WO2009084319A1 - Optical filter, method for production of the same, and optical device equipped with the same - Google Patents

Optical filter, method for production of the same, and optical device equipped with the same Download PDF

Info

Publication number
WO2009084319A1
WO2009084319A1 PCT/JP2008/069937 JP2008069937W WO2009084319A1 WO 2009084319 A1 WO2009084319 A1 WO 2009084319A1 JP 2008069937 W JP2008069937 W JP 2008069937W WO 2009084319 A1 WO2009084319 A1 WO 2009084319A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal element
optical filter
thin film
sputtering
Prior art date
Application number
PCT/JP2008/069937
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Shiono
Yizhou Song
Original Assignee
Shincron Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co., Ltd. filed Critical Shincron Co., Ltd.
Publication of WO2009084319A1 publication Critical patent/WO2009084319A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to an optical filter, a method for manufacturing the same, and an optical apparatus including the optical filter, and more particularly, an optical filter having a multilayer film in which a dielectric film having a property of transmitting light and an absorption film for absorbing light are laminated.
  • the present invention also relates to a method for manufacturing the same and an optical apparatus including the optical filter.
  • Optical filters are used for optical devices such as cameras, telescopes, projectors, etc. to transmit the target light.
  • the optical filter is an optical element having a property of transmitting only light having a specific property (for example, a specific wavelength range) and not transmitting other light, and for example, a deflection filter and a color correction filter are known.
  • One of the optical filters is an absorption type ND (Neutral Density) filter that attenuates transmitted light having a wavelength in the visible region.
  • An ND filter (also referred to as a neutral density filter) is an optical filter having a property of reducing the amount of light transmitted through the filter, and has a property of exhibiting a substantially uniform transmittance over the entire visible range.
  • the ND filter is used for the purpose of reducing the incident light to the lens so as to achieve proper exposure when it is mounted on the front surface of the lens of the camera, for example, when the brightness of the subject is high in outdoor photography or the like.
  • ND filters have been manufactured by depositing a material made of three or more kinds of metals or metal compounds on a substrate (see, for example, Patent Documents 1 to 4).
  • the ND filter of Patent Document 1 has a structure in which a dielectric film and a light absorption film are laminated, and two kinds of materials, SiO 2 and Al 2 O 3 , are used as the dielectric film, and the light absorption film Metal Ti and its oxide Ti x O y are used.
  • the ND filter of Patent Document 2 has a structure in which an absorption film, an antireflection layer, and an outermost layer are laminated. Ti x O y as an absorption film, Al 2 O 3 as an antireflection layer, and MgF as an outermost layer. 2 is used.
  • the ND filter of Patent Document 3 has a structure in which a metal film and an Nb film are laminated via a dielectric film, and an Al alloy (Al + Ti) is used as the metal film, and SiO 2 and Nb films are used as the dielectric film. Nb is used.
  • the ND filter of Patent Document 4 has a structure in which an absorption multilayer film is formed on the surface of a film substrate and a multilayer antireflection film is formed on the back surface, and SiO 2 is used as a material for a dielectric layer constituting the absorption multilayer film. Ni-based alloy is used as the material of the metal film layer, SiO 2 is used as the material of the dielectric layer constituting the multilayer antireflection film, and Ta 2 O 5 is used as the material of the metal film layer.
  • JP 2004-212462 (Claims 1 to 3, paragraphs 0011 to 0016, FIG. 14 and others)
  • JP 2003-207608 A (Claims 1, 3, 7, paragraphs 0020 to 0027, FIG. 1 and others)
  • JP 2006-178395 A (Claims 1 to 3, paragraphs 0020 to 0022, FIG. 2, etc.)
  • the metal element constituting the dielectric film is different from the metal element forming the absorption film, at least three kinds of metals are required as raw materials. For this reason, when manufacturing an ND filter by sputtering etc., for example, in the conventional ND filter, it is necessary to use at least 3 types of target materials, and the cost of the raw material required for manufacturing the ND filter increases.
  • manufacturing management becomes more difficult as more types of targets are used, resulting in higher management costs for product manufacturing and variations in product optical characteristics from lot to lot. May occur, which may lead to a decrease in product accuracy.
  • the above-described problem is an optical filter in which a multilayer film that absorbs light is formed on the surface of a substrate, and the multilayer film includes a dielectric film in which a plurality of films are stacked, And an absorption film having a property of absorbing light, which is formed in at least one place between the plurality of films constituting the dielectric film, and the dielectric film includes an oxide of a first metal element, A first film composed of nitride or oxynitride, and an oxide, nitride or oxynitride of a second metal element different from the first metal element, or the first metal element and the A second film composed of an oxide, a nitride or an oxynitride of an alloy composed of a second metal element, and a structure in which two or more kinds of films are laminated; By containing one or both of the first metal element and the second metal element It is determined.
  • the metal element constituting the dielectric film and the metal element constituting the absorption film are common, the number of types of metal elements constituting the multilayer film is small, and it is constituted by three or more conventional metal elements.
  • the structure of the multilayer film is simpler than that of the optical filter. Further, since the metal elements contained in the dielectric film and the absorption film are the same, the raw materials for forming the dielectric film and the absorption film can be shared.
  • the absorption film is composed of a metal composed of one or both of the first metal element and the second metal element, or an incomplete oxide, incomplete nitride, or incomplete oxynitride of the metal. It is preferred that
  • the metal element is a metal selected from the group consisting of carbon, magnesium, aluminum, silicon, chromium, manganese, iron, cobalt, nickel, zinc, germanium, zirconium, niobium, molybdenum, indium, tin, tantalum, and tungsten. An element is preferable.
  • the base material is preferably formed of one or more materials selected from the group consisting of glass, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, and olefin polymer.
  • the above object is a method for manufacturing an optical filter according to any one of the above, wherein the substrate is formed by sputtering the first target made of the first metal element. Forming a first film by forming a thin film of the first metal element on the surface of the substrate and performing a plasma treatment with oxygen, nitrogen, or a mixed gas of oxygen and nitrogen on the thin film. And sputtering the second target composed of the second metal element or the first target and the second target to form the second metal element or the first target on the surface of the first film.
  • a second film is formed by forming a thin film of an alloy comprising a metal element and the second metal element, and subjecting the thin film to plasma treatment with oxygen, nitrogen, or a mixed gas of oxygen and nitrogen.
  • a dielectric film forming process for forming the dielectric film by repeating the first film forming process and the second film forming process, and the first target and the first film forming process. Sputtering one or both of the two targets to form a thin film on the surface of the dielectric film, and performing plasma treatment with oxygen, nitrogen, or an oxygen / nitrogen mixed gas on the thin film as necessary, This is solved by providing an absorption film forming step of forming the absorption film.
  • the metal element constituting the dielectric film and the metal element constituting the absorption film are common, the number of types of metal elements constituting the multilayer film is small, and the structure of the multilayer film is simplified. Further, since the metal elements contained in the dielectric film and the absorption film are the same, the raw materials for forming the dielectric film and the absorption film can be shared.
  • the above-described problem is a method for manufacturing an optical filter according to any one of the above, wherein at least one film formation process region provided at a position spaced apart from each other, and Using a vacuum vessel provided with a reaction process region inside, the substrate is transported into the film formation process region, and a first target made of the first metal element is sputtered onto the surface of the substrate. A thin film of a metal element is formed, the substrate on which the thin film is formed is transported into the reaction process region, and the thin film is plasma-treated with oxygen, nitrogen, or an oxygen / nitrogen mixed gas in the reaction process region.
  • a step of forming the second film by transporting the substrate on which the thin film is formed into the reaction process region, and subjecting the thin film to plasma treatment with oxygen, nitrogen, or a mixed gas of oxygen and nitrogen.
  • a dielectric film forming step of forming the dielectric film by repeating the first film forming step and the second film forming step, and the base material in the film forming process region.
  • a thin film is formed on a surface of the dielectric film by sputtering one or both of the first target and the second target, and the base material on which the thin film is formed is placed in the reaction process region.
  • Transport and required Wherein by performing oxygen plasma treatment with a nitrogen or oxygen-nitrogen mixed gas to the thin film, it is solved by providing an absorption layer formation step of forming the absorbing layer in accordance with the.
  • the target raw material necessary for manufacturing the optical filter is the same as the metal element constituting the dielectric film and the metal element constituting the absorption film, it is composed of three or more kinds of conventional metal elements.
  • the structure of the multilayer film is simplified as compared with the case of manufacturing an optical filter.
  • the film formation process region where sputtering is performed and the reaction process region where plasma treatment is performed are separated from each other, the reactive gas in the reaction process region is unlikely to come into contact with the target in the film formation process region. Thereby, abnormal discharge of the target due to the reaction between the target and the reactive gas is unlikely to occur. For this reason, there is no need to increase the temperature of the substrate during film formation, and film formation can be performed at a low temperature and with a high film formation rate. Accordingly, it is possible to efficiently form a film even on a resin base material that is easily deformed at a high temperature.
  • the optical device of the present invention has an optical filter with a simple multilayer film structure that can be manufactured at low cost and has little variation in accuracy for each product lot. There is also little variation from product to product.
  • the optical filter and the manufacturing method thereof of the present invention since the metal element constituting the dielectric film and the metal element constituting the absorption film are common, the number of types of metal elements constituting the multilayer film is small, and the multilayer The structure of the film is simplified. Further, since the metal elements contained in the dielectric film and the absorption film are the same, the raw materials for forming the dielectric film and the absorption film can be shared. Therefore, the types of raw materials for forming the multilayer film are reduced, and manufacturing management at the time of film formation is easy, so that the cost required for manufacturing the optical filter can be reduced. Furthermore, since the structure of the multilayer film is simple, there is little variation in the product accuracy for each production lot, and a high-precision optical filter can be provided.
  • the optical filter having a simple multilayer film structure is provided as described above, so that the production cost of the product is low, and variation in accuracy among lots can be reduced. .
  • FIG. 3 is a graph showing the transmittance and reflectance of the optical filter of Example 1.
  • FIG. 6 is a graph showing the transmittance of the optical filter of Example 2.
  • FIG. 1 is a schematic view showing a cross-sectional shape of an optical filter
  • FIG. 2 is an explanatory view showing the state of the thin film forming apparatus as viewed from above.
  • the thickness of the thin film is drawn thicker than the actual thickness.
  • optical filter of the present invention examples include a long wavelength cut filter, a short wavelength cut filter, a band pass filter, and an ND filter.
  • ND filter which is an example of an optical filter.
  • the optical filter P of the present invention includes a base material S and a multilayer film M formed on the surface of the base material S.
  • the multilayer film M includes a dielectric film F having a structure in which a plurality of films are stacked, and an absorption film A formed between the plurality of films constituting the dielectric film F.
  • the base material S is a member that is formed of a light-transmitting material and serves as a substrate on which the dielectric film F and the absorption film A are attached.
  • a disk-shaped substrate S is used as the substrate S, but the shape of the substrate S is not limited to this, and as long as a thin film can be formed on the surface, for example, a lens shape, a cylindrical shape, Other shapes such as an annular shape may be used.
  • the material of the substrate S examples include a material selected from the group consisting of glass, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, and olefin polymer. Moreover, in order to improve the intensity
  • the olefin polymer a cycloolefin polymer having excellent transparency, low birefringence, high heat resistance and the like is preferable. Specifically, “ZEONEX” (registered trademark), “ZEONOR” (Registered trademark, both manufactured by Nippon Zeon Co., Ltd.) are preferred.
  • the dielectric film F is a film having a property of transmitting incident light.
  • the dielectric film F of the present invention has a configuration in which a plurality of films are stacked.
  • the dielectric film F of the present embodiment is composed of a first film F1 and a second film F2 formed of different materials.
  • the first film F1 is made of an oxide, nitride, or oxynitride of the metal element X (first metal element).
  • the second film F2 is made of an oxide, nitride, or oxynitride of a metal element Y (second metal element) different from the metal element X.
  • the second film F2 may be made of an oxide, nitride, or oxynitride of an alloy composed of the metal element X and the metal element Y.
  • the dielectric film F has a structure composed of only two types of films.
  • the dielectric film F of the present invention is formed of only the two types of films described above.
  • the film may be formed of three or more kinds of films.
  • a film using a metal element Z different from the metal elements X and Y as a raw material may be used as the third film F3, a film using a metal element Z different from the metal elements X and Y as a raw material may be used.
  • the absorption film A is a film having a property of absorbing a part of incident light. Since the optical filter P of the present embodiment is an ND filter, the absorption film A is formed of a material having a substantially uniform spectral transmittance in the visible region (400 to 700 nm). In this case, the average transmittance of the absorbing film A is generally in the range of 0.01 to 90.0.
  • the absorption film A is formed of a material containing one or both of the metal element X and the metal element Y. More specifically, examples of the absorption film A include a metal composed of one of the metal element X and the metal element Y, or an alloy composed of these two kinds of metal elements X and Y. Or as the absorption film A, you may be comprised with the incomplete oxide of the metal or alloy mentioned above, incomplete nitride, or incomplete oxynitride.
  • metal elements X and Y include carbon (C), magnesium (Mg), aluminum (Al), silicon (Si), chromium (Cr), manganese (Mn), iron (Fe), and cobalt (Co). , Nickel (Ni), zinc (Zn), germanium (Ge), zirconium (Zr), niobium (Nb), molybdenum (Mo), indium (In), tin (Sn), tantalum (Ta), tungsten (W) An element selected from the group consisting of
  • the dielectric film F and the absorption film A are designed by selecting a metal element corresponding to the characteristics required for the optical filter P from these metal elements. Specifically, the optical constants of metal element X, metal element Y, and alloy X + Y itself, and incomplete oxide, complete oxide, incomplete nitride, complete nitride, incomplete oxynitride of these metals and alloys Based on the optical constants of the complete oxynitride, a material that matches the optical characteristics required for the dielectric film F and the absorption film A is selected. Then, using the selected material, the multilayer film M is formed by laminating the dielectric film F and the absorption film A on the surface of the substrate S by a film formation technique such as sputtering.
  • a film formation technique such as sputtering.
  • optical filter P manufacturing equipment Next, an apparatus for manufacturing the optical filter P will be described.
  • the optical filter P of the present invention is preferably manufactured using a thin film forming apparatus in which a film forming process region and a reaction process region described below are separated.
  • a thin film forming apparatus that performs magnetron sputtering, which is an example of sputtering, is used as the thin film forming apparatus.
  • the thin film forming apparatus of the present invention is not limited to such a magnetron sputtering, and uses a magnetron discharge. It is also possible to use another known thin film forming apparatus that performs sputtering such as bipolar sputtering.
  • a sputtering process for depositing a thin film thinner than the target film thickness on the surface of the substrate S, and plasma for converting the composition of the thin film by performing a treatment such as oxidation on the thin film
  • An intermediate thin film is formed on the surface of the substrate S by the treatment step, and the final thin film having a desired film thickness is obtained by laminating a plurality of intermediate thin films by repeating this sputtering treatment and plasma treatment a plurality of times. Is formed.
  • the step of forming an intermediate thin film having an average film thickness of about 0.01 to 1.5 nm after composition conversion on the surface of the substrate S by sputtering treatment and plasma treatment is performed each time the rotary drum rotates.
  • a final thin film having a target film thickness of several nm to several hundred nm is formed.
