JP2007291575A - Acrylic shrinkable fiber and pile cloth by using the same - Google Patents

Acrylic shrinkable fiber and pile cloth by using the same Download PDF

Info

Publication number
JP2007291575A
JP2007291575A JP2006123353A JP2006123353A JP2007291575A JP 2007291575 A JP2007291575 A JP 2007291575A JP 2006123353 A JP2006123353 A JP 2006123353A JP 2006123353 A JP2006123353 A JP 2006123353A JP 2007291575 A JP2007291575 A JP 2007291575A
Authority
JP
Japan
Prior art keywords
fiber
acrylic
pile
shrinkable
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006123353A
Other languages
Japanese (ja)
Inventor
Sohei Nishida
宗平 西田
Masaaki Miyoshi
正明 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006123353A priority Critical patent/JP2007291575A/en
Publication of JP2007291575A publication Critical patent/JP2007291575A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylic shrinkable fiber having a flat cross sectional shape and also having a high shrinking function even by stretch-treating under a condition of giving a high stretching magnitude and also giving a dyeing treatment, and a pile cloth obtained by using the fiber as the fiber constituting a short pile part. <P>SOLUTION: This acrylic shrinkable fiber is a synthetic fiber containing an acrylic copolymer (A) and characterized by capable of being dyed at ≤80°C temperature, and having a function of shrinking by 10 to 40% range shrinking rate under the dry heat of 130°C even after the dyeing and 3 to 20 flatness R<SB>A</SB>expressed by the following formula (1) of the fiber cross sectional surface. Preferably the polymer constituting the fiber is obtained by mixing (A) 30 to 99 wt.% acrylic copolymer with (B) 1 to 70 wt.% copolymer consisting of an acrylic acid ester and other copolymerizable vinyl monomers, and the pile cloth by using the same is also provided. Formula (1): the flatness:R<SB>A</SB>=WL/WS [wherein, WL is the length of its long axis; WS is the length of its short axis. and also R<SB>A</SB>is an average value of the flatness from 10 pieces of fibers extracted randomly]. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アクリル系収縮性繊維およびそれを用いたパイル布帛に関する。更に詳しくは、アクリル系収縮性繊維、並びに長パイル部および短パイル部からなり、短パイル部を構成する繊維として前記アクリル系収縮性繊維を用いたパイル布帛に関する。   The present invention relates to an acrylic shrinkable fiber and a pile fabric using the same. More specifically, the present invention relates to a pile fabric comprising an acrylic shrinkable fiber and a long pile portion and a short pile portion, and using the acrylic shrinkable fiber as a fiber constituting the short pile portion.

アクリル系繊維は、獣毛様風合いを有することから玩具、衣料等の立毛商品に用いられている。前記立毛商品のなかでも、パイル布帛の分野では、天然毛皮に近い外観や触感を付与するために、天然毛皮のダウンヘアー部に相当する短パイル部を収縮性繊維で、ガードヘアー部に相当する長パイル部を非収縮性繊維で構成する例が多い。   Acrylic fibers are used in napped products such as toys and clothing because they have animal hair-like texture. Among the napped products, in the field of pile fabric, in order to give the appearance and feel close to natural fur, the short pile portion corresponding to the down hair portion of natural fur is a shrinkable fiber and corresponds to the guard hair portion. There are many examples in which the long pile portion is composed of non-shrinkable fibers.

このようなパイル布帛に関し、短パイル部に繊維断面形状が扁平である収縮性繊維を用いることにより、パイル布帛の立毛感や毛さばき感等を良好にして、より天然毛皮に近い外観や触感を付与する技術が提案されている(例えば、特許文献1参照。)。   With respect to such a pile fabric, by using a shrinkable fiber having a flat fiber cross-sectional shape in the short pile portion, the pile fabric has a good nap feeling, a feeling of bristle, etc., and has an appearance and tactile sensation closer to natural fur. The technique to provide is proposed (for example, refer patent document 1).

しかしながら、従来の収縮性繊維は、染色すると染色時の熱で収縮するため、染色後にはそれ以上収縮できないものとなる。従って、従来の収縮性繊維を染色した後に、パイル布帛の短パイル部を構成する繊維として用いた場合には、該繊維が本来収縮性能を発現すべきパイル布帛製造のテンター工程において、もはや収縮しないため、長パイル部と短パイル部の段差を生じさせることができなくなる問題があった。一方、テンター工程で収縮性を発現させるために、染色時に収縮しない程度の温度で処理した場合には、染料が吸尽せず、十分な発色が得られない問題があった。   However, since the conventional shrinkable fiber shrinks due to the heat at the time of dyeing, it cannot shrink any more after dyeing. Therefore, when a conventional shrinkable fiber is dyed and used as a fiber constituting the short pile portion of the pile fabric, the fiber will no longer shrink in the tenter process of manufacturing the pile fabric, which should naturally exhibit shrinkage performance. Therefore, there is a problem that a step between the long pile portion and the short pile portion cannot be generated. On the other hand, in order to express shrinkage in the tenter process, when the treatment is performed at a temperature that does not shrink during dyeing, there is a problem that the dye is not exhausted and sufficient color development cannot be obtained.

上記の理由より、従来の収縮性繊維は、十分な染色をすることができないため、紡糸工程であらかじめ着色することによる、限られた色のものしか市場に提供することができなかった。このことは、意匠性が重視されるパイル布帛の分野では、致命的な欠点であった。   For the above reasons, since conventional shrinkable fibers cannot be sufficiently dyed, only limited colors can be provided to the market by coloring in advance in the spinning process. This is a fatal defect in the field of pile fabric where design is important.

また、収縮性繊維を染色可能にする方法として、易染性ポリマーを含有するポリマーを混合することにより、低温染色性を向上させる方法が提案されている(例えば、特許文献2参照。)。   Further, as a method for enabling the dyeing of shrinkable fibers, a method for improving low-temperature dyeability by mixing a polymer containing an easily dyeable polymer has been proposed (see, for example, Patent Document 2).

しかしながら、このような方法では、扁平断面を有する染色可能な収縮性繊維を作成することができないといった問題があった。   However, such a method has a problem that a shrinkable shrinkable fiber having a flat cross section cannot be produced.

その理由として、収縮性繊維の収縮性を、染色後にも高い状態で残すためには、染色時に収縮する量を考慮した従来よりも高い収縮性を付与する必要がある。しかし、高い収縮性を繊維に付与するためには、紡糸工程における延伸工程を、低い温度で、かつ高い延伸倍率を付与する条件で処理を行い、繊維に大きな歪みを与える必要がある。   The reason for this is that in order to leave the shrinkability of the shrinkable fiber in a high state even after dyeing, it is necessary to impart higher shrinkage than in the past considering the amount of shrinkage during dyeing. However, in order to impart high shrinkage to the fiber, it is necessary to perform the stretching process in the spinning process at a low temperature and under a condition that imparts a high draw ratio, and to impart a large strain to the fiber.

しかしながら、上記のような条件で繊維横断面形状が扁平である繊維に延伸処理を施すと、該繊維が扁平断面の短軸方向に割れてしまい、繊維の強度が弱くなり、糸切れを起こしやすくなり、製造工程の安定的な操業が困難となり、不良品の発生が増大する問題があった。さらには、繊維の繊度においてもバラツキが発生するため、安定した品質のパイル布帛を得ることができなかった。   However, when a fiber having a flat fiber cross-sectional shape under the above conditions is subjected to a stretching treatment, the fiber is cracked in the minor axis direction of the flat cross section, the strength of the fiber is weakened, and yarn breakage is likely to occur. Thus, there is a problem that stable operation of the manufacturing process becomes difficult and the generation of defective products increases. Furthermore, since the fiber fineness also varies, a pile fabric with stable quality could not be obtained.

国際公開第04/009891号パンフレットInternational Publication No. 04/009891 Pamphlet 国際公開第05/064050号パンフレットInternational Publication No. 05/064050 Pamphlet

そこで、本発明が前述の状況に鑑み、解決しようとするところは、高い延伸倍率を付与する条件で延伸処理し、かつ染色処理を施しても、高い収縮機能を有する、横断面形状が扁平であるアクリル系収縮性繊維、および該繊維を短パイル部を構成する繊維として用いたパイル布帛を提供することにある。   Therefore, in view of the above-described situation, the present invention intends to solve the problem that the cross-sectional shape is flat with a high shrinkage function even if the drawing treatment is performed under conditions that give a high draw ratio and the dyeing treatment is performed. An acrylic shrinkable fiber and a pile fabric using the fiber as a fiber constituting a short pile portion are provided.

本発明者らは、鋭意検討した結果、ガラス転移点の低い、アクリル酸エステルからなる共重合体とアクリル系共重合体とを混合して収縮繊維を作成することにより、繊維の靭性が高くなり、歪みが大きくかかる低い温度で高い延伸倍率の延伸処理を施し、かつ繊維の横断面形状を所定の扁平率となる扁平断面としても、繊維が扁平断面の短軸方向に割れないものとできることを見出した。   As a result of intensive studies, the inventors of the present invention have improved the toughness of the fiber by creating a shrinkable fiber by mixing an acrylic ester copolymer having a low glass transition point and an acrylic copolymer. It is possible that the fiber does not break in the minor axis direction of the flat cross section even if the fiber is subjected to a drawing process at a high draw ratio at a low temperature where a large strain is applied, and the cross sectional shape of the fiber is a flat cross section having a predetermined flatness ratio. I found it.

すなわち、本発明は、アクリル系共重合体(A)を含んでなる合成繊維であって、80℃以下の温度で染色可能であり、かつ染色した後も乾熱130℃で収縮率10〜40%の範囲で収縮する機能を有し、さらに繊維横断面の下記式で表される扁平率RAが3〜20であることを特徴とするアクリル系収縮性繊維に関する。 That is, the present invention is a synthetic fiber comprising the acrylic copolymer (A), which can be dyed at a temperature of 80 ° C. or less, and has a shrinkage of 10 to 40 at 130 ° C. dry heat after dyeing. % has a function to shrink in the range of, regarding the acrylic shrinkable fiber, characterized by further flattening R a represented by the following formula fibers cross-section is 3 to 20.

扁平率RA=WL/WS Flatness ratio R A = WL / WS

ここに、WLは、繊維の横断面形状における長軸の長さ、WSは短軸の長さを示す。また、RAは、無作為に抽出した10本の繊維からの扁平率の平均値を示す。 Here, WL represents the length of the major axis in the cross-sectional shape of the fiber, and WS represents the length of the minor axis. Moreover, RA shows the average value of the oblateness rate from ten fibers extracted at random.

また、繊維を構成する重合体が、前記アクリル系共重合体(A)30〜99重量%と、アクリル酸エステルとその他共重合可能な他のビニル系モノマーとからなる共重合体(B)1〜70重量%とを混合してなることが好ましい。   The polymer constituting the fiber is a copolymer (B) 1 comprising 30 to 99% by weight of the acrylic copolymer (A) and another vinyl monomer copolymerizable with an acrylate ester. It is preferable to mix ˜70% by weight.

さらに、前記共重合体(B)が、アクリロニトリル5〜70重量%、アクリル酸エステル20〜94重量%およびスルホン酸含有ビニル系モノマー1〜40重量%からなることが好ましい。   Further, the copolymer (B) is preferably composed of 5 to 70% by weight of acrylonitrile, 20 to 94% by weight of an acrylate ester and 1 to 40% by weight of a sulfonic acid-containing vinyl monomer.

さらに、60℃以上80℃以下で染色したときの相対飽和値が0.8以上であることが好ましい。   Furthermore, the relative saturation value when dyeing is performed at 60 ° C. or more and 80 ° C. or less is preferably 0.8 or more.

