JP2007292893A - Liquid crystal alignment layer and application liquid for liquid crystal alignment layer - Google Patents

Liquid crystal alignment layer and application liquid for liquid crystal alignment layer Download PDF

Info

Publication number
JP2007292893A
JP2007292893A JP2006118553A JP2006118553A JP2007292893A JP 2007292893 A JP2007292893 A JP 2007292893A JP 2006118553 A JP2006118553 A JP 2006118553A JP 2006118553 A JP2006118553 A JP 2006118553A JP 2007292893 A JP2007292893 A JP 2007292893A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal alignment
alignment film
fine particles
diamond fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006118553A
Other languages
Japanese (ja)
Other versions
JP4659668B2 (en
Inventor
Shigeru Shiozaki
茂 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iinuma Gauge Manufacturing Co Ltd
Fujimura Tadamasa
Original Assignee
Iinuma Gauge Manufacturing Co Ltd
Fujimura Tadamasa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iinuma Gauge Manufacturing Co Ltd, Fujimura Tadamasa filed Critical Iinuma Gauge Manufacturing Co Ltd
Priority to JP2006118553A priority Critical patent/JP4659668B2/en
Publication of JP2007292893A publication Critical patent/JP2007292893A/en
Application granted granted Critical
Publication of JP4659668B2 publication Critical patent/JP4659668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal alignment layer by which burning of a screen is hardly caused and to provide an application liquid for forming the liquid crystal alignment layer. <P>SOLUTION: The liquid crystal alignment layer has anisotropic conductivity by making the application liquid for the liquid crystal alignment layer contain diamond fine particles each having a graphite layer into and making the liquid crystal alignment layer contain the diamond fine particles each having the graphite layer. The diamond fine particles are contained in a secondary particle state in the application liquid for the liquid crystal alignment layer and median size of a secondary particle is 0.7 to 2 times as thick as the film thickness of the liquid crystal alignment layer and is 30 to 500 nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液晶配向膜及び液晶配向膜を形成するための塗布液に関する。   The present invention relates to a liquid crystal alignment film and a coating liquid for forming a liquid crystal alignment film.

近年、液晶表示装置は携帯電話、携行用テレビジョン、モバイル機器、パーソナルコンピュータ、電子手帳及び電子ゲーム機器その他の電子機器の表示手段として多く利用されている。液晶表示装置において液晶層を挟持するガラス基板には、液晶層に電圧を印加する透明電極や液晶を配向させる薄膜が設けられており、液晶層に電圧を印加して液晶分子の配向状態を変化させることによって表示が行われる。   2. Description of the Related Art In recent years, liquid crystal display devices are widely used as display means for mobile phones, portable televisions, mobile devices, personal computers, electronic notebooks, electronic game devices, and other electronic devices. In a liquid crystal display device, a glass substrate sandwiching a liquid crystal layer is provided with a transparent electrode for applying a voltage to the liquid crystal layer and a thin film for aligning the liquid crystal, and the voltage is applied to the liquid crystal layer to change the alignment state of the liquid crystal molecules. Display is performed.

液晶配向膜は液晶層に接触するように基板に設けられ、液晶分子を一定方向に配向させるという役割の他、基板平面に対して一定の角度に傾ける(プレチルト角を付与する)という役割も担っている。液晶配向膜は、液晶表示装置の特性に大きな影響を与えるもので、工業的にはポリイミド等からなる膜を布で一定方向にこするラビング法によって作製されている。   The liquid crystal alignment film is provided on the substrate so as to be in contact with the liquid crystal layer, and in addition to the role of aligning liquid crystal molecules in a certain direction, it also has a role of tilting at a certain angle with respect to the substrate plane (providing a pretilt angle). ing. The liquid crystal alignment film has a great influence on the characteristics of the liquid crystal display device, and is industrially manufactured by a rubbing method in which a film made of polyimide or the like is rubbed in a certain direction with a cloth.

ところで、透明電極によって液晶層に電圧を印加して液晶表示装置に像を表示しているうちに、画面に焼付きが起こる場合がある。焼付きとは、液晶表示装置に同一パターンを長時間表示し続けたときに、画面を切り替えても前の表示パターンが残る現象である。これは液晶表示装置の透明電極間に電圧を印加した際に、液晶中に含まれるイオン性の不純物が液晶配向膜に吸着するために生じると推定される。そのため、液晶中のイオン性物質を除去することによって焼付きを低減できると考えられるが、液晶中のイオン性物質量を低減することは工業的に限度がある。一方で、液晶表示装置に求められる表示品質はますます高まっており、焼付きを起こし難い液晶配向膜が望まれている。   By the way, while a voltage is applied to the liquid crystal layer by the transparent electrode and an image is displayed on the liquid crystal display device, image sticking may occur on the screen. Burn-in is a phenomenon in which the previous display pattern remains even if the screen is switched when the same pattern is continuously displayed on the liquid crystal display device. It is presumed that this occurs because an ionic impurity contained in the liquid crystal is adsorbed to the liquid crystal alignment film when a voltage is applied between the transparent electrodes of the liquid crystal display device. For this reason, it is considered that image sticking can be reduced by removing the ionic substance in the liquid crystal, but reducing the amount of the ionic substance in the liquid crystal has an industrial limit. On the other hand, the display quality required for a liquid crystal display device is increasing, and a liquid crystal alignment film that hardly causes seizure is desired.

液晶配向膜が異方導電性を有するようにすることによっても、焼付きを低減できると考えられている。つまり、膜の平面方向は導電性を示さない一方で膜厚方向には導電性を示すようにすることによって、液晶層に電圧を印加し易くし、焼付きを防止できると考えられる。液晶配向膜に用いられる薄膜は導電性を有しないものであるが、これに導電性の材料を添加することによって、液晶配向膜が異方導電性を有するようにすることができる。しかし、導電性を有する材料であっても、液晶配向膜に添加することが望ましくない場合が多い。なぜなら、導電性を有する材料を添加することによって、液晶配向膜に求められる特性を損なってしまうことがあるからである。例えば、液晶に対して安定で液晶の特性を変えないという性質、液晶を配向させるという液晶配向膜自身の特性を変えないという性質、液晶配向膜に求められる透明性を損なわないという性質も兼ね備えた材料でなければ、液晶配向膜に添加すべきでない。さらに、液晶配向膜の製造工程は一般に高分子材料又はその前駆体の溶液を塗布する工程を有するので、導電性材料はこの溶液に分散し易いことが望まれる。   It is considered that image sticking can also be reduced by making the liquid crystal alignment film have anisotropic conductivity. In other words, it is considered that by applying conductivity in the film thickness direction while not showing conductivity in the planar direction of the film, voltage can be easily applied to the liquid crystal layer and seizure can be prevented. Although the thin film used for the liquid crystal alignment film has no conductivity, the liquid crystal alignment film can have anisotropic conductivity by adding a conductive material thereto. However, it is often undesirable to add a conductive material to the liquid crystal alignment film. This is because the addition of a conductive material may impair the characteristics required for the liquid crystal alignment film. For example, it has the property of being stable with respect to liquid crystal and not changing the properties of the liquid crystal, the property of aligning the liquid crystal without changing the properties of the liquid crystal alignment film itself, and the property of not impairing the transparency required for the liquid crystal alignment film. If it is not a material, it should not be added to the liquid crystal alignment film. Furthermore, since the manufacturing process of the liquid crystal alignment film generally includes a process of applying a solution of a polymer material or a precursor thereof, it is desirable that the conductive material be easily dispersed in this solution.

特開2003-5187号(特許文献1)は、2枚の液晶表示装置用基板の間に液晶を介してなり、前記液晶表示装置用基板の液晶に接する面の側に配向膜を有している液晶表示装置において、液晶の体積抵抗値をR1c、配向膜の体積抵抗値をRa1とする場合に、0.98×R1cRa1の関係を満足する液晶表示装置を開示している。また特許文献1には、液晶配向膜の体積抵抗値を所望の範囲にするために、酸化インジウム、酸化錫、酸化インジウム錫、カドニウムドープ酸化錫、酸化チタン、二酸化チタン、酸化亜鉛のような金属酸化物微粒子を配向膜に添加することが記載されている。上述のように、液晶配向膜の導電性は焼付きの起こり易さに影響すると考えられるので、特許文献1に記載のように液晶の体積抵抗値と配向膜の体積抵抗値が所望の関係を満たすようにすることで、焼付きを防止しうると考えられる。しかし、液晶表示装置の使用時には液晶及び液晶配向膜に大きな電圧がかけられるので、特許文献1に記載のように液晶配向膜に金属酸化物微粒子を添加すると、液晶表示装置を長期間にわたって使用しているうちに、金属酸化物微粒子が液晶を変質させてしまう虞れがある。つまり、金属酸化物微粒子を含有する液晶配向膜は、信頼性に劣るという問題がある。 Japanese Patent Application Laid-Open No. 2003-5187 (Patent Document 1) has a liquid crystal interposed between two substrates for a liquid crystal display device, and has an alignment film on the side of the liquid crystal display device substrate in contact with the liquid crystal. In this liquid crystal display device, a liquid crystal display device satisfying the relationship of 0.98 × R1c > Ra1 when the volume resistance value of the liquid crystal is R1c and the volume resistance value of the alignment film is Ra1 is disclosed. Patent Document 1 discloses a metal such as indium oxide, tin oxide, indium tin oxide, cadmium-doped tin oxide, titanium oxide, titanium dioxide, and zinc oxide in order to bring the volume resistance value of the liquid crystal alignment film into a desired range. It is described that oxide fine particles are added to an alignment film. As described above, since the conductivity of the liquid crystal alignment film is considered to affect the likelihood of image sticking, the volume resistance value of the liquid crystal and the volume resistance value of the alignment film have a desired relationship as described in Patent Document 1. It is considered that seizure can be prevented by satisfying this condition. However, when a liquid crystal display device is used, a large voltage is applied to the liquid crystal and the liquid crystal alignment film. Therefore, when metal oxide fine particles are added to the liquid crystal alignment film as described in Patent Document 1, the liquid crystal display device is used for a long period of time. In the meantime, the metal oxide fine particles may deteriorate the liquid crystal. That is, there is a problem that the liquid crystal alignment film containing metal oxide fine particles is inferior in reliability.

特開2003-5187号JP2003-5187

従って本発明の目的は、異方導電性を有しつつ液晶配向膜の特性が損なわれない液晶配向膜、及び係る液晶配向膜を形成するための塗布液を提供することである。   Accordingly, an object of the present invention is to provide a liquid crystal alignment film that has anisotropic conductivity and does not impair the properties of the liquid crystal alignment film, and a coating liquid for forming the liquid crystal alignment film.

上記目的に鑑み鋭意研究の結果、本発明者らは、液晶表示装置の基板に設けられる液晶配向膜がグラファイト層を有するダイヤモンド微粒子を含有するようにすることによって、液晶配向膜の特性を損なうことなく、液晶配向膜が異方導電性を有するようにできることを発見し、本発明に想到した。   As a result of intensive studies in view of the above object, the present inventors impair the characteristics of the liquid crystal alignment film by making the liquid crystal alignment film provided on the substrate of the liquid crystal display device contain diamond fine particles having a graphite layer. Thus, the present inventors have found that the liquid crystal alignment film can have anisotropic conductivity and have arrived at the present invention.

すなわち、本発明の液晶配向膜用塗布液は、グラファイト層を有するダイヤモンド微粒子を含有することを特徴とする。   That is, the coating liquid for a liquid crystal alignment film of the present invention contains diamond fine particles having a graphite layer.