  • the thin film forming apparatus 1 of this embodiment includes a vacuum vessel 11, a rotating drum 13, a sputtering means 20 (first sputtering means), and a sputtering gas supply means 30 (first sputtering gas supply means). ), Sputtering means 40 (second sputtering means), sputtering gas supply means 50 (second sputtering gas supply means), plasma generation means 60, and reactive gas supply means 70 are the main components. .
  • the sputtering means 20, the sputtering means 40, and the plasma generation means 60 are indicated by broken lines, and the sputtering gas supply means 30, the sputtering gas supply means 50, and the reactive gas supply means 70 are indicated by alternate long and short dash lines.
  • the vacuum vessel 11 is a hollow body made of stainless steel, which is usually used in a known thin film forming apparatus, and has a substantially rectangular parallelepiped shape.
  • the inside of the vacuum vessel 11 is divided into a thin film forming chamber 11A and a load lock chamber 11B by an openable / closable door 11C.
  • the rotary drum 13 is a cylindrical member for holding the base material S, and has a function as a substrate holding means.
  • the rotating drum 13 is provided with a drum rotating shaft 18 that is coaxially connected to an output shaft of a motor (not shown).
  • partition walls 12, 14 and 19 are erected toward the rotary drum 13.
  • the partition walls 12, 14, and 19 of the present embodiment are all the same stainless steel members as the vacuum vessel 11.
  • These partition walls 12, 14, 19 are each composed of a flat plate member arranged one by one on the top, bottom, left, and right, and project vertically from the inner wall surface of the vacuum vessel 11 toward the rotary drum 13.
  • the outer peripheral surface of 13 is surrounded from four sides.
  • the film forming process area 20 ⁇ / b> A is formed in an area surrounded by the inner wall surface of the vacuum vessel 11, the partition wall 12, the outer peripheral surface of the rotary drum 13, and the sputtering means 20.
  • the film formation process area 40 ⁇ / b> A is formed in an area surrounded by the inner wall surface of the vacuum vessel 11, the partition wall 14, the outer peripheral surface of the rotary drum 13, and the sputtering means 40. In these film forming process regions 20A and 40A, a sputtering process for attaching a film raw material to the surface of the substrate S is performed.
  • a projecting wall surface having a convex cross section projecting outward is also formed on the side wall of the vacuum vessel 11 which is separated from both the film forming process region 20A and the film forming process region 40A by about 90 ° about the drum rotation shaft 18.
  • the plasma generating means 60 is provided on the protruding wall surface.
  • the reaction process region 60 ⁇ / b> A is formed in a region surrounded by the inner wall surface of the vacuum vessel 11, the partition wall 19, the outer peripheral surface of the rotary drum 13, and the plasma generating means 60. In the reaction process region 60A, the plasma processing is performed on the film raw material adhering to the surface of the substrate S.
  • Sputtering means 20 is installed in the film forming process region 20A.
  • the sputtering means 20 includes a pair of magnetron sputter electrodes 21a and 21b, targets 22a and 22b held by the magnetron sputter electrodes 21a and 21b, an AC power source 23 that supplies power to the magnetron sputter electrodes 21a and 21b, and a magnetron.
  • a transformer 24 as power control means for adjusting the amount of power supplied to the sputter electrodes 21a and 21b.
  • the wall surface of the vacuum vessel 11 protrudes outward, and magnetron sputter electrodes 21a and 21b are disposed on the inner wall of the protruding portion so as to penetrate the side wall.
  • the magnetron sputter electrodes 21a and 21b are fixed to the vacuum vessel 11 at the ground potential via an insulating member (not shown).
  • the magnetron sputter electrodes 21a and 21b have a structure in which a plurality of magnets are arranged in a predetermined direction.
  • the magnetron sputter electrodes 21a and 21b are connected to an AC power source 23 via a transformer 24, and are configured so that an alternating electric field of 1 to 100 kHz can be applied to both electrodes.
  • the targets 22a and 22b are formed by forming a film raw material into a flat plate shape, and are detachably held by the magnetron sputtering electrodes 21a and 21b so as to face the side surfaces of the rotating drum 13 as described later.
  • the materials of the targets 22a and 22b are appropriately selected according to the optical characteristics required for the dielectric film F and the absorption film A.
  • a sputtering gas supply means 30 for supplying a sputtering gas such as argon is provided outside the film forming process region 20A.
  • the sputtering gas supply means 30 includes a sputtering gas cylinder 31 as a sputtering gas storage means and a mass flow controller 32 as a sputtering gas flow rate adjusting means for adjusting the flow rate of the sputtering gas as main components.
  • the sputtering gas include inert gases such as argon and helium.
  • the mass flow controller 32 is a device that adjusts the gas flow rate.
  • the sputtering gas from the sputtering gas cylinder 31 is introduced into the film forming process region 20A with the flow rate adjusted by the mass flow controller 32.
  • the periphery of the targets 22a and 22b becomes an inert gas atmosphere.
  • an alternating electrode is applied from the AC power source 23 to the magnetron sputtering electrodes 21a and 21b, a part of the sputtering gas around the targets 22a and 22b emits electrons and is ionized.
  • Sputtering means 40 is installed in the film forming process area 40A.
  • the sputtering means 40 supplies power to the pair of magnetron sputtering electrodes 41a and 41b, the targets 42a and 42b held by the magnetron sputtering electrodes 41a and 41b, and the magnetron sputtering electrodes 41a and 41b, respectively.
  • AC power supply 43 that performs the above and a transformer 44 that serves as a power control means for adjusting the amount of power supplied to the magnetron sputtering electrodes 41a and 41b.
  • magnetron sputter electrodes 41a and 41b, the AC power supply 43, and the transformer 44 are the same as the magnetron sputter electrodes 21a and 21b, the AC power supply 23, and the transformer 24, respectively, detailed description thereof is omitted.
  • the targets 42a and 42b are formed of a metal element material different from the targets 22a and 22b.
  • the metal elements of the targets 22a and 22b and the targets 42a and 42b are appropriately selected according to the characteristics required for the dielectric film F and the absorption film A of the optical filter P to be manufactured.
  • the first film F1 of the dielectric film F is silicon oxide (SiO 2 )
  • the second film F2 is niobium pentoxide (Nb 2 O 5 )
  • the absorption film A is metal niobium (metal Nb)
  • Metallic silicon (Si) is used for the targets 22a and 22b
  • metallic niobium (Nb) is used for the targets 42a and 42b.
  • a sputtering gas supply means 50 for supplying a sputtering gas such as argon is provided outside the film forming process region 40A.
  • the sputtering gas supply means 50 includes a sputtering gas cylinder 51 as a sputtering gas storage means and a mass flow controller 52 as a sputtering gas flow rate adjusting means for adjusting the flow rate of the sputtering gas as main components.
  • the sputtering gas cylinder 51 and the mass flow controller 52 have the same configuration as the sputtering gas cylinder 31 and the mass flow controller 32, respectively, and thus detailed description thereof is omitted.
  • reaction process area 60A (Reaction process area 60A) Subsequently, the reaction process region 60A will be described. As described above, in the reaction process region 60A, the film raw material adhered to the surface of the substrate S in the film formation process region 20A is subjected to plasma treatment to form a complete reaction product or an incomplete reaction product of the film raw material.
  • the plasma generating means 60 is provided facing the reaction process region 60A.
  • the plasma generating means 60 of this embodiment includes a case body 61, a dielectric plate 62, an antenna 63, a high frequency power supply 64, and a matching box 65.
  • the case body 61 is a plate member made of stainless steel fixed so as to close the opening formed in the wall surface of the vacuum vessel 11. By fixing the case body 61 to the wall surface of the vacuum vessel 11, the plasma generating means 60 is attached to the wall surface of the vacuum vessel 11.
  • the dielectric plate 62 is a plate-like dielectric member fixed to the case body 61.
  • the dielectric plate 62 of this embodiment is made of quartz, but may be made of a ceramic material such as Al 2 O 3 .
  • an antenna accommodating chamber is formed in a region surrounded by the case body 61 and the dielectric plate 62.
  • the dielectric plate 62 is installed toward the reaction process region 60A.
  • the antenna accommodation chamber is separated from the inside of the vacuum vessel 11.
  • the antenna accommodating chamber and the inside of the vacuum vessel 11 form an independent space in a state of being partitioned by the dielectric plate 62.
  • the antenna housing chamber and the outside of the vacuum vessel 11 form an independent space in a state of being partitioned by the case body 61.
  • the antenna accommodating chamber communicates with the vacuum pump 15 through a pipe, and the inside of the antenna accommodating chamber can be evacuated by being evacuated by the vacuum pump 15 to be in a vacuum state.
  • the antenna 63 is supplied with electric power from the high-frequency power supply 64 to generate an induction electric field in the reaction process region 60A and generate plasma in the reaction process region 60A.
  • an AC voltage having a frequency of 1 to 27 MHz is applied from the high frequency power source 64 to the antenna 63 to generate reactive gas plasma in the reaction process region 60A.
  • the antenna 63 is connected to a high frequency power supply 64 through a matching box 65 that accommodates a matching circuit.
  • a variable capacitor (not shown) is provided in the matching box 65 so that the power supplied from the high frequency power supply 64 to the antenna 63 can be changed.
  • Reactive gas supply means 70 is provided outside the reaction process region 60A.
  • the reactive gas supply means 70 includes a reactive gas cylinder 71 that stores the reactive gas, a mass flow controller 72 that adjusts the flow rate of the reactive gas supplied from the reactive gas cylinder 71, and an inert gas cylinder that stores the inert gas. 73 and a mass flow controller 74 for adjusting the flow rate of the inert gas supplied from the inert gas cylinder 73 as main components.
  • the reactive gas cylinder 71 and the inert gas cylinder 73 can employ the same apparatus as the sputtering gas cylinder 31 in the film forming process region 20A.
  • the mass flow controller 72 and the mass flow controller 74 can employ the same apparatus as the mass flow controller 32 in the film forming process region 20A.
  • the antenna 63 in the reaction process region 60A is faced. Plasma is generated in the region. As a result, the film raw material formed on the surface of the substrate S is plasma-treated with the reactive gas.
  • the film forming process region 20A for supplying the film raw material by sputtering and the reaction process region 60A for reacting the film raw material and the reactive gas in the vacuum container 11 are thus provided. Since it is formed in a separated state at a separated position, there is a disadvantage that abnormal discharge occurs due to the reaction between the targets 22a and 22b and the reactive gas as in the case of using a conventional general reactive sputtering apparatus. Hard to occur. Therefore, the reaction between the film raw material and the reactive gas can be promoted by increasing the supply amount of the reactive gas in the reaction process region 60A or increasing the plasma generation density.
  • the base material S is set on the rotary drum 13 and accommodated in the vacuum container 11. Then, with the inside of the vacuum vessel 11 sealed, the inside of the vacuum vessel 11 is brought to a high vacuum state of about 10 ⁇ 1 to 10 ⁇ 5 Pa using the vacuum pump 15.
  • Metallic silicon is used as the material for the targets 22a and 22b, and metallic niobium is used as the material for the targets 42a and 42b.
  • a dielectric film F is formed on the surface of the substrate S.
  • the rotating drum 13 is rotated to move the substrate S into the film forming process region 20A (substrate transporting step), and the targets 22a and 22b are sputtered in the film forming process region 20A to form metal silicon on the surface of the substrate S.
  • a thin film is formed (sputtering step).
  • the rotating drum 13 is rotated to transport the substrate S to the reaction process region 60A (substrate transporting process). Prior to this transfer, a reactive gas is introduced into the reaction process region 60A in advance.
  • the first drum F1 is formed by rotating the rotating drum 13 and repeating the above-described sputtering step and plasma treatment step a plurality of times, and continuing the film formation until a predetermined film thickness is obtained (the first film F1). Film formation step).
  • the second film F2 is formed on the surface of the first film F1.
  • the substrate S is transported into the film forming process region 40A, and the targets 42a and 42b are sputtered to form a thin film made of metallic niobium on the surface of the first film F1 (sputtering step).
  • the substrate S is transported to the reaction process region 60A by the rotation of the rotary drum 13.
  • a reactive gas plasma is generated inside the reaction process region 60A to react with the metal of the thin film to convert the metal niobium into niobium pentoxide (plasma processing step).
  • the above-described sputtering process and plasma treatment process are repeated a plurality of times, and the second film F2 is formed by continuing the film formation until a predetermined film thickness is obtained (second film). Film formation step). Further, the first film formation process and the second film formation process described above are repeated until a desired number of films are obtained, thereby forming a part of the dielectric film F (dielectric film formation process).
  • an absorption film A is formed on the surface of the dielectric film F.
  • the base material S is transported into the film forming process region 40A, and the targets 42a and 42b are sputtered to form a thin film made of metal niobium on the surface of the dielectric film F (sputtering step).
  • the rotating drum 13 is rotated and the above-described sputtering process is repeated a plurality of times, and the film formation is continued until a predetermined film thickness is obtained, thereby forming the absorption film A (absorption film formation process).
  • the dielectric film forming process is repeated again on the base material S on which the absorption film A is formed, and the dielectric film F is formed on the surface of the absorption film A. Thereby, the multilayer film M having the desired optical characteristics is finally formed.
  • the rotation of the rotating drum 13 and the gas supply are stopped, and the rotating drum 13 is transferred to the load lock chamber 11B. Thereafter, the load lock chamber 11 ⁇ / b> B is opened to the atmosphere, and the substrate S is removed from the rotating drum 13.
  • the thin film forming apparatus 1 includes the film forming process region 20A and the film forming process region 40A to which film raw material materials made of different materials are attached. Even if different metal materials are laminated, it is not necessary to release the vacuum state of the vacuum vessel 11 and replace the target. For this reason, it is possible to shorten the tact time required for manufacturing the optical filter P.
  • the reactive gas and unreacted metallic niobium are formed as the absorbing film A.
  • a sputtering process is performed.
  • the subsequent substrate S is transported to the reaction process region 60A, and plasma treatment with reactive gas is performed on the metal niobium (plasma treatment step).
  • niobium is used as the metal element constituting the second film F2.
  • an alloy composed of two kinds of metal elements may be used as the raw material of the second film F2.
  • a thin film of an alloy made of two kinds of metal elements can be formed on the surface of the substrate S by sputtering the targets 22a and 22b and the targets 42a and 42b made of different materials.
  • the optical filter P was formed using the thin film forming apparatus 1 shown in FIG.
  • the optical filter P was formed under various conditions shown in each example, and the transmittance at 400 to 700 nm was measured.
  • Example 1 An optical filter P (ND filter) was prepared using silicon and niobium metals as materials for the dielectric film F and the absorption film A, respectively, so that the transmittance was about 12%.
  • Such an ND filter is required to have a characteristic in which the transmission intensity in the visible range (400 to 700 nm) is equally attenuated, and is used for “squeezing” of a camera, for example.
  • the film forming conditions are as follows. ⁇ Film formation conditions> Dielectric film F (first film F1) ..
  • FIG. 3 shows the results of measuring the transmittance and reflectance of the ND filter of Example 1.
  • the ND filter of Example 1 was found to exhibit a substantially flat transmittance characteristic of about 12% within the visible wavelength range of 400 to 700.
  • Example 2 ND Green filter
  • An optical filter P (ND Green filter) that transmits light around a green wavelength range was prepared using a material made of silicon and niobium metal in the same manner as in Example 1.
  • Such an ND Green filter is used, for example, for “dark green” illumination for a display memory in a microscope or for correcting RGB color tone in a projector using a color wheel.
  • the film forming conditions are as follows. ⁇ Film formation conditions> Dielectric film F (first film F1) ..
  • permeability of the ND Green filter of Example 2 is shown.
  • the ND Green filter of Example 2 exhibits a substantially flat transmittance characteristic of about 15% within the wavelength range of 480 to 580 in the visible region, and almost zero transmittance in other wavelength ranges.
  • the optical filter P having desired optical characteristics can be manufactured even when the multilayer film M is formed using two kinds of metal elements as raw materials. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The object is to provide: an optical filter which has a simple structure, which can be produced at low cost, and which has narrow lot-to-lot variations in its optical properties; a method for producing the optical filter; and an optical device. Disclosed is an optical filter (P) comprising a base material (S) and a multi-layered film (M) which can absorb light and which is formed on the surface of the base material (S), wherein the multi-layered film (M) comprises a dielectric film (F) which is composed of two or more films laminated on each other and an absorption film (A) which is formed in at least one space selected from spaces formed between the two or more films constituting the dielectric film (F) and which can absorb light. The dielectric film (F) comprises at least two films laminated on each other, wherein the at least two films are independently selected from a first film (F1) which comprises an oxide, nitride or oxynitride of a metal element (X) and a second film (F2) which comprises an oxide, nitride or oxynitride of a metal element (Y) or an oxide, nitride or oxynitride of an alloy of the metal element (X) and the metal element (Y). The absorption film (A) contains one or both of the metal element (X) and the metal element (Y).

