JP2007291313A - Ultraviolet light curable resin composition, cured material of the same and various article derived from the same - Google Patents

Ultraviolet light curable resin composition, cured material of the same and various article derived from the same Download PDF

Info

Publication number
JP2007291313A
JP2007291313A JP2006203024A JP2006203024A JP2007291313A JP 2007291313 A JP2007291313 A JP 2007291313A JP 2006203024 A JP2006203024 A JP 2006203024A JP 2006203024 A JP2006203024 A JP 2006203024A JP 2007291313 A JP2007291313 A JP 2007291313A
Authority
JP
Japan
Prior art keywords
curable resin
resin composition
component
ultraviolet curable
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006203024A
Other languages
Japanese (ja)
Other versions
JP5489389B2 (en
Inventor
Koyo Matsukawa
公洋 松川
Takeshi Fukuda
猛 福田
Hideki Aida
秀樹 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Osaka City
Original Assignee
Arakawa Chemical Industries Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd, Osaka City filed Critical Arakawa Chemical Industries Ltd
Priority to JP2006203024A priority Critical patent/JP5489389B2/en
Publication of JP2007291313A publication Critical patent/JP2007291313A/en
Application granted granted Critical
Publication of JP5489389B2 publication Critical patent/JP5489389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet light curable resin composition cured easily by the ultraviolet light, enabling the thick film curing since it has a low shrinkage and realizing a cured material satisfying various characteristics such as heat resistance, chemical resistance, surface hardness, etc., and the cured material obtained from the composition. <P>SOLUTION: This ultraviolet light curable resin composition is characterized by containing (A) a condensate obtained by hydrolyzing and condensing (a1) a thiol group-containing alkoxy silanes expressed by general formula (1): R<SP>1</SP>Si(OR<SP>2</SP>)<SB>3</SB>---(1) [wherein, R<SP>1</SP>is a 1-8C hydrocarbon having at least one thiol group or an aromatic hydrocarbon group having at least one thiol group; R<SP>2</SP>is H, a 1-8C hydrocarbon group or an aromatic hydrocarbon group] and (B) a compound having a carbon carbon double bond. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紫外線硬化性樹脂組成物、当該組成物を紫外線硬化させて得られる硬化物、およびこれらから誘導される各種物品に関する。   The present invention relates to an ultraviolet curable resin composition, a cured product obtained by ultraviolet curing the composition, and various articles derived therefrom.

アクリル基、メタクリル基、アリル基、ビニル基等の炭素−炭素2重結合を持つ化合物は、重合開始剤の存在下に活性エネルギー線によって重合しうるため、活性エネルギー線硬化性樹脂組成物として様々な分野で用いられている。しかしながら、薄膜で塗工すると硬化時に酸素による重合阻害が起こるため、硬化が不充分となり所望の性能が得られ難く、また硬化収縮が大きいため反りやクラックが発生しやすいことから厚膜硬化に適さないなどの問題点がある。   A compound having a carbon-carbon double bond such as an acryl group, a methacryl group, an allyl group, or a vinyl group can be polymerized by an active energy ray in the presence of a polymerization initiator, and thus various active energy ray curable resin compositions. Used in various fields. However, coating with a thin film causes polymerization inhibition due to oxygen at the time of curing, resulting in insufficient curing, making it difficult to obtain the desired performance, and due to large curing shrinkage, warping and cracking are likely to occur, making it suitable for thick film curing. There are problems such as not.

これに対し、炭素−炭素2重結合を有する化合物とチオール基を有する化合物との反応(エン−チオール反応)は、重合開始剤の有無にかかわらず紫外線照射により進行すること、酸素による反応阻害を受けないこと、硬化収縮が小さいなどの利点がある。この反応を利用した硬化方法や硬化物に関しては、一分子中に炭素−炭素2重結合およびチオール基を有する不飽和チオール化合物の使用(例えば、特許文献1参照)や、一分子中に炭素−炭素2重結合を複数有する化合物とチオール基を複数有する化合物とからなる樹脂組成物(例えば、特許文献2〜5参照)などが提案されている。   In contrast, the reaction between the compound having a carbon-carbon double bond and the compound having a thiol group (ene-thiol reaction) proceeds by ultraviolet irradiation regardless of the presence or absence of a polymerization initiator, and inhibits reaction by oxygen. There are advantages such as not receiving and small shrinkage in curing. Regarding a curing method and a cured product using this reaction, use of an unsaturated thiol compound having a carbon-carbon double bond and a thiol group in one molecule (see, for example, Patent Document 1), carbon- A resin composition composed of a compound having a plurality of carbon double bonds and a compound having a plurality of thiol groups (for example, see Patent Documents 2 to 5) has been proposed.

一方、有機材料の特性を一層向上させる手段として、有機材料に無機材料を複合化させることにより、無機材料の特性である高い耐熱性、耐薬品性、高い表面硬度などを付与させた、いわゆる有機−無機ハイブリッド化技術が近年注目されている。エン−チオール反応を利用した紫外線硬化性樹脂組成物に関しては、炭素−炭素2重結合を有するシリコーンとチオール基を有するシリコーンとからなる組成物(例えば、特許文献6〜9参照)が知られている。しかしながら、特許文献6〜9に記載された方法では、用いる無機成分がシリコーン(室温ではゴム状態)であるため充分な耐熱性、表面硬度が得られない。   On the other hand, as a means of further improving the characteristics of organic materials, by combining inorganic materials with organic materials, so-called organic materials that have been imparted with the characteristics of inorganic materials such as high heat resistance, chemical resistance, and high surface hardness. -Inorganic hybrid technology has attracted attention in recent years. Regarding the ultraviolet curable resin composition using the ene-thiol reaction, a composition comprising a silicone having a carbon-carbon double bond and a silicone having a thiol group (see, for example, Patent Documents 6 to 9) is known. Yes. However, in the methods described in Patent Documents 6 to 9, since the inorganic component to be used is silicone (a rubber state at room temperature), sufficient heat resistance and surface hardness cannot be obtained.

特開昭49−51333号公報JP 49-51333 A 特開昭49−54491号公報JP-A-49-54491 特開昭50−27836号公報JP 50-27836 A 特開昭53−134096号公報JP-A-53-134096 特開2003−295431号公報JP 2003-295431 A 特開昭56−110731号公報Japanese Patent Laid-Open No. 56-110731 特開昭60−110752号公報Japanese Patent Laid-Open No. 60-110552 特開平05−320511号公報Japanese Patent Laid-Open No. 05-320511 米国特許出願公開第2004/209972号明細書US Patent Application Publication No. 2004/209972

本発明は、エン−チオール反応を利用した硬化物であって、紫外線によって容易に硬化し、低収縮性のため厚膜硬化が可能であり、しかも耐熱性、耐薬品性、表面硬度などの諸特性を満足しうる硬化物を実現するための紫外線硬化性樹脂組成物を提供すること、および当該組成物から得られる硬化物を提供することを目的とする。   The present invention is a cured product utilizing an ene-thiol reaction, which is easily cured by ultraviolet rays, can be cured with a thick film due to low shrinkage, and has various properties such as heat resistance, chemical resistance, and surface hardness. It aims at providing the ultraviolet curable resin composition for implement | achieving the cured | curing material which can satisfy | fill a characteristic, and providing the cured | curing material obtained from the said composition.

本発明者らは上記課題を解決すべく鋭意検討した結果、チオール基含有アルコキシシラン類の加水分解縮合物と、炭素−炭素2重結合を有する化合物とからなる組成物、およびその紫外線硬化物によって上記課題を解決しうることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a composition comprising a hydrolysis condensate of a thiol group-containing alkoxysilane and a compound having a carbon-carbon double bond, and an ultraviolet cured product thereof. It has been found that the above problems can be solved, and the present invention has been completed.

