JP2007291475A - Cut filter for near ir ray, and its production method - Google Patents

Cut filter for near ir ray, and its production method Download PDF

Info

Publication number
JP2007291475A
JP2007291475A JP2006122991A JP2006122991A JP2007291475A JP 2007291475 A JP2007291475 A JP 2007291475A JP 2006122991 A JP2006122991 A JP 2006122991A JP 2006122991 A JP2006122991 A JP 2006122991A JP 2007291475 A JP2007291475 A JP 2007291475A
Authority
JP
Japan
Prior art keywords
film
substrate
cut filter
ion source
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006122991A
Other languages
Japanese (ja)
Inventor
Yuichi Mita
雄一 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006122991A priority Critical patent/JP2007291475A/en
Publication of JP2007291475A publication Critical patent/JP2007291475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cut filter for near IR rays suppressing the absorption of light in a visible light region and having excellent spectral characteristics. <P>SOLUTION: In the method for producing a cut filter for near IR rays in which low reflective index films and high reflective index films are alternately stacked on a substrate, the respective films are formed by magnetron sputtering, and oxygen is fed to an electron cyclotron resonance type ion source and an assist ion source, while plasma is excited so as to oxidize the films. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学用途、近赤外線を利用する通信、リモコン用途、ディスプレイ、プラズマディスプレイ用の内部のガラス基板を保護する前面パネルのフィルターに用いる近赤外線カットフィルターに関するものである。   The present invention relates to a near-infrared cut filter used for a front panel filter for protecting an internal glass substrate for optical use, communication using near infrared rays, remote control use, displays, and plasma displays.

従来、近赤外線領域を選択的に吸収するフィルターは、例えば、家電製品のリモコン機器の出光部等、カメラの自動露出計に用いられる半導体受光素子のカバー、プラズマディスプレイ等に使用されている。
このフィルターについては、例えば、特許文献1において、樹脂等の基板上に低屈折率膜と高屈折率膜を交互にスパッタリングにより形成することの提案がなされている。
しかしながら、スパッタリングにより成膜を行った場合に、膜の酸化が十分に行われず、可視光領域の光まで吸収されるために、近赤外線カットフィルターとして十分な分光特性が得られないという問題があった。また、基板が樹脂からなる場合には、基板の厚みによっては、歪み等が生じてしまい実用に耐えないという問題があった。
Conventionally, a filter that selectively absorbs the near-infrared region is used in, for example, a cover of a semiconductor light-receiving element used in an automatic exposure meter of a camera, a plasma display, and the like, such as a light emitting part of a remote control device of a household appliance.
Regarding this filter, for example, Patent Document 1 proposes that a low refractive index film and a high refractive index film are alternately formed on a substrate such as a resin by sputtering.
However, when a film is formed by sputtering, the film is not sufficiently oxidized, and even the light in the visible light region is absorbed, so that there is a problem that sufficient spectral characteristics cannot be obtained as a near infrared cut filter. It was. In addition, when the substrate is made of a resin, there is a problem that distortion or the like occurs depending on the thickness of the substrate and cannot be practically used.

特開2003−121636号公報JP 2003-121636 A

そこで、本発明は、可視光領域の光の吸収を抑え、分光特性の優れた近赤外線カットフィルターを提供することを目的とする。また、樹脂基板の歪みを抑えた近赤外線カットフィルターを提供することを目的とする。   Therefore, an object of the present invention is to provide a near-infrared cut filter that suppresses absorption of light in the visible light region and has excellent spectral characteristics. Moreover, it aims at providing the near-infrared cut filter which suppressed the distortion of the resin substrate.