ダイヤモンド微粒子は液晶配向膜用塗布液に2次粒子の状態で含まれており、2次粒子のメジアン径は、前記液晶配向膜の膜厚の0.7〜2倍であるのが好ましい。前記ダイヤモンド微粒子の2次粒子のメジアン径は30〜500 nmであるのが好ましい。   The diamond fine particles are contained in the liquid crystal alignment film coating solution in the form of secondary particles, and the median diameter of the secondary particles is preferably 0.7 to 2 times the film thickness of the liquid crystal alignment film. The median diameter of secondary particles of the diamond fine particles is preferably 30 to 500 nm.

本発明の液晶配向膜は、グラファイト層を有するダイヤモンド微粒子を含有することを特徴とする。   The liquid crystal alignment film of the present invention is characterized by containing diamond fine particles having a graphite layer.

前記ダイヤモンド微粒子からなる2次粒子の粒径が前記液晶配向膜の膜厚の0.7〜2倍であるのが好ましい。液晶配向膜に含まれるダイヤモンド微粒子の2次粒子のメジアン径は、30〜500 nmであるのが好ましい。   It is preferable that the particle diameter of the secondary particles made of the diamond fine particles is 0.7 to 2 times the film thickness of the liquid crystal alignment film. The median diameter of secondary particles of diamond fine particles contained in the liquid crystal alignment film is preferably 30 to 500 nm.

本発明の液晶配向膜用塗布液を基板に塗布することにより、グラファイト層を有するダイヤモンド微粒子を含有する液晶配向膜を得ることができる。グラファイト層を有するダイヤモンド微粒子を液晶配向膜に添加しても、液晶配向膜に求められる性質は損なわれない。グラファイト層を有するダイヤモンド微粒子を含有する液晶配向膜は、異方導電性を示す。   By applying the liquid crystal alignment film coating liquid of the present invention to a substrate, a liquid crystal alignment film containing diamond fine particles having a graphite layer can be obtained. Even if diamond fine particles having a graphite layer are added to the liquid crystal alignment film, the properties required for the liquid crystal alignment film are not impaired. A liquid crystal alignment film containing diamond fine particles having a graphite layer exhibits anisotropic conductivity.

[1] 液晶配向膜用塗布液
液晶配向膜は液晶表示装置の基板に設けられ、液晶分子を所定の方向に揃えるための有機薄膜である。液晶配向膜は、樹脂成分等を含む液晶配向膜用塗布液を液晶表示装置の基板に塗布し、硬化させる等して設けられる。
[1] Coating liquid for liquid crystal alignment film The liquid crystal alignment film is an organic thin film provided on a substrate of a liquid crystal display device to align liquid crystal molecules in a predetermined direction. The liquid crystal alignment film is provided by applying a liquid crystal alignment film coating liquid containing a resin component or the like to a substrate of a liquid crystal display device and curing the liquid.

(1) ダイヤモンド微粒子
ダイヤモンド微粒子は、ナノメートルオーダーの粒径を有するダイヤモンド微粒子の個体が最低限4個、通常数10個〜数100個程度凝集したものである。ダイヤモンド微粒子の2次粒子のメジアン径(中央値)は、液晶配向膜の膜厚の0.7〜2倍であるのが好ましく、0.75〜1.8倍であるのがより好ましく、0.8〜1.7倍であるのが特に好ましい。2次粒子のメジアン径が液晶配向膜の膜厚の0.7倍未満であると、液晶配向膜の厚さに対して小さ過ぎるために、液晶配向膜が十分な異方導電性を示すようにするために添加すべきダイヤモンド微粒子が多過ぎる。2次粒子のメジアン径が200 nm超であると、液晶配向膜の厚さに対して大き過ぎるために、ダイヤモンド微粒子が液晶配向膜から欠落し易い。粒度分布測定装置(例えば堀場製作所製HORIBA LB-500)を使用すると、ダイヤモンド微粒子径を測定することができる。
(1) Diamond fine particles Diamond fine particles are formed by agglomerating at least four, usually several tens to several hundreds of diamond fine particles having a particle size of nanometer order. The median diameter (median value) of the secondary particles of the diamond fine particles is preferably 0.7 to 2 times the film thickness of the liquid crystal alignment film, more preferably 0.75 to 1.8 times, and 0.8 to 1.7 times. Is particularly preferred. If the median diameter of the secondary particles is less than 0.7 times the thickness of the liquid crystal alignment film, the liquid crystal alignment film exhibits sufficient anisotropic conductivity because it is too small with respect to the thickness of the liquid crystal alignment film. Therefore, there are too many diamond fine particles to be added. If the median diameter of the secondary particles is more than 200 nm, the diamond fine particles are likely to be missing from the liquid crystal alignment film because it is too large for the thickness of the liquid crystal alignment film. When a particle size distribution measuring device (for example, HORIBA LB-500 manufactured by Horiba, Ltd.) is used, the diamond fine particle diameter can be measured.

ダイヤモンド2次微粒子のうち95%は30〜1000 nmの範囲に粒径を有するのが好ましく、粒径1000 nm以上のもの及び粒径30 nm以下のものを実質的に含んでいないのがより好ましい。ダイヤモンド微粒子の2次粒子の粒径は、電気泳動光散乱光度計モデルELS-8000を用いた動的光散乱測定の結果によるものでもよい。電気泳動光散乱法の測定範囲は1.4 nm〜5μmでもよい。この範囲にある粒子は、液中で並進、回転、屈折等のブラウン運動を行っており、その位置、方位、形態を時云刻云変えている。電気泳動光散乱法は、この現象を利用し、媒体中を沈降する粒子の大きさと沈降速度の関係から粒径を測定するものである。具体的には、ブラウン運動をしている粒子にレーザ光を照射すると、粒子によって散乱した光は各粒子の粒径に対応したユラギを示す。光子検出法を用いてこのユラギを観測し、結果を光子相関法(ランダム変動の解析手法の一つ;理化学辞典)を用いて解析することによって、粒径を求めることができる。所望の2次粒径のダイヤモンド微粒子を得るには、遠心分離装置を用いて分級すればよい。本明細書中、特に断らない場合は、「ダイヤモンド微粒子」は1次粒子及び2次粒子を含む。   Of the secondary diamond fine particles, 95% preferably have a particle size in the range of 30 to 100 nm, more preferably substantially free of particles having a particle size of 1000 nm or more and particles having a particle size of 30 nm or less. . The particle size of the secondary particles of the diamond fine particles may be based on the result of dynamic light scattering measurement using an electrophoretic light scattering photometer model ELS-8000. The measurement range of the electrophoretic light scattering method may be 1.4 nm to 5 μm. Particles in this range undergo Brownian motions such as translation, rotation, and refraction in the liquid, and their positions, orientations, and forms are changed over time. The electrophoretic light scattering method uses this phenomenon to measure the particle size from the relationship between the size of particles that settle in the medium and the sedimentation speed. More specifically, when laser light is irradiated onto particles that are in Brownian motion, the light scattered by the particles exhibits a sag corresponding to the particle size of each particle. The particle size can be obtained by observing this fluctuation using the photon detection method and analyzing the result using the photon correlation method (one of the random fluctuation analysis methods; physics and chemistry dictionary). In order to obtain diamond fine particles having a desired secondary particle size, classification may be performed using a centrifugal separator. In this specification, unless otherwise specified, “diamond fine particles” include primary particles and secondary particles.

ダイヤモンド微粒子は、CuのKα線を線源とするX線回析スペクトル(XD)において、ブラッグ(Bragg)角(2θ±2°)43.9°に最も強いピークを有し、73.5°、95°に特徴的な強いピークを有するのが好ましい。またブラッグ角17°に強く偏在したハローがあり、26.5°にピークが実質的にないのが好ましい。   Diamond fine particles have the strongest peak at Bragg angle (2θ ± 2 °) of 43.9 ° in X-ray diffraction spectrum (XD) using Cu Kα ray as the source, and at 73.5 ° and 95 °. Preferably it has a characteristic strong peak. Further, it is preferable that there is a strongly distributed halo at a Bragg angle of 17 ° and there is substantially no peak at 26.5 °.

ダイヤモンド微粒子は少なくとも表面の一部にグラファイトからなる層を有するので、導電性を示す。ダイヤモンド微粒子がグラファイト層を有することは、透過型電子顕微鏡(TEM)を用いて観察することによって確認できる。またダイヤモンド微粒子表面の炭素には、アルキル基、カルボキシル基、カルボニル基、水酸基、ニトロ基、アミノ基等の官能基が結合している。このように表面に多くの官能基を有するダイヤモンド微粒子は優れた分散性を有しており、大きなpH変化が無ければ、数ヶ月保存してもほとんど沈降しない。このようなダイヤモンド微粒子は、超分散性ダイヤモンド(Ultra Dispersed Diamond)と呼ばれている。   Since the diamond fine particles have a layer made of graphite on at least a part of the surface, they exhibit conductivity. It can be confirmed that the diamond fine particles have a graphite layer by observing with a transmission electron microscope (TEM). Further, functional groups such as alkyl groups, carboxyl groups, carbonyl groups, hydroxyl groups, nitro groups, and amino groups are bonded to carbon on the surface of the diamond fine particles. Thus, the diamond fine particles having a large number of functional groups on the surface have excellent dispersibility, and if there is no large pH change, they hardly precipitate even after being stored for several months. Such diamond fine particles are called ultra-dispersed diamond.

グラファイト層を有し、かつ上述のような粒径及び凝集状態のダイヤモンド微粒子を得られる限り、原料の製造方法は特に限定されない。ダイヤモンドの合成法としては爆射法、フラックス法、高温高圧法等が知られているが、これらのうち好ましいのは爆射法である。爆射法は爆薬を爆発させる等によって動的な衝撃を加え、グラファイト構造の原料物質をダイヤモンド構造の粒子に直接変換し、粒状のダイヤモンドを得る方法である。爆射法によって粗ダイヤモンド(ダイヤモンドブレンド、以下はDBという)を作製し、これに適当な後処理をすることによって、狭い粒径分布で良好な分散状態のダイヤモンド微粒子を得ることができる。また爆射後に処理を施していないDBや処理過程にある微粒子も、ダイヤモンドからなるコアとグラファイト層とを有するので、本発明の液晶配向膜用塗布液が含有し得るダイヤモンド微粒子の範疇である。   The raw material production method is not particularly limited as long as it has a graphite layer and can obtain diamond fine particles having a particle size and an agglomerated state as described above. As a method for synthesizing diamond, an explosion method, a flux method, a high-temperature and high-pressure method, and the like are known. Of these, the explosion method is preferable. The explosion method is a method in which a dynamic impact is applied by exploding an explosive or the like, and a raw material material having a graphite structure is directly converted into particles having a diamond structure to obtain granular diamond. By producing rough diamond (diamond blend, hereinafter referred to as DB) by the blasting method and performing appropriate post-treatment on this, diamond fine particles in a well dispersed state with a narrow particle size distribution can be obtained. Further, the DB that has not been treated after the explosion and the fine particles that are in the course of treatment also have a diamond core and a graphite layer.

