number of mouse myeloma cells: about 400,000) was applied to the spacer inlet while a rectangular wave AC voltage having a voltage of 15 Vpp and a frequency of 3 MHz was applied between the electrodes by an AC power supply. When injected with a syringe more, mouse antibody-producing cells previously fixed in the micropores are almost detached from the micropores, and the mouse antibody-producing cells and mouse myeloma cells cannot be fused in the micropores. There wasn't.

本発明の細胞融合装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the cell fusion apparatus of this invention. 図5に示した細胞融合容器のAA’断面図である。FIG. 6 is an AA ′ cross-sectional view of the cell fusion container shown in FIG. 5. 本発明の細胞融合装置の一例及び、実施例で用いた細胞融合装置の概念図である。It is a conceptual diagram of an example of the cell fusion apparatus of this invention, and the cell fusion apparatus used in the Example. 図7に示した細胞融合容器のBB’断面図である。FIG. 8 is a BB ′ sectional view of the cell fusion container shown in FIG. 7. 本発明に用いる交流電圧の波形の一例である。It is an example of the waveform of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形の一例として、矩形波を示した図である。It is the figure which showed the rectangular wave as an example of the waveform of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形の一例として、台形波を示した図である。It is the figure which showed the trapezoid wave as an example of the waveform of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形の一例として、矩形波と台形波を組み合わせた波形を示した図である。It is the figure which showed the waveform which combined the square wave and the trapezoid wave as an example of the waveform of the alternating voltage used for this invention. 本発明の細胞操作方法を説明する第1の図である。It is a 1st figure explaining the cell operation method of this invention. 本発明の細胞操作方法を説明する第2の図である。It is a 2nd figure explaining the cell operation method of this invention. 本発明の細胞操作方法を説明する第3の図である。It is a 3rd figure explaining the cell operation method of this invention. 図9を電気的な等価回路で表した図である。FIG. 10 is a diagram illustrating FIG. 9 with an electrical equivalent circuit. 図10を電気的な等価回路で表した図である。It is the figure which represented FIG. 10 with the electrical equivalent circuit. 図11を電気的な等価回路で表した図である。FIG. 12 is a diagram illustrating FIG. 11 as an electrical equivalent circuit. 周波数f[Hz]の矩形波交流電圧の波形を示す図である。It is a figure which shows the waveform of the rectangular wave alternating voltage of frequency f [Hz]. 図15に示した周波数f[Hz]の矩形波交流電圧の波形を電極間に印加した場合の、図13のコンデンサーAにおける電圧波形を示す図である。It is a figure which shows the voltage waveform in the capacitor | condenser A of FIG. 13 at the time of applying the waveform of the rectangular wave alternating voltage of the frequency f [Hz] shown in FIG. 15 between electrodes. 図15に示した周波数f[Hz]の矩形波交流電圧の波形を電極間に印加した場合の、図13のコンデンサーAにおける電流波形を示す図である。It is a figure which shows the electric current waveform in the capacitor | condenser A of FIG. 13 at the time of applying the waveform of the rectangular wave alternating voltage of the frequency f [Hz] shown in FIG. 15 between electrodes. 周波数f[Hz]の正弦波交流電圧の波形を示す図である。It is a figure which shows the waveform of the sine wave alternating voltage of frequency f [Hz]. 図18に示した周波数f[Hz]の正弦波交流電圧の波形を電極間に印加した場合の、図13のコンデンサーAにおける電圧波形または電流波形を示す図である。It is a figure which shows the voltage waveform or current waveform in the capacitor | condenser A of FIG. 13 at the time of applying the waveform of the sine wave alternating voltage of the frequency f [Hz] shown in FIG. 18 between electrodes. 本発明の細胞融合方法の第1の例を示す図である。It is a figure which shows the 1st example of the cell fusion method of this invention. 本発明の細胞融合方法の第2の例を示す図である。It is a figure which shows the 2nd example of the cell fusion method of this invention. 本発明の細胞融合方法の第3の例を示す図である。It is a figure which shows the 3rd example of the cell fusion method of this invention. 一般的なフォトリソグラフィーとエッチング方法の概略図である。It is the schematic of general photolithography and the etching method. 本発明の比較例3で用いた細胞融合装置の概念図である。It is a conceptual diagram of the cell fusion apparatus used in the comparative example 3 of this invention. 図29に示した細胞融合容器のCC’断面図である。It is CC 'sectional drawing of the cell fusion container shown in FIG. 本発明における微細孔形状例の第1の図である。It is a 1st figure of the fine hole shape example in this invention. 本発明における微細孔形状例の第2の図である。It is a 2nd figure of the micropore shape example in this invention. 本発明における微細孔の形状が正方形の場合の細胞融合装置の一例を示す図である。It is a figure which shows an example of the cell fusion apparatus in case the shape of the micropore in this invention is a square.