上記課題を解決するために、本発明者等は、鋭意検討の結果、マグネトロンスパッタリングの際に、電子サイクロトロン共鳴(ElectronCyclotronResonance;以下、ECRとする。)型イオン源を主酸加源とし、アシストイオン源を補助酸化源として用いるようにすれば、積層された膜の酸化が充分に行えるという知見の元、下記の解決手段を見いだした。
即ち、本発明の近赤外線カットフィルターの製造方法は、請求項1に記載の通り、基板上に低屈折率膜と高屈折率膜を交互に積層されてなる近赤外線カットフィルターの製造方法であって、それぞれの前記膜をマグネトロンスパッタリングにより成膜し、電子サイクロトロン共鳴型イオン源及びアシストイオン源に酸素を供給するとともに、プラズマを励起させて前記膜を酸化することを特徴とする。
また、請求項2に記載の本発明は、請求項1に記載の近赤外線カットフィルターの製造方法において、前記基板の表裏に前記膜をそれぞれ積層し、表面の総膜厚合計(t)と、裏面の総膜厚合計(t)との差の絶対値(Δ=|t−t|)を、前記総膜厚合計の大きい値(t又はt)に対して15.0%以内となるように、厚さ0.1〜2.0mmの樹脂製基板に成膜することを特徴とする。
また、本発明の近赤外線カットフィルターは、請求項3に記載の通り、基板上に低屈折率膜と高屈折率膜を交互に積層されてなる近赤外線カットフィルターであって、前記基板の表裏に前記膜をそれぞれ積層し、表面の総膜厚合計(t)と、裏面の総膜厚合計(t)との差の絶対値(Δ=|t−t|)を、前記総膜厚合計の大きい値(t又はt)に対して15.0%以内となるように、厚さ0.1〜2.0mmの樹脂製基板に成膜したことを特徴とする。
In order to solve the above-mentioned problems, the present inventors have intensively studied, and at the time of magnetron sputtering, an electron cyclotron resonance (hereinafter referred to as ECR) ion source is used as a main acid source, assist ions. Based on the knowledge that if the source is used as an auxiliary oxidation source, the laminated film can be sufficiently oxidized, the following solution has been found.
That is, the method for producing a near-infrared cut filter according to the present invention is a method for producing a near-infrared cut filter in which a low refractive index film and a high refractive index film are alternately laminated on a substrate as described in claim 1. Then, each of the films is formed by magnetron sputtering, oxygen is supplied to an electron cyclotron resonance ion source and an assist ion source, and plasma is excited to oxidize the films.
Further, the present invention according to claim 2 is the method for producing a near-infrared cut filter according to claim 1, wherein the films are respectively laminated on the front and back of the substrate, and the total film thickness on the surface (t 1 ) , the absolute value of the difference between the back surface total thickness sum of (t 2) (Δ = | t 1 -t 2 |) of the 15 with respect to the total thickness sum of value greater (t 1 or t 2). The film is formed on a resin substrate having a thickness of 0.1 to 2.0 mm so as to be within 0%.
Moreover, the near-infrared cut filter of the present invention is a near-infrared cut filter in which a low-refractive index film and a high-refractive index film are alternately laminated on a substrate as described in claim 3. And the absolute value (Δ = | t 1 −t 2 |) of the difference between the total film thickness on the front surface (t 1 ) and the total film thickness on the back surface (t 2 ), The film is formed on a resin substrate having a thickness of 0.1 to 2.0 mm so as to be within 15.0% with respect to a large value (t 1 or t 2 ) of the total total film thickness.

本発明によれば、光学薄膜の酸化を確実に行うことで、可視光領域の光の透過性を高め、分光特性の優れた近赤外線フィルターを得ることができる。また、樹脂製基板に成膜する際に、基板の歪みを抑えることができる。その結果、近赤外線フィルターを薄い樹脂製基板により形成することができるので、適用範囲を広げることができる。   According to the present invention, it is possible to obtain a near-infrared filter excellent in spectral characteristics by enhancing the light transmittance in the visible light region by reliably oxidizing the optical thin film. Further, when the film is formed on the resin substrate, the distortion of the substrate can be suppressed. As a result, the near-infrared filter can be formed from a thin resin substrate, so that the applicable range can be expanded.