また、本発明は、長パイル部と短パイル部とからなるパイル布帛であって、前記短パイル部を構成する繊維として、前記アクリル系収縮性繊維を用いることを特徴とするパイル布帛に関する。   The present invention also relates to a pile fabric comprising a long pile portion and a short pile portion, wherein the acrylic shrinkable fiber is used as a fiber constituting the short pile portion.

さらに、長パイル部と短パイル部の段差が明確であることが好ましい。   Furthermore, it is preferable that the step between the long pile portion and the short pile portion is clear.

以上にしてなる本発明のアクリル系収縮性繊維は、繊維の横断面形状が扁平であって、任意の色に染色した後も高い収縮機能を有するものとなる。   The acrylic shrinkable fiber of the present invention as described above has a flat cross-sectional shape and has a high shrinkage function even after dyeing in an arbitrary color.

また、前記アクリル系収縮性繊維を短パイル部を構成する繊維に用いたパイル布帛は、毛さばき性が良好で、かつ任意の色にすることができるものとなり、天然毛皮のような触感および外観を有するものとなる。   In addition, the pile fabric using the acrylic shrinkable fiber as a fiber constituting the short pile portion has good hairiness and can be of any color, and feels and looks like natural fur. It will have.

本発明のアクリル系収縮性繊維は、前述のとおり、アクリル系共重合体(A)を含んでなる合成繊維であって、80℃以下の温度で染色可能であり、かつ染色した後も乾熱130℃で収縮率10〜40%の範囲で収縮する機能を有し、さらに繊維横断面の扁平率RAが3〜20であることを特徴とする。 As described above, the acrylic shrinkable fiber of the present invention is a synthetic fiber comprising the acrylic copolymer (A), can be dyed at a temperature of 80 ° C. or less, and is dry heat after dyeing. It has a function of shrinking at a shrinkage rate of 10 to 40% at 130 ° C., and further has a flatness ratio RA of the fiber cross section of 3 to 20.

本発明でいう収縮率とは、染色処理を施した後の収縮性繊維が、パイル布帛の加工工程におけるテンター工程でどれだけ収縮するかという指標であり、次式により求められる。ここでいうテンター工程とは、パイルの毛抜けを防止するため、パイルの裏面に接着剤を付着させ、その付着剤を所定の温度で乾燥させる工程である。   The shrinkage rate in the present invention is an index of how much the shrinkable fiber after the dyeing treatment is shrunk in the tenter process in the pile fabric processing process, and is obtained by the following equation. Here, the tenter process is a process of attaching an adhesive to the back surface of the pile and drying the adhesive at a predetermined temperature in order to prevent the pile from coming off.

収縮率(%)=((Ld−Lds)/Ld)×100   Shrinkage rate (%) = ((Ld−Lds) / Ld) × 100

ここに、Ldは、任意の温度で染色した後の繊維の長さであり、Ldsは、均熱オーブンを用いて130℃で5分間処理した後の繊維の長さである。   Here, Ld is the length of the fiber after dyeing at an arbitrary temperature, and Lds is the length of the fiber after being treated at 130 ° C. for 5 minutes using a soaking oven.

本発明のアクリル系収縮性繊維を、パイル布帛の短パイル部を構成する繊維として用いる場合には、後に詳述するように、パイル布帛の加工工程におけるテンター工程で収縮させる。テンター工程は、通常、乾熱130℃前後で行われるため、前記収縮率は乾熱130℃で測定するものとする。   When the acrylic shrinkable fiber of the present invention is used as a fiber constituting the short pile portion of the pile fabric, it is shrunk in a tenter process in the processing process of the pile fabric as will be described in detail later. Since the tenter process is usually performed at a dry heat of about 130 ° C., the shrinkage rate is measured at a dry heat of 130 ° C.

本発明のアクリル系収縮性繊維は、染色後の繊維の収縮率が10%未満になると、該繊維を短パイル部に用いてパイル布帛を加工する際に、長パイル部と短パイル部の段差が小さくなるため段差が明確にならず、天然毛皮のような、高い意匠性のある外観特性を有するパイル布帛が得られない。「段差が明確」であるとの判定は、外観の風合い評価によるものであるが、これを長パイル部と短パイル部の段差を数値で表せば、前記段差が1mm以上であることが目安となる。一方、染色後の繊維の収縮率が40%を超えると、該繊維を短パイル部に用いてパイル布帛を加工する際に、短パイル部の密度が高くなりすぎるため、パイル布帛の風合いが堅くなり、天然毛皮のようなパイル布帛が得られない。そのため、本発明のアクリル系収縮性繊維において、染色後の乾熱130℃の収縮率は10〜40%とする。   When the shrinkage of the dyed fiber is less than 10%, the acrylic shrinkable fiber of the present invention has a step difference between the long pile portion and the short pile portion when the pile fabric is processed using the fiber for the short pile portion. Therefore, the level difference is not clear, and a pile fabric having appearance characteristics with high design like natural fur cannot be obtained. Judgment that “the level difference is clear” is based on the texture evaluation of the appearance. If this is expressed numerically as the level difference between the long pile portion and the short pile portion, the level difference is 1 mm or more. Become. On the other hand, if the shrinkage ratio of the fiber after dyeing exceeds 40%, the density of the short pile portion becomes too high when the pile fabric is processed using the fiber for the short pile portion, so the texture of the pile fabric is stiff. Thus, a pile fabric such as natural fur cannot be obtained. Therefore, in the acrylic shrinkable fiber of the present invention, the shrinkage rate at 130 ° C. after drying is 10 to 40%.

本発明でいう扁平率RAとは、繊維横断面形状における長軸の長さと短軸の長さとの比で表される。ここで、長軸とは、繊維横断面形状に外接する長方形の長辺のことをいい、短軸とは前記長方形の短辺のことをいう。より詳細には、扁平率RAは次のようにして求められる。すなわち、無作為に抽出した繊維の横断面形状における長軸の長さWLと、短軸の長さWSとを測定し、下記式に基づき、扁平率Rを求める。ここで、扁平率RAは、無作為に抽出した10本の繊維からそれぞれ求めた扁平率Rの平均値である。 The flatness ratio R A in the present invention is represented by the ratio of the length of the major axis to the length of the minor axis in the fiber cross-sectional shape. Here, the long axis means the long side of the rectangle circumscribing the fiber cross-sectional shape, and the short axis means the short side of the rectangle. More specifically, the flatness ratio RA is obtained as follows. That is, the long axis length WL and the short axis length WS in the cross-sectional shape of the randomly extracted fiber are measured, and the flattening ratio R is obtained based on the following equation. Here, the flattening ratio R A is an average value of the flattening ratio R obtained from each of ten randomly extracted fibers.

A=WL/WS R A = WL / WS

本発明のアクリル系収縮性繊維の横断面形状は、パイル布帛に加工した時の毛さばき性を良好にするために、扁平であって、扁平率RAが3〜20であり、より好ましくは5〜18である。扁平率RAが3未満では、パイル布帛に加工した時の毛さばき性が不良になり、天然毛皮のような風合いを有するパイル布帛が得られない。一方、扁平率RAが20を超えると、繊維のコシが無くなり、パイル布帛に加工した時の立毛感がなくなる。 The cross-sectional shape of the acrylic shrinkable fiber of the present invention is flat in order to improve the hair separation when processed into a pile fabric, and the flatness ratio RA is 3 to 20, more preferably 5-18. When the aspect ratio R A is less than 3, the hair separation property when processed into a pile fabric becomes poor, and a pile fabric having a texture like natural fur cannot be obtained. On the other hand, if the flatness ratio R A exceeds 20, the stiffness of the fiber is lost, and the feeling of napping when processed into a pile fabric is lost.

本発明に用いる前記アクリル系共重合体(A)とは、アクリロニトリルを30〜98重量%と、アクリロニトリルと共重合可能な他のビニル系モノマーを70〜2重量%、およびこれらと共重合可能なスルホン酸基含有ビニルモノマー0〜10重量%よりなる共重合体である。アクリロニトリルの含有量が30重量%未満では、耐熱性が低下し、パイル加工性が低下する傾向にある。一方、アクリロニトリルの含有量が98重量%を超えると、紡糸工程における延伸性が低くなり、高い延伸倍率で延伸することが困難となって高い収縮性が得られにくくなる。   The acrylic copolymer (A) used in the present invention is 30 to 98% by weight of acrylonitrile, 70 to 2% by weight of other vinyl monomers copolymerizable with acrylonitrile, and copolymerizable with these. It is a copolymer comprising 0 to 10% by weight of a sulfonic acid group-containing vinyl monomer. If the content of acrylonitrile is less than 30% by weight, the heat resistance tends to decrease and the pile workability tends to decrease. On the other hand, if the content of acrylonitrile exceeds 98% by weight, the stretchability in the spinning process becomes low, and it becomes difficult to stretch at a high draw ratio, making it difficult to obtain high shrinkability.

前記アクリロニトリルと共重合可能なビニル系モノマーとしては、塩化ビニル、塩化ビニリデン、臭化ビニルおよび臭化ビニリデン等に代表されるハロゲン含有ビニルおよびハロゲン含有ビニリデン類、アクリル酸やメタクリル酸に代表される不飽和カルボン酸類およびこれらの塩類、メタクリル酸メチルに代表されるメタクリル酸エステル類、グリシジルメタクリレート等に代表される不飽和カルボン酸のエステル類、酢酸ビニルや酪酸ビニルに代表されるビニルエステル類、アクリルアミドやメタクリルアミドに代表されるビニル系アミド類、ビニルピリジンやその他メチルビニルエーテル,メタクリロニトリル等公知のビニル化合物が挙げられ、これらのモノマーを単独もしくは2種以上混合して用いることができる。   Examples of vinyl monomers copolymerizable with acrylonitrile include halogen-containing vinyls and halogen-containing vinylidenes such as vinyl chloride, vinylidene chloride, vinyl bromide and vinylidene bromide, and non-representatives such as acrylic acid and methacrylic acid. Saturated carboxylic acids and salts thereof, methacrylic acid esters represented by methyl methacrylate, esters of unsaturated carboxylic acids represented by glycidyl methacrylate, vinyl esters represented by vinyl acetate and vinyl butyrate, acrylamide and the like Known vinyl compounds such as vinyl amides typified by methacrylamide, vinyl pyridine, other methyl vinyl ethers, methacrylonitrile, and the like can be used, and these monomers can be used alone or in admixture of two or more.

前記アクリロニトリルと共重合可能なビニル系モノマーの含有量が2重量%より小さいと、染色性が悪くなる傾向にある。一方、アクリロニトリルと共重合可能なビニル系モノマーの含有量が70重量%を超えると、パイル布帛や繊維に加工した後の風合いが悪くなる。また、前記スルホン酸基含有ビニルモノマーは、繊維の染色性を高めるために共重合させることが好ましいが、前記スルホン酸基含有ビニルモノマーの含有量が10重量%を超えると、共重合体(A)の親水性が高くなりすぎ、繊維への加工が困難になる。   When the content of the vinyl monomer copolymerizable with the acrylonitrile is less than 2% by weight, the dyeability tends to deteriorate. On the other hand, if the content of the vinyl monomer copolymerizable with acrylonitrile exceeds 70% by weight, the texture after processing into a pile fabric or fiber becomes worse. The sulfonic acid group-containing vinyl monomer is preferably copolymerized in order to enhance the dyeability of the fiber. However, if the content of the sulfonic acid group-containing vinyl monomer exceeds 10% by weight, the copolymer (A ) Becomes too hydrophilic and difficult to process into fibers.