符号の説明Explanation of symbols

1:細胞融合領域
2:電極
3:導電線
4:電源
5:交流電源
6:細胞懸濁液
7:現像液
8:絶縁体
9:微細孔
10:細胞A
11:細胞B
12:電気力線
13:細胞融合容器
14:上部電極
15:下部電極
16:スペーサー
17:微細孔A
18:第1の細胞
19:導入口
20:排出口
21:微細孔B
22:第2の細胞
23:ITO
24:パイレックス(登録商標)ガラス
25:レジスト
26:露光用フォトマスク
27:露光
28:微細孔付き絶縁体一体型下部電極
29:コンデンサーA
30:コンデンサーB
31:抵抗
32:融合細胞
1: Cell fusion region 2: Electrode 3: Conductive wire 4: Power supply 5: AC power supply 6: Cell suspension 7: Developer 8: Insulator 9: Micropore 10: Cell A
11: Cell B
12: Electric lines of force 13: Cell fusion container 14: Upper electrode 15: Lower electrode 16: Spacer 17: Micropore A
18: first cell 19: inlet 20: outlet 21: micropore B
22: Second cell 23: ITO
24: Pyrex (registered trademark) glass 25: Resist 26: Photomask for exposure 27: Exposure 28: Insulator-integrated lower electrode with fine holes 29: Capacitor A
30: Capacitor B
31: Resistance 32: Fusion cell

Claims (21)