Description

光学フィルター及びその製造方法並びに該光学フィルターを備えた光学機器OPTICAL FILTER, MANUFACTURING METHOD THEREOF, AND OPTICAL DEVICE HAVING THE OPTICAL FILTER
 本発明は光学フィルター及びその製造方法並びに該光学フィルターを備えた光学機器に係り、特に、光を透過する性質の誘電体膜と光を吸収する吸収膜とが積層された多層膜を有する光学フィルター及びその製造方法並びに該光学フィルターを備えた光学機器に関する。 The present invention relates to an optical filter, a method for manufacturing the same, and an optical apparatus including the optical filter, and more particularly, an optical filter having a multilayer film in which a dielectric film having a property of transmitting light and an absorption film for absorbing light are laminated. The present invention also relates to a method for manufacturing the same and an optical apparatus including the optical filter.
 カメラ、望遠鏡、投射機などの光学機器には、目的とする光を透過させるために光学フィルターが用いられている。光学フィルターは、特定の性質(例えば、特定の波長範囲)の光だけを透過し、それ以外の光を透過しない性質の光学素子であり、例えば偏向フィルターや色補正フィルターなどが知られている。 Optical filters are used for optical devices such as cameras, telescopes, projectors, etc. to transmit the target light. The optical filter is an optical element having a property of transmitting only light having a specific property (for example, a specific wavelength range) and not transmitting other light, and for example, a deflection filter and a color correction filter are known.
 光学フィルターのひとつに、可視領域の波長の透過光を減衰させる吸収型のND(Neutral Density)フィルターがある。NDフィルター(減光フィルターともいう)は、フィルターを透過する光の量を減少させる性質を有する光学フィルターであり、可視領域の全範囲にわたってほぼ均一な透過率を示す性質を有している。NDフィルターは、例えば野外撮影などで被写体の輝度が高い場合に、カメラのレンズ前面に装着することでレンズへの入射光を低減して適正露出にするなどの目的に使用される。 One of the optical filters is an absorption type ND (Neutral Density) filter that attenuates transmitted light having a wavelength in the visible region. An ND filter (also referred to as a neutral density filter) is an optical filter having a property of reducing the amount of light transmitted through the filter, and has a property of exhibiting a substantially uniform transmittance over the entire visible range. The ND filter is used for the purpose of reducing the incident light to the lens so as to achieve proper exposure when it is mounted on the front surface of the lens of the camera, for example, when the brightness of the subject is high in outdoor photography or the like.
 従来、NDフィルターは、3種類以上の金属や金属化合物からなる材料を基板上に成膜することで製造されていた(例えば、特許文献1~4参照)。
 特許文献1のNDフィルターは、誘電体膜と光吸収膜とが積層された構造を有しており、誘電体膜としてSiOとAlの2種類の材料が用いられ、光吸収膜として金属Tiとその酸化物Tiが用いられている。
 特許文献2のNDフィルターは、吸収膜と反射防止層と最外層とが積層された構造を有しており、吸収膜としてTi、反射防止層としてAl、最外層としてMgFが用いられている。
 特許文献3のNDフィルターは、金属膜とNb膜とが誘電体膜を介して積層形成された構造を有しており、金属膜としてAl合金(Al+Ti)、誘電体膜としてSiO、Nb膜としてNbが用いられている。
 特許文献4のNDフィルターは、フィルム基板の表面に吸収型多層膜、裏面に多層反射防止膜が形成された構造を有しており、吸収型多層膜を構成する誘電体層の材料としてSiO、金属膜層の材料としてNi系合金が用いられ、多層反射防止膜を構成する誘電体層の材料としてSiO、金属膜層の材料としてTaが用いられている。
Conventionally, ND filters have been manufactured by depositing a material made of three or more kinds of metals or metal compounds on a substrate (see, for example, Patent Documents 1 to 4).
The ND filter of Patent Document 1 has a structure in which a dielectric film and a light absorption film are laminated, and two kinds of materials, SiO 2 and Al 2 O 3 , are used as the dielectric film, and the light absorption film Metal Ti and its oxide Ti x O y are used.
The ND filter of Patent Document 2 has a structure in which an absorption film, an antireflection layer, and an outermost layer are laminated. Ti x O y as an absorption film, Al 2 O 3 as an antireflection layer, and MgF as an outermost layer. 2 is used.
The ND filter of Patent Document 3 has a structure in which a metal film and an Nb film are laminated via a dielectric film, and an Al alloy (Al + Ti) is used as the metal film, and SiO 2 and Nb films are used as the dielectric film. Nb is used.
The ND filter of Patent Document 4 has a structure in which an absorption multilayer film is formed on the surface of a film substrate and a multilayer antireflection film is formed on the back surface, and SiO 2 is used as a material for a dielectric layer constituting the absorption multilayer film. Ni-based alloy is used as the material of the metal film layer, SiO 2 is used as the material of the dielectric layer constituting the multilayer antireflection film, and Ta 2 O 5 is used as the material of the metal film layer.
特開2005-326687号公報(請求項3、段落0007,0011、図1ほか)Japanese Patent Laying-Open No. 2005-326687 (Claim 3, paragraphs 0007, 0011, FIG. 1, etc.) 特開2004-212462号公報(請求項1~3、段落0011~0016、図14ほか)JP 2004-212462 (Claims 1 to 3, paragraphs 0011 to 0016, FIG. 14 and others) 特開2003-207608号公報(請求項1,3,7、段落0020~0027、図1ほか)JP 2003-207608 A ( Claims 1, 3, 7, paragraphs 0020 to 0027, FIG. 1 and others) 特開2006-178395号公報(請求項1~3、段落0020~0022、図2ほか)JP 2006-178395 A (Claims 1 to 3, paragraphs 0020 to 0022, FIG. 2, etc.)
 しかしながら、従来のNDフィルターは、誘電体膜を構成する金属元素と吸収膜を形成する金属元素が異なっているため、少なくとも3種類以上の金属が原材料として必要となる。
 このため、例えばスパッタリングなどによりNDフィルターを製造する場合、従来のNDフィルターでは少なくとも3種類のターゲット材料を用いる必要があり、NDフィルターの製造に要する原材料のコストが上昇する。また、ターゲット材料の種類によってターゲットの寿命などが相違するため、多くの種類のターゲットを用いるほど製造管理が困難となり、製品製造のための管理コストが上昇するとともにロットごとに製品の光学特性にばらつきが生じやすく製品精度の低下を招くことがある。
However, in the conventional ND filter, since the metal element constituting the dielectric film is different from the metal element forming the absorption film, at least three kinds of metals are required as raw materials.
For this reason, when manufacturing an ND filter by sputtering etc., for example, in the conventional ND filter, it is necessary to use at least 3 types of target materials, and the cost of the raw material required for manufacturing the ND filter increases. In addition, since the life of the target differs depending on the type of target material, manufacturing management becomes more difficult as more types of targets are used, resulting in higher management costs for product manufacturing and variations in product optical characteristics from lot to lot. May occur, which may lead to a decrease in product accuracy.
 本発明の目的は、構造が簡単で製造コストが安価であり、ロットごとの光学特性のばらつきが少ない光学フィルター及びその製造方法を提供することにある。
 また、本発明の他の目的は、製品の製造コストが安価であり、製品ごとの精度のばらつきが少ない光学機器を提供することにある。
An object of the present invention is to provide an optical filter that has a simple structure, is inexpensive to manufacture, and has little variation in optical characteristics from lot to lot, and a method for manufacturing the same.
Another object of the present invention is to provide an optical device that has a low product manufacturing cost and a small variation in accuracy from product to product.
 上記課題は、本発明の光学フィルターによれば、光を吸収する多層膜が基材の表面に形成された光学フィルターであって、前記多層膜は、複数の膜が積層された誘電体膜と、該誘電体膜を構成する前記複数の膜の間の少なくとも1か所に形成され光を吸収する性質を有する吸収膜とを備え、前記誘電体膜は、第1の金属元素の酸化物、窒化物若しくは酸窒化物で構成される第1の膜と、前記第1の金属元素とは異なる第2の金属元素の酸化物、窒化物若しくは酸窒化物、又は前記第1の金属元素と前記第2の金属元素からなる合金の酸化物、窒化物若しくは酸窒化物で構成される第2の膜と、のうち2種類以上の膜が積層された構成を有し、前記吸収膜は、前記第1の金属元素及び前記第2の金属元素の一方又は両方を含有することにより解決される。 According to the optical filter of the present invention, the above-described problem is an optical filter in which a multilayer film that absorbs light is formed on the surface of a substrate, and the multilayer film includes a dielectric film in which a plurality of films are stacked, And an absorption film having a property of absorbing light, which is formed in at least one place between the plurality of films constituting the dielectric film, and the dielectric film includes an oxide of a first metal element, A first film composed of nitride or oxynitride, and an oxide, nitride or oxynitride of a second metal element different from the first metal element, or the first metal element and the A second film composed of an oxide, a nitride or an oxynitride of an alloy composed of a second metal element, and a structure in which two or more kinds of films are laminated; By containing one or both of the first metal element and the second metal element It is determined.
 このように、誘電体膜を構成する金属元素と吸収膜を構成する金属元素とが共通しているため、多層膜を構成する金属元素の種類が少なく、従来の3種類以上の金属元素で構成される光学フィルターと比較して多層膜の構成が簡単となる。また、誘電体膜と吸収膜に含まれる金属元素が同じであるため、誘電体膜と吸収膜の成膜の際の原材料を共通化することができる。 As described above, since the metal element constituting the dielectric film and the metal element constituting the absorption film are common, the number of types of metal elements constituting the multilayer film is small, and it is constituted by three or more conventional metal elements. The structure of the multilayer film is simpler than that of the optical filter. Further, since the metal elements contained in the dielectric film and the absorption film are the same, the raw materials for forming the dielectric film and the absorption film can be shared.
 この場合、前記吸収膜は、前記第1の金属元素及び前記第2の金属元素の一方又は両方からなる金属、又は該金属の不完全酸化物、不完全窒化物若しくは不完全酸窒化物で構成されることが好ましい。 In this case, the absorption film is composed of a metal composed of one or both of the first metal element and the second metal element, or an incomplete oxide, incomplete nitride, or incomplete oxynitride of the metal. It is preferred that
 また、前記金属元素は、炭素、マグネシウム、アルミニウム、ケイ素、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、インジウム、スズ、タンタル、タングステンからなる群より選択される金属元素であることが好ましい。 The metal element is a metal selected from the group consisting of carbon, magnesium, aluminum, silicon, chromium, manganese, iron, cobalt, nickel, zinc, germanium, zirconium, niobium, molybdenum, indium, tin, tantalum, and tungsten. An element is preferable.
 さらに、前記基材は、ガラス、ポリカーボネート、ポリエチレンテレフタレート、ポリメチルメタクリレート、オレフィンポリマーからなる群より選択される1又は2種類以上の材料で形成されていることが好ましい。 Furthermore, the base material is preferably formed of one or more materials selected from the group consisting of glass, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, and olefin polymer.
 上記課題は、本発明の光学フィルターの製造方法によれば、上記いずれかに記載の光学フィルターの製造方法であって、前記第1の金属元素からなる第1のターゲットをスパッタリングして前記基材の表面に前記第1の金属元素の薄膜を形成し、前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記第1の膜を形成する第1の膜形成工程と、前記第2の金属元素からなる第2のターゲット又は前記第1のターゲットと前記第2のターゲットをスパッタリングして前記第1の膜の表面に前記第2の金属元素又は前記第1の金属元素と前記第2の金属元素からなる合金の薄膜を形成し、前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記第2の膜を形成する第2の膜形成工程と、を行い、前記第1の膜形成工程と前記第2の膜形成工程とを繰り返すことで前記誘電体膜を形成する誘電体膜形成工程と、前記第1のターゲット及び前記第2のターゲットの一方又は両方をスパッタリングして前記誘電体膜の表面に薄膜を形成し、必要に応じて前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記吸収膜を形成する吸収膜形成工程と、を備えることにより解決される。 According to the method for manufacturing an optical filter of the present invention, the above object is a method for manufacturing an optical filter according to any one of the above, wherein the substrate is formed by sputtering the first target made of the first metal element. Forming a first film by forming a thin film of the first metal element on the surface of the substrate and performing a plasma treatment with oxygen, nitrogen, or a mixed gas of oxygen and nitrogen on the thin film. And sputtering the second target composed of the second metal element or the first target and the second target to form the second metal element or the first target on the surface of the first film. A second film is formed by forming a thin film of an alloy comprising a metal element and the second metal element, and subjecting the thin film to plasma treatment with oxygen, nitrogen, or a mixed gas of oxygen and nitrogen. A dielectric film forming process for forming the dielectric film by repeating the first film forming process and the second film forming process, and the first target and the first film forming process. Sputtering one or both of the two targets to form a thin film on the surface of the dielectric film, and performing plasma treatment with oxygen, nitrogen, or an oxygen / nitrogen mixed gas on the thin film as necessary, This is solved by providing an absorption film forming step of forming the absorption film.
 このように、誘電体膜を構成する金属元素と吸収膜を構成する金属元素とが共通しているため、多層膜を構成する金属元素の種類が少なく、多層膜の構成が簡単となる。また、誘電体膜と吸収膜に含まれる金属元素が同じであるため、誘電体膜と吸収膜の成膜の際の原材料を共通化することができる。 Thus, since the metal element constituting the dielectric film and the metal element constituting the absorption film are common, the number of types of metal elements constituting the multilayer film is small, and the structure of the multilayer film is simplified. Further, since the metal elements contained in the dielectric film and the absorption film are the same, the raw materials for forming the dielectric film and the absorption film can be shared.
 また、上記課題は、本発明の光学フィルターの製造方法によれば、上記いずれかに記載の光学フィルターの製造方法であって、互いに離間する位置に少なくとも1つずつ設けられた成膜プロセス領域及び反応プロセス領域を内部に備えた真空容器を用い、前記基材を前記成膜プロセス領域内に搬送し、前記第1の金属元素からなる第1のターゲットをスパッタリングして前記基材の表面に前記金属元素の薄膜を形成し、前記薄膜が形成された前記基材を前記反応プロセス領域内に搬送し、前記薄膜に対して前記反応プロセス領域内で酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記第1の膜を形成する工程と、前記基材を前記成膜プロセス領域内に搬送し、前記第2の金属元素からなる第2のターゲット又は前記第1のターゲットと前記第2のターゲットをスパッタリングして前記第1の膜の表面に前記第2の金属元素又は前記第1の金属元素と前記第2の金属元素からなる合金の薄膜を形成し、前記薄膜が形成された前記基材を前記反応プロセス領域内に搬送し、前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記第2の膜を形成する工程と、を行い、前記第1の膜形成工程と前記第2の膜形成工程とを繰り返すことで前記誘電体膜を形成する誘電体膜形成工程と、前記基材を前記成膜プロセス領域内に搬送し、前記第1のターゲット及び前記第2のターゲットの一方又は両方をスパッタリングして前記誘電体膜の表面に薄膜を形成し、前記薄膜が形成された前記基材を前記反応プロセス領域内に搬送し、必要に応じて前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記吸収膜を形成する吸収膜形成工程と、を備えることにより解決される。 In addition, according to the method for manufacturing an optical filter of the present invention, the above-described problem is a method for manufacturing an optical filter according to any one of the above, wherein at least one film formation process region provided at a position spaced apart from each other, and Using a vacuum vessel provided with a reaction process region inside, the substrate is transported into the film formation process region, and a first target made of the first metal element is sputtered onto the surface of the substrate. A thin film of a metal element is formed, the substrate on which the thin film is formed is transported into the reaction process region, and the thin film is plasma-treated with oxygen, nitrogen, or an oxygen / nitrogen mixed gas in the reaction process region. Performing the step of forming the first film, transporting the base material into the film forming process region, and the second target made of the second metal element or the Sputtering one target and the second target to form a thin film of the second metal element or an alloy composed of the first metal element and the second metal element on the surface of the first film, A step of forming the second film by transporting the substrate on which the thin film is formed into the reaction process region, and subjecting the thin film to plasma treatment with oxygen, nitrogen, or a mixed gas of oxygen and nitrogen. A dielectric film forming step of forming the dielectric film by repeating the first film forming step and the second film forming step, and the base material in the film forming process region. A thin film is formed on a surface of the dielectric film by sputtering one or both of the first target and the second target, and the base material on which the thin film is formed is placed in the reaction process region. Transport and required Wherein by performing oxygen plasma treatment with a nitrogen or oxygen-nitrogen mixed gas to the thin film, it is solved by providing an absorption layer formation step of forming the absorbing layer in accordance with the.
 このように、光学フィルターの製造に必要なターゲットの原材料が、誘電体膜を構成する金属元素と吸収膜を構成する金属元素とが共通しているため、従来の3種類以上の金属元素で構成される光学フィルターを製造する場合と比較して多層膜の構成が簡単となる。
 さらに、スパッタリングを行う成膜プロセス領域とプラズマ処理を行う反応プロセス領域が離間しているため、反応プロセス領域内の反応性ガスが成膜プロセス領域内のターゲットと接触しにくい。これにより、ターゲットと反応性ガスが反応することによるターゲットの異常放電が発生しにくい。このため、成膜時に基体の温度を高くする必要がなく、低い温度でかつ成膜レートを高く維持した状態で成膜を行うことができる。したがって、高温で変形しやすい樹脂製の基材に対しても効率よく成膜することができる。
As described above, since the target raw material necessary for manufacturing the optical filter is the same as the metal element constituting the dielectric film and the metal element constituting the absorption film, it is composed of three or more kinds of conventional metal elements. The structure of the multilayer film is simplified as compared with the case of manufacturing an optical filter.
Further, since the film formation process region where sputtering is performed and the reaction process region where plasma treatment is performed are separated from each other, the reactive gas in the reaction process region is unlikely to come into contact with the target in the film formation process region. Thereby, abnormal discharge of the target due to the reaction between the target and the reactive gas is unlikely to occur. For this reason, there is no need to increase the temperature of the substrate during film formation, and film formation can be performed at a low temperature and with a high film formation rate. Accordingly, it is possible to efficiently form a film even on a resin base material that is easily deformed at a high temperature.