次に、本発明の一実施の形態について図面を参照して説明する。
図1に断面を示す真空装置は、本発明の近赤外線カットフィルターを製造するものである。円筒状のチャンバー1内の中央には基板2を支持した円筒状回転体3が配置され、チャンバー1の内周に沿って、第1のマグネトロンスパッタリング装置4、ECR型イオン源5、アシストイオン源6及び第2のマグネトロンスパッタリング装置7が順に配置される。円筒状のチャンバー1内は、真空ポンプ10、10'により真空排気される。
Next, an embodiment of the present invention will be described with reference to the drawings.
The vacuum apparatus whose cross section is shown in FIG. 1 is for producing the near-infrared cut filter of the present invention. A cylindrical rotating body 3 supporting a substrate 2 is disposed in the center of the cylindrical chamber 1, and a first magnetron sputtering apparatus 4, an ECR type ion source 5, an assist ion source are arranged along the inner periphery of the chamber 1. 6 and the 2nd magnetron sputtering apparatus 7 are arrange | positioned in order. The inside of the cylindrical chamber 1 is evacuated by a vacuum pump 10, 10 '.

第1及び第2のマグネトロンスパッタリング装置4,7は、基板2上に膜材料をマグネトロンスパッタリングにより形成するものであり、各装置の内部には、スパッタリングガスを導入するためのガス導入口9が設けられている。また、各装置4,7の内部には、円筒状回転体3と対向するようにしてターゲットを取り付けたカソード11が2個配設されている。これらのカソード11には、各々内部に磁石(図示せず)が設けられ、ターゲットに交流電場を印加するための交流電源(図示せず)が接続されている。
また、各装置の基板2側には、シャッター12が設けられており、第1又は第2のスパッタリング装置4,7の作動時に選択的にシャッターが開放するようになっている。
The first and second magnetron sputtering apparatuses 4 and 7 form a film material on the substrate 2 by magnetron sputtering, and each apparatus is provided with a gas inlet 9 for introducing a sputtering gas. It has been. Further, two cathodes 11 each having a target attached so as to face the cylindrical rotating body 3 are disposed inside each of the devices 4 and 7. Each of these cathodes 11 is provided with a magnet (not shown) inside and connected to an AC power source (not shown) for applying an AC electric field to the target.
In addition, a shutter 12 is provided on the substrate 2 side of each device, and the shutter is selectively opened when the first or second sputtering device 4 or 7 is operated.

ECR型イオン源5には、その内部に酸素を導入するために酸素導入口13が設けられるとともに、磁気回路14が設けられている。この磁気回路14からECRプラズマのマイクロ波励起プラズマを生じさせるために、図示しないが、マイクロ波導入窓を介して真空層の外部の導波管と真空チャンバー内部のマイクロ波アンテナとが接続される。   The ECR ion source 5 is provided with an oxygen inlet 13 for introducing oxygen into the ECR ion source 5 and a magnetic circuit 14. In order to generate the microwave-excited plasma of ECR plasma from the magnetic circuit 14, a waveguide outside the vacuum layer and a microwave antenna inside the vacuum chamber are connected via a microwave introduction window (not shown). .

アシストイオン源6は、酸化反応を起こさせるために局所的に強くイオン化したプラズマを生じさせるものであり、イオンビーム照射型イオン源、プレーナーマグネトロン又は特許第2501510号に記載の線形若しくは逆線形マグネトロンイオン源を使用することができる。前記アシストイオン源は、その内部に酸素を導入するために酸素導入口15が設けられ、基板2の周囲に酸素を導入し、反応性プラズマを発生させ、膜材料の酸化を行うものである。   The assist ion source 6 generates a plasma that is strongly ionized locally in order to cause an oxidation reaction. The assist ion source 6 is an ion beam irradiation ion source, a planar magnetron, or linear or inverse linear magnetron ions described in Japanese Patent No. 2501510. Source can be used. The assist ion source is provided with an oxygen inlet 15 for introducing oxygen therein, introduces oxygen around the substrate 2, generates reactive plasma, and oxidizes the film material.