細胞融合領域内に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した1または複数の微細孔を形成した平板状の絶縁体からなる細胞融合容器と、前記一対の電極に交流電圧を印加する電源と、を備えた細胞融合装置。 A pair of electrodes made of conductive members arranged opposite to each other in the cell fusion region, and a flat spacer disposed between the pair of electrodes and penetrating in the direction of the oppositely arranged electrodes A cell fusion device comprising: a cell fusion container made of a flat insulator having one or a plurality of micropores; and a power source for applying an alternating voltage to the pair of electrodes. 絶縁体に形成される微細孔が、1つの微細孔につき1つの細胞を固定できる形状であることを特徴とする請求項1に記載の細胞融合装置。 The cell fusion device according to claim 1, wherein the micropore formed in the insulator has a shape capable of fixing one cell per micropore. 電源により、1つの微細孔につき1つの細胞を微細孔に固定する波形を有する交流電圧が前記電極間に印加されることを特徴とする請求項1または請求項2に記載の細胞融合装置。 The cell fusion device according to claim 1 or 2, wherein an AC voltage having a waveform for fixing one cell to each micropore is applied between the electrodes by a power source. 電源により、前記微粒子の充電と放電を周期的に繰り返す波形を有する交流電圧が前記電極間に印加されることを特徴とする請求項1〜3のいずれかに記載の細胞融合装置。 The cell fusion device according to any one of claims 1 to 3, wherein an AC voltage having a waveform in which charging and discharging of the fine particles are periodically repeated is applied between the electrodes by a power source. 前記交流電圧の波形が、0以外の値を有する電圧が一定時間変化しない時間を半周期内に少なくとも1以上有する波形であることを特徴とする請求項1〜4のいずれかに記載の細胞融合装置。 The cell fusion according to any one of claims 1 to 4, wherein the waveform of the AC voltage is a waveform having at least one or more times in a half cycle in which a voltage having a value other than 0 does not change for a certain period of time. apparatus. 前記交流電圧の波形が、矩形波、台形波、またはこれらを組み合わせた波形であることを特徴とする請求項1〜5のいずれかに記載の細胞融合装置。 The cell fusion device according to any one of claims 1 to 5, wherein the waveform of the AC voltage is a rectangular wave, a trapezoidal wave, or a combination of these. 前記交流電圧の波形が、0以外の値を有する電圧が一定時間変化しない時間が細胞の静電容量と細胞を含有する細胞懸濁液の抵抗の積からなる時定数以上であることを特徴とする請求項1〜6のいずれかに記載の細胞融合装置。 The AC voltage waveform has a time during which a voltage having a value other than 0 does not change for a certain period of time is equal to or more than a time constant consisting of the product of the capacitance of the cell and the resistance of the cell suspension containing the cell. The cell fusion device according to any one of claims 1 to 6. 微細孔の平面形状に内接する最大円の直径が、微細孔に固定する細胞の直径の1以上2倍未満の範囲であり、かつ微細孔の深さが、微細孔に固定する細胞の直径以下であることを特徴とする請求項1〜7のいずれかに記載の細胞融合装置。 The diameter of the maximum circle inscribed in the planar shape of the micropore is in the range of 1 to less than twice the diameter of the cell fixed in the micropore, and the depth of the micropore is equal to or less than the diameter of the cell fixed in the micropore. The cell fusion device according to claim 1, wherein the device is a cell fusion device. 絶縁体が、電極のうちどちらか一方の電極の細胞融合領域側の電極面上に配置されている、請求項1〜8のいずれかに記載の細胞融合装置。 The cell fusion device according to any one of claims 1 to 8, wherein the insulator is disposed on the electrode surface on the cell fusion region side of one of the electrodes. 絶縁体に形成される複数の微細孔が、絶縁体の面において、いずれの微細孔からも隣合う微細孔の位置が同じ位置に形成されていることを特徴とする請求項1〜9のいずれかに記載の細胞融合装置。 The plurality of micro holes formed in the insulator are formed in the same position on the surface of the insulator, the positions of the micro holes adjacent to each other from any micro hole. A cell fusion device according to claim 1. 絶縁体に形成される複数の微細孔が、絶縁体の面においてアレイ状に形成されていることを特徴とする請求項1〜10のいずれかに記載の細胞融合装置。 The cell fusion device according to any one of claims 1 to 10, wherein a plurality of micropores formed in the insulator are formed in an array on the surface of the insulator. 微細孔の隣合う間隔が、微細孔に入れる細胞の直径の0.5倍以上6倍以下の範囲であることを特徴とする請求項1〜6のいずれかに記載の細胞融合装置。 The cell fusion device according to any one of claims 1 to 6, wherein the interval between adjacent micropores is in the range of 0.5 to 6 times the diameter of the cells to be inserted into the micropores. スペーサーが、細胞融合領域を形成する貫通孔を有することを特徴とする請求項1〜12のいずれかに記載の細胞融合装置。 The cell fusion device according to any one of claims 1 to 12, wherein the spacer has a through-hole forming a cell fusion region. スペーサーが、細胞を導入する導入流路および排出する排出流路を有することを特徴とする請求項1〜13のいずれかに記載の細胞融合装置。 The cell fusion device according to any one of claims 1 to 13, wherein the spacer has an introduction channel for introducing cells and a discharge channel for discharging cells. 前記絶縁体が親水性であることを特徴とする請求項1〜14のいずれかに記載の細胞融合装置。 The cell fusion device according to claim 1, wherein the insulator is hydrophilic. 前記微細孔の平面形状が、1以上の角を有する形状であることを特徴とする請求項1〜15のいずれかに記載の細胞融合装置。 The cell fusion device according to any one of claims 1 to 15, wherein the planar shape of the micropore is a shape having one or more corners. 前記微細孔の平面形状が、四辺形であることを特徴とする請求項16に記載の細胞融合装置。 The cell fusion device according to claim 16, wherein the planar shape of the micropore is a quadrilateral. 請求項1〜17のいずれかに記載の細胞融合装置を用いた細胞融合方法であって、前記細胞融合領域内に第1の細胞を導入し、交流電圧を印加することで前記微細孔内に前記第1の細胞を固定した後、前記細胞融合領域内に第2の細胞を導入して、交流電圧を印加することで前記第1の細胞に前記第2の細胞を微細孔の位置において接触させ化学的に細胞を融合することを特徴とする細胞融合方法。 A cell fusion method using the cell fusion device according to any one of claims 1 to 17, wherein a first cell is introduced into the cell fusion region, and an alternating voltage is applied to the inside of the micropore. After fixing the first cell, the second cell is introduced into the cell fusion region, and the second cell is brought into contact with the first cell at the position of the micropore by applying an alternating voltage. A cell fusion method characterized by chemically fusing cells. 請求項18記載の交流電圧が、請求項3〜7のいずれかに記載の波形を有する交流電圧であることを特徴とする請求項18記載の細胞融合方法。 The cell fusion method according to claim 18, wherein the AC voltage according to claim 18 is an AC voltage having the waveform according to any one of claims 3 to 7. 細胞を細胞膜の流動性を高める物質を加えた細胞懸濁液に入れることを特徴とする請求項18または請求項19に記載の細胞融合方法。 20. The cell fusion method according to claim 18 or 19, wherein the cells are placed in a cell suspension added with a substance that enhances the fluidity of the cell membrane. 前記細胞膜の流動性を高める物質が、ポリエチレングリコールであることを特徴とする請求項18〜20のいずれかに記載の細胞融合方法。 21. The cell fusion method according to claim 18, wherein the substance that enhances the fluidity of the cell membrane is polyethylene glycol.
JP2007010810A 2006-04-03 2007-01-19 Cell fusion device and cell fusion method using the same Active JP4910716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010810A JP4910716B2 (en) 2006-04-03 2007-01-19 Cell fusion device and cell fusion method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006102383 2006-04-03
JP2006102383 2006-04-03
JP2007010810A JP4910716B2 (en) 2006-04-03 2007-01-19 Cell fusion device and cell fusion method using the same