 上記課題は、本発明の光学機器によれば、上記いずれかに記載に光学フィルターを備えることにより解決される。 The above-described problem can be solved by providing the optical filter according to any one of the above according to the optical apparatus of the present invention.
 このように、本発明の光学機器は、多層膜の構成が簡単で安価に製造できるとともに製品ロットごとの精度のばらつきが少ない光学フィルターを備えているため、光学機器自体の製造コストも安価となり、また製品ごとのばらつきも少ない。 As described above, the optical device of the present invention has an optical filter with a simple multilayer film structure that can be manufactured at low cost and has little variation in accuracy for each product lot. There is also little variation from product to product.
 本発明の光学フィルター及びその製造方法によれば、誘電体膜を構成する金属元素と吸収膜を構成する金属元素とが共通しているため、多層膜を構成する金属元素の種類が少なく、多層膜の構成が簡単となる。また、誘電体膜と吸収膜に含まれる金属元素が同じであるため、誘電体膜と吸収膜の成膜の際の原材料を共通化することができる。
 したがって、多層膜を形成するための原材料の種類が少なくなるとともに、成膜の際の製造管理が容易であるため、光学フィルターの製造に要するコストを低くすることができる。さらに、多層膜の構成が簡単であるため、製造ロットごとの製品の精度にばらつきが少なく、高精度の光学フィルターを提供することができる。
According to the optical filter and the manufacturing method thereof of the present invention, since the metal element constituting the dielectric film and the metal element constituting the absorption film are common, the number of types of metal elements constituting the multilayer film is small, and the multilayer The structure of the film is simplified. Further, since the metal elements contained in the dielectric film and the absorption film are the same, the raw materials for forming the dielectric film and the absorption film can be shared.
Therefore, the types of raw materials for forming the multilayer film are reduced, and manufacturing management at the time of film formation is easy, so that the cost required for manufacturing the optical filter can be reduced. Furthermore, since the structure of the multilayer film is simple, there is little variation in the product accuracy for each production lot, and a high-precision optical filter can be provided.
 また、本発明の光学機器によれば、このように多層膜の構成が簡単な光学フィルターを備えているため、製品の製造コストが安価であり、ロットごとの精度のばらつきが少なくすることができる。 In addition, according to the optical apparatus of the present invention, the optical filter having a simple multilayer film structure is provided as described above, so that the production cost of the product is low, and variation in accuracy among lots can be reduced. .
光学フィルターの横断面形状を示した模式図である。It is the schematic diagram which showed the cross-sectional shape of the optical filter. 薄膜形成装置の内部を上側から見た状態を示す説明図である。It is explanatory drawing which shows the state which looked at the inside of the thin film forming apparatus from the upper side. 実施例1の光学フィルターの透過率と反射率を示すグラフである。3 is a graph showing the transmittance and reflectance of the optical filter of Example 1. FIG. 実施例2の光学フィルターの透過率を示すグラフである。6 is a graph showing the transmittance of the optical filter of Example 2.
符号の説明Explanation of symbols
1  薄膜形成装置
11  真空容器
11A  薄膜形成室
11B  ロードロック室
11C  扉
12  仕切壁
13  回転ドラム
14  仕切壁
15  真空ポンプ
18  ドラム回転軸
19  仕切壁
20  スパッタリング手段
20A  成膜プロセス領域
21a  マグネトロンスパッタ電極
21b  マグネトロンスパッタ電極
22a  ターゲット
22b  ターゲット
23  交流電源
24  トランス
30  スパッタリングガス供給手段
31  スパッタリングガスボンベ
32  マスフローコントローラ
40  スパッタリング手段
40A  成膜プロセス領域
41a  マグネトロンスパッタ電極
41b  マグネトロンスパッタ電極
42a  ターゲット
42b  ターゲット
43  交流電源
44  トランス
50  スパッタリングガス供給手段
51  スパッタリングガスボンベ
52  マスフローコントローラ
60  プラズマ発生手段
60A  反応プロセス領域
61  ケース体
62  誘電体板
63  アンテナ
64  高周波電源
65  マッチングボックス
70  反応性ガス供給手段
71  反応性ガスボンベ
72  マスフローコントローラ
73  不活性ガスボンベ
74  マスフローコントローラ
P  光学フィルター
S  基材
M  多層膜
F  誘電体膜
F1  第1の膜
F2  第2の膜
A  吸収膜
DESCRIPTION OF SYMBOLS 1 Thin film formation apparatus 11 Vacuum container 11A Thin film formation chamber 11B Load lock chamber 11C Door 12 Partition wall 13 Rotary drum 14 Partition wall 15 Vacuum pump 18 Drum rotating shaft 19 Partition wall 20 Sputtering means 20A Film formation process area 21a Magnetron sputter electrode 21b Magnetron Sputtering electrode 22a Target 22b Target 23 AC power supply 24 Transformer 30 Sputtering gas supply means 31 Sputtering gas cylinder 32 Mass flow controller 40 Sputtering means 40A Film forming process region 41a Magnetron sputtering electrode 41b Magnetron sputtering electrode 42a Target 42b Target 43 AC power supply 44 Transformer 50 Sputtering gas Supply means 51 Sputtering gas cylinder 52 Mass flow Troller 60 Plasma generating means 60A Reaction process area 61 Case body 62 Dielectric plate 63 Antenna 64 High frequency power supply 65 Matching box 70 Reactive gas supply means 71 Reactive gas cylinder 72 Mass flow controller 73 Inactive gas cylinder 74 Mass flow controller P Optical filter S Base material M multilayer film F dielectric film F1 first film F2 second film A absorption film
 以下に、本発明の一実施形態について図面を参照して説明する。なお、以下に説明する部材,配置等は発明を具体化した一例であって本発明を限定するものではなく、本発明の趣旨に沿って各種改変することができることは勿論である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. It should be noted that the members, arrangements, and the like described below are examples embodying the present invention and do not limit the present invention, and it goes without saying that various modifications can be made in accordance with the spirit of the present invention.
 図1は光学フィルターの横断面形状を示した模式図、図2は薄膜形成装置の内部を上側から見た状態を示す説明図である。なお、図1では、発明の理解を容易にするために、薄膜の膜厚を実際の厚さよりも厚く描いてある。 FIG. 1 is a schematic view showing a cross-sectional shape of an optical filter, and FIG. 2 is an explanatory view showing the state of the thin film forming apparatus as viewed from above. In FIG. 1, in order to facilitate understanding of the invention, the thickness of the thin film is drawn thicker than the actual thickness.
 本発明の光学フィルターの具体例としては、長波長カットフィルター、短波長カットフィルター、バンドパスフィルター、NDフィルターなどが挙げられる。以下の例では、光学フィルターの一例であるNDフィルターを挙げて本発明を説明する。 Specific examples of the optical filter of the present invention include a long wavelength cut filter, a short wavelength cut filter, a band pass filter, and an ND filter. In the following examples, the present invention will be described with reference to an ND filter which is an example of an optical filter.
 図1に示すように、本発明の光学フィルターPは、基材Sと、この基材Sの表面に形成された多層膜Mとを備えている。多層膜Mは、複数の膜が積層された構造を有する誘電体膜Fと、誘電体膜Fを構成する複数の膜の間に形成された吸収膜Aとを備えている。 As shown in FIG. 1, the optical filter P of the present invention includes a base material S and a multilayer film M formed on the surface of the base material S. The multilayer film M includes a dielectric film F having a structure in which a plurality of films are stacked, and an absorption film A formed between the plurality of films constituting the dielectric film F.
 基材Sは、光透過性を有する材料で形成され、表面に誘電体膜Fや吸収膜Aが付着する基板となる部材である。本実施形態では基材Sとして円板状のものを用いているが、基材Sの形状としてはこれに限定されず、表面に薄膜を形成できるものであれば、例えばレンズ形状、円筒状、円環状といった他の形状でもよい。 The base material S is a member that is formed of a light-transmitting material and serves as a substrate on which the dielectric film F and the absorption film A are attached. In the present embodiment, a disk-shaped substrate S is used as the substrate S, but the shape of the substrate S is not limited to this, and as long as a thin film can be formed on the surface, for example, a lens shape, a cylindrical shape, Other shapes such as an annular shape may be used.
 基材Sの材料としては、例えば、ガラス、ポリカーボネート、ポリエチレンテレフタレート、ポリメチルメタクリレート、オレフィンポリマーからなる群より選択される材料が挙げられる。また、基材Sの強度を向上させるために、これらの材料にガラス繊維やカーボン繊維、若しくはこれらの混合繊維を混入させてもよい。なお、オレフィンポリマーの具体例としては、透明性に優れ、低複屈折性、高耐熱性などを兼ね備えたシクロオレフィンポリマーが好適であり、具体的には「ZEONEX」(登録商標)、「ZEONOR」(登録商標、いずれも日本ゼオン製)などが好ましい。 Examples of the material of the substrate S include a material selected from the group consisting of glass, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, and olefin polymer. Moreover, in order to improve the intensity | strength of the base material S, you may mix glass fiber, carbon fiber, or these mixed fibers in these materials. As specific examples of the olefin polymer, a cycloolefin polymer having excellent transparency, low birefringence, high heat resistance and the like is preferable. Specifically, “ZEONEX” (registered trademark), “ZEONOR” (Registered trademark, both manufactured by Nippon Zeon Co., Ltd.) are preferred.
 誘電体膜Fは、入射する光を透過する性質を有する膜である。本発明の誘電体膜Fは、複数の膜が積層された構成を有している。
 本実施形態の誘電体膜Fは、互いに異なる材料で形成された第1の膜F1と第2の膜F2とで構成されている。第1の膜F1は、金属元素X(第1の金属元素)の酸化物、窒化物、又は酸窒化物で構成される。
The dielectric film F is a film having a property of transmitting incident light. The dielectric film F of the present invention has a configuration in which a plurality of films are stacked.
The dielectric film F of the present embodiment is composed of a first film F1 and a second film F2 formed of different materials. The first film F1 is made of an oxide, nitride, or oxynitride of the metal element X (first metal element).
 第2の膜F2は、金属元素Xとは異なる金属元素Y(第2の金属元素)の酸化物、窒化物、又は酸窒化物で構成される。あるいは、第2の膜F2は、金属元素Xと金属元素Yからなる合金の酸化物、窒化物、若しくは酸窒化物で構成されてもよい。
 なお、図に示す実施形態では、誘電体膜Fとして2種類の膜のみからなる構造を示しているが、本発明の誘電体膜Fとしては、上述した2種類の膜のみで形成された構成に限定されず、3種類以上の膜で形成されてもよい。例えば、第3の膜F3として、金属元素X,Yとは異なる金属元素Zを原材料とする膜を用いてもよい。
The second film F2 is made of an oxide, nitride, or oxynitride of a metal element Y (second metal element) different from the metal element X. Alternatively, the second film F2 may be made of an oxide, nitride, or oxynitride of an alloy composed of the metal element X and the metal element Y.
In the embodiment shown in the figure, the dielectric film F has a structure composed of only two types of films. However, the dielectric film F of the present invention is formed of only the two types of films described above. However, the film may be formed of three or more kinds of films. For example, as the third film F3, a film using a metal element Z different from the metal elements X and Y as a raw material may be used.
 吸収膜Aは、入射する光の一部を吸収する性質を有する膜である。本実施形態の光学フィルターPはNDフィルターであるため、吸収膜Aは可視領域(400~700nm)における分光透過率がほぼ均一な材料で形成されている。この場合の吸収膜Aの平均透過率としては、一般的には0.01~90.0の範囲内である。 The absorption film A is a film having a property of absorbing a part of incident light. Since the optical filter P of the present embodiment is an ND filter, the absorption film A is formed of a material having a substantially uniform spectral transmittance in the visible region (400 to 700 nm). In this case, the average transmittance of the absorbing film A is generally in the range of 0.01 to 90.0.
 吸収膜Aは、金属元素Xと金属元素Yのいずれか一方又は両方を含有する材料で形成されている。より詳細には、吸収膜Aとしては、金属元素Xと金属元素Yのいずれか一方からなる金属、又はこれら2種類の金属元素X,Yからなる合金が挙げられる。あるいは、吸収膜Aとしては、上述した金属又は合金の不完全酸化物、不完全窒化物、又は不完全酸窒化物で構成されてもよい。 The absorption film A is formed of a material containing one or both of the metal element X and the metal element Y. More specifically, examples of the absorption film A include a metal composed of one of the metal element X and the metal element Y, or an alloy composed of these two kinds of metal elements X and Y. Or as the absorption film A, you may be comprised with the incomplete oxide of the metal or alloy mentioned above, incomplete nitride, or incomplete oxynitride.
 金属元素X,Yの具体例としては、炭素(C)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、ゲルマニウム(Ge)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、インジウム(In)、スズ(Sn)、タンタル(Ta)、タングステン(W)からなる群より選択される元素が挙げられる。 Specific examples of the metal elements X and Y include carbon (C), magnesium (Mg), aluminum (Al), silicon (Si), chromium (Cr), manganese (Mn), iron (Fe), and cobalt (Co). , Nickel (Ni), zinc (Zn), germanium (Ge), zirconium (Zr), niobium (Nb), molybdenum (Mo), indium (In), tin (Sn), tantalum (Ta), tungsten (W) An element selected from the group consisting of
 誘電体膜Fと吸収膜Aは、これらの金属元素の中から光学フィルターPに要求される特性に応じた金属元素を選択して設計される。具体的には、金属元素X、金属元素Y、合金X+Y自体の光学定数や、これらの金属や合金の不完全酸化物、完全酸化物、不完全窒化物、完全窒化物、不完全酸窒化物、並びに完全酸窒化物の光学定数に基づいて、誘電体膜Fと吸収膜Aに要求される光学特性に合致した材料を選択する。そして、選択した材料を用いて、例えばスパッタリングなどの成膜技術により基材Sの表面に誘電体膜Fと吸収膜Aと積層することで、多層膜Mを形成する。 The dielectric film F and the absorption film A are designed by selecting a metal element corresponding to the characteristics required for the optical filter P from these metal elements. Specifically, the optical constants of metal element X, metal element Y, and alloy X + Y itself, and incomplete oxide, complete oxide, incomplete nitride, complete nitride, incomplete oxynitride of these metals and alloys Based on the optical constants of the complete oxynitride, a material that matches the optical characteristics required for the dielectric film F and the absorption film A is selected. Then, using the selected material, the multilayer film M is formed by laminating the dielectric film F and the absorption film A on the surface of the substrate S by a film formation technique such as sputtering.
(光学フィルターPの製造装置)
 次に、光学フィルターPの製造装置について説明する。本発明の光学フィルターPは、以下に説明する成膜プロセス領域と反応プロセス領域が分離された薄膜形成装置を用いて製造することが好ましい。
(Optical filter P manufacturing equipment)
Next, an apparatus for manufacturing the optical filter P will be described. The optical filter P of the present invention is preferably manufactured using a thin film forming apparatus in which a film forming process region and a reaction process region described below are separated.
 この薄膜形成装置では、スパッタリングを行う成膜プロセス領域と反応性ガスによる処理を行う反応プロセス領域とが分離しているため、成膜プロセス領域内には窒素ガスや酸素ガスなどの反応性ガスが導入されないようになっている。このため、ターゲットの表面の金属が反応性ガスと反応することがなく、高周波電圧を印加する際に生じるターゲットの異常放電を抑制することができる。従来では、異常放電を抑制しつつ成膜を行うため基材Sの温度を高くしていたが、この薄膜形成装置では基材Sの温度を高くする必要がないため、低い温度でかつ成膜レートを高く維持した状態で成膜を行うことができる。 In this thin film forming apparatus, since the film formation process region for sputtering and the reaction process region for processing with a reactive gas are separated, a reactive gas such as nitrogen gas or oxygen gas is present in the film formation process region. It is not introduced. For this reason, the metal on the surface of the target does not react with the reactive gas, and abnormal discharge of the target that occurs when a high-frequency voltage is applied can be suppressed. Conventionally, the temperature of the base material S is increased in order to perform film formation while suppressing abnormal discharge. However, in this thin film forming apparatus, it is not necessary to increase the temperature of the base material S. Film formation can be performed while maintaining a high rate.
 本実施形態では、薄膜形成装置としてスパッタの一例であるマグネトロンスパッタを行う薄膜形成装置を用いているが、本発明の薄膜形成装置としては、このようなマグネトロンスパッタに限定されず、マグネトロン放電を用いない2極スパッタ等の他の公知のスパッタを行う薄膜形成装置を用いることもできる。 In this embodiment, a thin film forming apparatus that performs magnetron sputtering, which is an example of sputtering, is used as the thin film forming apparatus. However, the thin film forming apparatus of the present invention is not limited to such a magnetron sputtering, and uses a magnetron discharge. It is also possible to use another known thin film forming apparatus that performs sputtering such as bipolar sputtering.
 本実施形態の薄膜形成装置では、目的の膜厚よりも薄い薄膜を基材Sの表面に付着するスパッタリング処理工程と、この薄膜に対して酸化などの処理を行って薄膜の組成を変換するプラズマ処理工程とにより基材Sの表面に中間薄膜を形成し、このスパッタリング処理とプラズマ処理を複数回繰り返すことで、中間薄膜を複数積層して目的の膜厚を有する最終薄膜を基材Sの表面に形成している。 In the thin film forming apparatus of the present embodiment, a sputtering process for depositing a thin film thinner than the target film thickness on the surface of the substrate S, and plasma for converting the composition of the thin film by performing a treatment such as oxidation on the thin film An intermediate thin film is formed on the surface of the substrate S by the treatment step, and the final thin film having a desired film thickness is obtained by laminating a plurality of intermediate thin films by repeating this sputtering treatment and plasma treatment a plurality of times. Is formed.
 具体的には、スパッタリング処理とプラズマ処理によって組成変換後における膜厚の平均値が0.01~1.5nm程度の中間薄膜を基材Sの表面に形成する工程を、回転ドラムの回転毎に繰り返すことにより、目的とする数nm~数百nm程度の膜厚を有する最終薄膜を形成している。 Specifically, the step of forming an intermediate thin film having an average film thickness of about 0.01 to 1.5 nm after composition conversion on the surface of the substrate S by sputtering treatment and plasma treatment is performed each time the rotary drum rotates. By repeating, a final thin film having a target film thickness of several nm to several hundred nm is formed.
 以下、薄膜形成装置について説明する。