すなわち、本発明は、一般式(1):
1Si(OR23 (1)
(式中、R1は少なくとも1つのチオール基を有する炭素数1〜8の炭化水素基、または少なくとも1つのチオール基を有する芳香族炭化水素基を表し、R2は水素原子、炭素数1〜8の炭化水素基、または芳香族炭化水素基を表す。)で示されるチオール基含有アルコキシシラン類(a1)を加水分解および縮合して得られる縮合物(A)(以下、成分(A)という)、ならびに炭素−炭素2重結合を有する化合物(B)(以下、成分(B)という)を必須成分として含有することを特徴とする紫外線硬化性樹脂組成物に関する。また本発明は、当該組成物を紫外線によって硬化してなる硬化物に関する。さらに本発明は、これらから誘導される各種物品に関する。
That is, the present invention relates to the general formula (1):
R 1 Si (OR 2 ) 3 (1)
(In the formula, R 1 represents a hydrocarbon group having 1 to 8 carbon atoms having at least one thiol group, or an aromatic hydrocarbon group having at least one thiol group, and R 2 represents a hydrogen atom, having 1 to 1 carbon atoms. 8 represents a hydrocarbon group or an aromatic hydrocarbon group.) A condensate (A) obtained by hydrolysis and condensation of a thiol group-containing alkoxysilane (a1) (hereinafter referred to as component (A)) And a compound (B) having a carbon-carbon double bond (hereinafter referred to as component (B)) as essential components. The present invention also relates to a cured product obtained by curing the composition with ultraviolet rays. The present invention further relates to various articles derived therefrom.

本発明によれば、エン−チオール反応による紫外線硬化性を活用するとともに、耐熱性、耐薬品性、表面硬度などの諸特性が改善された硬化物を提供しうる紫外線硬化性樹脂組成物を提供できる。また該紫外線硬化性樹脂組成物から得られる本発明の硬化物は、コーティング剤(導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板またはプリズムなどの用途)、接着剤(液晶パネル、ELパネル、PDPパネル、カラーフィルターまたは光ディスク基板などの用途)、封止材(発光素子、受光素子、光電変換素子、または光伝送関連部品などの用途)などとして有用である。   According to the present invention, there is provided an ultraviolet curable resin composition that can provide a cured product having improved properties such as heat resistance, chemical resistance, and surface hardness while utilizing ultraviolet curable by an ene-thiol reaction. it can. Further, the cured product of the present invention obtained from the ultraviolet curable resin composition comprises a coating agent (light guide plate, polarizing plate, liquid crystal panel, EL panel, PDP panel, OHP film, optical fiber, color filter, optical disk substrate, lens, liquid crystal Cell plastic substrates or prisms), adhesives (liquid crystal panels, EL panels, PDP panels, color filters, optical disk substrates, etc.), sealing materials (light emitting elements, light receiving elements, photoelectric conversion elements, or optical transmission) This is useful for applications such as related parts).

本発明で用いられる成分(A)は、一般式(1):
1Si(OR23 (1)
(式中、R1は少なくとも1つのチオール基を有する炭素数1〜8の炭化水素基、または少なくとも1つのチオール基を有する芳香族炭化水素基を表し、R2は水素原子、炭素数1〜8の炭化水素基、または芳香族炭化水素基を表す。)で示されるチオール基含有アルコキシシラン類(a1)を加水分解および縮合して得られる化合物である。チオール基含有アルコキシシラン類(a1)(以下、成分(a1)という)の具体例としては、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルトリプロポキシシラン、3−メルカプトプロピルトリブトキシシラン、1,4−ジメルカプト−2−(トリメトキシシリル)ブタン、1,4−ジメルカプト−2−(トリエトキシシリル)ブタン、1,4−ジメルカプト−2−(トリプロポキシシリル)ブタン、1,4−ジメルカプト−2−(トリブトキシシリル)ブタン、2−メルカプトメチル−3−メルカプトプロピルトリメトキシシラン、2−メルカプトメチル−3−メルカプトプロピルトリエトキシシラン、2−メルカプトメチル−3−メルカプトプロピルトリプロポキシシラン、2−メルカプトメチル−3−メルカプトプロピルトリブトキシシラン、1,2−ジメルカプトエチルトリメトキシシラン、1,2−ジメルカプトエチルトリエトキシシラン、1,2−ジメルカプトエチルトリプロポキシシラン、1,2−ジメルカプトエチルトリブトキシシランなどがあげられ、該例示化合物はいずれか単独で、または適宜に組み合わせて使用できる。該例示化合物のうち、3−メルカプトプロピルトリメトキシシランは、加水分解反応の反応性が高く、かつ入手が容易であるため特に好ましい。
Component (A) used in the present invention has the general formula (1):
R 1 Si (OR 2 ) 3 (1)
(In the formula, R 1 represents a hydrocarbon group having 1 to 8 carbon atoms having at least one thiol group, or an aromatic hydrocarbon group having at least one thiol group, and R 2 represents a hydrogen atom, having 1 to 1 carbon atoms. 8 is a compound obtained by hydrolysis and condensation of a thiol group-containing alkoxysilane (a1) represented by 8). Specific examples of the thiol group-containing alkoxysilanes (a1) (hereinafter referred to as component (a1)) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltripropoxysilane, 3- Mercaptopropyltributoxysilane, 1,4-dimercapto-2- (trimethoxysilyl) butane, 1,4-dimercapto-2- (triethoxysilyl) butane, 1,4-dimercapto-2- (tripropoxysilyl) butane 1,4-dimercapto-2- (tributoxysilyl) butane, 2-mercaptomethyl-3-mercaptopropyltrimethoxysilane, 2-mercaptomethyl-3-mercaptopropyltriethoxysilane, 2-mercaptomethyl-3-mercapto Propyl tripropoxy Silane, 2-mercaptomethyl-3-mercaptopropyltributoxysilane, 1,2-dimercaptoethyltrimethoxysilane, 1,2-dimercaptoethyltriethoxysilane, 1,2-dimercaptoethyltripropoxysilane, 1, Examples include 2-dimercaptoethyltributoxysilane, and the exemplified compounds can be used alone or in appropriate combination. Among the exemplified compounds, 3-mercaptopropyltrimethoxysilane is particularly preferable because of high reactivity of hydrolysis reaction and easy availability.

また、成分(a1)に加えて、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシランなどのトリアルキルアルコキシシラン類、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、3−メルカプトプロピルメチルジメトキシシランなどのジアルキルジアルコキシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどのアルキルトリアルコキシシラン類、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどのテトラアルコキシシラン類、テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトラブトキシチタンなどのテトラアルコキシチタン類、テトラエトキシジルコニウム、テトラプロポキシジルコニウム、テトラブトキシジルコニウムなどのテトラアルコキシジルコニウム類などの金属アルコキシド類(a2)(以下、成分(a2)という)を使用しうる。成分(a2)は、いずれか単独で、または2種以上を組み合わせて用いることができる。これらのうち、トリアルキルアルコキシシラン類、ジアルキルジアルコキシシラン類、テトラアルコキシシラン類を用いることで、成分(A)の架橋密度を調整することができる。アルキルトリアルコキシシラン類を用いることで、成分(A)中に含まれるチオール基の量を調整することができる。テトラアルコキシチタン類、テトラアルコキシジルコニウム類を用いることで、最終的に得られる紫外線硬化物の屈折率を高くすることができる。   In addition to component (a1), trialkylalkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, triethylethoxysilane, triphenylmethoxysilane, triphenylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxy Dialkyl dialkoxysilanes such as silane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane, methyltrimethoxysilane Methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, Alkyltrialkoxysilanes such as rutriethoxysilane, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, etc. Metal alkoxides (a2) (hereinafter referred to as component (a2)) such as tetraalkoxyzirconiums such as tetraalkoxytitaniums, tetraethoxyzirconium, tetrapropoxyzirconium, and tetrabutoxyzirconium can be used. The component (a2) can be used either alone or in combination of two or more. Of these, the crosslink density of the component (A) can be adjusted by using trialkylalkoxysilanes, dialkyldialkoxysilanes, and tetraalkoxysilanes. By using alkyltrialkoxysilanes, the amount of thiol groups contained in component (A) can be adjusted. By using tetraalkoxytitanium or tetraalkoxyzirconium, the refractive index of the finally obtained ultraviolet cured product can be increased.