爆射法によって得られるダイヤモンド微粒子は、一般に3.20×103 kg/m3〜3.40×103 kg/m3の密度を有する。アモルファス炭素の密度は(1.8〜2.1)×103 kg/m3、グラファイトの密度は2.26×103 kg/m3、天然ダイヤモンドの密度は3.51×103 kg/m3であり、静的な圧力印加法(非爆射法)による人工ダイヤモンドの密度は3.47〜3.50であるから、爆射法によって得られたダイヤモンド微粒子は天然ダイヤモンドや静的圧力法によるダイヤモンドより小さな密度を有すると言うことができる。 Diamond fine particles obtained by the explosion method generally have a density of 3.20 × 10 3 kg / m 3 to 3.40 × 10 3 kg / m 3 . The density of amorphous carbon is (1.8 to 2.1) × 10 3 kg / m 3 , the density of graphite is 2.26 × 10 3 kg / m 3 , the density of natural diamond is 3.51 × 10 3 kg / m 3 , and static Since the density of artificial diamond by the pressure application method (non-explosive method) is 3.47 to 3.50, it can be said that the diamond fine particles obtained by the explosion method have a density lower than that of natural diamond or diamond by the static pressure method. it can.

次に、爆射法を例にとってダイヤモンド微粒子の製造方法を具体的に説明するが、もちろん本発明の液晶配向膜用塗布液に含まれれるダイヤモンド微粒子は、この製造方法によって得られたものに限定されない。   Next, a method for producing diamond fine particles will be specifically described with an explosion method as an example. Of course, the diamond fine particles contained in the liquid crystal alignment film coating liquid of the present invention are limited to those obtained by this production method. Not.

(A) 爆射式初期DB製造工程
胴内に電気雷管を装着し、爆薬を収納した片面プラグ付き鋼鉄製パイプを、純チタン製の耐圧容器に入れた水と氷の中に水平に沈める。好ましい爆薬の例として、シクロトリメチレントリニトロアミン、シクロテトラメチレンテトラニトラミン、トリニトロトルエン、トリニトロフェニルメチルニトロアミン、四硝酸ペンタエリトリット、テトラニトロメタン及びこれらの混合物が挙げられる。特に好ましい爆薬の例として、TNT(トリニトロトルエン)/HMX(シクロテトラメチレンテトラニトラミン)=50/50が挙げられる。鋼鉄製パイプに鋼鉄製のヘルメットを被せて爆薬を爆裂させると、容器中の水及び氷中に初期DBが生成する。
(A) Explosive-type initial DB manufacturing process An electric detonator is installed in the fuselage, and a steel pipe with a single-sided plug containing explosives is sunk horizontally in water and ice in a pressure vessel made of pure titanium. Examples of preferred explosives include cyclotrimethylenetrinitroamine, cyclotetramethylenetetranitramine, trinitrotoluene, trinitrophenylmethylnitroamine, pentaerythritol tetranitrate, tetranitromethane, and mixtures thereof. An example of a particularly preferred explosive is TNT (trinitrotoluene) / HMX (cyclotetramethylenetetranitramine) = 50/50. When a steel helmet is put on a steel pipe to explode the explosive, an initial DB is generated in the water and ice in the container.

なお初期DBは金属成分を含有しているが、初期DBから金属成分を除去したものは好ましいダイヤモンド微粒子である。初期DBから金属成分を除去することにより得られるDBは、表面に比較的厚いグラファイト層を有する。このようなDBを含有する液晶配向膜は、特に優れた異方導電性を示す。初期DBの金属成分は、例えば初期DBを塩酸に浸すことによって除去することができる。このようにして得られたDBは、一般的には50〜80質量%のダイヤモンドからなるコアとその表面に形成した20〜50質量%のグラファイト層からなり、典型的には60〜80質量%のダイヤモンドコアと20〜40質量%のグラファイト層からなる。特に好ましいDBは、60〜70質量%のダイヤモンドコアと30〜40質量%のグラファイト層からなる。   The initial DB contains a metal component. However, a product obtained by removing the metal component from the initial DB is a preferable diamond fine particle. The DB obtained by removing the metal component from the initial DB has a relatively thick graphite layer on the surface. Such a liquid crystal alignment film containing DB exhibits particularly excellent anisotropic conductivity. The metal component of the initial DB can be removed, for example, by immersing the initial DB in hydrochloric acid. The DB thus obtained is generally composed of a core composed of 50 to 80% by mass of diamond and a 20 to 50% by mass of graphite layer formed on the surface thereof, typically 60 to 80% by mass. Diamond core and 20-40 mass% graphite layer. A particularly preferred DB comprises a 60 to 70% by mass diamond core and a 30 to 40% by mass graphite layer.

(B) DBの酸化性分解処理工程
初期DBを55〜56質量%の濃HNO3に分散させたものをオートクレーブに入れ、加圧及び加熱する。14気圧、150〜180℃程度で10〜30分間、加圧・加熱することによって、初期DBを酸化性分解することができる。この工程により、炭素系夾雑物、無機夾雑物等を分解できる。
(B) Oxidative decomposition treatment process of DB A dispersion of initial DB in 55-56 mass% concentrated HNO 3 is put in an autoclave, and pressurized and heated. The initial DB can be oxidatively decomposed by applying pressure and heating at 14 atm and 150 to 180 ° C. for 10 to 30 minutes. By this step, carbon-based impurities, inorganic impurities, etc. can be decomposed.

(C) 1次酸化性エッチング処理工程
酸化性分解処理したDBの分散物を加圧・加熱する。18気圧、200〜240℃程度に加圧及び加熱するのが好ましい。1次酸化性エッチング処理段階では、主にDB表面を被覆するグラファイトの一部を除去する。
(C) Primary oxidative etching process The dispersion of DB subjected to oxidative decomposition is pressurized and heated. It is preferable to pressurize and heat to about 18 to 200 ° C. In the primary oxidizing etching process step, a part of the graphite covering the DB surface is mainly removed.

(D) 2次酸化性エッチング処理工程
2次酸化性エッチング処理は、主にDB凝集体を構成するダイヤモンド微粒子間のイオン透過性界面ギャップ及びダイヤモンド微粒子表面の結晶欠陥部に除去し難い状態で存在する過剰グラファイトを除去するための工程である。したがって、加圧及び加熱の条件は1次酸化性エッチング処理より厳しくする必要がある。好ましい処理条件は、25気圧、230〜250℃程度である。2次酸化性エッチング処理を施した被処理液のpHは、通常2.0〜6.95である。
(D) Secondary oxidative etching process The secondary oxidative etching process exists mainly in the ion-permeable interface gap between the diamond fine particles constituting the DB aggregate and in the crystal defect portion on the surface of the diamond fine particles that are difficult to remove. This is a process for removing excess graphite. Therefore, the conditions for pressurization and heating need to be stricter than the primary oxidizing etching process. Preferred treatment conditions are about 25 atm and about 230 to 250 ° C. The pH of the liquid to be treated that has been subjected to the secondary oxidizing etching treatment is usually 2.0 to 6.95.

酸化性分解処理工程、1次酸化性エッチング処理工程及び2次酸化性エッチング処理工程の圧力及び温度を上述の範囲とすることは、必ず順守すべき条件というわけではない。しかし除去し難い成分を十分に取り除くためには、圧力及び温度を、工程順に大きくするのが好ましい。他方、ダイヤモンド微粒子のグラファイト層は1次酸化性エッチング処理工程及び2次酸化性エッチング処理によって除去されないでダイヤモンド微粒子の表面に残った炭素層と言えるが、導電性等の観点でグラファイト層を厚くしたい場合は、これらの工程を一部省略したり、圧力及び温度を小さくしたりしても良い。   Setting the pressure and temperature of the oxidative decomposition treatment step, the primary oxidative etching treatment step, and the secondary oxidative etching treatment step to the above ranges is not necessarily a condition to be observed. However, in order to sufficiently remove components that are difficult to remove, it is preferable to increase the pressure and temperature in the order of the steps. On the other hand, the graphite layer of diamond fine particles can be said to be a carbon layer remaining on the surface of the diamond fine particles without being removed by the primary oxidative etching process and the secondary oxidative etching process. In some cases, some of these steps may be omitted, or the pressure and temperature may be reduced.

(E) 中和工程
2次酸化性エッチング処理したDBを含む硝酸水溶液に、それ自身、揮発性の又はその分解反応生成物が揮発性の塩基性材料を添加する。塩基性材料を添加することにより、溶液のpHは2〜6.95から7.05〜12に上昇する。塩基性材料の例としてアンモニア、ヒドラジン、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エタノールアミン、プロピルアミン、イソプロピルアミン、ジプロピルアミン、アリルアミン、アニリン、N,N-ジメチルアニリン、ジイソプロピルアミン、ジエチレントリアミンやテトラエチレンペンタミンのようなポリアルキレンポリアミン、2-エチルヘキシルアミン、シクロヘキシルアミン、ピペリジン、ホルムアミド、N,N-メチルホルムアミド及び尿素を挙げることができる。
(E) Neutralization step A basic material which is itself volatile or a volatile decomposition product thereof is added to a nitric acid aqueous solution containing DB subjected to secondary oxidative etching. By adding basic material, the pH of the solution increases from 2-6.95 to 7.05-12. Examples of basic materials are ammonia, hydrazine, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethanolamine, propylamine, isopropylamine, dipropylamine, allylamine, aniline, N, N-dimethylaniline, diisopropylamine And polyalkylene polyamines such as diethylenetriamine and tetraethylenepentamine, 2-ethylhexylamine, cyclohexylamine, piperidine, formamide, N, N-methylformamide and urea.

例えば塩基性材料としてアンモニアを用いる場合、酸と下記式のように反応してガスを生じる。
HNO3+ NH3 → NH4NO3→ N2O + 2H2O
N2O → N2 + (O)
3HNO3+ NH3 →NH4NO2+ N2O3 + H2O + O2 + (O)
NH4NO2→ N2 + 2H2O
N2O3+ NH3 → 2N2 + 3H2O
N2O3→ N + O + (O)
NH4NO2+ 2NH3 →2N2 + H2O + 3H2
H2 + (O)→ H2O
HCl + NaOH → Na + Cl + H2O
HCl + NH3 → NH4 + Cl
NH4 →NH3 + H
H2SO4+ 2NH3→N2O + SO2 + NO2
発生したN2、O2、N2O、H2O、H2、SO2ガスは系外に放出できるので、残存物による系に対する影響はほとんどなくなる。アンモニアの添加量は硝酸の1〜1.5当量とするのが好ましく、1.25当量とするのがより好ましい。
For example, when ammonia is used as a basic material, it reacts with an acid as shown in the following formula to generate gas.
HNO 3 + NH 3 → NH 4 NO 3 → N 2 O + 2H 2 O
N 2 O → N 2 + (O)
3HNO 3 + NH 3 → NH 4 NO 2 + N 2 O 3 + H 2 O + O 2 + (O)
NH 4 NO 2 → N 2 + 2H 2 O
N 2 O 3 + NH 3 → 2N 2 + 3H 2 O
N 2 O 3 → N 2 + O 2 + (O)
NH 4 NO 2 + 2NH 3 → 2N 2 + H 2 O + 3H 2
H 2 + (O) → H 2 O
HCl + NaOH → Na + + Cl + H 2 O
HCl + NH 3 → NH 4 + + Cl
NH 4 + → NH 3 + H +
H 2 SO 4 + 2NH 3 → N 2 O + SO 2 + NO 2
Since the generated N 2 , O 2 , N 2 O, H 2 O, H 2 , and SO 2 gases can be released out of the system, there is almost no influence on the system by the residue. The amount of ammonia added is preferably 1 to 1.5 equivalents of nitric acid, and more preferably 1.25 equivalents.