前記アクリル系共重合体(A)において、前記アクリロニトリルと共重合可能なビニル系モノマーとしてアクリル酸エステルを共重合させる場合、アクリル酸エステルの共重合量が20重量%以上となると、アクリル系収縮性繊維の耐熱性が低くなりすぎ、パイル布帛への加工が困難になるため、前記アクリル系共重合体における前記アクリル酸エステルの含有量は、20重量%未満とし、より好ましくは5重量%未満、さらに好ましくは0重量%とする。   In the acrylic copolymer (A), when an acrylic acid ester is copolymerized as a vinyl monomer copolymerizable with the acrylonitrile, when the acrylic acid ester copolymerization amount is 20% by weight or more, the acrylic shrinkage Since the heat resistance of the fiber becomes too low and processing into a pile fabric becomes difficult, the content of the acrylic ester in the acrylic copolymer is less than 20% by weight, more preferably less than 5% by weight, More preferably, the content is 0% by weight.

本発明のアクリル系収縮性繊維は、前述のとおり、横断面形状を扁平とし、かつ染色後においても高い収縮機能を有するものとするため、紡糸工程において高い延伸倍率で延伸する必要があるが、このような延伸処理を施した際に繊維が割れることを防止するために、繊維の靭性を向上させる必要がある。繊維の靭性を向上させる方法としては、該繊維の基幹となるアクリル系共重合体(A)に、ガラス転移点の低い成分を共重合させることが考えられる。しかしながら、アクリル系共重合体(A)にガラス転移点の低い成分を共重合させると、繊維自体のガラス転移点が大きく低下するため、熱に敏感になり、低い温度で染色を行っても大きく収縮してしまい、パイル布帛を製造するテンター工程において、もはや収縮が発現しなくなる。さらには、繊維の耐熱性が低下するため、パイル加工工程において、繊維が焦げたり、繊維同士が融着するためにパイル布帛の風合いが不良になる。   As described above, the acrylic shrinkable fiber of the present invention has a flat cross-sectional shape and has a high shrinkage function even after dyeing, and therefore it is necessary to draw at a high draw ratio in the spinning process. In order to prevent the fiber from cracking when such a stretching treatment is performed, it is necessary to improve the toughness of the fiber. As a method for improving the toughness of the fiber, it is conceivable to copolymerize a component having a low glass transition point with the acrylic copolymer (A) serving as the backbone of the fiber. However, when the acrylic copolymer (A) is copolymerized with a component having a low glass transition point, the glass transition point of the fiber itself is greatly lowered, so that it becomes sensitive to heat and is greatly increased even when dyeing at a low temperature. In the tenter process for producing a pile fabric, the shrinkage no longer appears. Furthermore, since the heat resistance of the fibers is reduced, the fibers are burnt in the pile processing step, and the fibers are fused with each other.

そこで、本発明のアクリル系収縮性繊維(A)には、該繊維を構成する重合体として、前記アクリル系共重合体(A)に、ガラス転移点の低い成分であるアクリル酸エステルと、その他共重合可能なビニル系モノマーとからなる共重合体(B)(以下、単に「アクリル酸エステルを含む共重合体」という場合がある。)を、混合して用いることが好ましい。このように、本発明のアクリル系収縮性繊維は、前記アクリル系共重合体(A)に、ガラス転移点の低い成分を共重合させるのではなく、混合することにより、前記アクリル系共重合体(A)自体が有するガラス転移点を大きく変化させずに、繊維全体としてのガラス転移点を低くすることができる。従って、繊維の耐熱性を低下させずに、繊維の靭性を向上させることが可能となる。   Therefore, in the acrylic shrinkable fiber (A) of the present invention, as the polymer constituting the fiber, the acrylic copolymer (A), an acrylate ester having a low glass transition point, and the like A copolymer (B) composed of a copolymerizable vinyl monomer (hereinafter sometimes simply referred to as “a copolymer containing an acrylate ester”) is preferably used by mixing. As described above, the acrylic shrinkable fiber of the present invention is obtained by mixing the acrylic copolymer (A) with a component having a low glass transition point instead of copolymerizing the acrylic copolymer (A). (A) The glass transition point of the whole fiber can be lowered without greatly changing the glass transition point of the fiber itself. Therefore, the toughness of the fiber can be improved without reducing the heat resistance of the fiber.

前記アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等が好ましく、これらのモノマーを単独もしくは2種以上混合して用いることができる。   As said acrylic ester, methyl acrylate, ethyl acrylate, butyl acrylate, etc. are preferable, and these monomers can be used individually or in mixture of 2 or more types.

前記アクリル酸エステルを含む共重合体(B)における前記アクリル酸エステルの含有量は、ガラス転移点を下げるために、20〜94重量%とすることが好ましい。前記共重合体(B)におけるアクリル酸エステルの含有量が20重量%より小さいとガラス転移点が下がらず繊維の靭性が上がらない。一方、アクリル酸エステルの含有量が94重量%を超えると、アクリル酸エステルを含む共重合体(B)と前記アクリル系共重合体(A)との親和性が悪くなり、緻密な繊維が得られない。本発明のアクリル系収縮繊維は、繊維が緻密でなく空隙を有する構造をとると、収縮性が悪くなり、染色した場合に、空隙で光が乱反射するために白ぼけた発色となるため、繊維構造は緻密なほうが良い。   In order to lower the glass transition point, the content of the acrylic ester in the copolymer (B) containing the acrylic ester is preferably 20 to 94% by weight. If the content of the acrylate ester in the copolymer (B) is less than 20% by weight, the glass transition point is not lowered and the toughness of the fiber is not increased. On the other hand, if the acrylic ester content exceeds 94% by weight, the affinity between the acrylic ester-containing copolymer (B) and the acrylic copolymer (A) is deteriorated, and dense fibers are obtained. I can't. The acrylic shrinkable fiber of the present invention has a structure in which the fiber is not dense and has a void, and the shrinkage is deteriorated, and when dyed, the light is irregularly reflected in the void, resulting in a white color. The dense structure is better.

前記アクリル酸エステルを含む共重合体(B)において、前記アクリル酸エステルと共重合可能なビニル系モノマーとしては、アクリロニトリル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン等に代表されるハロゲン化ビニル及びハロゲン化ビニリデン類、アクリル酸、メタクリル酸に代表される不飽和カルボン酸類及びこれらの塩類、メタクリル酸メチルに代表されるメタクリル酸エステル、グリシジルメタクリレート等に代表される不飽和カルボン酸のエステル類、酢酸ビニルや酪酸ビニルに代表されるビニルエステル類、スチレンスルホン酸、パラスチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、パラメタクリロイルオキシベンゼンスルホン酸、メタクリロイルオキシプロピルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸に代表されるスルホン酸含有ビニル系モノマーまたはこれらの金属塩類およびアミン塩類、アクリルアミドやメタクリルアミドに代表されるビニル系アミド類、ビニルピリジンやその他メチルビニルエーテル、メタクリロニトリル等公知のビニル化合物があり、これらのモノマーを単独もしくは2種以上混合して用いることができる。   In the copolymer (B) containing the acrylate ester, examples of vinyl monomers copolymerizable with the acrylate ester include halogens represented by acrylonitrile, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide and the like. Unsaturated carboxylic acids represented by vinyl halides and vinylidene halides, acrylic acid, methacrylic acid and their salts, methacrylic esters represented by methyl methacrylate, esters of unsaturated carboxylic acids represented by glycidyl methacrylate, etc. , Vinyl esters typified by vinyl acetate and vinyl butyrate, styrene sulfonic acid, para styrene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, parameter acryloyloxybenzene sulfonic acid, methacryloyloxypropyl sulfonic acid, 2-acrylic Sulfonic acid-containing vinyl monomers typified by mid-2-methylpropane sulfonic acid or their metal salts and amine salts, vinyl amides typified by acrylamide and methacrylamide, vinyl pyridine and other methyl vinyl ethers, methacrylonitrile And the like, and these monomers can be used alone or in combination of two or more.

前記アクリル酸エステルと共重合可能なビニル系モノマーのうちの1つとして、アクリロニトリルを用いることが好ましく、該アクリロニトリルの含有量は、前記アクリル酸エステルを含む共重合体(B)中に、5〜70重量%とすることが好ましい。このようにアクリロニトリルを用いることにより、前記共重合体(B)と、前記アクリル系共重合体(A)との親和性をより向上させることができる。アクリロニトリルの含有量を、5重量%以上とすることで、前記アクリル酸エステルを含む共重合体(B)と前記アクリル系共重合体(A)との親和性をより向上させることができる。一方、アクリロニトリルの含有量が70重量%を超えると、前記アクリル酸エステルを含む共重合体(B)のガラス転移点が高くなり、アクリル系収縮性繊維の靭性を向上させることができない。   It is preferable to use acrylonitrile as one of the vinyl monomers copolymerizable with the acrylate ester, and the content of the acrylonitrile is 5 to 5 in the copolymer (B) containing the acrylate ester. It is preferable to set it as 70 weight%. By using acrylonitrile in this way, the affinity between the copolymer (B) and the acrylic copolymer (A) can be further improved. By making the content of acrylonitrile 5% by weight or more, the affinity between the copolymer (B) containing the acrylate ester and the acrylic copolymer (A) can be further improved. On the other hand, when the content of acrylonitrile exceeds 70% by weight, the glass transition point of the copolymer (B) containing the acrylate ester becomes high, and the toughness of the acrylic shrinkable fiber cannot be improved.

前記アクリル酸エステルを含む共重合体(B)には、染色性を向上させるために、スルホン酸含有ビニル系モノマーを1〜40重量%共重合させることが好ましい。アクリル酸エステルを含む共重合体(B)におけるスルホン酸含有ビニル系モノマーの含有量が1重量%より小さいと、十分な染色性が得られにくくなる傾向にあり、一方、スルホン酸含有ビニル系モノマーの含有量が40重量%を超えると、親水性が高くなりすぎ、アクリル酸エステルを含む共重合体(B)と前記アクリル系共重合体(A)との親和性が悪くなるため、緻密な繊維が得られない。   In order to improve dyeability, the copolymer (B) containing the acrylic ester is preferably copolymerized with 1 to 40% by weight of a sulfonic acid-containing vinyl monomer. If the content of the sulfonic acid-containing vinyl monomer in the copolymer (B) containing the acrylate ester is less than 1% by weight, sufficient dyeability tends to be hardly obtained. On the other hand, the sulfonic acid-containing vinyl monomer When the content of exceeds 40% by weight, the hydrophilicity becomes too high, and the affinity between the acrylic acid ester-containing copolymer (B) and the acrylic copolymer (A) is deteriorated. Fiber cannot be obtained.

このように、本発明におけるアクリル酸エステルを含む共重合体(B)、すなわちアクリル酸エステルとその他共重合可能なビニル系モノマーからなる共重合体(B)は、アクリロニトリル5〜70重量%、アクリル酸エステル20〜94重量%およびスルホン酸含有ビニル系モノマー1〜40重量%からなる共重合体であることが好ましい。   Thus, the copolymer (B) containing an acrylic ester in the present invention, that is, a copolymer (B) composed of an acrylic ester and another copolymerizable vinyl monomer is 5 to 70% by weight of acrylonitrile, acrylic A copolymer comprising 20 to 94% by weight of an acid ester and 1 to 40% by weight of a sulfonic acid-containing vinyl monomer is preferable.