上記構成により、基板2上に第1のマグネトロンスパッタリング装置4により低屈折率膜を構成する材料を成膜し、円筒状回転体3を回転して、ECR型イオン源5とアシストイオン源6とにより酸化して低屈折率膜とし、更に、円筒状回転体2を回転して第2のマグネトロンスパッタリング装置7により高屈折率膜を構成する材料を成膜し、ECR型イオン源5とアシストイオン源6とにより酸化して高屈折率膜とし、これらを交互に繰り返し基板2上に多層膜を形成して近赤外線カットフィルターを得る。   With the above configuration, a material constituting the low refractive index film is formed on the substrate 2 by the first magnetron sputtering apparatus 4, the cylindrical rotating body 3 is rotated, and the ECR ion source 5, the assist ion source 6, Is oxidized to form a low-refractive index film, and further, a material constituting the high-refractive index film is formed by the second magnetron sputtering apparatus 7 by rotating the cylindrical rotating body 2, and the ECR ion source 5 and assist ions are formed. The film is oxidized with the source 6 to form a high refractive index film, which is alternately repeated to form a multilayer film on the substrate 2 to obtain a near infrared cut filter.

このように本発明では、酸化源として、ECR型イオン源5に加えてアシストイオン源6を用いることにより、形成された膜の可視光の吸収を抑えることができ分光特性のよいものとなる。   As described above, in the present invention, by using the assist ion source 6 in addition to the ECR ion source 5 as an oxidation source, absorption of visible light in the formed film can be suppressed, and the spectral characteristics are improved.

次に、本発明の他の実施の形態について図2を参照して説明する。
図示されるものは、基板2の両面に成膜を行った近赤外線カットフィルターの成膜後の状態を示すものである。表面側の積層構造体16の総膜厚合計(t)と、裏面側の面の積層構造体17の総膜厚合計(t)との差の絶対値(Δ=|t−t|)は、総膜厚合計の何れか大きい方の値(t又はt)に対して15.0%以内にすることが好ましい。これにより、厚さ0.1〜2.0mmの範囲の樹脂製基板2に成膜した場合であっても、基板2の歪みを抑えることができるからである。
Next, another embodiment of the present invention will be described with reference to FIG.
The figure shows a state after film formation of a near infrared cut filter formed on both surfaces of the substrate 2. Absolute value (Δ = | t 1 −t) of the difference between the total film thickness (t 1 ) of the laminated structure 16 on the front surface side and the total film thickness (t 2 ) of the laminated structure 17 on the back surface side 2 |) is preferably set to 15.0% or less with respect to the larger value (t 1 or t 2 ) of the total total film thickness. Thereby, even if it is a case where it forms into a film on the resin-made board | substrates 2 of the range of thickness 0.1-2.0 mm, it is because the distortion of the board | substrate 2 can be suppressed.

本発明に使用することができる基板は、ガラス、ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチルメタクリレート、アクリル、ポリカーボネート、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、エチレン−酢酸ビニル共重合体、ポリビニルブチラール、金属イオン架橋エチレン−メタクリル酸共重合体、ポリウレタン、セロファン等を使用することができる。例示された中でも、アクリル、ポリカーボネートやPET等を使用することが好ましい。基板の厚さは、透明性を妨げない厚さであればよく、PETの場合は、一般に150〜200μmである。100℃以下であっても樹脂製基板の変形を防ぐことができるからである。   Substrates that can be used in the present invention are glass, polyester, polyethylene terephthalate, polybutylene terephthalate, polymethyl methacrylate, acrylic, polycarbonate, polystyrene, polyvinylidene chloride, polyethylene, ethylene-vinyl acetate copolymer, polyvinyl butyral, metal An ion-crosslinked ethylene-methacrylic acid copolymer, polyurethane, cellophane, or the like can be used. Among those exemplified, it is preferable to use acrylic, polycarbonate, PET, or the like. The thickness of the substrate may be a thickness that does not hinder transparency, and in the case of PET, it is generally 150 to 200 μm. This is because deformation of the resin substrate can be prevented even at 100 ° C. or lower.