 図2に示すように、本実施形態の薄膜形成装置1は、真空容器11と、回転ドラム13と、スパッタリング手段20(第1スパッタリング手段)と、スパッタリングガス供給手段30(第1スパッタリングガス供給手段)と、スパッタリング手段40(第2スパッタリング手段)と、スパッタリングガス供給手段50(第2スパッタリングガス供給手段)と、プラズマ発生手段60と、反応性ガス供給手段70と、を主要な構成要素としている。
 なお、図中では、スパッタリング手段20、スパッタリング手段40、プラズマ発生手段60を破線で、スパッタリングガス供給手段30、スパッタリングガス供給手段50、反応性ガス供給手段70を一点鎖線で表示している。
Hereinafter, the thin film forming apparatus will be described.
As shown in FIG. 2, the thin film forming apparatus 1 of this embodiment includes a vacuum vessel 11, a rotating drum 13, a sputtering means 20 (first sputtering means), and a sputtering gas supply means 30 (first sputtering gas supply means). ), Sputtering means 40 (second sputtering means), sputtering gas supply means 50 (second sputtering gas supply means), plasma generation means 60, and reactive gas supply means 70 are the main components. .
In the figure, the sputtering means 20, the sputtering means 40, and the plasma generation means 60 are indicated by broken lines, and the sputtering gas supply means 30, the sputtering gas supply means 50, and the reactive gas supply means 70 are indicated by alternate long and short dash lines.
 真空容器11は、公知の薄膜形成装置で通常用いられるようなステンレススチール製で、ほぼ直方体形状をした中空体である。真空容器11の内部は、開閉可能な扉11Cによって薄膜形成室11Aとロードロック室11Bに分けられる。 The vacuum vessel 11 is a hollow body made of stainless steel, which is usually used in a known thin film forming apparatus, and has a substantially rectangular parallelepiped shape. The inside of the vacuum vessel 11 is divided into a thin film forming chamber 11A and a load lock chamber 11B by an openable / closable door 11C.
 回転ドラム13は、基材Sを保持するための筒状の部材であり、基体保持手段としての機能を有する。回転ドラム13にはドラム回転軸18が設けられており、このドラム回転軸18は図示しないモータの出力軸に対して同軸状に接続されている。 The rotary drum 13 is a cylindrical member for holding the base material S, and has a function as a substrate holding means. The rotating drum 13 is provided with a drum rotating shaft 18 that is coaxially connected to an output shaft of a motor (not shown).
 真空容器11の内壁には、回転ドラム13へ向けて仕切壁12,14,19が立設されている。本実施形態の仕切壁12,14,19は、いずれも真空容器11と同じステンレススチール製の部材である。これらの仕切壁12,14,19は、いずれも上下左右に一つずつ配設された平板部材により構成されており、真空容器11の内壁面から回転ドラム13に向けて垂直に突出して回転ドラム13の外周面を四方から囲んだ状態となっている。 On the inner wall of the vacuum vessel 11, partition walls 12, 14 and 19 are erected toward the rotary drum 13. The partition walls 12, 14, and 19 of the present embodiment are all the same stainless steel members as the vacuum vessel 11. These partition walls 12, 14, 19 are each composed of a flat plate member arranged one by one on the top, bottom, left, and right, and project vertically from the inner wall surface of the vacuum vessel 11 toward the rotary drum 13. The outer peripheral surface of 13 is surrounded from four sides.
 真空容器11の側壁には、ドラム回転軸18を挟んで対向する2箇所において外方に突出した横断面凸状の突出壁面が形成されており、それぞれの突出壁面にはスパッタリング手段20とスパッタリング手段40とが設けられている。成膜プロセス領域20Aは、真空容器11の内壁面、仕切壁12、回転ドラム13の外周面、スパッタリング手段20により囲繞された領域に形成されている。また、成膜プロセス領域40Aは、真空容器11の内壁面、仕切壁14、回転ドラム13の外周面、スパッタリング手段40により囲繞された領域に形成されている。これら成膜プロセス領域20A,40Aでは、基材Sの表面に膜原料物質を付着させるスパッタリング処理が行われる。 On the side wall of the vacuum vessel 11, projecting wall surfaces having a convex cross section projecting outward at two locations facing each other across the drum rotating shaft 18 are formed. Sputtering means 20 and sputtering means are respectively formed on the projecting wall surfaces. 40 is provided. The film forming process area 20 </ b> A is formed in an area surrounded by the inner wall surface of the vacuum vessel 11, the partition wall 12, the outer peripheral surface of the rotary drum 13, and the sputtering means 20. The film formation process area 40 </ b> A is formed in an area surrounded by the inner wall surface of the vacuum vessel 11, the partition wall 14, the outer peripheral surface of the rotary drum 13, and the sputtering means 40. In these film forming process regions 20A and 40A, a sputtering process for attaching a film raw material to the surface of the substrate S is performed.
 また、成膜プロセス領域20Aと成膜プロセス領域40Aの両方からドラム回転軸18を中心として約90°離間した真空容器11の側壁にも、外方に突出した横断面凸状の突出壁面が形成されており、この突出壁面にはプラズマ発生手段60が設けられている。反応プロセス領域60Aは、真空容器11の内壁面、仕切壁19、回転ドラム13の外周面、プラズマ発生手段60により囲繞された領域に形成されている。この反応プロセス領域60Aでは、基材Sの表面に付着した膜原料物質に対してプラズマ処理が行われる。 Further, a projecting wall surface having a convex cross section projecting outward is also formed on the side wall of the vacuum vessel 11 which is separated from both the film forming process region 20A and the film forming process region 40A by about 90 ° about the drum rotation shaft 18. The plasma generating means 60 is provided on the protruding wall surface. The reaction process region 60 </ b> A is formed in a region surrounded by the inner wall surface of the vacuum vessel 11, the partition wall 19, the outer peripheral surface of the rotary drum 13, and the plasma generating means 60. In the reaction process region 60A, the plasma processing is performed on the film raw material adhering to the surface of the substrate S.
 (成膜プロセス領域20A)
 以下に、成膜プロセス領域20Aについて説明する。
 成膜プロセス領域20Aにはスパッタリング手段20が設置されている。スパッタリング手段20は、一対のマグネトロンスパッタ電極21a,21bと、これらマグネトロンスパッタ電極21a,21bにそれぞれ保持されるターゲット22a,22bと、マグネトロンスパッタ電極21a,21bに電力を供給する交流電源23と、マグネトロンスパッタ電極21a,21bに供給される電力量を調整する電力制御手段としてのトランス24と、により構成される。
(Deposition process area 20A)
Hereinafter, the film forming process region 20A will be described.
Sputtering means 20 is installed in the film forming process region 20A. The sputtering means 20 includes a pair of magnetron sputter electrodes 21a and 21b, targets 22a and 22b held by the magnetron sputter electrodes 21a and 21b, an AC power source 23 that supplies power to the magnetron sputter electrodes 21a and 21b, and a magnetron. And a transformer 24 as power control means for adjusting the amount of power supplied to the sputter electrodes 21a and 21b.
 真空容器11の壁面は外方に突出しており、この突出部の内壁にマグネトロンスパッタ電極21a,21bが側壁を貫通した状態で配設されている。このマグネトロンスパッタ電極21a,21bは、接地電位にある真空容器11に不図示の絶縁部材を介して固定されている。 The wall surface of the vacuum vessel 11 protrudes outward, and magnetron sputter electrodes 21a and 21b are disposed on the inner wall of the protruding portion so as to penetrate the side wall. The magnetron sputter electrodes 21a and 21b are fixed to the vacuum vessel 11 at the ground potential via an insulating member (not shown).
 マグネトロンスパッタ電極21a,21bは、複数の磁石が所定の方向に配置された構造を有している。マグネトロンスパッタ電極21a,21bは、トランス24を介して交流電源23に接続され、両電極に1k~100kHzの交番電界が印加できるように構成されている。 The magnetron sputter electrodes 21a and 21b have a structure in which a plurality of magnets are arranged in a predetermined direction. The magnetron sputter electrodes 21a and 21b are connected to an AC power source 23 via a transformer 24, and are configured so that an alternating electric field of 1 to 100 kHz can be applied to both electrodes.
 ターゲット22a,22bは、膜原料物質を平板状に形成したものであり、後述するように回転ドラム13の側面に対向するようにマグネトロンスパッタ電極21a,21bにそれぞれ着脱可能に保持される。ターゲット22a,22bの材質は、誘電体膜Fや吸収膜Aに要求される光学特性に応じて適宜選択する。 The targets 22a and 22b are formed by forming a film raw material into a flat plate shape, and are detachably held by the magnetron sputtering electrodes 21a and 21b so as to face the side surfaces of the rotating drum 13 as described later. The materials of the targets 22a and 22b are appropriately selected according to the optical characteristics required for the dielectric film F and the absorption film A.
 成膜プロセス領域20Aの外部にはアルゴン等のスパッタリングガスを供給するスパッタリングガス供給手段30が設けられている。スパッタリングガス供給手段30は、スパッタリングガス貯蔵手段としてのスパッタリングガスボンベ31と、スパッタリングガスの流量を調整するスパッタリングガス流量調整手段としてのマスフローコントローラ32と、を主要な構成要素として具備している。スパッタリングガスとしては、例えばアルゴンやヘリウム等の不活性ガスが挙げられる。 A sputtering gas supply means 30 for supplying a sputtering gas such as argon is provided outside the film forming process region 20A. The sputtering gas supply means 30 includes a sputtering gas cylinder 31 as a sputtering gas storage means and a mass flow controller 32 as a sputtering gas flow rate adjusting means for adjusting the flow rate of the sputtering gas as main components. Examples of the sputtering gas include inert gases such as argon and helium.
 マスフローコントローラ32はガスの流量を調節する装置である。スパッタリングガスボンベ31からのスパッタリングガスは、マスフローコントローラ32により流量を調節されて成膜プロセス領域20A内に導入される。 The mass flow controller 32 is a device that adjusts the gas flow rate. The sputtering gas from the sputtering gas cylinder 31 is introduced into the film forming process region 20A with the flow rate adjusted by the mass flow controller 32.
 成膜プロセス領域20Aにスパッタリングガス供給手段30からスパッタリングガスが供給されると、ターゲット22a,22bの周辺が不活性ガス雰囲気になる。この状態で、マグネトロンスパッタ電極21a,21bに交流電源23から交番電極が印加されると、ターゲット22a,22b周辺のスパッタリングガスの一部は電子を放出してイオン化する。 When the sputtering gas is supplied from the sputtering gas supply means 30 to the film forming process region 20A, the periphery of the targets 22a and 22b becomes an inert gas atmosphere. In this state, when an alternating electrode is applied from the AC power source 23 to the magnetron sputtering electrodes 21a and 21b, a part of the sputtering gas around the targets 22a and 22b emits electrons and is ionized.
 マグネトロンスパッタ電極21a,21bに配置された磁石によりターゲット22a,22bの表面に漏洩磁界が形成されるため、この電子はターゲット22a,22bの表面近傍に発生した磁界中を、トロイダル曲線を描きながら周回する。この電子の軌道に沿って強いプラズマが発生し、このプラズマに向けてスパッタリングガスのイオンが加速され、ターゲット22a,22bに衝突することでターゲット22a,22bの表面の原子や粒子(ターゲット22a,22bがケイ素の場合はケイ素原子やケイ素粒子)が叩き出される。この原子や粒子は薄膜の原料である膜原料物質であり、基材Sの表面に付着して薄膜を形成する。 Since a magnetic field is generated on the surfaces of the targets 22a and 22b by the magnets arranged on the magnetron sputter electrodes 21a and 21b, the electrons circulate in a magnetic field generated near the surfaces of the targets 22a and 22b while drawing a toroidal curve. To do. A strong plasma is generated along the electron trajectory, and ions of the sputtering gas are accelerated toward the plasma and collide with the targets 22a and 22b, whereby atoms and particles ( targets 22a and 22b on the surfaces of the targets 22a and 22b). When silicon is silicon, silicon atoms and silicon particles) are knocked out. These atoms and particles are film raw material that is a raw material for the thin film, and adhere to the surface of the substrate S to form a thin film.
 (成膜プロセス領域40A)
 以下に、成膜プロセス領域40Aについて説明する。
 成膜プロセス領域40Aにはスパッタリング手段40が設置されている。スパッタリング手段40は、スパッタリング手段20と同様に、一対のマグネトロンスパッタ電極41a,41bと、これらマグネトロンスパッタ電極41a,41bにそれぞれ保持されるターゲット42a,42bと、マグネトロンスパッタ電極41a,41bに電力を供給する交流電源43と、マグネトロンスパッタ電極41a,41bに供給される電力量を調整する電力制御手段としてのトランス44と、により構成される。マグネトロンスパッタ電極41a,41b、交流電源43、トランス44は、それぞれマグネトロンスパッタ電極21a,21b、交流電源23、トランス24と同様であるため、詳細な説明は省略する。
(Deposition process area 40A)
Hereinafter, the film forming process area 40A will be described.
Sputtering means 40 is installed in the film forming process area 40A. As with the sputtering means 20, the sputtering means 40 supplies power to the pair of magnetron sputtering electrodes 41a and 41b, the targets 42a and 42b held by the magnetron sputtering electrodes 41a and 41b, and the magnetron sputtering electrodes 41a and 41b, respectively. AC power supply 43 that performs the above and a transformer 44 that serves as a power control means for adjusting the amount of power supplied to the magnetron sputtering electrodes 41a and 41b. Since the magnetron sputter electrodes 41a and 41b, the AC power supply 43, and the transformer 44 are the same as the magnetron sputter electrodes 21a and 21b, the AC power supply 23, and the transformer 24, respectively, detailed description thereof is omitted.
 ターゲット42a,42bは、ターゲット22a,22bとは異なる金属元素の材料で形成される。ターゲット22a,22bとターゲット42a,42bの金属元素は、製造する光学フィルターPの誘電体膜Fと吸収膜Aに要求される特性に応じて適宜選択する。例えば、誘電体膜Fのうち第1の膜F1が酸化ケイ素(SiO)、第2の膜F2が五酸化ニオブ(Nb)、吸収膜Aが金属ニオブ(金属Nb)の場合、ターゲット22a,22bに金属ケイ素(Si)、ターゲット42a,42bに金属ニオブ(Nb)を用いる。 The targets 42a and 42b are formed of a metal element material different from the targets 22a and 22b. The metal elements of the targets 22a and 22b and the targets 42a and 42b are appropriately selected according to the characteristics required for the dielectric film F and the absorption film A of the optical filter P to be manufactured. For example, when the first film F1 of the dielectric film F is silicon oxide (SiO 2 ), the second film F2 is niobium pentoxide (Nb 2 O 5 ), and the absorption film A is metal niobium (metal Nb), Metallic silicon (Si) is used for the targets 22a and 22b, and metallic niobium (Nb) is used for the targets 42a and 42b.
 成膜プロセス領域40Aの外部にはアルゴン等のスパッタリングガスを供給するスパッタリングガス供給手段50が設けられている。スパッタリングガス供給手段50は、スパッタリングガス貯蔵手段としてのスパッタリングガスボンベ51と、スパッタリングガスの流量を調整するスパッタリングガス流量調整手段としてのマスフローコントローラ52と、を主要な構成要素として具備している。スパッタリングガスボンベ51とマスフローコントローラ52は、それぞれスパッタリングガスボンベ31とマスフローコントローラ32と同様の構成であるため、詳細な説明は省略する。 A sputtering gas supply means 50 for supplying a sputtering gas such as argon is provided outside the film forming process region 40A. The sputtering gas supply means 50 includes a sputtering gas cylinder 51 as a sputtering gas storage means and a mass flow controller 52 as a sputtering gas flow rate adjusting means for adjusting the flow rate of the sputtering gas as main components. The sputtering gas cylinder 51 and the mass flow controller 52 have the same configuration as the sputtering gas cylinder 31 and the mass flow controller 32, respectively, and thus detailed description thereof is omitted.
 (反応プロセス領域60A)
 続いて、反応プロセス領域60Aについて説明する。上述したように、反応プロセス領域60Aでは、成膜プロセス領域20Aで基材Sの表面に付着した膜原料物質をプラズマ処理し、膜原料物質の完全反応物や不完全反応物の形成を行う。
(Reaction process area 60A)
Subsequently, the reaction process region 60A will be described. As described above, in the reaction process region 60A, the film raw material adhered to the surface of the substrate S in the film formation process region 20A is subjected to plasma treatment to form a complete reaction product or an incomplete reaction product of the film raw material.
 プラズマ発生手段60は、反応プロセス領域60Aに面して設けられている。本実施形態のプラズマ発生手段60は、ケース体61と、誘電体板62と、アンテナ63と、高周波電源64と、マッチングボックス65と、を有している。 The plasma generating means 60 is provided facing the reaction process region 60A. The plasma generating means 60 of this embodiment includes a case body 61, a dielectric plate 62, an antenna 63, a high frequency power supply 64, and a matching box 65.
 ケース体61は、真空容器11の壁面に形成された開口を塞ぐように固定されたステンレス製の板状部材である。ケース体61が真空容器11の壁面に固定されることで、プラズマ発生手段60は真空容器11の壁面に取り付けられている。 The case body 61 is a plate member made of stainless steel fixed so as to close the opening formed in the wall surface of the vacuum vessel 11. By fixing the case body 61 to the wall surface of the vacuum vessel 11, the plasma generating means 60 is attached to the wall surface of the vacuum vessel 11.
 誘電体板62は、ケース体61に固定された板状の誘電体部材である。本実施形態の誘電体板62は石英で形成されているが、Al等のセラミックス材料で形成されたものでもよい。誘電体板62がケース体61に固定されることで、ケース体61と誘電体板62によって囲まれた領域にアンテナ収容室が形成される。 The dielectric plate 62 is a plate-like dielectric member fixed to the case body 61. The dielectric plate 62 of this embodiment is made of quartz, but may be made of a ceramic material such as Al 2 O 3 . By fixing the dielectric plate 62 to the case body 61, an antenna accommodating chamber is formed in a region surrounded by the case body 61 and the dielectric plate 62.
 誘電体板62は、反応プロセス領域60Aに向けて設置されている。このとき、アンテナ収容室は、真空容器11の内部と分離している。すなわち、アンテナ収容室と真空容器11の内部は、誘電体板62で仕切られた状態で独立した空間を形成している。また、アンテナ収容室と真空容器11の外部は、ケース体61で仕切られた状態で独立の空間を形成している。
 アンテナ収容室は、配管を介して真空ポンプ15に連通しており、真空ポンプ15で真空引きすることで内部を排気して真空状態にすることができる。
The dielectric plate 62 is installed toward the reaction process region 60A. At this time, the antenna accommodation chamber is separated from the inside of the vacuum vessel 11. In other words, the antenna accommodating chamber and the inside of the vacuum vessel 11 form an independent space in a state of being partitioned by the dielectric plate 62. Further, the antenna housing chamber and the outside of the vacuum vessel 11 form an independent space in a state of being partitioned by the case body 61.
The antenna accommodating chamber communicates with the vacuum pump 15 through a pipe, and the inside of the antenna accommodating chamber can be evacuated by being evacuated by the vacuum pump 15 to be in a vacuum state.
 アンテナ63は、高周波電源64から電力の供給を受けて反応プロセス領域60Aの内部に誘導電界を発生させ、反応プロセス領域60Aにプラズマを発生させる。本実施形態では、高周波電源64からアンテナ63に周波数1~27MHzの交流電圧を印加して、反応プロセス領域60Aに反応性ガスのプラズマを発生させている。 The antenna 63 is supplied with electric power from the high-frequency power supply 64 to generate an induction electric field in the reaction process region 60A and generate plasma in the reaction process region 60A. In the present embodiment, an AC voltage having a frequency of 1 to 27 MHz is applied from the high frequency power source 64 to the antenna 63 to generate reactive gas plasma in the reaction process region 60A.