本発明のアクリル系収縮性繊維を構成する重合体は、前記アクリル系共重合体(A)30〜99重量%と、アクリル酸エステルを含む共重合体(B)1〜70重量%を混合してなることが好ましい。前記繊維を構成する重合体として、前記アクリル酸エステルを含む共重合体(B)を、1重量%より少なく混合すると、繊維の靭性が上がらず、延伸工程で繊維が扁平断面の短軸方向に割れてしまう。一方、70重量%を超えて混合すると、繊維の耐熱性が低下し、繊維加工工程で繊維同士が融着してしまう。そのため、前記アクリル酸エステルを含む共重合体(B)は、前記繊維を構成する重合体として、1〜70重量%混合することが好ましく、より好ましくは4〜40重量%混合する。   The polymer constituting the acrylic shrinkable fiber of the present invention is a mixture of 30 to 99% by weight of the acrylic copolymer (A) and 1 to 70% by weight of the copolymer (B) containing an acrylate ester. It is preferable that When the copolymer (B) containing the acrylate ester is mixed in an amount of less than 1% by weight as the polymer constituting the fiber, the toughness of the fiber does not increase, and the fiber is in the minor axis direction of the flat cross section in the stretching process It breaks. On the other hand, if the content exceeds 70% by weight, the heat resistance of the fibers decreases, and the fibers are fused in the fiber processing step. Therefore, the copolymer (B) containing the acrylate ester is preferably mixed in an amount of 1 to 70% by weight, more preferably 4 to 40% by weight, as the polymer constituting the fiber.

本発明のアクリル系収縮性繊維は、以下のようにして製造される。すなわち、前記アクリル系共重合体(A)と前記アクリル酸エステルを含む共重合体(B)を、有機溶剤、例えば、アセトン、ジメチルホルムアミド、ジメチルアセトアミドまたはジメチルスルホキシド等に溶解、混合させて紡糸原液とする。前記紡糸原液には、酸化チタン、水酸化アルミニウム又は複数の顔料、着色剤、防錆、着色防止、耐光性等の効果のある安定剤を、紡糸に支障をきたさない限り使用することも可能である。前記紡糸原液を通常、湿式あるいは、乾式の紡糸法でノズルより紡出し、その後1次延伸、乾燥を行う。得られた糸条を70〜140℃で1.2〜4.0倍に2次延伸することで、高収縮率の繊維を得ることができる。本発明のアクリル系収縮繊維は、染色後にも高い収縮性を得るために、染色工程の熱での収縮を考慮して、通常の収縮繊維よりも高い収縮性を必要とする。そのためには、製造過程で繊維に高い歪みを与える必要がある。高い歪みを与える手段としては、上記の2次延伸工程において、低い温度でかつ、高い延伸倍率の延伸を与えることが考えられ、好ましくは、100〜120℃で1.5〜2.0倍に2次延伸を行う。   The acrylic shrinkable fiber of the present invention is produced as follows. That is, the acrylic copolymer (A) and the copolymer (B) containing the acrylate ester are dissolved and mixed in an organic solvent such as acetone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc. And In the spinning dope, it is also possible to use titanium oxide, aluminum hydroxide or a plurality of pigments, a colorant, a rust preventive agent, an anti-coloring agent, and a light stabilizer, as long as they do not interfere with spinning. is there. The spinning dope is usually spun from a nozzle by a wet or dry spinning method, followed by primary stretching and drying. A fiber having a high shrinkage rate can be obtained by subjecting the obtained yarn to secondary stretching at 70 to 140 ° C. by 1.2 to 4.0 times. In order to obtain high shrinkability even after dyeing, the acrylic shrinkable fiber of the present invention requires higher shrinkage than ordinary shrinkable fibers in consideration of heat shrinkage in the dyeing process. For this purpose, it is necessary to give a high strain to the fiber during the production process. As a means for imparting high strain, in the above-described secondary stretching step, it is conceivable to provide stretching at a low temperature and a high stretching ratio, and preferably 1.5 to 2.0 times at 100 to 120 ° C. Secondary stretching is performed.

本発明のアクリル系収縮性繊維は、上記のように紡糸工程で紡糸した後、さらに染色工程において染色した後も、高い収縮機能を有するものとするために、前記染色工程における処理温度は、100℃以下とする必要がある。アクリル系収縮性繊維は、パイル布帛の製造に用いる際には、パイル布帛加工におけるテンター工程で収縮機能を発現する。アクリル系収縮繊維を染色した後も、前記テンター工程においてさらに収縮させるためには、テンター工程で受ける熱量よりも、小さい熱量を付与する条件で染色を行う必要がある。通常、染色は、繊維を水に浸漬させて行うが、水の熱伝導率が高いことと、繊維に対して可塑化効果を有することより、100℃の水が繊維に与える熱量は、乾熱130℃で処理した際の熱量に相当する。通常、アクリル繊維は水に浸漬させた状態で、100℃において染色するが、上記理由より、100℃で染色するとテンター工程でもはや収縮しなくなるため、染色後にもテンター工程で収縮させるためには100℃未満で染色する必要がある。さらに、天然毛皮のような、意匠性のある外観特性をもつパイル布帛を得るためには、80℃以下で染色する必要がある。   Since the acrylic shrinkable fiber of the present invention has a high shrinkage function after spinning in the spinning step as described above and further dyeing in the dyeing step, the treatment temperature in the dyeing step is 100 Must be below ℃ When the acrylic shrinkable fiber is used for producing a pile fabric, it exhibits a shrinkage function in a tenter process in the pile fabric processing. Even after the acrylic shrinkable fibers are dyed, in order to further shrink in the tenter process, it is necessary to perform dyeing under conditions that provide a heat quantity smaller than the heat quantity received in the tenter process. Usually, the dyeing is performed by immersing the fiber in water. Since the heat conductivity of water is high and the fiber has a plasticizing effect, the amount of heat given to the fiber by 100 ° C. water is dry heat. This corresponds to the amount of heat when processed at 130 ° C. Usually, acrylic fibers are dyed at 100 ° C. in a state of being immersed in water, but for the above reason, when dyeing at 100 ° C., they no longer shrink in the tenter process. It is necessary to stain at less than ° C. Furthermore, in order to obtain a pile fabric having appearance characteristics with design properties such as natural fur, it is necessary to dye at 80 ° C. or lower.

本発明のアクリル系収縮繊維は、80℃以下で染色可能とするために、親水性が高く、かつ染料と結合する部位を有するスルホン酸含有ビニル系モノマーを繊維中に0.8〜2.0重量%含まれていることが好ましい。   In order to enable the acrylic shrinkable fiber of the present invention to be dyed at 80 ° C. or less, a sulfonic acid-containing vinyl monomer having high hydrophilicity and having a portion that binds to the dye is contained in the fiber in an amount of 0.8 to 2.0. It is preferable that it is contained by weight.

また、本発明のアクリル系収縮性繊維は、60℃以上80℃以下で染色したときの相対飽和値が0.8以上であることが好ましい。ここでいう相対飽和値とは、繊維の染色能力の指標であり、繊維を任意の温度で60分間、過飽和な量のMalachite Greenを用いて染色して飽和染着量を求め、該飽和染着量より求めたものである。前記飽和染着量および相対飽和値は下記の式より求められる。   The acrylic shrinkable fiber of the present invention preferably has a relative saturation value of 0.8 or more when dyed at 60 ° C or more and 80 ° C or less. The relative saturation value here is an index of the dyeing ability of the fiber. The saturated dyeing amount is obtained by dyeing the fiber at an arbitrary temperature for 60 minutes using a supersaturated amount of Malachite Green. It is obtained from the quantity. The saturated dyeing amount and the relative saturation value can be obtained from the following equations.

飽和染着量=((Ao−A)/Ao)×2.5)
A:染色後の染浴の吸光度(618nm)
Ao:染色前の染浴の吸光度(618nm)
相対飽和値=飽和染着量×400/463
Saturated dyeing amount = ((Ao−A) / Ao) × 2.5)
A: Absorbance of dye bath after dyeing (618 nm)
Ao: Absorbance of dye bath before dyeing (618 nm)
Relative saturation value = saturated dyeing amount × 400/463

上記吸光度の測定は、紫外可視分光光度計(株式会社、島津製作所製、UV−2550)を用いて行った。   The absorbance was measured using an ultraviolet-visible spectrophotometer (UV-2550, manufactured by Shimadzu Corporation).

アクリル系繊維、例えば「カネカロン(登録商標)」SE 3.3dtex 38mm(株式会社カネカ製)がMaxilon Red GRL(チバ・スペシャルティー・ケミカルズ株式会社製) 0.5%omf程度の染料を吸尽した場合の発色を淡色、1%omf程度の染料を吸尽した場合の発色を中濃色、2%omf程度の染料を吸尽した場合の発色を濃色とした場合、本発明のアクリル系収縮性繊維は60℃以上で染色したときの相対飽和値が0.8以上で濃色に染色可能となり、市場で使用されているほとんどの色に染色可能となる。従って、60℃以上80℃以下で染色したときの相対飽和値は0.8以上が好ましい。尚、ここにいう「%omf」とは、出来上がった繊維中の「重量%」を意味する。   Acrylic fiber, for example, “Kanekalon (registered trademark)” SE 3.3 dtex 38 mm (manufactured by Kaneka Corporation) exhausted about 0.5% omf of dye, Maxilon Red GRL (manufactured by Ciba Specialty Chemicals Co., Ltd.) In the case where the color developed in this case is a light color, the color developed when the dye of about 1% omf is exhausted is the medium dark color, and the color developed when the dye of about 2% omf is exhausted is the dark color, the acrylic shrinkage of the present invention When the fiber is dyed at 60 ° C. or higher, the relative saturation value is 0.8 or more, and the fiber can be dyed in dark color, and can be dyed in most colors used in the market. Therefore, the relative saturation value when dyeing at 60 ° C. or more and 80 ° C. or less is preferably 0.8 or more. Here, “% omf” means “% by weight” in the finished fiber.

本発明のパイル布帛は、長パイル部と短パイル部とからなるパイル布帛であって、前記短パイル部を構成する繊維として、前記アクリル系収縮性繊維を用いることを特徴とする。また、長パイル部を構成する繊維としては、例えば通常のアクリル系繊維等といった、従来の非収縮性繊維を用いることができる。   The pile fabric of the present invention is a pile fabric composed of a long pile portion and a short pile portion, wherein the acrylic shrinkable fiber is used as a fiber constituting the short pile portion. Moreover, as a fiber which comprises a long pile part, the conventional non-shrinkable fiber, such as a normal acrylic fiber, can be used, for example.

本発明のパイル布帛は、以下のようにして製造される。すなわち、所定長さにカットした前記アクリル系収縮性繊維と従来の非収縮性繊維とを混綿・調湿した後、オープナー、カードを用いてスライバーを作成し、次いでパイル編織機でスライバーニッティングを行い、シャーリングマシーンでパイル部をカットしてパイル長を一定に揃える。さらに、パイルの裏面に接着剤を付着させ、テンターを用いて例えば130℃、5分で接着剤を乾燥させると共に収縮性繊維を収縮させる。その後、ポリッシャーマシーン及びシャーリングマシーンでポリッシャー仕上げ及びシャーリングを行って、長パイル部と短パイル部とからなる、段差を有するパイル布帛が得られる。   The pile fabric of this invention is manufactured as follows. That is, after blending and conditioning the acrylic shrinkable fibers cut to a predetermined length and conventional non-shrinkable fibers, a sliver is created using an opener and a card, and then sliver knitting is performed with a pile knitting machine. And cut the pile part with a shearing machine to make the pile length constant. Further, an adhesive is attached to the back surface of the pile, and the adhesive is dried at, for example, 130 ° C. for 5 minutes using a tenter and the shrinkable fiber is contracted. Thereafter, polishing and shearing are performed with a polisher machine and a shearing machine to obtain a pile fabric having a step formed of a long pile portion and a short pile portion.