低屈折率膜は、屈折率1.5以下のものであれば特に制限はなく、例えば、SiO等のケイ素化合物等が挙げられる。また、高屈折率膜は、屈折率2.0以上のものであれば特に制限はなく、例えば、Nb等のニオブ化合物やTiO等のチタン化合物等が挙げられる。
尚、成膜条件についての制限は特になく、一例を挙げると成膜圧力0.20〜0.35Pa下でスパッタリングすればよい。また、成膜レートについても任意に調整することができ、例えば、Nbであれば1.4〜1.8Å/s、SiOの場合であれば1.7〜2.2Å/s等とすることができる。
The low refractive index film is not particularly limited as long as it has a refractive index of 1.5 or less, and examples thereof include silicon compounds such as SiO 2 . The high refractive index film is not particularly limited as long as it has a refractive index of 2.0 or more. Examples thereof include niobium compounds such as Nb 2 O 5 and titanium compounds such as TiO 2 .
In addition, there is no restriction | limiting in particular about film-forming conditions, What is necessary is just to sputter | spatter under film-forming pressure 0.20-0.35Pa as an example. The film forming rate can also be arbitrarily adjusted. For example, in the case of Nb 2 O 5 , 1.4 to 1.8 Å / s, and in the case of SiO 2 , 1.7 to 2.2 Å / s. Etc.

次に、本発明の一実施例について説明する。
真空チャンバー内を2.0×10−3Paに減圧して、300sccmでArを導入し、17.5kWにカソード電圧を設定して、370mm×230mm×0.188mmのアクリルからなる基板の片面に、膜厚1nmのSi膜をマグネトロンスパッタリングにより成膜した。
次に、真空チャンバー内を2.4×10−3Paに調整し、300sccmでArを導入し、11kWにカソード電圧を設定し、マグネトロンスパッタリングによりNbを成膜するとともに、ECR型イオン源及びアシストイオン源とを併用して、膜厚11nmのNb膜を成膜した。尚、ECR型イオン源は、その周囲に350sccmで酸素を導入し、電力を3.6kW(0.9×4)としてプラズマを生じさせるようにした。また、アシストイオン源は、線状電磁管により構成し、その周囲に85sccmで酸素を導入し、電圧を1.6kVとしてプラズマを生じさせるようにした。
更に、真空チャンバー内を2.6×10−3Paに調整し、300sccmでArを導入し、17.5kWにカソード電圧を設定し、マグネトロンスパッタリングによりSiを成膜するとともに、ECR型イオン源及びアシストイオン源とを併用して、膜厚28nmのSiO膜を成膜した。尚、ECR型イオン源は、その周囲に350sccmで酸素を導入し、電力を3.6kW(0.9×4)としてプラズマを生じさせるようにした。また、アシストイオン源は、その周囲に80sccmで酸素を導入し、電圧を1.75kVとしてプラズマを生じさせるようにした。
この作業を繰り返し、図3中の表の左欄(表面)に示すように、表面に合計37層の膜構造体を形成した。尚、膜厚は、同表に記載されるようにスパッタリングの時間を調整することにより行った。
また、基材の裏面についても同様に、膜厚1nmのSi膜をマグネトロンスパッタリングにより成膜し、その上に膜厚9nmでNb膜、その上に膜厚41nmのSiO膜等を成膜し、図3中の表の右欄(裏面)に示すように、表面に合計35層の膜構造体を形成した。
Next, an embodiment of the present invention will be described.
By pressure of the vacuum chamber to 2.0 × 10 -3 Pa, introducing Ar at 300 sccm, and setting the cathode voltage to 17.5 kW, on one surface of a substrate made of acrylic 370 mm × 230 mm × 0.188 mm A Si film having a thickness of 1 nm was formed by magnetron sputtering.
Next, the inside of the vacuum chamber is adjusted to 2.4 × 10 −3 Pa, Ar is introduced at 300 sccm, the cathode voltage is set to 11 kW, Nb is formed by magnetron sputtering, the ECR ion source and the assist are set. An Nb 2 O 5 film having a thickness of 11 nm was formed in combination with an ion source. The ECR ion source was introduced with oxygen at 350 sccm around it to generate plasma with a power of 3.6 kW (0.9 × 4). The assist ion source was composed of a linear electromagnetic tube, and oxygen was introduced around it at 85 sccm to generate plasma with a voltage of 1.6 kV.
Furthermore, the inside of the vacuum chamber was adjusted to 2.6 × 10 −3 Pa, Ar was introduced at 300 sccm, the cathode voltage was set to 17.5 kW, Si was formed by magnetron sputtering, and an ECR ion source and A 28 nm-thick SiO 2 film was formed in combination with the assist ion source. The ECR ion source was introduced with oxygen at 350 sccm around it to generate plasma with a power of 3.6 kW (0.9 × 4). The assist ion source was introduced with oxygen at 80 sccm around the assist ion source to generate plasma with a voltage of 1.75 kV.
This operation was repeated, and as shown in the left column (surface) of the table in FIG. 3, a film structure having a total of 37 layers was formed on the surface. The film thickness was adjusted by adjusting the sputtering time as described in the table.
Similarly, on the back surface of the substrate, a Si film having a thickness of 1 nm is formed by magnetron sputtering, an Nb 2 O 5 film having a thickness of 9 nm is formed thereon, and a SiO 2 film having a thickness of 41 nm is formed thereon. As shown in the right column (rear surface) of the table in FIG. 3, a film structure having a total of 35 layers was formed on the surface.