Publications (2)

Publication Number Publication Date
JP2007295922A true JP2007295922A (en) 2007-11-15
JP4910716B2 JP4910716B2 (en) 2012-04-04

Family

ID=38765969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010810A Active JP4910716B2 (en) 2006-04-03 2007-01-19 Cell fusion device and cell fusion method using the same

Country Status (1)

Country Link
JP (1) JP4910716B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128483A1 (en) * 2008-04-15 2009-10-22 東ソー株式会社 Cell selection apparatus, and cell selection method using the same
JP2009254292A (en) * 2008-04-17 2009-11-05 Tosoh Corp Cell fusion apparatus and cell fusion method
JP2010130946A (en) * 2008-12-04 2010-06-17 Kawasaki Heavy Ind Ltd Cell coupling module, cell coupling device and cell coupling method
US8697446B2 (en) 2005-06-13 2014-04-15 Tosoh Corporation Cell fusion chamber, cell fusion device, and method for cell fusion using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679844B (en) * 2017-10-19 2023-08-22 苏州壹达生物科技有限公司 Flow electroporation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609490A (en) * 1983-06-11 1985-01-18 ケルンフオルシユングスアンラ−ゲ・ユ−リツヒ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Cell fusing method
JPS60251874A (en) * 1984-05-30 1985-12-12 Hitachi Ltd Apparatus for handling fine particle
JPS6222587A (en) * 1985-07-19 1987-01-30 Hitachi Ltd Device for cell fusion
JPS63181992A (en) * 1987-01-24 1988-07-27 Advance Co Ltd Operating device for fine particle
JPS63230070A (en) * 1987-03-18 1988-09-26 Shimadzu Corp Cell fusion chamber
JPH01144968A (en) * 1987-12-02 1989-06-07 Hitachi Ltd Electrical cell-fusion apparatus
JPH0937762A (en) * 1995-06-26 1997-02-10 Norin Suisansyo Nogyo Seibutsu Shigen Kenkyusho Flow chamber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609490A (en) * 1983-06-11 1985-01-18 ケルンフオルシユングスアンラ−ゲ・ユ−リツヒ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Cell fusing method
JPS60251874A (en) * 1984-05-30 1985-12-12 Hitachi Ltd Apparatus for handling fine particle
JPS6222587A (en) * 1985-07-19 1987-01-30 Hitachi Ltd Device for cell fusion
JPS63181992A (en) * 1987-01-24 1988-07-27 Advance Co Ltd Operating device for fine particle
JPS63230070A (en) * 1987-03-18 1988-09-26 Shimadzu Corp Cell fusion chamber
JPH01144968A (en) * 1987-12-02 1989-06-07 Hitachi Ltd Electrical cell-fusion apparatus
JPH0937762A (en) * 1995-06-26 1997-02-10 Norin Suisansyo Nogyo Seibutsu Shigen Kenkyusho Flow chamber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697446B2 (en) 2005-06-13 2014-04-15 Tosoh Corporation Cell fusion chamber, cell fusion device, and method for cell fusion using the same
WO2009128483A1 (en) * 2008-04-15 2009-10-22 東ソー株式会社 Cell selection apparatus, and cell selection method using the same
EP2270126A1 (en) * 2008-04-15 2011-01-05 Tosoh Corporation Cell selection apparatus, and cell selection method using the same
EP2270126A4 (en) * 2008-04-15 2011-04-20 Tosoh Corp Cell selection apparatus, and cell selection method using the same
CN102066547A (en) * 2008-04-15 2011-05-18 东曹株式会社 Cell selection apparatus, and cell selection method using the same
JP2009254292A (en) * 2008-04-17 2009-11-05 Tosoh Corp Cell fusion apparatus and cell fusion method
JP2010130946A (en) * 2008-12-04 2010-06-17 Kawasaki Heavy Ind Ltd Cell coupling module, cell coupling device and cell coupling method