このようにして製造された本発明のパイル布帛は、毛さばき性が良好であり、かつ立毛感があるものとなる。   The pile fabric of the present invention produced as described above has good hairiness and a feeling of napping.

ここでいう毛さばき性が良好なパイル布帛とは、パイル布帛の立毛部(すなわち、パイル部)を構成する繊維が、絡み合わず、1本1本独立して存在する状態にあり、立毛部に息を吹きかけたとき、立毛部を構成する繊維が、天然の毛皮のように、風になびく状態にあるものをいう。例として、天然毛皮のチンチラは、非常にけさばき性が良好である。逆に、毛さばき性が不良なパイル布帛とは、パイル布帛の立毛部を構成する繊維が、互いに絡み合い、収束した状態にあり、立毛部に息を吹きかけても、風になびかない状態にあるものをいう。立毛部を構成する繊維の毛さばき性が良好なほうが、天然毛皮のような風合いと外観が得られるため好ましい。さらには、立毛部を構成する繊維の横断面形状が扁平であるほうが、繊維同士が互いに絡みにくくなる傾向にあるため、横断面形状が扁平の繊維を用いたパイル布帛の毛さばき性は良好になる。   The pile fabric having good hair spreading property here is a state in which the fibers constituting the napped portion (that is, the pile portion) of the pile fabric are not entangled and exist independently one by one. When the air is blown on, the fibers that make up the napped portion are in a state of fluttering in the wind, like natural fur. As an example, natural fur chinchilla is very crisp. On the contrary, a pile fabric with poor bristle distribution property means that the fibers constituting the napped portion of the pile fabric are intertwined with each other and converged, and even if the breath is blown into the napped portion, it does not fly in the wind. Say things. It is preferable that the fibers constituting the napped portion have a good bristle property because a texture and appearance like natural fur can be obtained. Furthermore, since the cross-sectional shape of the fibers constituting the napped portion is flatter, the fibers tend to be less entangled with each other, so that the pile fabric using the fibers having a flat cross-sectional shape has better bristle characteristics. Become.

また、ここでいう立毛感があるパイル布帛とは、パイル布帛の立毛部を構成する繊維が、基布に対して略垂直に立っている状態のものをいう。例として、天然のチンチラは、非常に立毛感がある。逆に、立毛感がないパイル布帛とは、パイル布帛の立毛部を構成する繊維が寝ている状態のものをいう。パイル布帛に立毛感があるほうが、天然調の風合いと外観が得られるため好ましい。立毛感を付与するためには、横断面形状が扁平の繊維を用いてパイル布帛を作成することが好ましいが、扁平率が高すぎると、コシが無くなりパイル布帛に加工した時に、立毛感が得られにくくなる。   In addition, the pile fabric having a raised feeling here refers to a fabric in which the fibers constituting the raised portion of the pile fabric stand substantially perpendicular to the base fabric. As an example, natural chinchilla has a very raised feeling. On the contrary, the pile fabric without the feeling of napping means that the fibers constituting the napped portion of the pile fabric are sleeping. It is preferable that the pile fabric has a raised feeling because a natural texture and appearance can be obtained. In order to give a feeling of napping, it is preferable to create a pile fabric using fibers having a flat cross-sectional shape. However, if the flatness is too high, the stiffness is lost and the nap is obtained when processed into a pile fabric. It becomes difficult to be.

以下、実施例を記すが、実施例中の部および%は、特記しない限り重量部および重量%を意味する。   Hereinafter, although an Example is described, the part and% in an Example mean a weight part and weight% unless it mentions specially.

(1)アクリル系収縮性繊維の製造例
(製造例1)
内容積20Lの耐圧重合反応装置にイオン交換水12000g、ラウリル硫酸ナトリウム54g、亜硫酸25.8g、亜硫酸水素ナトリウム13.2g、硫酸鉄0.06g、アクリロニトリル(以下、ANと記す。)294g、塩化ビニル(以下、VCと記す。)3150gを投入し、窒素置換した。重合機内温を50℃に調整し、開始剤として過硫酸アンモニウム2.1gを投入し、重合を開始した。途中、AN2526g、スチレンスルホン酸ナトリウム(以下、3Sと記す。)30g、過硫酸アンモニウム13.8gを追加しながら、重合時間5時間10分で重合した。その後、未反応VCを回収し、ラテックスを重合機より払い出し、塩析、熱処理、ろ過、水洗、脱水、乾燥し、アクリル系共重合体(A)である重合体1を得た。次に、内容積5Lの耐圧重合反応装置にアセトン1400g、水933g、AN150g、アクリル酸メチル(以下、MAと記す。)540g、2−アクリルアミド−2−メチルプロパンスルホン酸ソーダ(以下、SAMと記す。)300g、メタリルスルホン酸ソーダ(以下、MXと記す。)10gを投入し、窒素置換した。重合機内温度を55℃に調整し、開始剤として2,2´−アゾビス(2,4−ジメチルバレロニトリル)5gを投入し重合を開始した。途中、アゾビス10gを追加しながら16時間重合し、その後70℃に昇温し6時間重合させ重合体濃度30%のアクリル酸エステルを含む共重合体(B)である重合体2の溶液を得た。前記重合体1が30%になるようにアセトンを加え溶解した該重合体1の溶液に、前記重合体2の溶液を加え、繊維を構成する重合体中に、該重合体2が4重量%となるように、つまり前記重合体1が96重量%となるように混合したものを紡糸原液とした。得られた紡糸原液を短軸が0.04mm、長軸が0.55mmの長方形型の500孔の口金を通して25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.0倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に105℃で1.8倍に2次延伸した7.8dtexの収縮性繊維を得た。
(1) Production example of acrylic shrinkable fiber (Production Example 1)
In a pressure-resistant polymerization reactor having an internal volume of 20 L, 12000 g of ion-exchanged water, 54 g of sodium lauryl sulfate, 25.8 g of sodium sulfite, 13.2 g of sodium hydrogen sulfite, 0.06 g of iron sulfate, 294 g of acrylonitrile (hereinafter referred to as AN), vinyl chloride. (Hereinafter referred to as VC.) 3150 g was charged and purged with nitrogen. The internal temperature of the polymerization machine was adjusted to 50 ° C., and 2.1 g of ammonium persulfate was added as an initiator to initiate polymerization. On the way, polymerization was performed in 5 hours and 10 minutes while adding 2526 g of AN, 30 g of sodium styrenesulfonate (hereinafter referred to as 3S), and 13.8 g of ammonium persulfate. Then, unreacted VC was collect | recovered, latex was discharged | emitted from the polymerizer, salting out, heat processing, filtration, water washing, dehydration, and drying were performed, and the polymer 1 which is an acrylic copolymer (A) was obtained. Next, 1400 g of acetone, 933 g of water, 150 g of AN, 540 g of methyl acrylate (hereinafter referred to as MA), 2-sodium 2-acrylamido-2-methylpropanesulfonate (hereinafter referred to as SAM) in a pressure-resistant polymerization reactor having an internal volume of 5 L. .) 300 g and 10 g of sodium methallyl sulfonate (hereinafter referred to as MX) were added, and the atmosphere was replaced with nitrogen. The temperature inside the polymerization machine was adjusted to 55 ° C., and 5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as an initiator to initiate polymerization. On the way, polymerization was performed for 16 hours while adding 10 g of azobis, then heated to 70 ° C. and polymerized for 6 hours to obtain a solution of polymer 2 which is a copolymer (B) containing an acrylic ester having a polymer concentration of 30%. It was. The solution of the polymer 2 is added to the solution of the polymer 1 in which acetone is added and dissolved so that the polymer 1 is 30%, and the polymer 2 is 4% by weight in the polymer constituting the fiber. That is, a mixture of the polymer 1 so as to be 96% by weight was used as a spinning dope. The obtained spinning dope was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.55 mm, and further in a 25%, 20% acetone aqueous solution. The film was first stretched 2.0 times and washed with water at 60 ° C. Next, a shrinkable fiber of 7.8 dtex obtained by drying at 130 ° C. and secondarily drawing at 105 ° C. by 1.8 times was obtained.

(製造例2)
製造例1の紡糸原液を、短軸が0.04mm、長軸が0.24mmの長方形型の500孔の口金を通して、25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した3.3dtexの収縮性繊維を得た。
(Production Example 2)
The spinning stock solution of Production Example 1 was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.24 mm, and further, 25 ° C., 20%. The film was first stretched 2.9 times in an aqueous acetone solution and then washed with water at 60 ° C. Subsequently, the fiber was dried at 130 ° C., and further stretched 1.9 times at 120 ° C. to obtain 3.3 dtex shrinkable fiber.