上記の方法により成膜されたNb膜及びSiO膜の何れも膜を充分酸化することができ、下記のような優れた分光特性の近赤外線フィルターを得ることができた。 Both the Nb 2 O 5 film and the SiO 2 film formed by the above method were able to sufficiently oxidize the film, and a near infrared filter having the following excellent spectral characteristics could be obtained.

(分光特性)
a)λ:430-620nm:平均透過率85.0%以上
b)λ:700-800nm:平均透過率2.0%以下
c)λ:800-1050nm:平均透過率4.0%以下
d)半値(透過率50%):650±10nm
尚、分光特性のグラフを図4に示す。
(Spectral characteristics)
a) λ: 430-620 nm: average transmittance 85.0% or more b) λ: 700-800 nm: average transmittance 2.0% or less c) λ: 800-1050 nm: average transmittance 4.0% or less d) half value (transmittance 50%) ): 650 ± 10nm
A graph of spectral characteristics is shown in FIG.

また、上記近赤外線フィルターの表面の総膜厚合計と、裏面の総膜厚合計との差を、裏面の総膜厚の15%以内としているために、基板の歪みやカールを防ぐことができた。詳細には、表面の総膜厚合計(t)は2261nmであり、裏面の総膜厚合計(t)は2595nmとなり、層厚差(|t−t|)は334nmとなり、t又はtのうち、tが大きいので、|t−t|/t=334/2595=12.9%であった。
尚、この値については15%以内の範囲であれば、基板の歪みやカールを防ぐことができることを確認した。
In addition, since the difference between the total film thickness on the surface of the near infrared filter and the total film thickness on the back surface is within 15% of the total film thickness on the back surface, distortion and curling of the substrate can be prevented. It was. Specifically, the total thickness (t 1 ) on the front surface is 2261 nm, the total thickness (t 2 ) on the back surface is 2595 nm, the layer thickness difference (| t 1 −t 2 |) is 334 nm, and t Since t 2 is large among 1 or t 2 , | t 1 −t 2 | / t 2 = 334/2595 = 12.9%.
In addition, it was confirmed that if this value is within 15%, the distortion and curling of the substrate can be prevented.

本発明は、光学用途、近赤外線を利用する通信、リモコン用途、ディスプレイ、プラズマディスプレイ用の内部のガラス基板を保護する前面パネルのフィルター等に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for optical applications, communication using near infrared rays, remote control applications, displays, front panel filters for protecting glass substrates for plasma displays, and the like.