(F) デカンテーション工程
ダイヤモンド微粒子を含有する懸濁液に水を加え、充分にデカンテーションする。デカンテーション操作は、3回以上行うのが好ましい。
(F) Decantation process Water is added to the suspension containing the diamond fine particles and decanted sufficiently. The decantation operation is preferably performed three times or more.

(G) 洗浄工程
デカンテーションを施したダイヤモンド微粒子懸濁液に硝酸を加え、撹拌する。攪拌にはメカニカルスターラー、マグネチックスターラー等を使用できる。洗浄後、静置して上層排液と下層懸濁液に分ける。ダイヤモンド微粒子は下層懸濁液に含まれているので、上層排液を除去する。例えばダイヤモンド微粒子含有液1kgに対して硝酸水溶液50 kg加えた場合、上層排液と下層懸濁液とは明瞭に層分離しないが、ダイヤモンド微粒子を含む下層懸濁液の容量は、上層排液の容量のほぼ1/4程度である。上層排液中にはダイヤモンド形の1.2〜2.0 nm径程度の超々微粒子が存在し得るが、この超々微粒子を回収するのは不可欠ではない。なぜなら、この超々微粒子は液層中の不純物を巻き込んで凝集し易く、機械的圧力では分解不能な不良微粒子を生成し易いので、回収しても良好な分散性を示すダイヤモンド微粒子を得難いからである。
(G) Washing step Nitric acid is added to the decanted diamond particle suspension and stirred. For stirring, a mechanical stirrer, a magnetic stirrer or the like can be used. After washing, leave to separate into upper layer drainage and lower layer suspension. Since the diamond fine particles are contained in the lower layer suspension, the upper layer drainage liquid is removed. For example, when 50 kg of nitric acid aqueous solution is added to 1 kg of diamond fine particle-containing liquid, the upper layer drainage and the lower layer suspension are not clearly separated into layers, but the volume of the lower layer suspension containing diamond particles is the same as that of the upper layer drainage. It is about 1/4 of the capacity. In the upper layer drainage liquid, diamond-shaped ultra-fine particles having a diameter of about 1.2 to 2.0 nm may exist, but it is not essential to collect these ultra-fine particles. This is because the ultra-fine particles are likely to agglomerate due to the inclusion of impurities in the liquid layer, and it is easy to produce defective fine particles that cannot be decomposed by mechanical pressure, so that it is difficult to obtain diamond fine particles exhibiting good dispersibility even when collected. .

(H) 遠心分離工程
超高速遠心分離機を用いてダイヤモンド微粒子懸濁液を遠心脱水分離する。回転速度は10000〜30000 RPMとするのが好ましく、20000 RPM程度とするのがより好ましい。
(H) Centrifugation step Centrifugal dehydration of the diamond fine particle suspension is performed using an ultra-high speed centrifuge. The rotation speed is preferably 10,000 to 30,000 RPM, more preferably about 20,000 RPM.

(I) ダイヤモンド微粒子を含む懸濁液の調製工程
ダイヤモンド微粒子が凝集し過ぎないように、ダイヤモンド微粒子と分散媒とを混合し、懸濁液にしておくのが好ましい。ダイヤモンド微粒子の濃度は、ダイヤモンド微粒子が分散状態になる範囲であればよい。後述の(5) 液晶配向膜用塗布液の調製においてダイヤモンド微粒子の濃度を所望の範囲にし易いダイヤモンド微粒子濃度は概ね0.01〜16%であり、0.1〜12%とするのが好ましく、0.1〜10%とするのがより好ましい。濃度が16%を超えていると、懸濁液の保存安定性に支障をきたすことが多い。懸濁液のpHを4.0〜10.0に調節するのが好ましく、pH 5.0〜8.0とするのがより好ましく、pH 6.0〜7.5にするのが特に好ましい。
(I) Step of Preparing Suspension Containing Diamond Fine Particles It is preferable to mix the diamond fine particles and the dispersion medium so as to prevent the diamond fine particles from aggregating excessively. The concentration of the diamond fine particles may be in a range where the diamond fine particles are in a dispersed state. In the preparation of the coating liquid for a liquid crystal alignment film (5) described later, the concentration of diamond fine particles that easily brings the concentration of diamond fine particles to a desired range is generally 0.01 to 16%, preferably 0.1 to 12%, preferably 0.1 to 10%. Is more preferable. If the concentration exceeds 16%, the storage stability of the suspension is often hindered. The pH of the suspension is preferably adjusted to 4.0 to 10.0, more preferably pH 5.0 to 8.0, and particularly preferably pH 6.0 to 7.5.

(2) 樹脂成分
液晶配向膜を構成する樹脂又はその前駆体として一般的に用いられているものであれば、本発明の液晶配向膜用塗布液の樹脂成分として使用可能である。樹脂は感光性のものでも良いし、非感光性のものがでも良い。好ましい樹脂の例としてポリイミド系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂が挙げられる。ただし、液晶配向膜の耐熱性・信頼性の点でポリイミド系樹脂が好ましい。
(2) Resin Component Any resin component that is generally used as a resin constituting the liquid crystal alignment film or a precursor thereof can be used as the resin component of the coating liquid for liquid crystal alignment film of the present invention. The resin may be photosensitive or non-photosensitive. Examples of preferable resins include polyimide resins, polyamide resins, and polyvinyl alcohol resins. However, a polyimide resin is preferable in terms of heat resistance and reliability of the liquid crystal alignment film.

液晶配向膜に用いられるポリイミド系樹脂は、特に限定されるものではないが、通常下記一般式(1) で表される構造単位を主成分とするポリアミック酸を加熱又は適当な触媒によってイミド化したものが好ましい。   The polyimide resin used for the liquid crystal alignment film is not particularly limited, but usually a polyamic acid mainly composed of a structural unit represented by the following general formula (1) is heated or imidized by an appropriate catalyst. Those are preferred.

(上記一般式(1)においてnは1又は2であり、R1は少なくとも2個の炭素原子を有する3価または4価の有機基を示し、R2は少なくとも2個の炭素原子を有する2価の有機基を示す。) (In the above general formula (1), n is 1 or 2, R 1 represents a trivalent or tetravalent organic group having at least 2 carbon atoms, and R 2 represents 2 having at least 2 carbon atoms. Valent organic group.)

耐熱性の点で好ましいR1は環状炭化水素、芳香族環又は芳香族複素環を含有し、炭素数6〜30であって、3価又は4価の基である。R1の例としてフェニル基、ビフェニル基、ターフェニル基、ナフタレン基、ペリレン基、ジフェニルエーテル基、ジフェニルスルフォン基、ジフェニルプロパン基、ベンゾフェノン基、ビフェニルトリフルオロプロパン基、シクロブチル基及びシクロペンチル基から誘導された基が挙げられる。 R 1 which is preferable from the viewpoint of heat resistance contains a cyclic hydrocarbon, an aromatic ring or an aromatic heterocyclic ring, has 6 to 30 carbon atoms, and is a trivalent or tetravalent group. Examples of R 1 are derived from phenyl, biphenyl, terphenyl, naphthalene, perylene, diphenyl ether, diphenylsulfone, diphenylpropane, benzophenone, biphenyltrifluoropropane, cyclobutyl, and cyclopentyl. Groups.

耐熱性の点から、好ましいR2は環状炭化水素、芳香族環又は芳香族複素環を含有し、炭素数6〜30であって、2価の基である。R2の例としてフェニル基、ビフェニル基、ターフェニル基、ナフタレン基、ペリレン基、ジフェニルエーテル基、ジフェニルスルフォン基、ジフェニルプロパン基、ベンゾフェノン基、ビフェニルトリフルオロプロパン基、ジフェニルメタン基及びシクロヘキシルメタン基から誘導された基が挙げられるが、これらに限定されない。R1及びR2は、これらの好ましい基を1個有しても良いし、各々2種以上有しても良い。 From the viewpoint of heat resistance, preferred R 2 contains a cyclic hydrocarbon, an aromatic ring or an aromatic heterocycle, has 6 to 30 carbon atoms, and is a divalent group. Examples of R 2 are derived from phenyl, biphenyl, terphenyl, naphthalene, perylene, diphenyl ether, diphenylsulfone, diphenylpropane, benzophenone, biphenyltrifluoropropane, diphenylmethane, and cyclohexylmethane. Group, but is not limited thereto. R 1 and R 2 may have one of these preferred groups, or each may have two or more.

液晶配向膜形成用として市販されている組成物又は塗布液にダイヤモンド微粒子を添加してもよい。市販の液晶配向膜用組成物又は液晶配向膜用塗布液の例として日産化学工業株式会社製のSE-130、SE-150、SE-2110、SE-410、SE-610、SE-1180、SE-2170、SE-1211、SE-3140、SE-3210、SE-3310、SE-3510、SE-5291、SE-6210、SE-7492、SE-7992、SE-7511L、SE-8192L、RN-1322、RN-1332、RN-1349、RN-1358、RN-1386、RN-1417、RN-1436、RN-1450及びRN-1477、チッソ株式会社製のPIA-5140、PIA-5150、PIA-5310、PIA-X322、PIA-2024、PIA-2700、PIA-2800、PIA-2900、PIA-2942、PIA-2945及びPIA-2710、ジェイエスアール株式会社製のAL1000、AL1068、AL1072、AL1077、AL1F00、AL3000、AL4000、AL5000、AL6000、AL7000、AL8000、JALS-146、JALS-212、JALS-246、JALS-406、JALS-445、JALS-469、JALS-550、JALS-552、JALS-553、JALS-555、JALS-556、JALS-566、JALS-725、JALS-1082、JALS-1085及びJALS-1216が挙げられる。液晶配向膜用組成物を又は液晶配向膜用塗布液を単独で用いても良いし、2種以上を混合しても良いし、適宜他の樹脂成分を添加しても良い。   Diamond fine particles may be added to a commercially available composition or coating solution for forming a liquid crystal alignment film. Examples of commercially available liquid crystal alignment film compositions or liquid crystal alignment film coating solutions include SE-130, SE-150, SE-2110, SE-410, SE-610, SE-1180, SE manufactured by Nissan Chemical Industries, Ltd. -2170, SE-1211, SE-3140, SE-3210, SE-3310, SE-3510, SE-5291, SE-6210, SE-7492, SE-7992, SE-7511L, SE-8192L, RN-1322 RN-1332, RN-1349, RN-1358, RN-1386, RN-1417, RN-1436, RN-1450 and RN-1477, PIA-5140, PIA-5150, PIA-5310, manufactured by Chisso Corporation, PIA-X322, PIA-2024, PIA-2700, PIA-2800, PIA-2900, PIA-2942, PIA-2945 and PIA-2710, AL1000, AL1068, AL1072, AL1077, AL1F00, AL3000 manufactured by JSR Corporation, AL4000, AL5000, AL6000, AL 000, AL8000, JALS-146, JALS-212, JALS-246, JALS-406, JALS-445, JALS-469, JALS-550, JALS-552, JALS-553, JALS-555, JALS-556, JALS- 566, JALS-725, JALS-1082, JALS-1085, and JALS-1216. The composition for liquid crystal aligning film or the coating liquid for liquid crystal aligning film may be used independently, 2 or more types may be mixed and another resin component may be added suitably.