(製造例3)
製造例1の紡糸原液を、短軸が0.04mm、長軸が0.55mmの長方形型の500孔の口金を通して、25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した7.8dtexの収縮性繊維を得た。
(Production Example 3)
The spinning solution of Production Example 1 was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.55 mm, and further, 25 ° C., 20%. The film was first stretched 2.9 times in an aqueous acetone solution and then washed with water at 60 ° C. Next, a shrinkable fiber of 7.8 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例4)
製造例1の紡糸原液を、短軸が0.055mm、長軸が0.88mmの長方形型の500孔の口金を通して、25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した17dtexの収縮性繊維を得た。
(Production Example 4)
The spinning dope of Production Example 1 was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.055 mm and a major axis of 0.88 mm, and further, 25 ° C., 20% The film was first stretched 2.9 times in an aqueous acetone solution and then washed with water at 60 ° C. Then, a shrinkable fiber of 17 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例5)
内容積5Lの耐圧重合反応装置にアセトン1867g、水466g、AN300g、MA550g、SAM150gを投入し窒素置換した後は、製造例1における重合体2と同様の方法で作成し、アクリル酸エステルを含む共重合体(B)である重合体3を得た。次いで、製造例1で得た重合体1を30%になるようにアセトンを加え溶解した該重合体1の溶液に、前記重合体3の溶液を加え、繊維を構成する重合体中に、該重合体3が10重量%となるように、つまり前記重合体1が90重量%となるように混合したものを紡糸原液とした。得られた紡糸原液を短軸が0.04mm、長軸が0.55mmの長方形型の500孔の口金を通して25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した7.8dtexの収縮性繊維を得た。
(Production Example 5)
After introducing 1867 g of acetone, 466 g of water, 300 g of AN, 550 g of MA, and 150 g of SAM into the pressure-resistant polymerization reactor having an internal volume of 5 L and replacing with nitrogen, it was prepared by the same method as for polymer 2 in Production Example 1, The polymer 3 which is a polymer (B) was obtained. Next, the solution of the polymer 3 is added to the solution of the polymer 1 obtained by adding acetone and dissolving the polymer 1 obtained in Production Example 1 to 30%. In the polymer constituting the fiber, A mixture of spinning solution so that the polymer 3 was 10% by weight, that is, the polymer 1 was 90% by weight was used as a spinning dope. The obtained spinning dope was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.55 mm, and further in a 25%, 20% acetone aqueous solution. The film was first stretched 2.9 times and washed with water at 60 ° C. Next, a shrinkable fiber of 7.8 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例6)
内容積5Lの耐圧重合反応装置にアセトン2100g、水233g、AN400g、MA550g、SAM50gを投入し、窒素置換した後は、製造例1における重合体2と同様の方法で作成し、アクリル酸エステルを含む共重合体(B)である重合体4を得た。次いで、製造例1で得た重合体1を30%になるようにアセトンを加え溶解した該重合体1の溶液に、前記重合体4の溶液を加え、繊維を構成する重合体中に、該重合体4が40重量%となるように、つまり前記重合体1が60重量%となるように混合したものを紡糸原液とした。得られた紡糸原液を短軸が0.04mm、長軸が0.55mmの長方形型の500孔の口金を通して25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した7.8dtexの収縮性繊維を得た。
(Production Example 6)
After putting acetone 2100g, water 233g, AN400g, MA550g, SAM50g into a pressure-resistant polymerization reactor having an internal volume of 5L, and replacing with nitrogen, it was prepared in the same manner as the polymer 2 in Production Example 1 and contained an acrylic ester. The polymer 4 which is a copolymer (B) was obtained. Next, the polymer 4 solution is added to the solution of the polymer 1 obtained by adding and dissolving acetone so that the polymer 1 obtained in Production Example 1 becomes 30%. In the polymer constituting the fiber, A spinning dope was prepared by mixing so that the polymer 4 was 40% by weight, that is, the polymer 1 was 60% by weight. The obtained spinning dope was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.55 mm, and further in a 25%, 20% acetone aqueous solution. The film was first stretched 2.9 times and washed with water at 60 ° C. Next, a shrinkable fiber of 7.8 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例7)
内容積5Lの耐圧重合反応装置にアセトン2100g、水233g、AN400g、アクリル酸エチル(以下EAと記す。)550g、SAM50gを投入し、窒素置換した後は、製造例1における重合体2と同様の方法で作成し、アクリル酸エステルを含む共重合体(B)である重合体5を得た。次いで、製造例1で得た重合体1を30%になるようにアセトンを加え溶解した該重合体1の溶液に、前記重合体5の溶液を加え、繊維を構成する重合体中に、該重合体5が40重量%となるように、つまり前記重合体1が60重量%となるように混合したものを紡糸原液とした。得られた紡糸原液を短軸が0.04mm、長軸が0.55mmの長方形型の500孔の口金を通して25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した7.8dtexの収縮性繊維を得た。
(Production Example 7)
After putting 2100 g of acetone, 233 g of water, 400 g of AN, 550 g of ethyl acrylate (hereinafter referred to as EA) and 50 g of SAM into the pressure-resistant polymerization reactor having an internal volume of 5 L, and replacing with nitrogen, the same as the polymer 2 in Production Example 1 It produced by the method and the polymer 5 which is a copolymer (B) containing an acrylic ester was obtained. Next, the solution of the polymer 5 is added to the solution of the polymer 1 obtained by adding acetone and dissolving the polymer 1 obtained in Production Example 1 to 30%, and in the polymer constituting the fiber, A spinning dope was prepared by mixing so that the polymer 5 was 40% by weight, that is, the polymer 1 was 60% by weight. The obtained spinning dope was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.55 mm, and further in a 25%, 20% acetone aqueous solution. The film was first stretched 2.9 times and washed with water at 60 ° C. Next, a shrinkable fiber of 7.8 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例8)
内容積5Lの耐圧重合反応装置にアセトン2100g、水233g、AN400g、メタクリル酸メチル(以下MMAと記す。)550g、SAM50gを投入し、窒素置換した後は、製造例1における重合体2と同様の方法で作成し、アクリル酸エステルを含む共重合体(B)である重合体6を得た。次いで、製造例1で得た重合体1を30%になるようにアセトンを加え溶解した該重合体1の溶液に、前記重合体6の溶液を加え、繊維を構成する重合体中に、該重合体6が40重量%となるように、つまり前記重合体1が60重量%となるように混合したものを紡糸原液とした。得られた紡糸原液を短軸が0.04mm、長軸が0.55mmの長方形型の500孔の口金を通して25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した7.8dtexの収縮性繊維を得た。
(Production Example 8)
A pressure-resistant polymerization reactor having an internal volume of 5 L was charged with acetone 2100 g, water 233 g, AN 400 g, methyl methacrylate (hereinafter referred to as MMA) 550 g, and SAM 50 g, and after nitrogen substitution, the same as polymer 2 in Production Example 1 It produced by the method and the polymer 6 which is a copolymer (B) containing an acrylic ester was obtained. Next, the solution of the polymer 6 is added to the solution of the polymer 1 obtained by adding acetone and dissolving the polymer 1 obtained in Production Example 1 to 30%. A mixture of the polymer 6 so as to be 40% by weight, that is, the polymer 1 so as to be 60% by weight was used as a spinning dope. The obtained spinning dope was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.55 mm, and further in a 25%, 20% acetone aqueous solution. The film was first stretched 2.9 times and washed with water at 60 ° C. Next, a shrinkable fiber of 7.8 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例9)
製造例1で得た重合体1を30%になるようにアセトンを加え溶解した物を紡糸原液とした。得られた紡糸原液を短軸が0.04mm、長軸が0.55mmの長方形型の500孔の口金を通して25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した7.8dtexの収縮性繊維を得た。
(Production Example 9)
A solution obtained by adding acetone and dissolving the polymer 1 obtained in Production Example 1 to 30% was used as a spinning dope. The obtained spinning dope was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.55 mm, and further in a 25%, 20% acetone aqueous solution. The film was first stretched 2.9 times and washed with water at 60 ° C. Next, a shrinkable fiber of 7.8 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例10)
製造例1の紡糸原液を、短軸が0.025mm、長軸が0.80mmの長方形型の500孔の口金を通して、25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した7.8dtexの収縮性繊維を得た。
(Production Example 10)
The spinning stock solution of Production Example 1 was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a short axis of 0.025 mm and a long axis of 0.80 mm, and further, 25 ° C., 20% The film was first stretched 2.9 times in an aqueous acetone solution and then washed with water at 60 ° C. Next, a shrinkable fiber of 7.8 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例11)
製造例1の紡糸原液を、直径0.08mmの円形の500孔の口金を通して、25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸した4.4dtexの収縮性繊維を得た。
(Production Example 11)
The spinning undiluted solution of Production Example 1 was discharged into a 30% acetone aqueous solution at 25 ° C. through a circular 500-hole die having a diameter of 0.08 mm, and further 2.9 times in a 25% 20% acetone aqueous solution. After the next stretching, it was washed with water at 60 ° C. Next, a shrinkable fiber of 4.4 dtex obtained by drying at 130 ° C. and secondarily stretching at 1.9 times at 120 ° C. was obtained.

(製造例12)
製造例1で得た紡糸原液を短軸が0.04mm、長軸が0.55mmの長方形型の500孔の口金を通して25℃、30%のアセトン水溶液中に吐出し、さらに25℃、20%アセトン水溶液中で2.9倍に1次延伸した後60℃で水洗した。ついで130℃で乾燥、更に120℃で1.9倍に2次延伸し、その後、緊張状態で145℃で5分間熱処理し、7.8dtexの収縮性繊維を得た。
(Production Example 12)
The spinning dope obtained in Production Example 1 was discharged into a 25%, 30% acetone aqueous solution through a rectangular 500-hole base having a minor axis of 0.04 mm and a major axis of 0.55 mm, and further, 25 ° C., 20% The film was first stretched 2.9 times in an aqueous acetone solution and then washed with water at 60 ° C. Next, the film was dried at 130 ° C., and further subjected to secondary stretching at 1.9 times at 120 ° C., and then heat-treated at 145 ° C. for 5 minutes in a tension state to obtain a 7.8 dtex shrinkable fiber.

製造例1〜12で得られた収縮性繊維の重合体組成を表1に示す。   Table 1 shows the polymer compositions of the shrinkable fibers obtained in Production Examples 1 to 12.

Figure 2007291575
Figure 2007291575

(2)収縮性繊維の染色
収縮性繊維の染色は、オーバーマイヤー染色機を用いて行った。まず、染色機に収縮繊維1kgと水10Lを仕込み、2℃/minのペースで昇温し、40℃になったところで、染料(Maxilon Red GRL(チバ・スペシャルティー・ケミカルズ株式会社製))0.5%omfを添加した。さらに、2℃/minのペースで70℃まで昇温し、70℃で60min保持した。その後、冷水で30℃まで冷却し、染色液を排水した後、綿を染色機より取り出し、脱水機にて、脱水処理して、40℃で乾燥した。
(2) Dyeing of shrinkable fibers Dyeing of shrinkable fibers was performed using an Overmeier dyeing machine. First, 1 kg of shrink fibers and 10 L of water are charged into a dyeing machine, heated at a rate of 2 ° C./min, and when the temperature reaches 40 ° C., dye (Maxilon Red GRL (manufactured by Ciba Specialty Chemicals)) 0 .5% omf was added. Further, the temperature was raised to 70 ° C. at a rate of 2 ° C./min and held at 70 ° C. for 60 min. Then, after cooling to 30 ° C. with cold water and draining the dyeing solution, the cotton was taken out from the dyeing machine, dehydrated with a dehydrator, and dried at 40 ° C.

(3)パイル布帛の作成
製造例1〜12で製造し、さらに前記(2)の手順で染色した収縮性繊維と、後述する非収縮繊維を後述する割合で混合し、混綿・調湿した後、Kodama Tech Co.Ltd.製オープナー、Howa Machinery Ltd.Nagoya製カードを用いてスライバーを作成した。次いでMayer社製ハイパイル編織機でスライバーニッティングを行い、岩倉精機社製シャーリングマシーンでパイル部をカットしてパイル長を一定に揃えた後、パイルの裏面にアクリル酸エステル系接着剤を付着させ、Hirano Tecseed社製テンターを用いて130℃、5分で接着剤を乾燥させると共に収縮性繊維を収縮させた。その後、岩倉精機社製ポリッシャーマシーン、シャーリングマシーンでポリッシャー仕上げおよびシャーリングを行ってパイル布帛に仕上げた。
(3) Creation of pile fabric After mixing in the ratio which mentions the shrinkable fiber which manufactured in manufacture examples 1-12, and was dye | stained in the procedure of said (2), and mentions the below-mentioned shrinkage | mixing, and mixed cotton and humidity-controlled , Kodama Tech Co. Ltd .. Opener manufactured by Howa Machine Ltd. A sliver was prepared using a card made by Nagoya. Next, sliver knitting was performed with a high pile weaving machine manufactured by Mayer, and the pile part was cut with a shirring machine manufactured by Iwakura Seiki Co., Ltd. to make the pile length constant, and then an acrylic ester adhesive was attached to the back of the pile. The adhesive was dried at 130 ° C. for 5 minutes and the shrinkable fibers were shrunk using a Hirano Tecseed tenter. Thereafter, a polisher machine and a shearing machine manufactured by Iwakura Seiki Co., Ltd. were used to perform a polisher finish and a shearing to finish a pile fabric.

(4)扁平断面が割れている度合いの評価
上記のように、扁平断面を有する繊維は、扁平断面の短軸方向に割れやすい。ここでは、扁平断面が割れている度合いの評価方法を示す。その評価方法は、作成した繊維から100本の繊維を無作為に抽出し、それぞれの繊度を測定する。その時、繊維を作成する時の目標とする繊度に対して1/2以下の繊度を有する繊維の本数を計測する。その本数より判定を行い、15本以下を良好(○)、16本以上を不良(×)とする。
(4) Evaluation of degree to which flat cross section is cracked As described above, fibers having a flat cross section are easily cracked in the minor axis direction of the flat cross section. Here, an evaluation method of the degree to which the flat cross section is broken is shown. In the evaluation method, 100 fibers are randomly extracted from the prepared fibers and the respective finenesses are measured. At that time, the number of fibers having a fineness of 1/2 or less with respect to the target fineness when producing the fibers is measured. Judgment is made based on the number, and 15 or less are judged as good (◯) and 16 or more as bad (x).