本発明の製造方法を説明するための装置断面図Device sectional view for explaining the production method of the present invention 両面に成膜した場合の各面の膜厚の関係を示す説明図Explanatory drawing which shows the relationship of the film thickness of each surface when film-forming on both surfaces 本発明の一実施例の近赤外線カットフィルターの膜構造を説明するための表The table | surface for demonstrating the film | membrane structure of the near-infrared cut off filter of one Example of this invention 本発明の一実施例の分光特性を示すグラフThe graph which shows the spectral characteristics of one Example of this invention

符号の説明Explanation of symbols

1 円筒状チャンバー
2 基板
3 円筒状回転体
4 第1のマグネトロンスパッタリング装置
5 ECR型イオン源
6 アシストイオン源
7 第2のマグネトロンスパッタリング装置
9 ガス導入口
10,10' 真空ポンプ
11 カソード
12 シャッター
13 酸素導入口
14 磁気回路
15 酸素導入口
16 表面の積層構造体
17 裏面の積層構造体
DESCRIPTION OF SYMBOLS 1 Cylindrical chamber 2 Board | substrate 3 Cylindrical rotary body 4 1st magnetron sputtering apparatus 5 ECR type ion source 6 Assist ion source 7 2nd magnetron sputtering apparatus 9 Gas inlet 10, 10 'Vacuum pump 11 Cathode 12 Shutter 13 Oxygen Inlet 14 Magnetic circuit 15 Oxygen inlet 16 Laminated structure on the surface 17 Laminated structure on the back

Claims (3)

基板上に低屈折率膜と高屈折率膜を交互に積層されてなる近赤外線カットフィルターの製造方法であって、それぞれの前記膜をマグネトロンスパッタリングにより成膜し、電子サイクロトロン共鳴型イオン源及びアシストイオン源に酸素を供給するとともに、プラズマを励起させて前記膜を酸化することを特徴とする近赤外線カットフィルターの製造方法。   A method of manufacturing a near-infrared cut filter in which a low refractive index film and a high refractive index film are alternately laminated on a substrate, each film being formed by magnetron sputtering, an electron cyclotron resonance ion source and an assist A method for producing a near-infrared cut filter, wherein oxygen is supplied to an ion source and plasma is excited to oxidize the film. 前記基板の表裏に前記膜をそれぞれ積層し、表面の総膜厚合計(t)と、裏面の総膜厚合計(t)との差の絶対値(Δ=|t−t|)を、前記総膜厚合計の大きい値(t又はt)に対して15.0%以内となるように、厚さ0.1〜2.0mmの樹脂製基板に成膜することを特徴とする請求項1に記載の近赤外線カットフィルターの製造方法。 The films are respectively laminated on the front and back of the substrate, and the absolute value (Δ = | t 1 −t 2 |) of the difference between the total film thickness on the front surface (t 1 ) and the total film thickness on the back surface (t 2 ). ) On a resin substrate having a thickness of 0.1 to 2.0 mm so as to be within 15.0% with respect to a large value (t 1 or t 2 ) of the total total film thickness. The manufacturing method of the near-infrared cut filter of Claim 1 characterized by the above-mentioned. 基板上に低屈折率膜と高屈折率膜を交互に積層されてなる近赤外線カットフィルターであって、前記基板の表裏に前記膜をそれぞれ積層し、表面の総膜厚合計(t)と、裏面の総膜厚合計(t)との差の絶対値(Δ=|t−t|)を、前記総膜厚合計の大きい値(t又はt)に対して15.0%以内となるように、厚さ0.1〜2.0mmの樹脂製基板に成膜したことを特徴とする近赤外線カットフィルター。 A near-infrared cut filter in which low-refractive index films and high-refractive index films are alternately stacked on a substrate, wherein the films are stacked on the front and back of the substrate, respectively, and the total film thickness on the surface (t 1 ) The absolute value (Δ = | t 1 −t 2 |) of the difference from the total film thickness (t 2 ) on the back surface is set to 15.5 with respect to the large value (t 1 or t 2 ) of the total film thickness. A near-infrared cut filter, which is formed on a resin substrate having a thickness of 0.1 to 2.0 mm so as to be within 0%.
JP2006122991A 2006-04-27 2006-04-27 Cut filter for near ir ray, and its production method Pending JP2007291475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122991A JP2007291475A (en) 2006-04-27 2006-04-27 Cut filter for near ir ray, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122991A JP2007291475A (en) 2006-04-27 2006-04-27 Cut filter for near ir ray, and its production method