(3) 溶剤
樹脂成分並びにダイヤモンド微粒子を分散させうる液体であれば、液晶配向膜用塗布液の溶剤として用いることができる。ダイヤモンド微粒子は極性溶媒に分散し易い傾向を示す。液晶配向膜用塗布液の溶剤の例としてエタノール、メタノール、イソブタノール、3-メチル-3-メトキシブタノール等のアルコール類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル類、酢酸エチル、酢酸n-ブチル、3-メトキシ-3-メチルブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、2-ピロリドン、N-メチルピロリドン等のピロリドン類、水及びブチルセロソルブが挙げられる。
(3) Solvent Any liquid that can disperse the resin component and the fine diamond particles can be used as a solvent for the liquid crystal alignment film coating liquid. Diamond fine particles tend to be easily dispersed in a polar solvent. Examples of solvents for the liquid crystal alignment film coating solution include alcohols such as ethanol, methanol, isobutanol, and 3-methyl-3-methoxybutanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, diethyl ether, isopropyl ether, and tetrahydrofuran. , Ethers such as dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol diethyl ether, ethyl acetate, n-butyl acetate, 3-methoxy-3-methylbutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate , Ethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol Monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, esters such as γ-butyrolactone, amides such as N, N-dimethylformamide, N, N-dimethylacetamide, 2-pyrrolidone, N- Examples include pyrrolidones such as methyl pyrrolidone, water and butyl cellosolve.

(4) その他の成分
塗布性を良好にするために、液晶配向膜用塗布液に界面活性剤を添加してもよい。界面活性剤の添加量は、樹脂成分100質量部に対して10質量部以下であるのが好ましく、1質量部以下であるのがより好ましい。
(4) Other components In order to improve the coatability, a surfactant may be added to the liquid crystal alignment film coating solution. The addition amount of the surfactant is preferably 10 parts by mass or less and more preferably 1 part by mass or less with respect to 100 parts by mass of the resin component.

界面活性剤の具体例としてジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類、アルキル、フッ素変性シリコーンオイル、ポリエーテル、アルコール変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、フェノール、カルボキシ、メルカプト変性シリコーンオイル等の変性シリコーンオイル類、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等の陰イオン界面活性剤、ラウリルトリメチルアンモニウムクロライド等の陽イオン界面活性剤、ラウリルジメチルアミンオキサイド、ラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタイン等の両性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル及びソルビタンモノステアレート等の非イオン界面活性剤が挙げられる。界面活性剤は、1種のみ添加しても良いし、2種以上添加しても良い。   Specific examples of the surfactant include silicone oils such as dimethyl silicone oil and methylphenyl silicone oil, alkyl, fluorine-modified silicone oil, polyether, alcohol-modified silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, phenol, carboxy, Modified silicone oils such as mercapto-modified silicone oils, anionic surfactants such as ammonium lauryl sulfate and polyoxyethylene alkyl ether sulfate triethanolamine, cationic surfactants such as lauryltrimethylammonium chloride, lauryldimethylamine oxide, lauryl carboxy Amphoteric surfactants such as methylhydroxyethyl imidazolium betaine, polyoxyethylene lauryl ether, polyoxyethylene Nonionic surfactants such as emissions stearyl ether and sorbitan monostearate and the like. Only one surfactant may be added, or two or more surfactants may be added.

(5) 液晶配向膜用塗布液の調製
液晶配向膜用塗布液を調製するには、一般的にはダイヤモンド微粒子の懸濁液と樹脂成分等を含む溶液を混合する。樹脂成分を含む溶液を高温にすると、重合が開始してしまう場合がある一方、ダイヤモンド微粒子は低温にすると凝集し過ぎてしまう。そこで、樹脂成分を含む溶液は混合の直前まで低温で保存し、ダイヤモンド微粒子の懸濁液は高温で保存するのが好ましい。具体的には、混合前は樹脂成分を含む溶液を10℃以下で保存するのが好ましく、5℃以下で保存するのがより好ましい。ダイヤモンド微粒子の懸濁液は、0℃以上で保存するのが好ましく、5℃以上で保存するのがより好ましい。
(5) Preparation of coating liquid for liquid crystal alignment film In order to prepare a coating liquid for liquid crystal alignment film, generally, a suspension of diamond fine particles and a solution containing a resin component and the like are mixed. When the temperature of the solution containing the resin component is increased, polymerization may start. On the other hand, when the temperature of the diamond fine particles is decreased, the particles are aggregated too much. Therefore, it is preferable that the solution containing the resin component is stored at a low temperature until just before mixing, and the suspension of the diamond fine particles is stored at a high temperature. Specifically, before mixing, the solution containing the resin component is preferably stored at 10 ° C. or lower, and more preferably stored at 5 ° C. or lower. The suspension of diamond fine particles is preferably stored at 0 ° C. or higher, and more preferably stored at 5 ° C. or higher.

ダイヤモンド微粒子の含有量は、液晶配向膜用塗布液の樹脂成分100質量部に対し0.01〜20質量部であるのが好ましく、0.03〜15質量部であるのがより好ましく、0.1〜10質量部であるのが特に好ましい。ダイヤモンド微粒子の含有量が0.01質量部より小さいと、形成する液晶配向膜の膜厚方向の導電性が小さすぎるために、液晶の焼付き防止効果はあるものの、十分ではない場合がある。ダイヤモンド微粒子の含有量が20質量部より大きいと、液晶の配向特性が悪い虞れがある。なおダイヤモンド微粒子が比較的高い質量比でグラファイトを含有する場合(例えばDB)、ダイヤモンド微粒子は特に大きな導電性を有するので、液晶配向膜用塗布液に含まれるダイヤモンド微粒子の量が比較的小さくても、望ましい異方導電性を示す液晶配向膜を形成しうる。例えば液晶配向膜用塗布液の樹脂成分100質量部に対して0.01〜3質量部程度でも良い。
樹脂成分の濃度は樹脂によって異なるが、いずれの樹脂の場合も液晶配向膜用塗布液における一般的な濃度にすればよい。
The content of the diamond fine particles is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 15 parts by mass, and preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin component of the liquid crystal alignment film coating liquid. It is particularly preferred. When the content of the diamond fine particles is less than 0.01 parts by mass, the conductivity in the film thickness direction of the liquid crystal alignment film to be formed is too small. If the content of the diamond fine particles is larger than 20 parts by mass, the alignment characteristics of the liquid crystal may be poor. When the diamond fine particles contain graphite at a relatively high mass ratio (for example, DB), the diamond fine particles have particularly large conductivity, so even if the amount of diamond fine particles contained in the liquid crystal alignment film coating liquid is relatively small. A liquid crystal alignment film exhibiting desirable anisotropic conductivity can be formed. For example, about 0.01-3 mass parts may be sufficient with respect to 100 mass parts of resin components of the coating liquid for liquid crystal aligning films.
The concentration of the resin component varies depending on the resin, but in any case, the concentration of the resin component may be a general concentration in the liquid crystal alignment film coating solution.

ダイヤモンド微粒子、樹脂成分、添加剤及び溶媒からなる混合物を攪拌する。ダイヤモンド微粒子等が分散しにくい場合は、この混合物に超音波を照射するのが好ましい。1〜100 kHzの超音波を1〜100分間程度照射するのが好ましく、5〜50 kHzの超音波を5〜30分間程度照射するのがより好ましい。市販の液晶配向膜用の組成物又は液晶配向膜用塗布液にダイヤモンド微粒子を添加する場合も、混合物を攪拌及び/又は超音波照射することによって、ダイヤモンド微粒子を十分に溶媒に分散させることができる。   A mixture of diamond fine particles, resin component, additive and solvent is stirred. When diamond fine particles are difficult to disperse, it is preferable to irradiate this mixture with ultrasonic waves. It is preferable to irradiate 1 to 100 kHz ultrasonic waves for about 1 to 100 minutes, and more preferable to irradiate 5 to 50 kHz ultrasonic waves for about 5 to 30 minutes. Even when diamond fine particles are added to a commercially available liquid crystal alignment film composition or liquid crystal alignment film coating solution, the diamond fine particles can be sufficiently dispersed in a solvent by stirring and / or ultrasonically irradiating the mixture. .

所望の粒径のダイヤモンド微粒子を含有する液晶配向膜用塗布液を得るには、ダイヤモンド微粒子に分散媒を加えたものに超音波を照射する(超音波分散)等してダイヤモンド微粒子を分散させた後、遠心分離機等を用いて分級する。遠心分離機の回転速度は5000〜30000 rpmとするのが好ましく、5000〜20000 rpmとするのがより好ましい。5〜60分間、好ましくは10〜50分間遠心分離処理すると、固形分が沈降するので、この沈降物を除いた分散液に溶媒又は市販の配向膜用の塗布液(若しくは市販の配向膜用組成物と溶媒)を加えて攪拌及び/又は超音波照射する。超音波分散処理及び/又は遠心分離処理を適当な条件で施すと、所望の粒径のダイヤモンド微粒子を良好な分散状態で含有する液晶配向膜用塗布液を得ることができる。   In order to obtain a coating liquid for a liquid crystal alignment film containing diamond fine particles having a desired particle diameter, the diamond fine particles were dispersed by irradiating ultrasonic waves (ultrasonic dispersion) to a diamond fine particle added with a dispersion medium. Thereafter, classification is performed using a centrifuge or the like. The rotational speed of the centrifuge is preferably 5000 to 30000 rpm, and more preferably 5000 to 20000 rpm. When the centrifugal separation treatment is performed for 5 to 60 minutes, preferably 10 to 50 minutes, the solid content settles. Therefore, a solvent or a commercially available alignment film coating liquid (or a commercially available alignment film composition) is added to the dispersion liquid excluding the sediment. And agitation and / or ultrasonic irradiation. When the ultrasonic dispersion treatment and / or the centrifugal separation treatment are performed under appropriate conditions, a coating liquid for a liquid crystal alignment film containing diamond fine particles having a desired particle diameter in a good dispersion state can be obtained.

(6) 液晶配向膜
電極を有する基板に、液晶配向膜用塗布液からなる層を設ける。基板上に液晶配向膜用塗布液からなる層を設ける方法の例として、フレキソ印刷、スピンコート、ロールコート、スリットダイコート、シルク印刷が挙げられる。この層を必要に応じて乾燥、焼成又は光照射する。例えば液晶配向膜用塗布液がポリアミック酸を含有する場合には、基板を加熱してポリアミック酸を脱水して閉環することにより、ポリイミドとする。可溶性ポリイミドを含有する場合は、溶媒を蒸発させることによってポリイミドの薄膜を形成する。液晶配向膜を得るには、一般的には薄膜にラビング等の配向処理を施す。ただし、垂直配向液晶用等、用途によってはラビング処理を要しない場合もある。
(6) Liquid crystal alignment film A layer made of a liquid crystal alignment film coating solution is provided on a substrate having electrodes. Examples of a method of providing a layer made of a liquid crystal alignment film coating solution on a substrate include flexographic printing, spin coating, roll coating, slit die coating, and silk printing. This layer is dried, fired or irradiated with light as necessary. For example, when the coating liquid for liquid crystal aligning film contains polyamic acid, it is set as polyimide by heating a board | substrate, spin-drying | dehydrating and ring-closing polyamic acid. When soluble polyimide is contained, a polyimide thin film is formed by evaporating the solvent. In order to obtain a liquid crystal alignment film, the thin film is generally subjected to an alignment treatment such as rubbing. However, the rubbing treatment may not be required depending on the application, such as for vertical alignment liquid crystal.