Also Published As

Publication number Publication date
JP4910716B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US8697446B2 (en) Cell fusion chamber, cell fusion device, and method for cell fusion using the same
JP4910716B2 (en) Cell fusion device and cell fusion method using the same
US20050112548A1 (en) Unit for detecting interaction between substances utilizing capillarity, and method and bioassay substrate using the detecting unit
JP5170770B2 (en) Cell patterning method
US20090071831A1 (en) Methods and systems for producing arrays of particles
JP2007296510A (en) Fine particle operation apparatus and fine particle operation method
US20090000948A1 (en) Methods for Improving Efficiency of Cell Electroporation Using Dielectrophoreses
JP2010011824A (en) Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same
WO2018168212A1 (en) Method for electrochemically producing hydrogel, method for producing hydrogel having pattern formed of cells, hydrogel production device, and transducer
US20080206828A1 (en) Device For Introducing Substance Into Cell, Cell Clamping Device and Flow Path Forming Method
KR100723427B1 (en) Device and method for printing bio-drop on a substrate
JP2008054630A (en) Cell fusion device and cell fusion method using the same
JP4918811B2 (en) Cell fusion chamber, cell fusion device, and cell fusion method using them
Lee et al. Rapid fabrication of nanoparticles array on polycarbonate membrane based on positive dielectrophoresis
JP2008194029A (en) Cell fusion apparatus and cell fusion method using the same
JP2008259493A (en) Cell fusion apparatus and cell fusion method using the same
JP2011111373A (en) Method for producing member with hydrophilized surface
AU2020263374B2 (en) Dielectrophoretic immobilization of a particle in proximity to a cavity for interfacing
JP2008307454A (en) Method for hydrophilizing substrate surface, hydrophilic member, and container and apparatus for handling microparticles employing the same
US11261465B2 (en) Method and system for incorporation of biomolecules into vesicles, cells, and micelles using electroactive porous device membrane
JP2008260008A (en) Fine-particle operation apparatus and fine-particle operation method using it
Hashimoto et al. Design of surface electrode for measurement of electric impedance of arrangement of cells oriented on micro striped pattern
JP2010022360A (en) Vessel for introducing fine particle suspension, cell fusion vessel using the same, and cell fusion device
Zhou et al. On application of positive dielectrophoresis and microstructure confinement on multielectrode array with sensory applications
JP2009254292A (en) Cell fusion apparatus and cell fusion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R151 Written notification of patent or utility model registration

Ref document number: 4910716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3