目標とする繊度に対して、1/2以下の繊度を有する繊維の本数が16本以上になると、糸切れを起こし製造工程の安定性が悪くなる。さらには、安定した品質のパイル布帛を得ることができない。従って、目標とする繊度に対して、1/2以下の繊度を有する繊維の本数は15本以下が好ましい。   When the number of fibers having a fineness of 1/2 or less with respect to the target fineness is 16 or more, yarn breakage occurs and the stability of the manufacturing process is deteriorated. Furthermore, a pile fabric with stable quality cannot be obtained. Therefore, the number of fibers having a fineness of 1/2 or less with respect to the target fineness is preferably 15 or less.

(5)パイル布帛の外観と風合いの評価
(3)のようにして作成した段差を有するパイル布帛に対し、「段差の効果」、「毛さばき性」、「立毛感」をそれぞれ視覚的及び感覚的な観点から、3段階評価による官能的評価を行い、以下の基準で評価した。尚、評価結果は評価者5名の平均値とした。
(5) Evaluation of the appearance and texture of the pile fabric The visual effect and sense of “step effect”, “hair separation”, and “nap feeling” of the pile fabric having steps as prepared in (3), respectively. From a general point of view, sensory evaluation by three-step evaluation was performed, and evaluation was performed according to the following criteria. The evaluation result was an average value of five evaluators.

(5−1)「段差の効果」の評価
○:長パイル部と短パイル部の段差が明確な外観特性を有する。
△:長パイル部と短パイル部の段差がやや明確な外観特性を有する。
×:長パイル部と短パイル部の段差が明確でない外観特性を有する。
(5-1) Evaluation of “Effect of level difference” ○: The level difference between the long pile portion and the short pile portion has clear appearance characteristics.
(Triangle | delta): The level | step difference of a long pile part and a short pile part has a somewhat clear external appearance characteristic.
X: Appearance characteristic in which the level difference between the long pile portion and the short pile portion is not clear.

長パイル部と短パイル部の段差が明確なパイル布帛とは、外観特性により評価するが、長パイル部と短パイル部の段差が1mm以上あることが目安となり、段差が明確でないパイル布帛とは、長パイル部と短パイル部の段差が1mm未満であることが目安となる。   A pile fabric with a clear step difference between the long pile portion and the short pile portion is evaluated based on the appearance characteristics. However, it is a guideline that the step difference between the long pile portion and the short pile portion is 1 mm or more. As a guide, the step between the long pile portion and the short pile portion is less than 1 mm.

(5−2)「毛さばき性」の評価
○:非常に毛さばき性が良い(非常に天然毛皮のチンチラに近い)
△:やや毛さばき性がよい(やや天然毛皮のチンチラに近い)
×:毛さばき性が悪い(天然毛皮のチンチラに劣る)
(5-2) Evaluation of “hair separation” ○: very good hair separation (very close to natural chinchilla)
Δ: Slightly good hairiness (slightly close to natural chinchilla)
×: Poor hair separation (inferior to natural chinchilla)

(5−3)「立毛感」の評価
○:非常に立毛感がある(非常に天然毛皮のチンチラに近い)
△:やや立毛感がある(やや天然毛皮のチンチラに近い)
×:立毛感がない(天然毛皮のチンチラに劣る)
(5-3) Evaluation of “napping feeling” ○: Very napping feeling (very close to natural fur chinchilla)
Δ: Slightly napped (slightly close to natural fur chinchilla)
×: No nap feeling (inferior to natural fur chinchilla)

(6)平均パイル長の測定
パイル布帛中のパイル部を構成している繊維を毛並みが揃うように垂直に立たせ、ノギスを用いることで、パイル部を構成している繊維の根元から長パイル部の先端までの長さ(パイル布帛裏面からの長さではない)の測定を10ヶ所について行い、その平均値を平均パイル長とした。
(6) Measurement of the average pile length The fibers constituting the pile portion in the pile fabric are erected vertically so that the fur lines are aligned, and the long pile portion is formed from the root of the fibers constituting the pile portion by using calipers. The length to the tip of the sheet (not the length from the back of the pile fabric) was measured at 10 locations, and the average value was taken as the average pile length.

(実施例1〜8)
製造例1〜8で得られた収縮性繊維について、扁平断面が割れている度合いの評価、70℃で染色した時の相対飽和値、70℃で染色した後の収縮率、扁平率RAを評価、測定した結果を表2に示す。尚、相対飽和値、収縮率、扁平率RAの測定方法は、既に説明したとおりである。
(Examples 1-8)
About the shrinkable fibers obtained in Production Examples 1 to 8, the degree of flat cross section cracking, the relative saturation value when dyed at 70 ° C., the shrinkage rate after dyeing at 70 ° C., and the flatness ratio R A Table 2 shows the results of evaluation and measurement. In addition, the measuring method of a relative saturation value, shrinkage | contraction rate, and flatness RA is as having already demonstrated.

Figure 2007291575
Figure 2007291575

さらに、製造例1〜8で得られた収縮性繊維を染色し、染色後の収縮繊維と市販の非収縮繊維であるアクリル系繊維「カネカロン(登録商標)」AH(R/W)3.3dtex、38mm(株式会社カネカ製)をそれぞれ60%/40%の重量比率で混綿し、パイル長12mmのハイパイル布帛を作成した。それぞれ作成したハイパイルについて、段差効果、毛さばき性、立毛感を評価した結果を表2に示す。   Furthermore, the shrinkable fibers obtained in Production Examples 1 to 8 were dyed, and the dyed shrinkable fibers and the commercially available non-shrinkable acrylic fiber “Kanekalon (registered trademark)” AH (R / W) 3.3 dtex. , 38 mm (manufactured by Kaneka Corporation) were blended at a weight ratio of 60% / 40%, respectively, to produce a high pile fabric having a pile length of 12 mm. Table 2 shows the results of evaluating the step effect, bristleiness, and feeling of napping for each of the created high piles.

製造例1〜8で得られた収縮性繊維の物性を評価した結果は、どの収縮性繊維についても良好で、扁平断面が割れている度合いが低く、染色性も良好であり、かつ染色後にも高い収縮率が得られた。さらに、それらの収縮性繊維を用いて作成したパイル布帛について、「段差効果」、「毛さばき性」および「立毛感」について評価したところ、良好な結果が得られた。   The results of evaluating the physical properties of the shrinkable fibers obtained in Production Examples 1 to 8 are good for any shrinkable fiber, have a low degree of flat cross-section cracking, good dyeability, and even after dyeing. A high shrinkage rate was obtained. Furthermore, when the pile fabric produced using those shrinkable fibers was evaluated for “step effect”, “hair separation” and “nap feeling”, good results were obtained.

(比較例1)
製造例9で得られた収縮繊維について、扁平繊維が割れている度合いの評価、70℃で染色した時の相対飽和値、70℃で染色した後の収縮率、扁平率RAを評価、測定した結果を表2に示す。
(Comparative Example 1)
For shrinkable fibers obtained in Production Example 9, evaluation and measurement of the degree to which flat fibers are broken, relative saturation value when dyed at 70 ° C., shrinkage after dyeing at 70 ° C., flatness RA The results are shown in Table 2.

結果は、70℃で染色した後の収縮率は良好であるが、アクリル酸エステルを含む共重合体(B)を含んでいないために、繊維の靭性が低く、扁平断面が割れている度合いが高い。さらには、70℃で染色した時の相対飽和値も不良であった。   As a result, the shrinkage ratio after dyeing at 70 ° C. is good, but since the copolymer (B) containing an acrylate ester is not included, the toughness of the fiber is low, and the degree of flat cross-section cracking is low. high. Furthermore, the relative saturation value when dyed at 70 ° C. was also poor.

さらに、製造例9で得られた収縮性繊維を染色し、染色後の収縮繊維と市販の非収縮繊維であるアクリル系繊維「カネカロン(登録商標)」AH(R/W)3.3dtex、38mm(株式会社カネカ製)をそれぞれ60%/40%の重量比率で混綿し、パイル長12mmのハイパイル布帛を作成した。それぞれ作成したハイパイルについて、段差効果、毛さばき性、立毛感を評価した結果を表2に示す。その結果、「段差効果」は良好であったが、扁平断面が割れていることから、外観が低下し「毛さばき性」と「立毛感」が不良なパイル布帛が得られた。   Further, the shrinkable fiber obtained in Production Example 9 was dyed, and the dyed shrinkable fiber and the commercially available non-shrinkable acrylic fiber “Kanekalon (registered trademark)” AH (R / W) 3.3 dtex, 38 mm (Made by Kaneka Co., Ltd.) were blended at a weight ratio of 60% / 40%, respectively, to prepare a high pile fabric having a pile length of 12 mm. Table 2 shows the results of evaluating the step effect, bristleiness, and feeling of napping for each of the created high piles. As a result, although the “step effect” was good, the flat cross-section was cracked, so that a pile fabric having a poor appearance and poor “hair separation” and “nap feeling” was obtained.

(比較例2)
製造例10で得られた収縮繊維について、扁平繊維が割れている度合いの評価、70℃で染色した時の相対飽和値、70℃で染色した後の収縮率、扁平率RAを評価、測定した結果を表2に示す。
(Comparative Example 2)
For shrink fibers obtained in Production Example 10, evaluation and measurement of the degree to which flat fibers are cracked, relative saturation value when dyed at 70 ° C., shrinkage ratio after dyeing at 70 ° C., flatness RA The results are shown in Table 2.

その結果、扁平断面が割れている度合いが低く、染色性も良好であり、かつ染色後にも高い収縮率が得られた。   As a result, the degree of cracking of the flat cross section was low, the dyeability was good, and a high shrinkage rate was obtained after dyeing.

さらに、製造例10で得られた収縮性繊維を染色し、染色後の収縮性繊維と市販の非収縮繊維であるアクリル系繊維「カネカロン(登録商標)」AH(R/W)3.3dtex、38mm(株式会社カネカ製)をそれぞれ60%/40%の重量比率で混綿し、パイル長12mmのハイパイル布帛を作成した。それぞれ作成したハイパイルについて、段差効果、毛さばき性、立毛感を評価した結果を表2に示す。その結果、「段差効果」と「毛さばき性」は良好であったが、収縮性繊維の扁平率RAが大きすぎるために、収縮性繊維のコシがなくなり「立毛感」が不良なパイル布帛が得られた。 Further, the shrinkable fiber obtained in Production Example 10 is dyed, and the dyed shrinkable fiber and the commercially available non-shrinkable acrylic fiber “Kanekaron (registered trademark)” AH (R / W) 3.3 dtex, 38 mm (manufactured by Kaneka Co., Ltd.) was blended at a weight ratio of 60% / 40% to prepare a high pile fabric having a pile length of 12 mm. Table 2 shows the results of evaluating the step effect, bristleiness, and feeling of napping for each of the created high piles. As a result, the “step effect” and “hair separation” were good, but the flatness R A of the shrinkable fibers was too large, and the shrinkable fibers were not stiff, and the pile fabric was poor in “nap feeling” was gotten.

(比較例3)
製造例11で得られた収縮繊維について、70℃で染色した時の相対飽和値、70℃で染色した後の収縮率、扁平率RAを評価、測定した結果を表2に示す。尚、円形断面のため、「扁平断面が割れている度合いの評価」は行っていない。)
(Comparative Example 3)
Table 2 shows the results of evaluation and measurement of the relative saturation value when dyed at 70 ° C., the shrinkage rate after dyeing at 70 ° C., and the flattening ratio R A of the shrink fiber obtained in Production Example 11. In addition, because of the circular cross section, “evaluation of the degree to which the flat cross section is broken” is not performed. )

その結果、染色性も良好であり、かつ染色後にも高い収縮率が得られた。   As a result, the dyeability was good and a high shrinkage rate was obtained after dyeing.