 アンテナ63は、マッチング回路を収容するマッチングボックス65を介して高周波電源64に接続されている。マッチングボックス65内には、図示しない可変コンデンサが設けられており、高周波電源64からアンテナ63に供給される電力を変更できるようになっている。 The antenna 63 is connected to a high frequency power supply 64 through a matching box 65 that accommodates a matching circuit. A variable capacitor (not shown) is provided in the matching box 65 so that the power supplied from the high frequency power supply 64 to the antenna 63 can be changed.
 反応プロセス領域60Aの外部には反応性ガス供給手段70が設けられている。反応性ガス供給手段70は、反応性ガスを貯蔵する反応性ガスボンベ71と、反応性ガスボンベ71より供給される反応性ガスの流量を調整するマスフローコントローラ72と、不活性ガスを貯蔵する不活性ガスボンベ73と、不活性ガスボンベ73より供給される不活性ガスの流量を調整するマスフローコントローラ74と、を主要な構成要素として具備している。 Reactive gas supply means 70 is provided outside the reaction process region 60A. The reactive gas supply means 70 includes a reactive gas cylinder 71 that stores the reactive gas, a mass flow controller 72 that adjusts the flow rate of the reactive gas supplied from the reactive gas cylinder 71, and an inert gas cylinder that stores the inert gas. 73 and a mass flow controller 74 for adjusting the flow rate of the inert gas supplied from the inert gas cylinder 73 as main components.
 なお、反応性ガスボンベ71と不活性ガスボンベ73は、成膜プロセス領域20Aのスパッタリングガスボンベ31と同様の装置を採用することができる。また、マスフローコントローラ72とマスフローコントローラ74は、成膜プロセス領域20Aのマスフローコントローラ32と同様の装置を採用することができる。 The reactive gas cylinder 71 and the inert gas cylinder 73 can employ the same apparatus as the sputtering gas cylinder 31 in the film forming process region 20A. The mass flow controller 72 and the mass flow controller 74 can employ the same apparatus as the mass flow controller 32 in the film forming process region 20A.
 反応性ガスボンベ71から配管を通じて反応性ガスや不活性ガスが反応プロセス領域60Aに導入された状態で、アンテナ63に高周波電源64から電力が供給されると、反応プロセス領域60A内のアンテナ63に面した領域にプラズマが発生する。これにより、基材Sの表面に形成された膜原料物質が反応性ガスによりプラズマ処理される。 When power is supplied from the high frequency power supply 64 to the antenna 63 in a state where the reactive gas or the inert gas is introduced from the reactive gas cylinder 71 into the reaction process region 60A through the pipe, the antenna 63 in the reaction process region 60A is faced. Plasma is generated in the region. As a result, the film raw material formed on the surface of the substrate S is plasma-treated with the reactive gas.
 本実施形態の薄膜形成装置1は、このようにスパッタによる膜原料物質の供給を行う成膜プロセス領域20Aと、膜原料物質と反応性ガスの反応を行う反応プロセス領域60Aが真空容器11内の離間した位置に分離した状態で形成されているため、従来の一般的な反応性スパッタリング装置を用いた場合のように、ターゲット22a,22bと反応性ガスが反応して異常放電が起こるといった不都合が生じにくい。このため、反応プロセス領域60A内の反応性ガスの供給量を多くしたり、プラズマの発生密度を上昇させたりして、膜原料物質と反応性ガスの反応を促進させることができる。 In the thin film forming apparatus 1 of the present embodiment, the film forming process region 20A for supplying the film raw material by sputtering and the reaction process region 60A for reacting the film raw material and the reactive gas in the vacuum container 11 are thus provided. Since it is formed in a separated state at a separated position, there is a disadvantage that abnormal discharge occurs due to the reaction between the targets 22a and 22b and the reactive gas as in the case of using a conventional general reactive sputtering apparatus. Hard to occur. Therefore, the reaction between the film raw material and the reactive gas can be promoted by increasing the supply amount of the reactive gas in the reaction process region 60A or increasing the plasma generation density.
 したがって、従来のように基材Sの温度を上昇させて反応性を向上させる必要が無く、低い温度で十分に反応を行うことが可能となる。これにより、例えば耐熱性の低いプラスチック樹脂から形成された基材Sなどに対しても、十分に反応を行うことが可能となり、膜質のよい光学フィルターPを製造することができる。 Therefore, there is no need to improve the reactivity by increasing the temperature of the substrate S as in the prior art, and it is possible to perform the reaction sufficiently at a low temperature. Thereby, for example, it becomes possible to sufficiently react even with the base material S formed from a plastic resin having low heat resistance, and the optical filter P with good film quality can be manufactured.
(光学フィルターPの製造方法)
 次に、この薄膜形成装置1を用いて、樹脂製の基材Sに誘電体膜Fと吸収膜Aとが形成された多層膜Mを形成する場合について説明する。以下の例では、誘電体膜Fのうち第1の膜F1として酸化ケイ素(SiO)、第2の膜F2として五酸化ニオブ(Nb)を成膜し、吸収膜Aとして金属ニオブ(金属Nb)を成膜している。
(Method for manufacturing optical filter P)
Next, the case where the multilayer film M in which the dielectric film F and the absorption film A are formed on the resin base material S is formed using the thin film forming apparatus 1 will be described. In the following example, silicon oxide (SiO 2 ) is formed as the first film F 1 of the dielectric film F, niobium pentoxide (Nb 2 O 5 ) is formed as the second film F 2, and metal niobium as the absorption film A (Metal Nb) is formed.
 まず、回転ドラム13に基材Sをセットし、真空容器11内に収容する。そして、真空容器11内を密閉した状態で、真空ポンプ15を用いて真空容器11内を10-1~10-5Pa程度の高真空状態にする。ターゲット22a,22bの材料として金属ケイ素、ターゲット42a,42bの材料として金属ニオブを用いる。 First, the base material S is set on the rotary drum 13 and accommodated in the vacuum container 11. Then, with the inside of the vacuum vessel 11 sealed, the inside of the vacuum vessel 11 is brought to a high vacuum state of about 10 −1 to 10 −5 Pa using the vacuum pump 15. Metallic silicon is used as the material for the targets 22a and 22b, and metallic niobium is used as the material for the targets 42a and 42b.
 続いて、基材Sの表面に誘電体膜Fを形成する。まず、回転ドラム13を回転して基材Sを成膜プロセス領域20A内に移動させ(基体搬送工程)、成膜プロセス領域20Aでターゲット22a,22bをスパッタリングして基材Sの表面に金属ケイ素からなる薄膜を形成する(スパッタリング工程)。次に、回転ドラム13を回転して、基材Sを反応プロセス領域60Aに搬送する(基体搬送工程)。この搬送より前に、反応プロセス領域60Aには予め反応性ガスが導入されている。そして、反応プロセス領域60Aの内部で反応性ガスのプラズマを発生させて薄膜の金属と反応させ、金属ケイ素を酸化ケイ素に変換する(プラズマ処理工程)。
 そして、回転ドラム13を回転して上述したスパッタリング工程とプラズマ処理工程とを複数回繰り返し行い、所定の膜厚となるまで成膜を継続することで第1の膜F1を形成する(第1の膜形成工程)。
Subsequently, a dielectric film F is formed on the surface of the substrate S. First, the rotating drum 13 is rotated to move the substrate S into the film forming process region 20A (substrate transporting step), and the targets 22a and 22b are sputtered in the film forming process region 20A to form metal silicon on the surface of the substrate S. A thin film is formed (sputtering step). Next, the rotating drum 13 is rotated to transport the substrate S to the reaction process region 60A (substrate transporting process). Prior to this transfer, a reactive gas is introduced into the reaction process region 60A in advance. Then, a reactive gas plasma is generated inside the reaction process region 60A to react with the metal of the thin film, thereby converting the metal silicon into silicon oxide (plasma treatment step).
Then, the first drum F1 is formed by rotating the rotating drum 13 and repeating the above-described sputtering step and plasma treatment step a plurality of times, and continuing the film formation until a predetermined film thickness is obtained (the first film F1). Film formation step).
 次に、第1の膜F1の表面に第2の膜F2を形成する。まず、成膜プロセス領域40A内に基材Sを搬送し、ターゲット42a,42bをスパッタリングすることで第1の膜F1の表面に金属ニオブからなる薄膜を形成する(スパッタリング工程)。回転ドラム13の回転により基材Sは反応プロセス領域60Aに搬送される。反応プロセス領域60Aの内部で反応性ガスのプラズマを発生させて薄膜の金属と反応させ、金属ニオブを五酸化ニオブに変換する(プラズマ処理工程)。
 そして、回転ドラム13を回転して上述したスパッタリング工程とプラズマ処理工程とを複数回繰り返し行い、所定の膜厚となるまで成膜を継続することで第2の膜F2を形成する(第2の膜形成工程)。
 さらに、所望の膜数となるまで上述した第1の膜形成工程と第2の膜形成工程とを繰り返して行い、誘電体膜Fの一部を形成する(誘電体膜形成工程)。
Next, the second film F2 is formed on the surface of the first film F1. First, the substrate S is transported into the film forming process region 40A, and the targets 42a and 42b are sputtered to form a thin film made of metallic niobium on the surface of the first film F1 (sputtering step). The substrate S is transported to the reaction process region 60A by the rotation of the rotary drum 13. A reactive gas plasma is generated inside the reaction process region 60A to react with the metal of the thin film to convert the metal niobium into niobium pentoxide (plasma processing step).
Then, by rotating the rotating drum 13, the above-described sputtering process and plasma treatment process are repeated a plurality of times, and the second film F2 is formed by continuing the film formation until a predetermined film thickness is obtained (second film). Film formation step).
Further, the first film formation process and the second film formation process described above are repeated until a desired number of films are obtained, thereby forming a part of the dielectric film F (dielectric film formation process).
 次に、誘電体膜Fの表面に吸収膜Aを形成する。まず、成膜プロセス領域40A内に基材Sを搬送し、ターゲット42a,42bをスパッタリングすることで誘電体膜Fの表面に金属ニオブからなる薄膜を形成する(スパッタリング工程)。そして、回転ドラム13を回転して上述したスパッタリング工程を複数回繰り返し、所定の膜厚となるまで成膜を継続し、吸収膜Aを形成する(吸収膜形成工程)。 Next, an absorption film A is formed on the surface of the dielectric film F. First, the base material S is transported into the film forming process region 40A, and the targets 42a and 42b are sputtered to form a thin film made of metal niobium on the surface of the dielectric film F (sputtering step). Then, the rotating drum 13 is rotated and the above-described sputtering process is repeated a plurality of times, and the film formation is continued until a predetermined film thickness is obtained, thereby forming the absorption film A (absorption film formation process).
 さらに、吸収膜Aが形成された基材Sに誘電体膜形成工程を再度繰り返し行い、吸収膜Aの表面に誘電体膜Fを形成する。これにより、最終的に所望の光学特性を有する多層膜Mが形成される。成膜完了後は、回転ドラム13の回転やガスの供給を停止し、回転ドラム13をロードロック室11Bに搬送する。その後、ロードロック室11Bを大気に開放し、回転ドラム13から基材Sを取り外す。 Further, the dielectric film forming process is repeated again on the base material S on which the absorption film A is formed, and the dielectric film F is formed on the surface of the absorption film A. Thereby, the multilayer film M having the desired optical characteristics is finally formed. After the film formation is completed, the rotation of the rotating drum 13 and the gas supply are stopped, and the rotating drum 13 is transferred to the load lock chamber 11B. Thereafter, the load lock chamber 11 </ b> B is opened to the atmosphere, and the substrate S is removed from the rotating drum 13.
 このように、本実施形態の薄膜形成装置1は、異なる材料からなる膜原料物質を付着させる成膜プロセス領域20Aと成膜プロセス領域40Aを備えているため、誘電体膜Fや吸収膜Aが異なる金属材料を積層したものであっても、真空容器11の真空状態を解除してターゲットを交換する必要がない。このため、光学フィルターPの製造に要するタクトタイムの短縮を図ることが可能となる。 As described above, the thin film forming apparatus 1 according to the present embodiment includes the film forming process region 20A and the film forming process region 40A to which film raw material materials made of different materials are attached. Even if different metal materials are laminated, it is not necessary to release the vacuum state of the vacuum vessel 11 and replace the target. For this reason, it is possible to shorten the tact time required for manufacturing the optical filter P.
 なお、上述した例では、吸収膜Aとして反応性ガスと未反応の金属ニオブを形成しているが、吸収膜Aとして金属ニオブと反応性ガスとの不完全反応物を用いる場合は、スパッタリング工程後の基材Sを反応プロセス領域60Aに搬送し、金属ニオブに対して反応性ガスによるプラズマ処理を行う(プラズマ処理工程)。 In the above-described example, the reactive gas and unreacted metallic niobium are formed as the absorbing film A. However, when an incomplete reaction product of metallic niobium and reactive gas is used as the absorbing film A, a sputtering process is performed. The subsequent substrate S is transported to the reaction process region 60A, and plasma treatment with reactive gas is performed on the metal niobium (plasma treatment step).
 また、上述した例では、第2の膜F2を構成する金属元素としてニオブのみを用いているが、第2の膜F2の原材料として2種類の金属元素からなる合金であってもよい。この場合、異なる材料からなるターゲット22a,22bとターゲット42a,42bをスパッタリングすることで、2種類の金属元素からなる合金の薄膜を基材Sの表面に形成することができる。 In the above example, only niobium is used as the metal element constituting the second film F2. However, an alloy composed of two kinds of metal elements may be used as the raw material of the second film F2. In this case, a thin film of an alloy made of two kinds of metal elements can be formed on the surface of the substrate S by sputtering the targets 22a and 22b and the targets 42a and 42b made of different materials.
 次に、実際に光学フィルターPを製造した実施例について説明する。いずれの実施例でも、図2に示される薄膜形成装置1を用いて光学フィルターPの形成を行った。各実施例に示す種々の条件で光学フィルターPを形成し、400~700nmの透過率を測定した。 Next, an example in which the optical filter P was actually manufactured will be described. In any of the examples, the optical filter P was formed using the thin film forming apparatus 1 shown in FIG. The optical filter P was formed under various conditions shown in each example, and the transmittance at 400 to 700 nm was measured.
 (実施例1:NDフィルター)
 誘電体膜Fと吸収膜Aの材料としてそれぞれケイ素とニオブの金属を用い、透過率が約12%となるように光学フィルターP(NDフィルター)を作成した。このようなNDフィルターは、可視域(400~700nm)の透過強度が等しく減衰する特性が求められ、例えばカメラの「しぼり」などに用いられる。
 成膜条件は以下のとおりである。
<成膜条件>
  誘電体膜F(第1の膜F1)・・酸化ケイ素(SiO
  誘電体膜F(第2の膜F2)・・五酸化ニオブ(Nb
  吸収膜A(第2層,第5層)・・金属ニオブ(金属Nb)
  ターゲット22a,22b・・金属ケイ素
  ターゲット42a,42b・・金属ニオブ
  パワー(金属ケイ素)・・4.4W/cm
  パワー(金属ニオブ)・・2.7W/cm
  供給ガス(成膜プロセス領域20A,40A)・・アルゴンガス
  供給ガス(反応プロセス領域60A)・・酸素ガス
  圧力・・0.35Pa
(Example 1: ND filter)
An optical filter P (ND filter) was prepared using silicon and niobium metals as materials for the dielectric film F and the absorption film A, respectively, so that the transmittance was about 12%. Such an ND filter is required to have a characteristic in which the transmission intensity in the visible range (400 to 700 nm) is equally attenuated, and is used for “squeezing” of a camera, for example.
The film forming conditions are as follows.
<Film formation conditions>
Dielectric film F (first film F1) .. silicon oxide (SiO 2 )
Dielectric film F (second film F2) ..Niobium pentoxide (Nb 2 O 5 )
Absorption film A (2nd layer, 5th layer) .. Metal niobium (metal Nb)
Targets 22a, 22b ... Metallic silicon targets 42a, 42b ... Metal niobium power (metallic silicon) ... 4.4W / cm < 2 >
Power (metal niobium) 2.7 W / cm 2
Supply gas ( deposition process area 20A, 40A). Argon gas Supply gas (reaction process area 60A) Oxygen gas pressure 0.35Pa
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3に、実施例1のNDフィルターの透過率と反射率を測定した結果を示す。この図に示すように、実施例1のNDフィルターは、可視領域の波長400~700の範囲内において約12%のほぼ平坦な透過率特性を示すことがわかった。 FIG. 3 shows the results of measuring the transmittance and reflectance of the ND filter of Example 1. As shown in this figure, the ND filter of Example 1 was found to exhibit a substantially flat transmittance characteristic of about 12% within the visible wavelength range of 400 to 700.
 (実施例2:ND Greenフィルター)
 実施例1と同様にケイ素とニオブの金属からなる材料を用い、緑の波長範囲を中心に光を透過させる光学フィルターP(ND Greenフィルター)を作成した。このようなND Greenフィルターは、例えば顕微鏡は表示メモリ用の「暗い緑」の照明用や、カラーホイールを用いるプロジェクタでRGB色調修正用に用いられる。
 成膜条件は以下のとおりである。
<成膜条件>
  誘電体膜F(第1の膜F1)・・酸化ケイ素(SiO
  誘電体膜F(第2の膜F2)・・五酸化ニオブ(Nb
  吸収膜A(第13層)・・金属ニオブ(金属Nb)
  ターゲット22a,22b・・金属ケイ素
  ターゲット42a,42b・・金属ニオブ
  パワー(金属ケイ素)・・4.4W/cm
  パワー(金属ニオブ)・・2.7W/cm
  供給ガス(成膜プロセス領域20A,40A)・・アルゴンガス
  供給ガス(反応プロセス領域60A)・・酸素ガス
  圧力・・0.35Pa
(Example 2: ND Green filter)
An optical filter P (ND Green filter) that transmits light around a green wavelength range was prepared using a material made of silicon and niobium metal in the same manner as in Example 1. Such an ND Green filter is used, for example, for “dark green” illumination for a display memory in a microscope or for correcting RGB color tone in a projector using a color wheel.
The film forming conditions are as follows.
<Film formation conditions>
Dielectric film F (first film F1) .. silicon oxide (SiO 2 )
Dielectric film F (second film F2) ..Niobium pentoxide (Nb 2 O 5 )
Absorption film A (13th layer) ・ ・ Metal niobium (metal Nb)
Targets 22a, 22b ... Metallic silicon targets 42a, 42b ... Metal niobium power (metallic silicon) ... 4.4W / cm < 2 >
Power (metal niobium) 2.7 W / cm 2
Supply gas ( deposition process area 20A, 40A) ... Argon gas Supply gas (reaction process area 60A) ... Oxygen gas pressure ... 0.35Pa
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図4に、実施例2のND Greenフィルターの透過率を測定した結果を示す。この図に示すように、実施例2のND Greenフィルターは、可視領域の波長480~580の範囲内において約15%のほぼ平坦な透過率特性を示すとともに、他の波長範囲ではほぼ透過率ゼロであることがわかった。
 以上、実施例1,2の結果より、2種類の金属元素を原材料として多層膜Mを形成しても、所望とする光学特性を有する光学フィルターPを製造することが可能であることがわかった。
In FIG. 4, the result of having measured the transmittance | permeability of the ND Green filter of Example 2 is shown. As shown in this figure, the ND Green filter of Example 2 exhibits a substantially flat transmittance characteristic of about 15% within the wavelength range of 480 to 580 in the visible region, and almost zero transmittance in other wavelength ranges. I found out that
As described above, from the results of Examples 1 and 2, it was found that the optical filter P having desired optical characteristics can be manufactured even when the multilayer film M is formed using two kinds of metal elements as raw materials. .