成分(a1)と成分(a2)を併用する場合は、[成分(a1)に含まれるチオール基のモル数]/[成分(a1)と成分(a2)の合計モル数](モル比:1分子あたりに含まれるチオール基の平均個数を示す)が0.2以上であることが好ましい。0.2未満である場合、得られる成分(A)中に含まれるチオール基の数が少なくなるため、紫外線硬化性が低下するとともに、硬化物の硬度などの物性についての改善効果も不充分となる傾向がある。また、[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数]/[成分(a1)と成分(a2)の合計モル数](モル比:1分子あたりに含まれるアルコキシ基の平均個数を示す)が2.5以上3.5以下であることが好ましく、2.7以上3.2以下であることがより好ましい。2.5未満の場合、得られる成分(A)の架橋密度が低く、硬化物の耐熱性が低下する傾向がある。また、3.5を超える場合、成分(A)を製造する際、ゲル化しやすくなる傾向がある。   When component (a1) and component (a2) are used in combination, [number of moles of thiol group contained in component (a1)] / [total number of moles of component (a1) and component (a2)] (molar ratio: 1 The average number of thiol groups contained per molecule is preferably 0.2 or more. If it is less than 0.2, the number of thiol groups contained in the resulting component (A) is reduced, so that the ultraviolet curability is lowered and the effect of improving the physical properties such as hardness of the cured product is insufficient. Tend to be. [Total number of moles of each alkoxy group contained in component (a1) and component (a2)] / [Total number of moles of component (a1) and component (a2)] (molar ratio: alkoxy contained per molecule) The average number of groups) is preferably 2.5 or more and 3.5 or less, and more preferably 2.7 or more and 3.2 or less. When it is less than 2.5, the crosslinking density of the obtained component (A) is low, and the heat resistance of the cured product tends to decrease. Moreover, when it exceeds 3.5, when manufacturing a component (A), it exists in the tendency which becomes easy to gelatinize.

本発明に用いられる成分(A)は、成分(a1)単独やこれに成分(a2)を併用して、それらを加水分解後、縮合させて得ることができる。加水分解反応によって、成分(a1)や成分(a2)に含まれるアルコキシ基が水酸基となり、アルコールが副生する。加水分解反応に必要な水の量は、[加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)が0.4以上10以下であればよく、好ましくは1である。0.4未満の場合、成分(A)中に加水分解されずに残るアルコキシ基があるため好ましくない。また、10を超える場合、後に行う縮合反応(脱水反応)の際に除くべき水の量が多くなるため、経済的に不利である。   Component (A) used in the present invention can be obtained by condensing component (a1) alone or in combination with component (a2), condensing them after hydrolysis. By the hydrolysis reaction, the alkoxy group contained in component (a1) or component (a2) becomes a hydroxyl group, and alcohol is by-produced. The amount of water required for the hydrolysis reaction is [number of moles of water used in hydrolysis reaction] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio). 4 or more and 10 or less, preferably 1. When it is less than 0.4, there is an alkoxy group remaining without being hydrolyzed in the component (A), which is not preferable. On the other hand, if it exceeds 10, the amount of water to be removed in the subsequent condensation reaction (dehydration reaction) increases, which is economically disadvantageous.

また、成分(a2)としてテトラアルコキシチタン類、テトラアルコキシジルコニウム類等、特に加水分解性および縮合反応性の高い金属アルコキシド類を併用する場合には、急速に加水分解および縮合反応が進行し、系がゲル化してしまう場合がある。この場合、成分(a1)の加水分解反応を終了させ、実質的にすべての水が消費された状態にした後、該成分(a2)を添加することによって、ゲル化を避けることができる。   In addition, when the component (a2) is used in combination with a tetraalkoxytitanium, a tetraalkoxyzirconium or the like, particularly a metal alkoxide having a high hydrolyzability and condensation reactivity, the hydrolysis and condensation reaction proceeds rapidly, and the system May gel. In this case, gelation can be avoided by adding the component (a2) after the hydrolysis reaction of the component (a1) has been completed and all water has been consumed.

加水分解反応に用いる触媒としては、特に限定はされず、従来公知の加水分解触媒を任意に用いることができる。これらのうちギ酸は、触媒活性が高く、また引き続く縮合反応の触媒としても機能するので好ましい。ギ酸の添加量は、成分(a1)および成分(a2)の合計100重量部に対して、0.1〜25重量部であることが好ましく、1〜10重量部であることがより好ましい。25重量部よりも多いと、得られる紫外線硬化性樹脂組成物の安定性が低下する傾向があり、また後工程でギ酸を除去できるとしても該除去量が多くなる。一方、0.1重量部よりも少ないと、実質的に反応が進行しなかったり、反応時間が長くなる傾向がある。反応温度、時間は、成分(a1)や成分(a2)の反応性に応じて任意に設定できるが、通常0〜100℃程度、好ましくは20〜60℃、1分〜2時間程度である。該加水分解反応は、溶剤の存在下または不存在下に行うことができる。溶剤の種類は特に限定されず、任意の溶剤を1種類以上選択して用いることができるが、後述の縮合反応に用いる溶剤と同一のものを用いることが好ましい。成分(a1)や成分(a2)の反応性が低い場合は、無溶剤で行うことが好ましい。   The catalyst used for the hydrolysis reaction is not particularly limited, and a conventionally known hydrolysis catalyst can be arbitrarily used. Of these, formic acid is preferred because it has high catalytic activity and also functions as a catalyst for the subsequent condensation reaction. The amount of formic acid added is preferably 0.1 to 25 parts by weight, and more preferably 1 to 10 parts by weight with respect to 100 parts by weight as the total of component (a1) and component (a2). When the amount is more than 25 parts by weight, the stability of the resulting ultraviolet curable resin composition tends to be lowered, and the amount of removal increases even if formic acid can be removed in a subsequent step. On the other hand, when the amount is less than 0.1 parts by weight, the reaction does not substantially proceed or the reaction time tends to be long. Although reaction temperature and time can be arbitrarily set according to the reactivity of a component (a1) or a component (a2), it is about 0-100 degreeC normally, Preferably it is about 20-60 degreeC, 1 minute-about 2 hours. The hydrolysis reaction can be performed in the presence or absence of a solvent. The type of the solvent is not particularly limited, and one or more arbitrary solvents can be selected and used, but it is preferable to use the same solvent as that used in the condensation reaction described later. When the reactivity of component (a1) or component (a2) is low, it is preferable to carry out without solvent.

上記方法で加水分解反応を行うが、[加水分解されてできた水酸基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)が0.5以上になるように進行させることが好ましく、0.8以上に調整することがさらに好ましい。加水分解反応に続く縮合反応は、加水分解で生じた水酸基間だけでなく、該水酸基と残存アルコキシ基との間でも進行するため、少なくとも半分(モル比が0.5以上)が加水分解されていればよい。   The hydrolysis reaction is carried out by the above method, but the [number of moles of hydroxyl group formed by hydrolysis] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) is 0. It is preferable to make it progress so that it may become 0.5 or more, and it is still more preferable to adjust to 0.8 or more. The condensation reaction following the hydrolysis reaction proceeds not only between the hydroxyl groups generated by hydrolysis but also between the hydroxyl groups and the remaining alkoxy groups, so that at least half (molar ratio is 0.5 or more) is hydrolyzed. Just do it.

縮合反応においては、前記の水酸基間で水が副生し、また水酸基とアルコキシ基間ではアルコールが副生して、ガラス化する。縮合反応には、従来公知の脱水縮合触媒を任意に用いることができる。前記のように、ギ酸は触媒活性が高く、加水分解反応の触媒と共用できるため好ましい。反応温度、時間は成分(a1)や成分(a2)の反応性に応じてそれぞれ任意に設定できるが、通常は40〜150℃程度、好ましくは60〜100℃、30分〜12時間程度である。   In the condensation reaction, water is by-produced between the hydroxyl groups, and alcohol is by-produced between the hydroxyl groups and the alkoxy group to vitrify. A conventionally known dehydration condensation catalyst can be arbitrarily used for the condensation reaction. As described above, formic acid is preferable because it has high catalytic activity and can be used as a catalyst for hydrolysis reaction. The reaction temperature and time can be arbitrarily set according to the reactivity of the component (a1) or component (a2), but are usually about 40 to 150 ° C., preferably 60 to 100 ° C., about 30 minutes to 12 hours. .