ダイヤモンド微粒子を含有する液晶配向膜は、優れた異方導電性を示す。すなわち、導電率の低い膜(例えばポリイミドからなる膜)に、膜厚に近い大きさの導電性微粒子が含まれているので、膜の平面方向の導電性は低い一方で、膜の厚さ方向の導電性は高い。ダイヤモンドは共有結合した炭素であるから基本的には非導電性であるが、ダイヤモンド微粒子には表面にグラファイト等を含む導電性の層が形成されているので、ダイヤモンド微粒子を含有する液晶配向膜は、優れた異方導電性を示す。中でも、DBは比較的厚いグラファイト層を有するために大きな導電性を示すので、DBを含有する液晶配向膜は特に優れた異方導電性を示す。液晶配向膜が優れた異方導電性を示すことは、液晶の焼付き防止の他、液晶表示装置の駆動電力を低減しうる点でも好ましい。   A liquid crystal alignment film containing diamond fine particles exhibits excellent anisotropic conductivity. That is, since a film having low conductivity (for example, a film made of polyimide) contains conductive fine particles having a size close to the film thickness, the conductivity in the plane direction of the film is low, but the film thickness direction Is highly conductive. Diamond is basically non-conductive because it is a covalently bonded carbon, but since a conductive layer containing graphite or the like is formed on the surface of diamond fine particles, a liquid crystal alignment film containing diamond fine particles is Excellent anisotropic conductivity. Among them, since DB has a relatively thick graphite layer and exhibits high conductivity, the liquid crystal alignment film containing DB exhibits particularly excellent anisotropic conductivity. It is preferable that the liquid crystal alignment film exhibits excellent anisotropic conductivity from the viewpoint of reducing the driving power of the liquid crystal display device in addition to preventing liquid crystal burn-in.

液晶配向膜の膜厚は30〜200 nmであるのが好ましく、60〜130 nmであるのがより好ましい。液晶配向膜の膜厚が200 nmより厚いと、液晶配向膜による電圧損失分が大き過ぎて、液晶表示装置の駆動の点から好ましくない。また液晶配向膜の膜厚が30 nmより薄いと、液晶を配向させる能力が低過ぎるので好ましくない。   The film thickness of the liquid crystal alignment film is preferably 30 to 200 nm, and more preferably 60 to 130 nm. If the thickness of the liquid crystal alignment film is greater than 200 nm, the voltage loss due to the liquid crystal alignment film is too large, which is not preferable from the viewpoint of driving the liquid crystal display device. Also, it is not preferred that the liquid crystal alignment film is thinner than 30 nm because the ability to align the liquid crystal is too low.

ダイヤモンド微粒子を含有する液晶配向膜のプレチルト角、電圧保持率、表面エネルギー等は、含有しないものと比較して実質的に差がない。またダイヤモンド微粒子を含有する液晶配向膜は、含有しない液晶配向膜より小さい残留DCを示す傾向がある。液晶配向膜の残留DCは、液晶表示装置の焼き付き性の指標となり、残留DCが僅かに小さいだけでも焼き付き防止に高い効果があることが知られている。従って、ダイヤモンド微粒子を含有する液晶配向膜は焼き付きを生じ難いと推測される。   The pretilt angle, voltage holding ratio, surface energy, etc. of the liquid crystal alignment film containing the diamond fine particles are not substantially different from those not containing. Further, the liquid crystal alignment film containing diamond fine particles tends to exhibit a residual DC smaller than the liquid crystal alignment film not containing. It is known that the residual DC of the liquid crystal alignment film serves as an index of the image sticking property of the liquid crystal display device, and even if the residual DC is slightly small, it has a high effect in preventing image sticking. Therefore, it is presumed that the liquid crystal alignment film containing the diamond fine particles hardly causes image sticking.

[2] 液晶表示装置
液晶表示装置の基板は特に限定されず、一般的なものでよい。液晶表示装置の基板の例として石英ガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、表面をシリカコートしたソーダライムガラス等の無機ガラス類、プラスチックのフィルム又はシート等の透明基板が挙げられる。
[2] Liquid crystal display device The substrate of the liquid crystal display device is not particularly limited and may be a general one. Examples of the substrate of the liquid crystal display device include quartz glass, borosilicate glass, aluminosilicate glass, inorganic glass such as soda lime glass whose surface is coated with silica, and a transparent substrate such as a plastic film or sheet.

液晶も特に限定されず、体積抵抗値、表示方式、駆動方式等に応じて選択することができる。良好な表示を得られる液晶の例としてネマチック液晶、スメクチック液晶が挙げられる。ネマチック液晶は、表示方式に応じて誘電異方性が正のものを用いても良いし、負のものを用いても良い。スメクチック液晶には強誘電性液晶、反強誘電性液晶、無しきい値反強誘電性液晶等が含まれる。   The liquid crystal is not particularly limited, and can be selected according to a volume resistance value, a display method, a driving method, and the like. Examples of liquid crystals that can provide good display include nematic liquid crystals and smectic liquid crystals. The nematic liquid crystal may have a positive dielectric anisotropy or a negative one depending on the display method. Smectic liquid crystals include ferroelectric liquid crystals, antiferroelectric liquid crystals, thresholdless antiferroelectric liquid crystals, and the like.

液晶セルを作製する方法として、表面に電極及び配向膜を形成した基板を対向させて貼り合わせ、得られたセルの内部(2つの基板の間)を減圧にした後、セルを液晶に浸す方法が挙げられる。また大型の液晶素子の作製に用いられている方法として、基板に形成した配向膜の上に液晶を滴下した後、基板を貼り合わせる「滴下注入」法がある。いずれの方法による場合も、基板に本発明の液晶配向膜を設けることができる。   As a method for producing a liquid crystal cell, a substrate having an electrode and an alignment film formed on the surface is bonded to face each other, the inside of the obtained cell (between two substrates) is decompressed, and the cell is immersed in liquid crystal Is mentioned. As a method used for manufacturing a large liquid crystal element, there is a “drop injection” method in which a liquid crystal is dropped on an alignment film formed on a substrate and then the substrate is bonded. In any case, the liquid crystal alignment film of the present invention can be provided on the substrate.

カラーの液晶表示装置を得るには、着色層及びブラックマトリックス層を有するカラーフィルタに電極を形成した基板を用いる。カラーフィルタに対向する液晶表示装置の基板には、補助容量電極、画素電極以外に薄膜トランジスタ(TFT)素子、ゲート電極、信号線等が設けられる。基板の外側に偏光板を貼り合わせ、ICドライバー等を設けると、液晶表示装置が完成する。   In order to obtain a color liquid crystal display device, a substrate in which electrodes are formed on a color filter having a colored layer and a black matrix layer is used. In addition to the auxiliary capacitance electrode and the pixel electrode, a thin film transistor (TFT) element, a gate electrode, a signal line, and the like are provided on the substrate of the liquid crystal display device facing the color filter. A liquid crystal display device is completed when a polarizing plate is bonded to the outside of the substrate and an IC driver or the like is provided.

本発明を以下の実施例によってさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
(a) 液晶配向膜用塗布液の調製
ダイヤモンド微粒子(ビジョン開発株式会社製、品名UDD-V101)1.5 gに、混合溶媒(N-メチル-2-ピロリドン30質量%、エチレングリコールモノブチルエーテル30質量%及びγ-ブチロラクトン40質量%を含有)50 mLを加え、マグネチックスターラーを用いて20分間攪拌した。これに超音波(20 kHz、100 W)を10分間照射した後、遠心分離し(5000 rpm、10分間、室温15℃)、2次粒子のメジアン径が115 nmのダイヤモンド微粒子を得た。ダイヤモンド微粒子のメジアン径の測定は体積基準で行い、動的光散乱式粒径分布測定装置(株式会社堀場製作所製、HORIBA LB-500)を用いた。
Example 1
(a) Preparation of coating liquid for liquid crystal alignment layer Diamond fine particles (Vision Development Co., Ltd., product name UDD-V101) 1.5 g, mixed solvent (N-methyl-2-pyrrolidone 30% by mass, ethylene glycol monobutyl ether 30% by mass) And 40% by mass of γ-butyrolactone) was added, and the mixture was stirred for 20 minutes using a magnetic stirrer. This was irradiated with ultrasonic waves (20 kHz, 100 W) for 10 minutes and then centrifuged (5000 rpm, 10 minutes, room temperature 15 ° C.) to obtain diamond fine particles having a median diameter of secondary particles of 115 nm. The median diameter of the diamond fine particles was measured on a volume basis, and a dynamic light scattering particle size distribution measuring device (HORIBA LB-500, manufactured by Horiba, Ltd.) was used.

市販の液晶配向膜材(チッソ株式会社製、PIA-2942)に実施例1(a) で得たダイヤモンド微粒子(メジアン径115 nm)を加え、液晶配向膜用塗布液を得た。ダイヤモンド微粒子の含有量は、市販の液晶配向膜材の固形成分に対して10質量%とした。   Diamond fine particles (median diameter 115 nm) obtained in Example 1 (a) were added to a commercially available liquid crystal alignment film material (PIA-2942 manufactured by Chisso Corporation) to obtain a coating liquid for liquid crystal alignment film. The content of the diamond fine particles was 10% by mass with respect to the solid component of the commercially available liquid crystal alignment film material.

(b) 液晶配向膜の形成
スパッタリングによってITO層を設けたガラス基板に、実施例1(a) で得た液晶配向膜用塗布液をスピンコートし、焼成(80℃で3分間の後、230℃で30分間)した。膜厚は80 nmであった。図1は、焼成後の膜のSEM写真(10000倍)である。SEM写真中の白い斑点がダイヤモンド微粒子であり、背後のやや明るいグレーの部分が基板であり、黒い部分はITO膜である。次いで、レーヨン布(YA-18R)を用いて膜をラビング(押し込み0.4 mm)した後、超純水に浸した状態で超音波(34 kHz、50 W)を10分間照射することによって、液晶配向膜を洗浄した。なおラビング後にもSEM写真を撮影したが、ラビング前とほとんど差は無く、ダイヤモンド微粒子の欠落は見られなかった。
(b) Formation of Liquid Crystal Alignment Film A glass substrate provided with an ITO layer by sputtering is spin-coated with the liquid crystal alignment film coating solution obtained in Example 1 (a) and fired (after 3 minutes at 80 ° C., 230 For 30 minutes). The film thickness was 80 nm. FIG. 1 is an SEM photograph (10,000 times) of the film after firing. The white spots in the SEM photograph are diamond fine particles, the slightly light gray part behind is the substrate, and the black part is the ITO film. Next, the film is rubbed (pushing 0.4 mm) using rayon cloth (YA-18R), and then irradiated with ultrasonic waves (34 kHz, 50 W) for 10 minutes while immersed in ultrapure water. The membrane was washed. SEM photographs were taken after rubbing, but there was almost no difference from before rubbing, and no diamond particles were observed.

(c) 液晶セルの形成
実施例1(b) で得た液晶配向膜を有する基板2枚を、ラビング方向がアンチパラレルになるように対向させ、セルギャップが7μmになるように接着した。基板間を真空にした後、液晶(チッソ株式会社製SNT用液晶、品名PIA-2942)を入れ、液晶セルを得た。
(c) Formation of liquid crystal cell Two substrates having the liquid crystal alignment film obtained in Example 1 (b) were opposed to each other so that the rubbing direction was anti-parallel, and bonded so that the cell gap was 7 μm. After evacuating the substrate, a liquid crystal (liquid crystal for SNT manufactured by Chisso Corporation, product name PIA-2942) was added to obtain a liquid crystal cell.