さらに、製造例11で得られた収縮性繊維を染色し、染色後の収縮性繊維と市販の非収縮繊維であるアクリル系繊維「カネカロン(登録商標)」AH(R/W)3.3dtex、38mm(株式会社カネカ製)をそれぞれ60%/40%の重量比率で混綿し、パイル長12mmのハイパイル布帛を作成した。それぞれ作成したハイパイルについて、段差効果、毛さばき性、立毛感を評価した結果を表2に示す。その結果、「段差効果」と「立毛感」は良好であったが、収縮性繊維の断面が円形であるため、収縮性繊維同士が収束しやすく、「毛さばき性」が不良なパイル布帛が得られた。   Furthermore, the shrinkable fiber obtained in Production Example 11 is dyed, and the dyed shrinkable fiber and a commercially available non-shrinkable acrylic fiber “Kanekalon (registered trademark)” AH (R / W) 3.3 dtex, 38 mm (manufactured by Kaneka Co., Ltd.) was blended at a weight ratio of 60% / 40% to prepare a high pile fabric having a pile length of 12 mm. Table 2 shows the results of evaluating the step effect, bristleiness, and feeling of napping for each of the created high piles. As a result, “step difference effect” and “nap feeling” were good, but since the cross-section of the shrinkable fiber was circular, the shrinkable fibers easily converged and a pile fabric with poor “hair separation” was obtained. Obtained.

(比較例4)
製造例12で得られた収縮繊維について、扁平繊維が割れている度合いの評価、70℃で染色した時の相対飽和値、70℃で染色した後の収縮率、扁平率RAを評価、測定した結果を表2に示す。
(Comparative Example 4)
Evaluation and measurement of shrinkage fiber obtained in Production Example 12, evaluation of degree of flat fiber cracking, relative saturation value when dyed at 70 ° C., shrinkage rate after dyeing at 70 ° C., flatness RA The results are shown in Table 2.

その結果、扁平断面が割れている度合いが低く、染色性も良好であったが、染色後の収縮率が5%と低い値を示した。   As a result, the degree of flat cross-section cracking was low and the dyeability was good, but the shrinkage after dyeing showed a low value of 5%.

さらに、製造例12で得られた収縮性繊維を染色し、染色後の収縮性繊維と市販の非収縮繊維であるアクリル系繊維「カネカロン(登録商標)」AH(R/W)3.3dtex、38mm(株式会社カネカ製)をそれぞれ60%/40%の重量比率で混綿し、パイル長12mmのハイパイル布帛を作成した。それぞれ作成したハイパイルについて、段差効果、毛さばき性、立毛感を評価した結果を表2に示す。その結果、「毛さばき性」と「立毛感」は良好であったが、収縮性繊維の収縮率が低いために、収縮性繊維との段差が小さく、「段差効果」が不良なパイル布帛が得られた。
Furthermore, the shrinkable fiber obtained in Production Example 12 is dyed, and the dyed shrinkable fiber and the commercially available non-shrinkable acrylic fiber “Kanekalon (registered trademark)” AH (R / W) 3.3 dtex, 38 mm (manufactured by Kaneka Co., Ltd.) was blended at a weight ratio of 60% / 40% to prepare a high pile fabric having a pile length of 12 mm. Table 2 shows the results of evaluating the step effect, bristleiness, and feeling of napping for each of the created high piles. As a result, “hairiness” and “nap feeling” were good, but because the shrinkage rate of the shrinkable fiber was low, a pile fabric with a small step difference from the shrinkable fiber and a poor “step effect” was obtained. Obtained.

Claims (6)

アクリル系共重合体(A)を含んでなる合成繊維であって、80℃以下の温度で染色可能であり、かつ染色した後も乾熱130℃で収縮率10〜40%の範囲で収縮する機能を有し、さらに繊維横断面の下記式で表される扁平率RAが3〜20であることを特徴とするアクリル系収縮性繊維。
扁平率RA=WL/WS
ここに、WLは、繊維の横断面形状における長軸の長さ、WSは短軸の長さを示す。また、RAは、無作為に抽出した10本の繊維からの扁平率の平均値を示す。
A synthetic fiber comprising an acrylic copolymer (A), which can be dyed at a temperature of 80 ° C. or less, and shrinks in the range of 10-40% shrinkage at 130 ° C. after dry. An acrylic shrinkable fiber having a function and a flatness ratio R A represented by the following formula of the fiber cross section of 3 to 20.
Flatness ratio R A = WL / WS
Here, WL represents the length of the major axis in the cross-sectional shape of the fiber, and WS represents the length of the minor axis. Moreover, RA shows the average value of the oblateness rate from ten fibers extracted at random.
繊維を構成する重合体が、前記アクリル系共重合体(A)30〜99重量%と、アクリル酸エステルとその他共重合可能な他のビニル系モノマーとからなる共重合体(B)1〜70重量%とを混合してなる請求項1に記載のアクリル系収縮性繊維。   Copolymers (B) 1 to 70, in which the polymer constituting the fiber is composed of 30 to 99% by weight of the acrylic copolymer (A) and other vinyl monomers that can be copolymerized with an acrylate ester. The acrylic shrinkable fiber according to claim 1, wherein the acrylic shrinkable fiber is mixed with wt%. 前記共重合体(B)が、アクリロニトリル5〜70重量%、アクリル酸エステル20〜94重量%およびスルホン酸含有ビニル系モノマー1〜40重量%からなる請求項1または2に記載のアクリル系収縮性繊維。   The acrylic shrinkage according to claim 1 or 2, wherein the copolymer (B) comprises 5 to 70% by weight of acrylonitrile, 20 to 94% by weight of an acrylate ester and 1 to 40% by weight of a sulfonic acid-containing vinyl monomer. fiber. 60℃以上80℃以下で染色したときの相対飽和値が0.8以上である請求項1〜3のいずれかに記載のアクリル系収縮性繊維。   The acrylic shrinkable fiber according to any one of claims 1 to 3, which has a relative saturation value of 0.8 or more when dyed at 60 ° C or more and 80 ° C or less. 長パイル部と短パイル部とからなるパイル布帛であって、前記短パイル部を構成する繊維として、請求項1〜4のいずれかに記載のアクリル系収縮性繊維を用いることを特徴とするパイル布帛。   A pile fabric comprising a long pile portion and a short pile portion, wherein the acrylic shrinkable fiber according to any one of claims 1 to 4 is used as a fiber constituting the short pile portion. Fabric. 長パイル部と短パイル部の段差が明確である請求項5に記載のパイル布帛。
The pile fabric according to claim 5, wherein a step between the long pile portion and the short pile portion is clear.
JP2006123353A 2006-04-27 2006-04-27 Acrylic shrinkable fiber and pile cloth by using the same Pending JP2007291575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123353A JP2007291575A (en) 2006-04-27 2006-04-27 Acrylic shrinkable fiber and pile cloth by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123353A JP2007291575A (en) 2006-04-27 2006-04-27 Acrylic shrinkable fiber and pile cloth by using the same

Publications (1)

Publication Number Publication Date
JP2007291575A true JP2007291575A (en) 2007-11-08

Family

ID=38762459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123353A Pending JP2007291575A (en) 2006-04-27 2006-04-27 Acrylic shrinkable fiber and pile cloth by using the same

Country Status (1)

Country Link
JP (1) JP2007291575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040151A (en) * 2015-07-10 2015-11-11 东华大学 Low temperature dyeable polyacrylonitrile fiber and preparation method thereof
CN109112669A (en) * 2017-06-22 2019-01-01 日本爱克兰工业株式会社 Flat acrylic fibre with three-dimensional crimp and the pile fabric for having used the fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350518A (en) * 1986-08-19 1988-03-03 Kanebo Ltd Production of modified cross-section acrylic fiber
JPH0734321A (en) * 1993-07-13 1995-02-03 Kanebo Ltd Acrylic flat yarn and its production
JP2001226857A (en) * 2000-02-15 2001-08-21 Asahi Kasei Corp Plush fabric
WO2002010488A1 (en) * 2000-07-28 2002-02-07 Kaneka Corporation Acrylic fiber with excellent appearance and woven pile fabric
JP2003301322A (en) * 2002-04-05 2003-10-24 Mitsubishi Rayon Co Ltd Acrylic modified cross section high-fineness fiber and method producing same
WO2006008990A1 (en) * 2004-07-16 2006-01-26 Kaneka Corporation Acrylic shrinkable fiber and process for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350518A (en) * 1986-08-19 1988-03-03 Kanebo Ltd Production of modified cross-section acrylic fiber
JPH0734321A (en) * 1993-07-13 1995-02-03 Kanebo Ltd Acrylic flat yarn and its production
JP2001226857A (en) * 2000-02-15 2001-08-21 Asahi Kasei Corp Plush fabric
WO2002010488A1 (en) * 2000-07-28 2002-02-07 Kaneka Corporation Acrylic fiber with excellent appearance and woven pile fabric
JP2003301322A (en) * 2002-04-05 2003-10-24 Mitsubishi Rayon Co Ltd Acrylic modified cross section high-fineness fiber and method producing same
WO2006008990A1 (en) * 2004-07-16 2006-01-26 Kaneka Corporation Acrylic shrinkable fiber and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040151A (en) * 2015-07-10 2015-11-11 东华大学 Low temperature dyeable polyacrylonitrile fiber and preparation method thereof
CN109112669A (en) * 2017-06-22 2019-01-01 日本爱克兰工业株式会社 Flat acrylic fibre with three-dimensional crimp and the pile fabric for having used the fiber

Similar Documents

Publication Publication Date Title
US7612000B2 (en) Modacrylic shrinkable fiber and method for manufacturing the same
KR101098809B1 (en) Acrylic shrinkable fiber and method for production thereof
JP3865731B2 (en) Highly shrinkable acrylic fiber, pile composition containing the fiber, and napped fabric using the pile composition
JP2007291575A (en) Acrylic shrinkable fiber and pile cloth by using the same
JP4420819B2 (en) Acrylic synthetic fibers with improved stability
JP3656311B2 (en) Anti-pill ultrafine acrylic fiber and method for producing the same
JP2007002343A (en) Pile cloth excellent in level difference
JP4533319B2 (en) Acrylic shrink fiber
JP7068651B2 (en) Flat acrylonitrile fiber with three-dimensional crimp and pile fabric using the fiber
JPWO2003072618A1 (en) Synthetic resin for acrylic synthetic fiber, acrylic synthetic fiber comprising the same, and method for producing acrylic synthetic fiber
WO2011122016A1 (en) Acrylonitrile-containing fiber, process for production of same, and pile cloth comprising same
JP5740058B2 (en) Pile fabric and manufacturing method thereof
JP3756886B2 (en) High shrinkable acrylic fiber
JP6646269B1 (en) Acrylonitrile fiber, pile fabric containing the fiber, and fiber product containing the fabric
WO2020045183A1 (en) Acrylonitrile-based fiber, pile fabric containing said fiber, and fiber product containing said fabric
JP2001181926A (en) Acrylic synthetic fiber which has excellent crimp- removing property and is useful for plush fabric and method for producing the same
JPH07102420A (en) Composite fiber
JPWO2006118175A1 (en) Acrylic shrinkable fiber
JPH0874119A (en) Highly shrinkable acrylic fiber and production of the same
JP2001181927A (en) Acrylic synthetic fiber which has excellent crimp- removing property and is useful for plush fabric and method for producing the same, and plush fabric comprising the fiber
JP2009191373A (en) Pile fabric
JP2008038286A (en) Acrylic shrinkable fiber
JP2013159863A (en) Acrylic synthetic fiber, porous synthetic fiber and pile fabric including them, and method for producing the same
WO2006043661A1 (en) Hollow acrylic synthetic fiber
WO2007060946A1 (en) Acrylic shrinkable fiber and process for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412