上記方法で縮合反応を行うが、[未反応の水酸基および未反応のアルコキシ基の合計モル数]/[成分(a1)や成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)が0.3以下になるように進行させることが好ましく、0.2以下に調整することがさらに好ましい。0.3を超える場合、未反応の水酸基およびアルコキシ基が紫外線硬化性樹脂組成物の保管中に縮合反応してゲル化したり、硬化後に縮合反応し揮発分が発生してクラックが発生するなど、硬化物の性能を損なう傾向があるため好ましくない。   Condensation reaction is carried out by the above method. [Total number of moles of unreacted hydroxyl group and unreacted alkoxy group] / [Total number of moles of alkoxy groups contained in component (a1) and component (a2)] (molar ratio ) Is preferably 0.3 or less, and more preferably 0.2 or less. If it exceeds 0.3, the unreacted hydroxyl group and alkoxy group undergo a condensation reaction during storage of the UV curable resin composition to gel, the condensation reaction occurs after curing, volatile matter occurs, and cracks occur, This is not preferable because it tends to impair the performance of the cured product.

当該縮合反応は、成分(a1)(成分(a2)を併用する場合は両者)の濃度が2〜80重量%程度になるように溶剤希釈して行うことが好ましく、15〜60重量%であることがより好ましい。縮合反応によって生成する水およびアルコールの沸点より高い沸点を有する溶剤を用いると、反応系中よりこれらを留去することができるため好ましい。該濃度が2重量%未満である場合は、得られる紫外線硬化性樹脂組成物に含まれる成分(A)が少なくなるため好ましくない。80重量%を超える場合は、反応中にゲル化したり、生成する成分(A)の分子量が大きくなり過ぎ、得られる紫外線硬化性樹脂組成物の保存安定性が悪くなる傾向がある。溶剤としては、任意の溶剤を1種類以上選択して用いることができる。縮合反応によって生成する水およびアルコールより高い沸点を有する溶剤を用いれば、反応系中よりこれらを留去することができるため好ましい。また、成分(B)も溶剤の一部として用いることができる。   The condensation reaction is preferably performed by diluting the solvent so that the concentration of component (a1) (or both when component (a2) is used in combination) is about 2 to 80% by weight. It is more preferable. It is preferable to use a solvent having a boiling point higher than that of water and alcohol generated by the condensation reaction because these can be distilled off from the reaction system. When the concentration is less than 2% by weight, the component (A) contained in the obtained ultraviolet curable resin composition is decreased, which is not preferable. When it exceeds 80% by weight, gelation occurs during the reaction, or the molecular weight of the component (A) to be generated becomes excessively high, and the storage stability of the resulting ultraviolet curable resin composition tends to deteriorate. As the solvent, one or more arbitrary solvents can be selected and used. It is preferable to use a solvent having a boiling point higher than that of water and alcohol produced by the condensation reaction because these can be distilled off from the reaction system. Component (B) can also be used as part of the solvent.

当該縮合反応の終了後、用いた触媒を除去すると、最終的に得られる紫外線硬化性樹脂組成物の安定性が向上するため好ましい。除去方法は、用いた触媒に応じて公知各種の方法から適宜に選択できる。例えば、ギ酸を用いた場合は、縮合反応の終了後、該沸点以上に加熱する、減圧するなどの方法により容易に除去でき、この点からもギ酸の使用が好ましい。   It is preferable to remove the catalyst used after completion of the condensation reaction because the stability of the finally obtained ultraviolet curable resin composition is improved. The removal method can be appropriately selected from various known methods depending on the catalyst used. For example, when formic acid is used, it can be easily removed by a method such as heating to above the boiling point or depressurization after completion of the condensation reaction, and formic acid is also preferred in this respect.

本発明で用いられる成分(B)は、特に限定されず、従来公知の炭素−炭素2重結合を有する化合物を適宜用いることができる。炭素−炭素2重結合に係わる官能基としては、ビニル基、アクリル基、メタクリル基、アリル基などがあげられる。   The component (B) used in the present invention is not particularly limited, and a conventionally known compound having a carbon-carbon double bond can be appropriately used. Examples of the functional group related to the carbon-carbon double bond include a vinyl group, an acrylic group, a methacryl group, and an allyl group.

成分(B)の炭素−炭素2重結合は、成分(A)のチオール基と反応(エン−チオール反応)するが、当該反応は重合開始剤の有無により、反応機構が異なる。   The carbon-carbon double bond of component (B) reacts with the thiol group of component (A) (ene-thiol reaction), but the reaction mechanism differs depending on the presence or absence of a polymerization initiator.

重合開始剤を用いない場合は、本反応は次の反応機構[反応式(1)]によると考えられている。   When no polymerization initiator is used, this reaction is considered to be based on the following reaction mechanism [reaction formula (1)].

Figure 2007291313
(式中、Raは成分(A)のチオール基以外の残基を、Rbは成分(B)の炭素−炭素2重結合以外の残基をそれぞれ示す。)。すなわち、炭素−炭素2重結合1個に対してチオール基1個が付加する反応である。
Figure 2007291313
(In the formula, R a represents a residue other than the thiol group of component (A), and R b represents a residue other than the carbon-carbon double bond of component (B)). That is, it is a reaction in which one thiol group is added to one carbon-carbon double bond.

一方、重合開始剤を用いる場合は、本反応は、前記の反応式(1)の付加反応に加えて、以下のような連鎖的ラジカル反応過程[反応式(2)〜(5)]、および反応式(6)で示す副反応を伴って進行するとされる。   On the other hand, in the case of using a polymerization initiator, in addition to the addition reaction of the above reaction formula (1), this reaction includes the following chain radical reaction process [reaction formulas (2) to (5)], and The reaction proceeds with the side reaction shown in the reaction formula (6).

Figure 2007291313
(該式中、Iは重合開始剤を示す。)。すなわち、反応式(2):重合開始剤より紫外線によってラジカルが生成する段階、反応式(3):成分(A)のチオール基の水素が引き抜かれ、チイルラジカルが生成する段階、反応式(4):成分(A)に生成したチイルラジカルが成分(B)の炭素−炭素2重結合と反応、炭素ラジカルが生成する段階、反応式(5):炭素ラジカルが成分(A)のチオール基の水素を引き抜き、チイルラジカルが再生する段階を経由する。
Figure 2007291313
(In the formula, I represents a polymerization initiator). That is, reaction formula (2): a stage in which radicals are generated by ultraviolet rays from a polymerization initiator, reaction formula (3): stage in which hydrogen of the thiol group of component (A) is withdrawn, and thiyl radical is generated, reaction formula (4) : Reaction of the thiyl radical generated in component (A) with the carbon-carbon double bond of component (B), formation of a carbon radical, reaction formula (5): carbon radical converts hydrogen of thiol group of component (A) It goes through a stage where it is extracted and the thiyl radical is regenerated.

該副反応は、

Figure 2007291313
である。 The side reaction is
Figure 2007291313
It is.

反応式(6):反応式(4)で生成した炭素ラジカルが成分(B)の炭素−炭素2重結合と反応し、炭素ラジカルが再生することによって、成分(B)同士の重合反応も同時に起こる。   Reaction formula (6): The carbon radical produced | generated by reaction formula (4) reacts with the carbon-carbon double bond of a component (B), and when a carbon radical reproduce | regenerates, the polymerization reaction of components (B) will also be simultaneous. Occur.

上記のように、重合開始剤を用いない場合は、成分(A)中のチオール基と成分(B)中の炭素−炭素2重結合は、1:1(モル比)で反応するが、重合開始剤を用いる場合には、1:1以上で反応することになる。   As described above, when a polymerization initiator is not used, the thiol group in component (A) and the carbon-carbon double bond in component (B) react at 1: 1 (molar ratio), but polymerization occurs. When an initiator is used, the reaction will be 1: 1 or more.

上記の観点から、本発明の紫外線硬化性樹脂組成物の調製に際しての成分(A)と(B)の使用割合は、重合開始剤の有無に応じて適宜に決定される。重合開始剤を用いない場合は、具体的には、[成分(A)に含まれるチオール基のモル数]/[成分(B)に含まれる炭素−炭素2重結合のモル数](モル比)が、0.9〜1.1となるよう配合することが好ましく、より好ましくは1.0である。0.9未満である場合は、紫外線硬化後にも炭素−炭素2重結合が残存し、耐候性が低下する傾向がある。また、1.1を超える場合は、チオール基が残存し、その分解によって悪臭を発生させる場合がある。   From the above viewpoint, the proportion of components (A) and (B) used in preparing the ultraviolet curable resin composition of the present invention is appropriately determined depending on the presence or absence of a polymerization initiator. When the polymerization initiator is not used, specifically, [number of moles of thiol group contained in component (A)] / [number of moles of carbon-carbon double bond contained in component (B)] (molar ratio) ) Is preferably 0.9 to 1.1, more preferably 1.0. If it is less than 0.9, carbon-carbon double bonds remain even after UV curing, and the weather resistance tends to be lowered. Moreover, when it exceeds 1.1, a thiol group may remain | survive and a malodor may be generated by the decomposition | disassembly.