(d) 測定
クリスタルローテーション法により配向膜のプレチルト角を測定したところ、4.4°であった。また液晶セルに50 mV、1kHzの交流及び周波数0.0039Hzの直流の三角波を重畳させ、残留DC電圧を測定した。残留DC電圧の測定は「信学技報EID91-111」(三宅他、19頁)に記載されているようにした。また「第14回 液晶討論会予稿集」(水嶋他、78頁)に記載の方法により、電圧保持率を測定した。電圧保持率の測定の際、周波数30 Hz、波高±4.5 Vとした。測定結果を表1及び図2〜4に示す。また協和界面科学株式会社CA-V接触角計によって接触角を測定し、表面エネルギーを求めた。結果を表2に示す。
(d) Measurement The pretilt angle of the alignment film was measured by a crystal rotation method and found to be 4.4 °. In addition, 50 mV, 1 kHz alternating current and 0.0039 Hz direct current triangular wave were superimposed on the liquid crystal cell, and the residual DC voltage was measured. The residual DC voltage was measured as described in “Science and Technology Bulletin EID91-111” (Miyake et al., Page 19). In addition, the voltage holding ratio was measured by the method described in “Preliminary Collection of 14th Liquid Crystal Panel Discussion” (Mizushima et al., P. 78). When measuring the voltage holding ratio, the frequency was 30 Hz and the wave height was ± 4.5 V. The measurement results are shown in Table 1 and FIGS. The contact angle was measured by Kyowa Interface Science Co., Ltd. CA-V contact angle meter, and the surface energy was obtained. The results are shown in Table 2.

実施例2
ダイヤモンド微粒子の含有量を市販の液晶配向膜材の固形成分に対して0.3質量%とした以外実施例1と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC電圧及び表面エネルギーを測定した。測定結果を表1及び2並びに図2〜4に示す。
Example 2
A coating liquid for a liquid crystal alignment film was prepared in the same manner as in Example 1 except that the content of the diamond fine particles was 0.3 mass% with respect to the solid component of the commercially available liquid crystal alignment film material. The pretilt angle, voltage holding ratio, residual DC voltage and surface energy were measured. The measurement results are shown in Tables 1 and 2 and FIGS.

実施例3
DB[ダイヤモンド:グラファイト=65:35(質量比)、ビジョン開発株式会社製、品名DB-V101]を混合溶媒に分散させ、DBの2次粒子のメジアン径を144 nmとし、DBの混合物の含有量を、市販の液晶配向膜材の固形成分に対して0.33質量%とした以外実施例1と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC電圧及び表面エネルギーを測定した。測定結果を表1及び2並びに図2〜4に示す。
Example 3
DB [diamond: graphite = 65: 35 (mass ratio), Vision Development Co., Ltd., product name DB-V101] is dispersed in a mixed solvent, the median diameter of DB secondary particles is 144 nm, and the DB mixture is contained. A coating liquid for a liquid crystal alignment film was prepared in the same manner as in Example 1 except that the amount was 0.33% by mass with respect to the solid component of the commercially available liquid crystal alignment film material. The voltage holding ratio, residual DC voltage and surface energy were measured. The measurement results are shown in Tables 1 and 2 and FIGS.

実施例4
ダイヤモンド微粒子(ビジョン開発株式会社製、品名UDD-V102)を混合溶媒に分散させ、ダイヤモンド微粒子の2次粒子のメジアン径を99 nmとし、ダイヤモンド微粒子の含有量を市販の液晶配向膜材の固形成分に対して0.34質量%とした以外実施例1と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC電圧及び表面エネルギーを測定した。測定結果を表1及び2並びに図2〜4に示す。
Example 4
Diamond fine particles (product name: UDD-V102, manufactured by Vision Development Co., Ltd.) are dispersed in a mixed solvent, the median diameter of the secondary particles of diamond fine particles is 99 nm, and the content of diamond fine particles is a solid component of a commercially available liquid crystal alignment film material. A liquid crystal alignment film coating solution was prepared in the same manner as in Example 1 except that the amount was 0.34% by mass. A liquid crystal cell was prepared, and the pretilt angle, voltage holding ratio, residual DC voltage, and surface energy of the liquid crystal cell were measured. did. The measurement results are shown in Tables 1 and 2 and FIGS.

比較例1
ダイヤモンド微粒子を添加しないで市販の液晶配向膜材(チッソ株式会社製、PIA-2942)からなる膜を基板表面に形成した以外、実施例1と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC及び表面エネルギーを測定した。測定結果を表1及び2並びに図2〜4に示す。
Comparative Example 1
A liquid crystal alignment film coating solution was prepared in the same manner as in Example 1 except that a film made of a commercially available liquid crystal alignment film material (manufactured by Chisso Corporation, PIA-2942) was formed on the substrate surface without adding diamond fine particles. A liquid crystal cell was prepared, and the pretilt angle, voltage holding ratio, residual DC, and surface energy of the liquid crystal cell were measured. The measurement results are shown in Tables 1 and 2 and FIGS.

実施例1のプレチルト角は比較例1より1°小さかったが、実用上問題ない程度である。実施例1〜3のプレチルト角は、比較例1とほぼ同じであった。実施例1及び2の電圧保持率は、比較例1と比較してやや大きく、実施例3の電圧保持率は小さかったが、いずれも実用上問題にならない差である。残留DCについて、実施例1は初期値が小さく、実施例3は緩和が早かった。いずれも焼付き防止には好ましい傾向と言える。実施例1〜4のいずれの表面エネルギーも、比較例1に劣っていなかった。   Although the pretilt angle of Example 1 was 1 ° smaller than that of Comparative Example 1, it is not problematic in practical use. The pretilt angles of Examples 1 to 3 were almost the same as those of Comparative Example 1. The voltage holding ratios of Examples 1 and 2 were slightly larger than those of Comparative Example 1, and the voltage holding ratio of Example 3 was small. However, neither of them was a practical problem. Regarding the residual DC, Example 1 had a small initial value, and Example 3 was quickly relaxed. All of these can be said to be favorable trends for preventing seizure. The surface energy of any of Examples 1 to 4 was not inferior to that of Comparative Example 1.

実施例5
(a) 液晶配向膜用塗布液の調製
ダイヤモンド微粒子の水分散液(ダイヤモンド微粒子濃度2.2質量%、ビジョン開発株式会社製、品名UDD-V101)50 mLに、混合溶媒(N-メチル-2-ピロリドン35質量%、エチレングリコールモノブチルエーテル35質量%及びγ-ブチロラクトン30質量%を含有)50 mLを加え、マグネチックスターラーを用いて20分間攪拌した。これに超音波(20 kHz、100 W)を10分間照射した後、遠心分離した(5000 rpm、10分間、室温15℃)。沈降した固形分のみを回収し、再び上述と同じ混合溶媒50 mLを加えて攪拌した後、超音波照射し(20 kHz、100 W、10分間)、遠心分離した(5000 rpm、10分間、室温15℃)。沈降した固形分を回収し、混合溶媒の添加、攪拌、超音波照射及び遠心分離の操作を2回繰り返し、得られたダイヤモンド微粒子の2次粒径を実施例1(a) と同様にして測定したところ、メジアン径109 nmであった。
Example 5
(a) Preparation of coating liquid for liquid crystal alignment film Diamond dispersion in water (diamond fine particle concentration 2.2 mass%, manufactured by Vision Development Co., Ltd., product name UDD-V101) in 50 mL mixed solvent (N-methyl-2-pyrrolidone) (Containing 35% by mass, 35% by mass of ethylene glycol monobutyl ether and 30% by mass of γ-butyrolactone) was added, and the mixture was stirred for 20 minutes using a magnetic stirrer. This was irradiated with ultrasonic waves (20 kHz, 100 W) for 10 minutes and then centrifuged (5000 rpm, 10 minutes, room temperature 15 ° C.). Collect only the precipitated solid, add 50 mL of the same mixed solvent as above, stir again, irradiate with ultrasound (20 kHz, 100 W, 10 minutes), and centrifuge (5000 rpm, 10 minutes, room temperature) 15 ° C). The precipitated solid content is recovered, and the operations of adding a mixed solvent, stirring, ultrasonic irradiation and centrifugation are repeated twice, and the secondary particle size of the obtained diamond fine particles is measured in the same manner as in Example 1 (a). As a result, the median diameter was 109 nm.

上述のように得られた109 nmのメジアン径を有するダイヤモンド微粒子に市販の液晶配向膜材(チッソ株式会社製、PIA-2942)を加え、液晶配向膜用塗布液を得た。ダイヤモンド微粒子の含有量は、市販の液晶配向膜材の固形成分に対して9.9質量%とした。   A commercially available liquid crystal alignment film material (PIA-2942 manufactured by Chisso Corporation) was added to the diamond fine particles having a median diameter of 109 nm obtained as described above to obtain a liquid crystal alignment film coating solution. The content of the diamond fine particles was 9.9% by mass with respect to the solid component of the commercially available liquid crystal alignment film material.

(b) 液晶配向膜の形成
実施例5(a) で得た液晶配向膜用塗布液を用いた以外実施例1(b) と同様にして液晶配向膜を形成し、ラビングした後、洗浄した。液晶配向膜の厚さは80 nmであった。
(b) Formation of liquid crystal alignment film A liquid crystal alignment film was formed in the same manner as in Example 1 (b) except that the liquid crystal alignment film coating solution obtained in Example 5 (a) was used. . The thickness of the liquid crystal alignment film was 80 nm.

(c) 液晶セルの形成
実施例5(b) で得た液晶配向膜を有する基板2枚を用いた以外実施例1(c) と同様にして液晶セルを得た。
(c) Formation of liquid crystal cell A liquid crystal cell was obtained in the same manner as in Example 1 (c) except that two substrates having a liquid crystal alignment film obtained in Example 5 (b) were used.

(d) 測定
実施例1(d) と同様にして、実施例5の液晶セルのプレチルト角、電圧保持率、残留DC及び表面エネルギーを測定した。測定結果を表3及び4並びに図5〜7に示す。
(d) Measurement The pretilt angle, voltage holding ratio, residual DC, and surface energy of the liquid crystal cell of Example 5 were measured in the same manner as in Example 1 (d). The measurement results are shown in Tables 3 and 4 and FIGS.

実施例6
ダイヤモンド微粒子の含有量を、市販の液晶配向膜材の固形成分に対して0.99質量%とした以外実施例5と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC及び表面エネルギーを測定した。測定結果を表3及び4、並びに図5〜7に示す。
Example 6
A liquid crystal alignment film coating solution was prepared in the same manner as in Example 5 except that the content of the diamond fine particles was 0.99% by mass with respect to the solid component of the commercially available liquid crystal alignment film material. The pretilt angle, voltage holding ratio, residual DC and surface energy were measured. The measurement results are shown in Tables 3 and 4 and FIGS.

実施例7
ダイヤモンド微粒子の含有量を、市販の液晶配向膜材の固形成分に対して0.3質量%とした以外実施例5と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC及び表面エネルギーを測定した。測定結果を表3及び4、並びに図5〜7に示す。
Example 7
A liquid crystal alignment film coating solution was prepared in the same manner as in Example 5 except that the content of the diamond fine particles was 0.3% by mass with respect to the solid component of the commercially available liquid crystal alignment film material. The pretilt angle, voltage holding ratio, residual DC and surface energy were measured. The measurement results are shown in Tables 3 and 4 and FIGS.