Claims (7)

  1.  光を吸収する多層膜が基材の表面に形成された光学フィルターであって、
     前記多層膜は、複数の膜が積層された誘電体膜と、該誘電体膜を構成する前記複数の膜の間の少なくとも1か所に形成され光を吸収する性質を有する吸収膜とを備え、
     前記誘電体膜は、
     第1の金属元素の酸化物、窒化物若しくは酸窒化物で構成される第1の膜と、
     前記第1の金属元素とは異なる第2の金属元素の酸化物、窒化物若しくは酸窒化物、又は前記第1の金属元素と前記第2の金属元素からなる合金の酸化物、窒化物若しくは酸窒化物で構成される第2の膜と、のうち2種類以上の膜が積層された構成を有し、
     前記吸収膜は、
     前記第1の金属元素及び前記第2の金属元素の一方又は両方を含有することを特徴とする光学フィルター。
    An optical filter in which a multilayer film that absorbs light is formed on the surface of a substrate,
    The multilayer film includes a dielectric film in which a plurality of films are stacked, and an absorption film having a property of absorbing light, which is formed in at least one position between the plurality of films constituting the dielectric film. ,
    The dielectric film is
    A first film composed of an oxide, nitride or oxynitride of a first metal element;
    An oxide, nitride or oxynitride of a second metal element different from the first metal element, or an oxide, nitride or acid of an alloy comprising the first metal element and the second metal element A second film composed of nitride, and a structure in which two or more kinds of films are laminated,
    The absorption film is
    An optical filter comprising one or both of the first metal element and the second metal element.
  2.  前記吸収膜は、前記第1の金属元素及び前記第2の金属元素の一方又は両方からなる金属、又は該金属の不完全酸化物、不完全窒化物若しくは不完全酸窒化物で構成されることを特徴とする請求項1に記載の光学フィルター。 The absorption film is made of a metal composed of one or both of the first metal element and the second metal element, or an incomplete oxide, incomplete nitride or incomplete oxynitride of the metal. The optical filter according to claim 1.
  3.  前記金属元素は、炭素、マグネシウム、アルミニウム、ケイ素、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、ゲルマニウム、ジルコニウム、ニオブ、モリブデン、インジウム、スズ、タンタル、タングステンからなる群より選択される金属元素であることを特徴とする請求項1又は2に記載の光学フィルター。 The metal element is a metal element selected from the group consisting of carbon, magnesium, aluminum, silicon, chromium, manganese, iron, cobalt, nickel, zinc, germanium, zirconium, niobium, molybdenum, indium, tin, tantalum, and tungsten. The optical filter according to claim 1, wherein the optical filter is provided.
  4.  前記基材は、ガラス、ポリカーボネート、ポリエチレンテレフタレート、ポリメチルメタクリレート、オレフィンポリマーからなる群より選択される1又は2種類以上の材料で構成されることを特徴とする請求項1~3のいずれか1項に記載の光学フィルター。 4. The substrate according to claim 1, wherein the substrate is made of one or more materials selected from the group consisting of glass, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, and olefin polymer. The optical filter according to item.
  5.  請求項1~4のいずれか1項に記載の光学フィルターの製造方法であって、
     前記第1の金属元素からなる第1のターゲットをスパッタリングして前記基材の表面に前記第1の金属元素の薄膜を形成し、
     前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記第1の膜を形成する第1の膜形成工程と、
     前記第2の金属元素からなる第2のターゲット又は前記第1のターゲットと前記第2のターゲットをスパッタリングして前記第1の膜の表面に前記第2の金属元素又は前記第1の金属元素と前記第2の金属元素からなる合金の薄膜を形成し、
     前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記第2の膜を形成する第2の膜形成工程と、を行い、
     前記第1の膜形成工程と前記第2の膜形成工程とを繰り返すことで前記誘電体膜を形成する誘電体膜形成工程と、
     前記第1のターゲット及び前記第2のターゲットの一方又は両方をスパッタリングして前記誘電体膜の表面に薄膜を形成し、
     必要に応じて前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記吸収膜を形成する吸収膜形成工程と、を備えることを特徴とする光学フィルターの製造方法。
    A method for producing an optical filter according to any one of claims 1 to 4,
    Sputtering a first target made of the first metal element to form a thin film of the first metal element on the surface of the substrate;
    A first film forming step of forming the first film by performing plasma treatment with oxygen, nitrogen, or an oxygen / nitrogen mixed gas on the thin film;
    Sputtering the second target composed of the second metal element or the first target and the second target to form the second metal element or the first metal element on the surface of the first film Forming a thin film of an alloy comprising the second metal element;
    Performing a second film formation step of forming the second film by performing a plasma treatment with oxygen, nitrogen, or a mixed gas of oxygen and nitrogen on the thin film,
    A dielectric film forming step of forming the dielectric film by repeating the first film forming step and the second film forming step;
    Sputtering one or both of the first target and the second target to form a thin film on the surface of the dielectric film,
    An absorption film forming step of forming the absorption film by performing plasma treatment with oxygen, nitrogen or oxygen / nitrogen mixed gas on the thin film as necessary, and a method for producing an optical filter, comprising: .
  6.  請求項1~4のいずれか1項に記載の光学フィルターの製造方法であって、
     互いに離間する位置に少なくとも1つずつ設けられた成膜プロセス領域及び反応プロセス領域を内部に備えた真空容器を用い、
     前記基材を前記成膜プロセス領域内に搬送し、
     前記第1の金属元素からなる第1のターゲットをスパッタリングして前記基材の表面に前記金属元素の薄膜を形成し、
     前記薄膜が形成された前記基材を前記反応プロセス領域内に搬送し、
     前記薄膜に対して前記反応プロセス領域内で酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記第1の膜を形成する工程と、
     前記基材を前記成膜プロセス領域内に搬送し、
     前記第2の金属元素からなる第2のターゲット又は前記第1のターゲットと前記第2のターゲットをスパッタリングして前記第1の膜の表面に前記第2の金属元素又は前記第1の金属元素と前記第2の金属元素からなる合金の薄膜を形成し、
     前記薄膜が形成された前記基材を前記反応プロセス領域内に搬送し、
     前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記第2の膜を形成する工程と、を行い、
     前記第1の膜形成工程と前記第2の膜形成工程とを繰り返すことで前記誘電体膜を形成する誘電体膜形成工程と、
     前記基材を前記成膜プロセス領域内に搬送し、
     前記第1のターゲット及び前記第2のターゲットの一方又は両方をスパッタリングして前記誘電体膜の表面に薄膜を形成し、
     前記薄膜が形成された前記基材を前記反応プロセス領域内に搬送し、
    必要に応じて前記薄膜に対して酸素、窒素又は酸素・窒素混合ガスによるプラズマ処理を行うことで、前記吸収膜を形成する吸収膜形成工程と、を備えることを特徴とする光学フィルターの製造方法。
    A method for producing an optical filter according to any one of claims 1 to 4,
    Using a vacuum vessel provided with a deposition process region and a reaction process region provided at least one at a position spaced apart from each other,
    Transporting the substrate into the deposition process area;
    Sputtering a first target made of the first metal element to form a thin film of the metal element on the surface of the substrate,
    Transporting the substrate on which the thin film is formed into the reaction process region;
    Forming the first film by subjecting the thin film to plasma treatment with oxygen, nitrogen, or a mixed gas of oxygen and nitrogen in the reaction process region;
    Transporting the substrate into the deposition process area;
    Sputtering the second target composed of the second metal element or the first target and the second target to form the second metal element or the first metal element on the surface of the first film Forming a thin film of an alloy comprising the second metal element;
    Transporting the substrate on which the thin film is formed into the reaction process region;
    Performing a plasma treatment with oxygen, nitrogen or oxygen / nitrogen mixed gas on the thin film, and performing the step of forming the second film,
    A dielectric film forming step of forming the dielectric film by repeating the first film forming step and the second film forming step;
    Transporting the substrate into the deposition process area;
    Sputtering one or both of the first target and the second target to form a thin film on the surface of the dielectric film,
    Transporting the substrate on which the thin film is formed into the reaction process region;
    An absorption film forming step of forming the absorption film by performing plasma treatment with oxygen, nitrogen or oxygen / nitrogen mixed gas on the thin film as necessary, and a method for producing an optical filter, comprising: .
  7.  請求項1~4のいずれか1項に記載の光学フィルターを備えることを特徴とする光学機器。 An optical apparatus comprising the optical filter according to any one of claims 1 to 4.
PCT/JP2008/069937 2007-12-27 2008-10-31 Optical filter, method for production of the same, and optical device equipped with the same WO2009084319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007337072A JP2009157211A (en) 2007-12-27 2007-12-27 Optical filter, its manufacturing method and optical equipment equipped with the optical filter
JP2007-337072 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084319A1 true WO2009084319A1 (en) 2009-07-09