一方、重合開始剤を用いる場合は、具体的には、[成分(A)に含まれるチオール基のモル数]/[成分(B)に含まれる炭素−炭素2重結合のモル数](モル比)が、0.01〜1.1となるよう配合することが好ましい。0.01未満である場合、用いる成分(A)の量が少なくなりすぎるため、本願発明所望の効果が得られにくくなる傾向がある。さらに、炭素−炭素2重結合が残存しやすくなり、硬化物の耐候性が低下する傾向もある。また、1.1を超える場合、チオール基が残存し、その分解によって悪臭を発生させる場合がある。   On the other hand, when using a polymerization initiator, specifically, [number of moles of thiol group contained in component (A)] / [number of moles of carbon-carbon double bond contained in component (B)] (mole The ratio is preferably 0.01 to 1.1. When the amount is less than 0.01, the amount of the component (A) used is too small, so that the desired effect of the present invention tends to be hardly obtained. Furthermore, the carbon-carbon double bond tends to remain, and the weather resistance of the cured product tends to be lowered. Moreover, when it exceeds 1.1, a thiol group may remain | survive and a malodor may be generated by the decomposition | disassembly.

また、炭素−炭素2重結合を有する官能基とチオール基との反応より優先して、炭素−炭素2重結合を有する官能基同士が重合する不都合が起こらないためには、成分(B)のうち、前記官能基がアリル基であるものが好ましい。アリル基を1つ含有する化合物としては、けい皮酸、モノアリルシアヌレート、モノアリルイソシアヌレート、ペンタエリスリトールモノアリルエーテル、トリメチロールプロパンモノアリルエーテル、グリセリンモノアリルエーテル、ビスフェノールAモノアリルエーテル、ビスフェノールFモノアリルエーテル、エチレングリコールモノアリルエーテル、ジエチレングリコールモノアリルエーテル、トリエチレングリコールモノアリルエーテル、プロピレングリコールモノアリルエーテル、ジプロピレングリコールモノアリルエーテル、トリプロピレングリコールモノアリルエーテルなどがあげられる。アリル基を2つ含有する化合物としては、ジアリルフタレート、ジアリルイソフタレート、ジアリルシアヌレート、ジアリルイソシアヌレート、ペンタエリスリトールジアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンジアリルエーテル、ビスフェノールAジアリルエーテル、ビスフェノールFジアリルエーテル、エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、トリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ジプロピレングリコールジアリルエーテル、トリプロピレングリコールジアリルエーテルなどがあげられる。アリル基を3つ以上含有する化合物としては、トリアリルイソシアヌレート、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、トリメチロールプロパントリアリルエーテルなどがあげられる。これらの化合物は、いずれか単独で、または組み合わせて使用できる。これらの中でも、トリアリルイソシアヌレート、ジアリルフタレート、ペンタエリスリトールトリアリルエーテルがとくに好ましい。   In addition, in order to avoid the disadvantage that the functional groups having a carbon-carbon double bond are polymerized with each other in preference to the reaction between the functional group having a carbon-carbon double bond and the thiol group, the component (B) Among them, the functional group is preferably an allyl group. The compounds containing one allyl group include cinnamic acid, monoallyl cyanurate, monoallyl isocyanurate, pentaerythritol monoallyl ether, trimethylolpropane monoallyl ether, glycerin monoallyl ether, bisphenol A monoallyl ether, bisphenol. Examples thereof include F monoallyl ether, ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, propylene glycol monoallyl ether, dipropylene glycol monoallyl ether, and tripropylene glycol monoallyl ether. Compounds containing two allyl groups include diallyl phthalate, diallyl isophthalate, diallyl cyanurate, diallyl isocyanurate, pentaerythritol diallyl ether, trimethylolpropane diallyl ether, glyceryl diallyl ether, bisphenol A diallyl ether, bisphenol F diallyl ether Ethylene glycol diallyl ether, diethylene glycol diallyl ether, triethylene glycol diallyl ether, propylene glycol diallyl ether, dipropylene glycol diallyl ether, tripropylene glycol diallyl ether, and the like. Examples of the compound containing three or more allyl groups include triallyl isocyanurate, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, trimethylolpropane triallyl ether, and the like. These compounds can be used either alone or in combination. Among these, triallyl isocyanurate, diallyl phthalate, and pentaerythritol triallyl ether are particularly preferable.

また、成分(B)として、前記化合物よりも高分子量のものを用いることができる。高分子量のものを用いた紫外線硬化性樹脂組成物は、得られる硬化物の可撓性が向上する傾向がある。該高分子量物としては、メチルアリルシロキサンとジメチルシロキサンとからなる共重合物、エピクロルヒドリンとアリルグリシジルエーテルとからなる共重合物(ダイソー(株):商品名「エピクロマー」、日本ゼオン(株):商品名「Gechron」など)、アリル基末端ポリイソブチレンポリマー((株)カネカ:商品名「エピオン」)などがあげられる。これらの化合物は、単独で、または2種以上を組み合わせて用いることができる。   Moreover, as a component (B), a thing with a higher molecular weight than the said compound can be used. The ultraviolet curable resin composition using a high molecular weight product tends to improve the flexibility of the resulting cured product. Examples of the high molecular weight compound include a copolymer composed of methylallylsiloxane and dimethylsiloxane, a copolymer composed of epichlorohydrin and allylglycidyl ether (Daiso Co., Ltd .: trade name “Epichromer”, Nippon Zeon Co., Ltd .: Commodity Name "Gechron"), allyl group-terminated polyisobutylene polymer (Kaneka Co., Ltd .: trade name "Epion") and the like. These compounds can be used alone or in combination of two or more.

成分(B)の使用に際しては、[成分(B)に含まれる炭素−炭素2重結合のモル数]/[成分(B)のモル数](モル比:1分子あたりに含まれる炭素−炭素2重結合の平均個数を示す)が2以上であることが好ましい。2未満である場合、紫外線硬化性樹脂組成物の硬化性が低くなり、かつ得られる硬化物の架橋密度が低くなるため、硬化物の耐熱性、表面硬度等の物性が低下する傾向がある。   When using component (B), [number of moles of carbon-carbon double bonds contained in component (B)] / [number of moles of component (B)] (molar ratio: carbon-carbon contained per molecule) The average number of double bonds is preferably 2 or more. When it is less than 2, since the curability of the ultraviolet curable resin composition is lowered and the cross-linking density of the obtained cured product is lowered, physical properties such as heat resistance and surface hardness of the cured product tend to be lowered.