Publications (1)

Publication Number Publication Date
JP2007291475A true JP2007291475A (en) 2007-11-08

Family

ID=38762370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122991A Pending JP2007291475A (en) 2006-04-27 2006-04-27 Cut filter for near ir ray, and its production method

Country Status (1)

Country Link
JP (1) JP2007291475A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141758U (en) * 1988-03-14 1989-09-28
JP2003279726A (en) * 2002-03-20 2003-10-02 Kinseki Ltd Optical low pass filter with infrared blocking filter
WO2005098081A1 (en) * 2004-04-09 2005-10-20 Ulvac, Inc. Film forming apparatus and film forming method
JP2006030944A (en) * 2004-06-18 2006-02-02 Jsr Corp Near infrared ray cut filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141758U (en) * 1988-03-14 1989-09-28
JP2003279726A (en) * 2002-03-20 2003-10-02 Kinseki Ltd Optical low pass filter with infrared blocking filter
WO2005098081A1 (en) * 2004-04-09 2005-10-20 Ulvac, Inc. Film forming apparatus and film forming method
JP2006030944A (en) * 2004-06-18 2006-02-02 Jsr Corp Near infrared ray cut filter

Similar Documents

Publication Publication Date Title
US20090252862A1 (en) Method for producing optical element having multi-layered film
TW201022463A (en) Method for forming anti-reflection film, anti-reflection film, and film formation apparatus
JP2020013099A (en) Optical element and manufacturing method therefor
WO2009084319A1 (en) Optical filter, method for production of the same, and optical device equipped with the same
US20110089026A1 (en) Touch panel manufacturing method and film formation apparatus
JP2008015234A (en) Optical multiple-layer film, optical element, bandpass filter, method of manufacturing optical multiple-layer film, and method of manufacturing optical element
JP4793056B2 (en) Sputter deposition method of antireflection film
JP2007291475A (en) Cut filter for near ir ray, and its production method
JP2007063574A (en) Method for forming multilayer film and film-forming apparatus
JP2006317603A (en) Front surface mirror
JP2006308810A (en) Absorption type multilayer film nd filter and method of manufacturing same
JP5667896B2 (en) Anti-fingerprint decorative film and method for producing anti-fingerprint decorative film
JP2009276447A (en) Polarizer and liquid crystal projector
JP5123785B2 (en) Method for forming antireflection film and antireflection film
JP2007321170A (en) Sputtering film deposition method, optical absorption film and nd filter
TW201224592A (en) Liquid crystal panel for liquid crystal projector, and liquid crystal projector
JP5497790B2 (en) Decorative film for insert molding, insert molded product, and method for producing insert molded decorative film
TW201633332A (en) Manufacturing method of electrical wiring member and electrical wiring member
JP2004255635A (en) Transparent laminated film, antireflection film, polarizing plate using the same, and liquid crystal display device
KR102567493B1 (en) Mask blanks and photomask
JP2011107496A (en) Absorption type multilayer film nd filter and method of manufacturing the same
JP2006169040A (en) Glass substrate with ito and method of manufacturing the same
TW202300959A (en) Titanium oxide optical device films deposited by physical vapor deposition
JP2000303163A (en) Low reflection black film, low reflection black laminated film, production of low reflection black film and color filter
JP7378114B2 (en) ND filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816