Family

ID=40824042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069937 WO2009084319A1 (en) 2007-12-27 2008-10-31 Optical filter, method for production of the same, and optical device equipped with the same

Country Status (3)

Country Link
JP (1) JP2009157211A (en)
TW (1) TW200928460A (en)
WO (1) WO2009084319A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613870A1 (en) * 2018-08-14 2020-02-26 Viavi Solutions Inc. Argon-helium based coating

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459050B (en) * 2009-12-01 2014-11-01 Hon Hai Prec Ind Co Ltd Color filter and method for manufacturing the same
KR101123143B1 (en) 2010-03-29 2012-03-20 주식회사 아바텍 PDP filter and method for manufacturing the same
EP2977202A1 (en) * 2014-07-25 2016-01-27 AGC Glass Europe Heating glass
JP6664377B2 (en) * 2014-07-25 2020-03-13 エージーシー グラス ユーロップAgc Glass Europe Decorative glass panel
WO2017145910A1 (en) * 2016-02-23 2017-08-31 東海光学株式会社 Nd filter with plastic base material, and nd filter with plastic base material for eyeglasses
JP7162867B2 (en) * 2017-07-11 2022-10-31 東海光学株式会社 ND filter and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323259A (en) * 2005-05-20 2006-11-30 Sony Corp Optical filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323259A (en) * 2005-05-20 2006-11-30 Sony Corp Optical filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613870A1 (en) * 2018-08-14 2020-02-26 Viavi Solutions Inc. Argon-helium based coating
JP2020073710A (en) * 2018-08-14 2020-05-14 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Argon-helium system coating
US11131018B2 (en) 2018-08-14 2021-09-28 Viavi Solutions Inc. Coating material sputtered in presence of argon-helium based coating
JP7134929B2 (en) 2018-08-14 2022-09-12 ヴァイアヴィ・ソリューションズ・インコーポレイテッド Argon-Helium based coating

Also Published As

Publication number Publication date
TW200928460A (en) 2009-07-01
JP2009157211A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
WO2009084319A1 (en) Optical filter, method for production of the same, and optical device equipped with the same
JP6764532B2 (en) Method for manufacturing high refractive index silicon hydride thin film
JP3735461B2 (en) Compound metal compound thin film forming method and thin film forming apparatus therefor
US6458253B2 (en) Thin film production process and optical device
JP4178190B2 (en) Optical element having multilayer film and method for producing the same
WO2010044265A1 (en) Antireflective film formation method, antireflective film, and film formation device
JP2007248562A (en) Optical component and its manufacturing method
US20230228914A1 (en) Optical device and manufacturing method therefor
CN105093852A (en) Precise dielectric film reflector for exposure system of ultraviolet photoetching machine and plating method of precise dielectric film reflector
JP2008015234A (en) Optical multiple-layer film, optical element, bandpass filter, method of manufacturing optical multiple-layer film, and method of manufacturing optical element
JP2004204304A (en) Thin film manufacturing method and sputtering apparatus
EP1630248B1 (en) Thin film forming method
EP2159301A1 (en) Low-refractive index film, method for forming the low-refractive index film, and antireflection film
JP2004317738A (en) Ultra-violet light shielding element, its manufacture method and optical device
JP4895897B2 (en) Thin film structure and manufacturing method thereof
JP5123785B2 (en) Method for forming antireflection film and antireflection film
JPH11279758A (en) Formation of metallic compound thin film and film forming device
CN113549888A (en) Medium gray mirror and preparation method and preparation device thereof
JP3738154B2 (en) Thin film forming method of composite metal compound and thin film forming apparatus
JP2006022389A (en) Thin-film-forming method
KR102579089B1 (en) Method for Manufacturing a Wire Grid Polarizer Using Ion Beam Sputtering Device
JP2019020721A (en) Nd filter, and manufacturing method of the same
JP5104620B2 (en) Absorption-type multilayer ND filter, manufacturing apparatus therefor, and method for manufacturing absorption-type multilayer ND filter
JP4480336B2 (en) Dielectric thin film manufacturing method and manufacturing apparatus
WO2022192640A1 (en) Titanium oxide optical device films deposited by physical vapor deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866792

Country of ref document: EP

Kind code of ref document: A1