本発明の紫外線硬化性樹脂組成物を調製する際に使用可能な重合開始剤としては、特に限定されず、従来公知の光カチオン開始剤、光ラジカル開始剤などを任意に選択できる。光カチオン開始剤としては、紫外線の照射により酸を発生する化合物であるスルホニウム塩、ヨードニウム塩、メタロセン化合物、ベンゾイントシレート等があげられ、それらの市販品としては、たとえばサイラキュアUVI−6970、同UVI−6974、同UVI−6990(いずれも米国ユニオンカーバイド社製商品名)、イルガキュア264(チバスペシャルティケミカルズ社製)、CIT−1682(日本曹達(株)製)などがある。光カチオン重合開始剤の使用量は、該組成物100重量部に対し、通常10重量部程度以下、好ましくは1〜5重量部とされる。光ラジカル開始剤としては、ダロキュア1173、イルガキュア651、イルガキュア184、イルガキュア907(いずれもチバスペシャルティケミカルズ社製商品名)、ベンゾフェノン等があげられ、該組成物100重量部に対して15重量部程度以下、好ましくは1〜15重量部とされる。なお、得られる硬化物の耐候性低下が懸念される場合、特に高い耐候性、透明性が求められる光学部材などに用いられる場合には、光反応開始剤や光増感剤を使用しないほうがよい。   It does not specifically limit as a polymerization initiator which can be used when preparing the ultraviolet curable resin composition of this invention, A conventionally well-known photocation initiator, photoradical initiator, etc. can be selected arbitrarily. Examples of the photocation initiator include sulfonium salts, iodonium salts, metallocene compounds, benzoin tosylate, and the like, which are compounds that generate an acid upon irradiation with ultraviolet rays. Examples of such commercially available products include Cyracure UVI-6970 and UVI. -6974, UVI-6990 (all trade names manufactured by Union Carbide, Inc.), Irgacure 264 (Ciba Specialty Chemicals), CIT-1682 (manufactured by Nippon Soda Co., Ltd.), and the like. The usage-amount of a photocationic polymerization initiator is normally about 10 weight part or less with respect to 100 weight part of this composition, Preferably it is 1-5 weight part. Examples of the photo radical initiator include Darocur 1173, Irgacure 651, Irgacure 184, Irgacure 907 (all trade names of Ciba Specialty Chemicals), benzophenone, and the like, and about 15 parts by weight or less with respect to 100 parts by weight of the composition. The amount is preferably 1 to 15 parts by weight. When there is a concern about a decrease in the weather resistance of the resulting cured product, it is better not to use a photoinitiator or a photosensitizer, especially when used for an optical member that requires high weather resistance and transparency. .

また、紫外線硬化性樹脂組成物の安定性をより向上させるため、エン−チオール反応を抑制する化合物を配合できる。このような化合物としては、トリフェニルホスフィン、亜リン酸トリフェニル等のリン系化合物;p−メトキシフェノ−ル、ハイドロキノン、ピロガロ−ル、ナフチルアミン、tert−ブチルカテコ−ル、塩化第一銅、2、6ージ−tert−ブチル−p−クレゾ−ル、2、2’−メチレンビス(4−エチル−6−tert−ブチルフェノ−ル)、2、2’−メチレンビス(4−メチル−6−tert−ブチルフェノ−ル)、N−ニトロソフェニルヒドロキシルアミンアルミニウム塩、ジフェニルニトロソアミン等のラジカル重合禁止剤;ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジアミノメチル)フェノール、ジアザビシクロウンデセン等の3級アミン類;2-メチルイミダゾール、2−エチル−4−メチルイミダゾール、2-エチルへキシルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチル−2‐メチルイミダール等のイミダゾール類があげられる。   Moreover, in order to improve the stability of an ultraviolet curable resin composition more, the compound which suppresses ene-thiol reaction can be mix | blended. Examples of such compounds include phosphorus compounds such as triphenylphosphine and triphenyl phosphite; p-methoxyphenol, hydroquinone, pyrogallol, naphthylamine, tert-butylcatechol, cuprous chloride, 2, 6-di-tert-butyl-p-cresol, 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol) Radical), N-nitrosophenylhydroxylamine aluminum salt, diphenylnitrosamine and other radical polymerization inhibitors; benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl) phenol, diaza Tertiary amines such as bicycloundecene; 2-methylimidazole, 2- Examples include imidazoles such as ethyl-4-methylimidazole, 2-ethylhexylimidazole, 2-undecylimidazole, and 1-cyanoethyl-2-methylimidazole.

リン系化合物のうち、亜リン酸トリフェニルはエン−チオール反応の抑制効果が高く、かつ室温で液状であり取り扱いが容易であるため好ましい。紫外線硬化性樹脂組成物に配合する該化合物の量は、組成物100重量部に対して、0.1〜10重量部程度であることが好ましい。0.1重量部に満たない場合は、エン−チオール反応を抑制する効果が不足し、また10重量部を超える場合は、得られる硬化物中の残存量が多くなり硬化物の物性が低下する傾向がある。   Among the phosphorus compounds, triphenyl phosphite is preferable because it has a high inhibitory effect on the ene-thiol reaction, is liquid at room temperature, and is easy to handle. The amount of the compound to be blended in the ultraviolet curable resin composition is preferably about 0.1 to 10 parts by weight with respect to 100 parts by weight of the composition. When the amount is less than 0.1 parts by weight, the effect of suppressing the ene-thiol reaction is insufficient, and when the amount exceeds 10 parts by weight, the remaining amount in the obtained cured product is increased and the physical properties of the cured product are deteriorated. Tend.

ラジカル重合禁止剤のうち、ニトロソフェニルヒドロキシルアミンアルミニウム塩は少量でもエン−チオール反応の抑制効果が高く、かつ得られる硬化物の色調に優れるため好ましい。紫外線硬化性樹脂組成物に配合する該化合物の量は、組成物100重量部に対して、0.0001〜0.1重量部程度であることが好ましい。0.0001重量部に満たない場合は、エン−チオール反応を抑制する効果が不足し、また0.1重量部を超える場合は、紫外線硬化性が低下する傾向がある。   Of the radical polymerization inhibitors, nitrosophenylhydroxylamine aluminum salt is preferable because it has a high inhibitory effect on the ene-thiol reaction even in a small amount and is excellent in the color tone of the resulting cured product. The amount of the compound to be blended in the ultraviolet curable resin composition is preferably about 0.0001 to 0.1 parts by weight with respect to 100 parts by weight of the composition. When the amount is less than 0.0001 part by weight, the effect of suppressing the ene-thiol reaction is insufficient, and when it exceeds 0.1 part by weight, the ultraviolet curability tends to be lowered.

3級アミン類のうち、ベンジルジメチルアミンは少量でもエン−チオール反応の抑制効果が高く、かつ室温で液状であり取り扱いが容易であるため好ましい。紫外線硬化性樹脂組成物に配合する該化合物の量は、組成物100重量部に対して、0.001〜5重量部程度であることが好ましい。0.001重量部に満たない場合は、エン−チオール反応を抑制する効果が不足し、また5重量部を超える場合は、成分(A)中の未反応の水酸基およびアルコキシ基が縮合反応してゲル化する傾向があるため好ましくない。   Of the tertiary amines, benzyldimethylamine is preferable because it has a high inhibitory effect on the ene-thiol reaction even in a small amount and is liquid at room temperature and easy to handle. The amount of the compound to be blended in the ultraviolet curable resin composition is preferably about 0.001 to 5 parts by weight with respect to 100 parts by weight of the composition. When the amount is less than 0.001 part by weight, the effect of suppressing the ene-thiol reaction is insufficient. When the amount exceeds 5 parts by weight, an unreacted hydroxyl group and alkoxy group in the component (A) undergo a condensation reaction. This is not preferable because it tends to gel.

紫外線硬化性樹脂組成物の有効成分(A)、(B)の濃度は、用途に応じて適宜に決定でき、必要に応じて溶剤を配合することができる。溶剤としては、従来公知のものを任意に用いることができる。紫外線硬化性樹脂組成物をコーティング剤として用いる場合は、溶剤で希釈し、所望の粘度とすればよい。また、紫外線硬化性樹脂組成物を1mm以上の厚膜に硬化させる場合や、接着剤として用いる場合には、成分(A)、(B)の合計濃度を90重量%以上にすることが好ましく、95重量%以上にすることがより好ましい。該合計濃度は、成分(A)および(B)の濃度と紫外線硬化性樹脂組成物の仕込み時に加えた溶剤の量とより計算で求めてもかまわないし、紫外線硬化性樹脂組成物に含まれる溶剤の沸点以上で2時間程度加熱し、加熱前後の重量変化により求めることもできる。該用途では、90重量%未満の場合、硬化、成形時に発泡したり、硬化物中に溶剤が残存する等により、硬化物の物性が低下する傾向がある。なお、成分(A)合成の際に溶剤を必須使用しているため、該用途に用いる際には、反応終了後、不揮発分含有量が90重量%以上となるよう溶剤を揮発させておけばよい。また、紫外線硬化性樹脂組成物を調製した後、用いた溶剤を揮発させて、有効成分(A)、(B)の合計濃度を高めることもできる。   The concentrations of the active ingredients (A) and (B) of the ultraviolet curable resin composition can be appropriately determined according to the application, and a solvent can be blended as necessary. A conventionally well-known thing can be arbitrarily used as a solvent. When the ultraviolet curable resin composition is used as a coating agent, it may be diluted with a solvent to obtain a desired viscosity. Further, when the ultraviolet curable resin composition is cured to a thick film of 1 mm or more, or when used as an adhesive, the total concentration of the components (A) and (B) is preferably 90% by weight or more, More preferably, it is 95% by weight or more. The total concentration may be calculated from the concentration of the components (A) and (B) and the amount of the solvent added at the time of charging the ultraviolet curable resin composition, or the solvent contained in the ultraviolet curable resin composition. It can also be obtained by heating for about 2 hours above the boiling point of and by changing the weight before and after heating. In the application, if it is less than 90% by weight, the physical properties of the cured product tend to be lowered due to foaming during curing and molding, or solvent remaining in the cured product. In addition, since the solvent is indispensably used during the synthesis of component (A), when used in the application, the solvent should be volatilized after the reaction so that the nonvolatile content is 90% by weight or more. Good. Moreover, after preparing an ultraviolet curable resin composition, the used solvent can be volatilized and the total density | concentration of an active ingredient (A) and (B) can also be raised.