実施例8
DB[ダイヤモンド:グラファイト=65:35(質量比)、ビジョン開発株式会社製、品名DB-V101]を混合溶媒に分散させ、DB2次粒子のメジアン径を157 nmとし、DBの含有量を、市販の液晶配向膜材の固形成分に対して1.17質量%とした以外実施例5と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC及び表面エネルギーを測定した。測定結果を表3及び4、並びに図5〜7に示す。
Example 8
DB [Diamond: Graphite = 65: 35 (mass ratio), Vision Development Co., Ltd., product name DB-V101] is dispersed in a mixed solvent, the median diameter of DB secondary particles is 157 nm, and the DB content is commercially available. A liquid crystal alignment film coating solution was prepared in the same manner as in Example 5 except that the solid component of the liquid crystal alignment film material was 1.17% by mass, a liquid crystal cell was prepared, and the pretilt angle, voltage holding ratio, Residual DC and surface energy were measured. The measurement results are shown in Tables 3 and 4 and FIGS.

実施例9
DBの含有量を市販の液晶配向膜材の固形成分に対して0.33質量%とした以外実施例5と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC及び表面エネルギーを測定した。測定結果を表3及び4、並びに図6〜8に示す。
Example 9
A liquid crystal alignment film coating solution was prepared in the same manner as in Example 5 except that the DB content was 0.33 mass% with respect to the solid component of the commercially available liquid crystal alignment film material. Angle, voltage holding ratio, residual DC and surface energy were measured. The measurement results are shown in Tables 3 and 4 and FIGS.

比較例2
ダイヤモンド微粒子を添加しないで市販の液晶配向膜材(チッソ株式会社製、PIA-2942)からなる膜を基板上に形成した以外、実施例5と同様にして液晶配向膜用塗布液を調製し、液晶セルを作製して液晶セルのプレチルト角、電圧保持率、残留DC及び表面エネルギーを測定した。測定結果を表3及び4、並びに図5〜7に示す。
Comparative Example 2
A liquid crystal alignment film coating solution was prepared in the same manner as in Example 5 except that a film made of a commercially available liquid crystal alignment film material (manufactured by Chisso Corporation, PIA-2942) was formed on the substrate without adding diamond fine particles. A liquid crystal cell was prepared, and the pretilt angle, voltage holding ratio, residual DC, and surface energy of the liquid crystal cell were measured. The measurement results are shown in Tables 3 and 4 and FIGS.

表3及び4から分かるように、実施例5〜9のプレチルト角及び電圧保持率は比較例2とほぼ同じであった。一方、残留DCは比較例2より小さく、実施例5〜9は焼付きを起こし難いと考えられる。   As can be seen from Tables 3 and 4, the pretilt angles and voltage holding ratios of Examples 5 to 9 were almost the same as those of Comparative Example 2. On the other hand, the residual DC is smaller than that of Comparative Example 2, and Examples 5 to 9 are considered to hardly cause seizure.

実施例1〜4及び比較例1の液晶配向膜用塗布液を塗布し、焼成した膜(ラビング前)のSEM写真(1000倍)である。It is a SEM photograph (1000 times) of the film | membrane (before rubbing) which apply | coated the coating liquid for liquid crystal aligning films of Examples 1-4 and the comparative example 1, and baked. 実施例1〜4及び比較例1の液晶配向膜のプレチルト角を示すグラフである。4 is a graph showing pretilt angles of liquid crystal alignment films of Examples 1 to 4 and Comparative Example 1. 実施例1〜4及び比較例1の液晶配向膜の電圧保持率を示すグラフである。4 is a graph showing voltage holding ratios of liquid crystal alignment films of Examples 1 to 4 and Comparative Example 1. 実施例1〜4及び比較例1の液晶配向膜の残留DCを示すグラフである。4 is a graph showing residual DC of liquid crystal alignment films of Examples 1 to 4 and Comparative Example 1. 実施例5〜9及び比較例2の液晶配向膜のプレチルト角を示すグラフである。It is a graph which shows the pretilt angle of the liquid crystal aligning film of Examples 5-9 and the comparative example 2. FIG. 実施例5〜9及び比較例2の液晶配向膜の電圧保持率を示すグラフである。It is a graph which shows the voltage holding ratio of the liquid crystal aligning film of Examples 5-9 and Comparative Example 2. 実施例5〜9及び比較例2の液晶配向膜の残留DCを示すグラフである。It is a graph which shows residual DC of the liquid crystal aligning film of Examples 5-9 and the comparative example 2. FIG.

Claims (6)

グラファイト層を有するダイヤモンド微粒子を含有することを特徴とする液晶配向膜用塗布液。   A coating liquid for a liquid crystal alignment film, comprising diamond fine particles having a graphite layer. 請求項1に記載の液晶配向膜用塗布液において、前記ダイヤモンド微粒子の2次粒子のメジアン径が前記液晶配向膜の膜厚の0.7〜2倍であることを特徴とする液晶配向膜用塗布液。   2. The liquid crystal alignment film coating liquid according to claim 1, wherein the median diameter of secondary particles of the diamond fine particles is 0.7 to 2 times the film thickness of the liquid crystal alignment film. . 請求項1又は2に記載の液晶配向膜用塗布液において、前記ダイヤモンド微粒子の2次粒子のメジアン径が30〜500 nmであることを特徴とする液晶配向膜用塗布液。   3. The liquid crystal alignment film coating liquid according to claim 1, wherein the median diameter of secondary particles of the diamond fine particles is 30 to 500 nm. グラファイト層を有するダイヤモンド微粒子を含有することを特徴とする液晶配向膜。   A liquid crystal alignment film comprising diamond fine particles having a graphite layer. 請求項4に記載の液晶配向膜において、前記ダイヤモンド微粒子からなる2次粒子のメジアン径が前記液晶配向膜の膜厚の0.7〜2倍であることを特徴とする液晶配向膜。   5. The liquid crystal alignment film according to claim 4, wherein the median diameter of the secondary particles made of the diamond fine particles is 0.7 to 2 times the film thickness of the liquid crystal alignment film. 請求項4又は5に記載の液晶配向膜において、前記ダイヤモンド微粒子の2次粒子のメジアン径が30〜500 nmであることを特徴とする液晶配向膜。
6. The liquid crystal alignment film according to claim 4, wherein the median diameter of secondary particles of the diamond fine particles is 30 to 500 nm.
JP2006118553A 2006-04-21 2006-04-21 Liquid crystal alignment film and coating liquid for liquid crystal alignment film Active JP4659668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118553A JP4659668B2 (en) 2006-04-21 2006-04-21 Liquid crystal alignment film and coating liquid for liquid crystal alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118553A JP4659668B2 (en) 2006-04-21 2006-04-21 Liquid crystal alignment film and coating liquid for liquid crystal alignment film

Publications (2)

Publication Number Publication Date
JP2007292893A true JP2007292893A (en) 2007-11-08
JP4659668B2 JP4659668B2 (en) 2011-03-30

Family

ID=38763595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118553A Active JP4659668B2 (en) 2006-04-21 2006-04-21 Liquid crystal alignment film and coating liquid for liquid crystal alignment film

Country Status (1)

Country Link
JP (1) JP4659668B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025930A (en) * 2010-06-25 2012-02-09 Vision Development Co Ltd Method for producing polyester resin containing diamond fine particle and/or carbon nanotube

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180455A (en) * 1992-10-13 1994-06-28 Sony Corp Oriented film for liquid crystal device, its production and liquid crystal display device using same
JPH0854629A (en) * 1994-08-09 1996-02-27 Toshiba Corp Liquid crystal display element and its production
JP2000019542A (en) * 1998-07-03 2000-01-21 Sony Corp Liquid crystal display device
JP2003005187A (en) * 2001-04-06 2003-01-08 Toray Ind Inc Liquid crystal display device
JP2003125764A (en) * 2001-10-24 2003-05-07 Tadamasa Fujimura Diamond microparticle carrier
JP2003146637A (en) * 2001-08-30 2003-05-21 Tadamasa Fujimura Diamond-containing aqueous suspension having excellent dispersive stability, metallic film containing the diamond, and product thereof
JP2003222873A (en) * 2002-01-28 2003-08-08 Internatl Business Mach Corp <Ibm> Liquid crystal alignment layer, method for manufacturing the same liquid crystal alignment layer, liquid crystal panel and liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180455A (en) * 1992-10-13 1994-06-28 Sony Corp Oriented film for liquid crystal device, its production and liquid crystal display device using same
JPH0854629A (en) * 1994-08-09 1996-02-27 Toshiba Corp Liquid crystal display element and its production
JP2000019542A (en) * 1998-07-03 2000-01-21 Sony Corp Liquid crystal display device
JP2003005187A (en) * 2001-04-06 2003-01-08 Toray Ind Inc Liquid crystal display device
JP2003146637A (en) * 2001-08-30 2003-05-21 Tadamasa Fujimura Diamond-containing aqueous suspension having excellent dispersive stability, metallic film containing the diamond, and product thereof
JP2003125764A (en) * 2001-10-24 2003-05-07 Tadamasa Fujimura Diamond microparticle carrier
JP2003222873A (en) * 2002-01-28 2003-08-08 Internatl Business Mach Corp <Ibm> Liquid crystal alignment layer, method for manufacturing the same liquid crystal alignment layer, liquid crystal panel and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025930A (en) * 2010-06-25 2012-02-09 Vision Development Co Ltd Method for producing polyester resin containing diamond fine particle and/or carbon nanotube

Also Published As

Publication number Publication date
JP4659668B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
Haruna et al. Improved rheology and high‐temperature stability of hydrolyzed polyacrylamide using graphene oxide nanosheet
CN101821670B (en) Liquid crystal display device
JP6627772B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using the same
KR20140020730A (en) Liquid crystal aligning agent and compound
Zorn et al. Orientation and dynamics of ZnO nanorod liquid crystals in electric fields
Wang et al. Functionalized carbon black nanoparticles used for separation of emulsified oil from oily wastewater
TW200406623A (en) Aligning agent for liquid crystal and liquid-crystal display element
CN112778521B (en) Liquid crystal alignment agent and preparation method thereof, liquid crystal alignment film and preparation method thereof, and liquid crystal box
CN1251008C (en) Polyimides for anchoring liquid crystals, display devices including same and method for prepn. of said devices
Tripathi et al. Study on dielectric and optical properties of ZnO doped nematic liquid crystal in low frequency region
CN110734771B (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP4659668B2 (en) Liquid crystal alignment film and coating liquid for liquid crystal alignment film
WO2015109777A1 (en) Liquid crystal aligning agent, liquid crystal alignment layer, preparation method therefor and liquid crystal display panel
JP2014206718A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element and method of producing the same
Fang et al. Magnetic demulsifier prepared by using one‐pot reaction and its performance for treating oily wastewater
JP4198427B2 (en) Niobium oxide nanosheet liquid crystal and method for producing the same
Dimou et al. In situ control of graphene oxide dispersions with a small impedance sensor
Lei et al. A gemini ionic liquid and its low-temperature demulsification performance in water-in-crude oil emulsions
Li et al. Janus Micelle Formation Induced by Protonation/Deprotonation of Poly (2‐vinylpyridine)‐block‐Poly (ethylene oxide) Diblock Copolymers
JP2010101999A (en) Liquid crystal alignment layer, liquid crystal aligning agent, and liquid crystal display element
JP2003255349A (en) Liquid crystal alignment layer, method for manufacturing liquid crystal alignment layer, and liquid crystal display element
Singh et al. Enhanced electro-optical properties of low viscous nematic liquid crystal doped with mixed phase anatase/rutile TiO2 nanoparticles for display applications
JPH07110484A (en) Oriented film for liquid crystal display element and liquid crystal display element using it
JP2004264354A (en) Method for forming liquid crystal alignment layer
CN110204754A (en) A kind of preparation method of the high phase transition temperature composite piezoelectric material of fluoro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250