本発明の紫外線硬化性樹脂組成物の必須成分は、前記のようにして得られる成分(A)と、成分(B)からなるものであるが、本発明の別の態様としては、成分(a1)および任意成分(a2)をギ酸の存在下に加水分解した後、溶剤および成分(B)の存在下に縮合反応させて得られるものがあげられる。反応温度、反応時間、溶剤種などの条件は、いずれも前記成分(A)における場合と同様である。   Although the essential component of the ultraviolet curable resin composition of this invention consists of the component (A) obtained as mentioned above and a component (B), as another aspect of this invention, it is a component (a1). ) And the optional component (a2) in the presence of formic acid, followed by a condensation reaction in the presence of the solvent and component (B). Conditions such as reaction temperature, reaction time, and solvent type are all the same as in the case of the component (A).

また、紫外線硬化性樹脂組成物には、用途に応じ、前記成分(a1)および/またはその加水分解物(但し、該縮合物は除く)[以下、併せて成分(C)という]を配合できる。成分(C)は、成分(A)の合成に際して用いた成分(a1)をそのままで用いるか、その加水分解物を用いるか、これらを組み合わせて使用できる。成分(C)を含有する紫外線硬化性樹脂組成物を、ガラス、金属等の無機基材に対するコーティング剤として用いると、該密着性をより向上できる利点がある。成分(C)の配合量は、該組成物100重量部に対して、0.1〜20重量部であることが好ましい。0.1重量部未満の場合は、該紫外線硬化性樹脂組成物の無機基材に対する密着性向上効果が不充分となる傾向がある。また、20重量部を超える場合、成分(C)が加水分解、縮合反応する際の揮発分が多くなるため、該紫外線硬化性樹脂組成物が厚膜硬化できなる、または得られる硬化物が脆くなる等の傾向がある。このような成分(C)としては、3−メルカプトプロピルトリメトキシシランが、当該密着性向上効果の点で特に好ましい。   The ultraviolet curable resin composition may contain the component (a1) and / or a hydrolyzate thereof (excluding the condensate) [hereinafter also referred to as component (C)] depending on the application. . As the component (C), the component (a1) used in the synthesis of the component (A) can be used as it is, or a hydrolyzate thereof can be used in combination. When the ultraviolet curable resin composition containing the component (C) is used as a coating agent for inorganic substrates such as glass and metal, there is an advantage that the adhesion can be further improved. It is preferable that the compounding quantity of a component (C) is 0.1-20 weight part with respect to 100 weight part of this composition. When the amount is less than 0.1 part by weight, the effect of improving the adhesion of the ultraviolet curable resin composition to the inorganic substrate tends to be insufficient. On the other hand, when the amount exceeds 20 parts by weight, the amount of volatile components when the component (C) undergoes hydrolysis and condensation increases, so that the ultraviolet curable resin composition can be cured thick or the resulting cured product is brittle. There is a tendency to become. As such a component (C), 3-mercaptopropyltrimethoxysilane is particularly preferable in terms of the effect of improving adhesion.

また、紫外線硬化性樹脂組成物には、用途に応じ、エポキシ基含有化合物(D)(以下、成分(D)という)を配合できる。成分(D)としては、従来公知のエポキシ基を持つ化合物を用いることができる。成分(D)を含有する紫外線硬化性樹脂組成物を、プラスチック等の有機基材に対するコーティング剤として用いると、該密着性をより向上できる利点がある。成分(D)は、成分(A)のチオール基と反応し、化学結合によって硬化物中に組み込まれ、該硬化物の耐熱性等の物性低下を抑制できる利点がある。エポキシ基を2つ以上有する化合物である場合には、成分(A)との架橋密度が高くなり、物性低下が最小限となるためより好ましい。成分(D)の配合量は、紫外線硬化性樹脂組成物100重量部に対して、0.1〜20重量部程度であり、かつ[成分(A)に含まれるチオール基のモル数]/[成分(B)に含まれる炭素−炭素2重結合のモル数と成分(D)に含まれるエポキシ基のモル数との合計](モル比)が、0.9〜1.1程度となるように配合することが好ましく、より好ましくは1.0である。0.1重量部に満たない場合は、有機基材に対する密着性向上効果が不充分となる傾向がある。また、20重量部を超える場合は、紫外線硬化性樹脂組成物の保存安定性が低下したり、紫外線硬化性が低下するなどの傾向がある。成分(D)のうち、ビスフェノールA型エポキシ樹脂は、エポキシ基を2個含有するものであり、かつ入手が容易であることより特に好ましい。   Moreover, an epoxy group-containing compound (D) (hereinafter referred to as component (D)) can be blended in the ultraviolet curable resin composition depending on the application. As the component (D), a conventionally known compound having an epoxy group can be used. When the ultraviolet curable resin composition containing the component (D) is used as a coating agent for an organic substrate such as plastic, there is an advantage that the adhesion can be further improved. Component (D) reacts with the thiol group of component (A), is incorporated into the cured product by chemical bonding, and has an advantage of suppressing physical properties such as heat resistance of the cured product. In the case of a compound having two or more epoxy groups, the crosslinking density with the component (A) is increased, and the decrease in physical properties is minimized. The compounding amount of the component (D) is about 0.1 to 20 parts by weight with respect to 100 parts by weight of the ultraviolet curable resin composition, and [number of moles of thiol groups contained in the component (A)] / [ The total (molar ratio) of the number of moles of carbon-carbon double bonds contained in component (B) and the number of moles of epoxy groups contained in component (D) is about 0.9 to 1.1. It is preferable to mix | blend with, More preferably, it is 1.0. If it is less than 0.1 part by weight, the effect of improving the adhesion to the organic substrate tends to be insufficient. Moreover, when it exceeds 20 weight part, there exists a tendency for the storage stability of an ultraviolet curable resin composition to fall, or for ultraviolet curable to fall. Among the components (D), the bisphenol A type epoxy resin is particularly preferable because it contains two epoxy groups and is easily available.

また、紫外線硬化性樹脂組成物には、用途に応じ、前記成分(a2)である金属アルコキシド類および/またはその加水分解物(但し、縮合物は含まず)(E)[以下、併せて成分(E)という]を配合できる。成分(E)は、成分(A)の合成に際して用いた金属アルコキシド類をそのままで用いるか、その加水分解物を用いるか、これらを組み合わせて使用できる。成分(E)を含有する紫外線硬化性樹脂組成物を用いることで、得られる硬化物の屈折率を調整することができる。該紫外線硬化性樹脂組成物を高屈折率のコーティング剤として用いる場合には、成分(E)としてアルコキシチタン類、アルコキシジルコニウム類が好適である。成分(E)の配合量は、紫外線硬化性樹脂組成物100重量部に対して、0.1〜20重量部程度であることが好ましい。0.1重量部に満たない場合には、屈折率向上効果が不充分となる傾向がある。また、20重量部を超える場合は、成分(E)が加水分解、縮合反応する際の揮発分が多くなるため、紫外線硬化性樹脂組成物が硬化時に発泡したり、反りやクラックが発生したり、得られる硬化物が脆くなるなどの傾向がある。   In addition, the ultraviolet curable resin composition includes a metal alkoxide as the component (a2) and / or a hydrolyzate thereof (excluding the condensate) (E) [hereinafter also referred to as a component, depending on the application. (E)] can be blended. As the component (E), the metal alkoxides used in the synthesis of the component (A) can be used as they are, their hydrolysates can be used, or these can be used in combination. By using the ultraviolet curable resin composition containing the component (E), the refractive index of the obtained cured product can be adjusted. When the ultraviolet curable resin composition is used as a coating agent having a high refractive index, alkoxytitaniums and alkoxyzirconiums are suitable as the component (E). It is preferable that the compounding quantity of a component (E) is about 0.1-20 weight part with respect to 100 weight part of ultraviolet curable resin compositions. If it is less than 0.1 part by weight, the refractive index improving effect tends to be insufficient. When the amount exceeds 20 parts by weight, the amount of volatile components when the component (E) undergoes hydrolysis or condensation reaction increases, so that the ultraviolet curable resin composition foams during curing, warpage or cracks occur. The resulting cured product tends to be brittle.

さらに、紫外線硬化性樹脂組成物には、本発明の効果を損なわない範囲で、各種用途での必要性に応じて、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、フィラー等を配合してもよい。   Furthermore, the ultraviolet curable resin composition has a plasticizer, a weather resistance agent, an antioxidant, a heat stabilizer, a lubricant, and an antistatic agent within the range that does not impair the effects of the present invention. , Whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, fillers, and the like may be blended.

こうして得られた紫外線硬化性樹脂組成物を用いて所望の硬化物を調製するためには、該組成物を所定の基材にコーティングし、または所定の型枠に充填し、溶剤を含む場合は該溶剤を揮発させた後、紫外線を照射すればよい。溶剤の揮発方法は溶剤の種類、量、膜厚等に応じて適宜決定すればよいが、40〜150℃程度、好ましくは60〜100℃に加熱し、常圧または減圧下で5秒〜2時間程度の条件とされる。紫外線の照射量は、紫外線硬化性樹脂組成物の種類、膜厚等に応じて適宜決定すればよいが、積算光量が50〜10000mJ/cm2程度となるよう照射すればよい。また、厚膜でコーティングや充填を行った場合には、前述のように該組成物に光反応開始剤や光増感剤を添加することにより、光硬化性を向上させることが好ましい。 In order to prepare a desired cured product using the ultraviolet curable resin composition thus obtained, when the composition is coated on a predetermined substrate or filled in a predetermined mold and contains a solvent, What is necessary is just to irradiate an ultraviolet-ray after volatilizing this solvent. The method for volatilizing the solvent may be appropriately determined according to the type, amount, film thickness, etc. of the solvent, but it is heated to about 40 to 150 ° C., preferably 60 to 100 ° C., for 5 seconds to 2 at normal pressure or reduced pressure. The condition is about time. The irradiation amount of ultraviolet rays may be appropriately determined according to the type and film thickness of the ultraviolet curable resin composition, but may be irradiated so that the integrated light amount is about 50 to 10,000 mJ / cm 2 . Moreover, when coating or filling with a thick film, it is preferable to improve photocurability by adding a photoreaction initiator or a photosensitizer to the composition as described above.

また、紫外線照射して得られた硬化物を、さらに加熱することで、硬化物の物性を一層向上させることができる。加熱の方法は適宜決定すればよいが、40〜300℃程度、好ましくは100〜250℃に加熱し、1分〜6時間程度の条件とされる。   Moreover, the physical property of hardened | cured material can be improved further by further heating the hardened | cured material obtained by ultraviolet irradiation. The heating method may be appropriately determined, but the heating is performed at about 40 to 300 ° C., preferably 100 to 250 ° C., and the conditions are about 1 minute to 6 hours.

(コーティング剤への適用)
紫外線硬化性樹脂組成物を所望の基材にコーティングし、紫外線硬化させることでコーティング層を得ることができる。基材としては、ガラス、鉄、アルミ、銅、ITO等の無機基材、PE、PP、PET、PEN、PMMA、PSt、PC、ABS等の有機基材など、各種公知のものを適宜に選択使用できる。無機基材へコーティングする際、密着性が不足する場合には、前述のように成分(C)を併用することが好ましい。また有機基材へコーティンングする際、密着性が不足する場合には、前述のように成分(D)を併用することが好ましい。また、紫外線硬化性樹脂組成物を溶剤希釈することで、コーティング性をある程度向上させることもできる。上述のような紫外線硬化性樹脂組成物をコーティングし、紫外線硬化させることで、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板、プリズム等にコーティング層を形成させることができる。
(Application to coating agent)
A coating layer can be obtained by coating an ultraviolet curable resin composition on a desired substrate and curing the composition with ultraviolet rays. As the substrate, various known materials such as inorganic substrates such as glass, iron, aluminum, copper, and ITO, and organic substrates such as PE, PP, PET, PEN, PMMA, PSt, PC, and ABS are appropriately selected. Can be used. When coating on an inorganic base material, when the adhesion is insufficient, it is preferable to use the component (C) in combination as described above. Moreover, when coating to an organic base material, when adhesiveness is insufficient, it is preferable to use a component (D) together as mentioned above. Also, the coating property can be improved to some extent by diluting the ultraviolet curable resin composition with a solvent. Light guide plate, polarizing plate, liquid crystal panel, EL panel, PDP panel, OHP film, optical fiber, color filter, optical disk substrate, lens, liquid crystal cell by coating and curing UV curing resin composition as described above A coating layer can be formed on plastic substrates, prisms and the like.

また、紫外線硬化性樹脂組成物から得られる硬化膜の屈折率が基材より高い場合には、反射防止効果を付与することができる。成分(A)の製造に際して、成分(a2)を成分(a1)と併用したり、前述のように成分(E)として該金属アルコキシド類を用いることで、該紫外線硬化性樹脂組成物から得られる硬化膜の屈折率を向上させることができる。そのため、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板、プリズムに対して適用されるコーティング層に反射防止効果を付与したい場合には、紫外線硬化性樹脂組成物に当該成分を適量添加しておくことが好ましい。   Moreover, when the refractive index of the cured film obtained from an ultraviolet curable resin composition is higher than a base material, an antireflection effect can be provided. When the component (A) is produced, the component (a2) is used in combination with the component (a1), or as described above, the metal alkoxide is used as the component (E) to obtain the ultraviolet curable resin composition. The refractive index of the cured film can be improved. Therefore, anti-reflection effect is applied to the coating layer applied to the light guide plate, polarizing plate, liquid crystal panel, EL panel, PDP panel, OHP film, optical fiber, color filter, optical disk substrate, lens, plastic substrate for liquid crystal cell, prism. In the case of imparting, it is preferable to add an appropriate amount of the component to the ultraviolet curable resin composition.

(接着剤への適用)
所定の基材間に紫外線硬化性樹脂組成物を介在させ、ついで該組成物を紫外線硬化させることで目的とする接着層を得ることができる。基材としては、前記のコーティング層形成時に用いたものと同様のものを使用できる。ただし、接着層を紫外線硬化させるためには、少なくとも片面が紫外線を透過する必要がある。また、接着層の発泡を防ぐため、前述のように紫外線硬化性樹脂組成物中の揮発性分を10%未満、好ましくは5%未満にするか、張り合わせ前に揮発分を除去しておくことが好ましい。上述のような紫外線硬化性樹脂組成物で接着することで、接着層が透明な接着物が得られるため、液晶パネル、ELパネル、PDPパネル、カラーフィルター、光ディスク基板等を作製するのに好適である。
(Application to adhesive)
An intended adhesive layer can be obtained by interposing an ultraviolet curable resin composition between predetermined substrates and then curing the composition with ultraviolet light. As the substrate, the same materials as those used when forming the coating layer can be used. However, in order to cure the adhesive layer with ultraviolet rays, at least one surface needs to transmit ultraviolet rays. In order to prevent foaming of the adhesive layer, the volatile content in the ultraviolet curable resin composition is less than 10%, preferably less than 5%, as described above, or the volatile content is removed before bonding. Is preferred. Adhesives with a transparent adhesive layer can be obtained by adhering with the ultraviolet curable resin composition as described above, which is suitable for producing liquid crystal panels, EL panels, PDP panels, color filters, optical disk substrates and the like. is there.

(封止材への適用)
紫外線硬化性樹脂組成物を厚膜塗布し、または所定の型枠に流し込んだ後、紫外線硬化させることで、透明な硬化物で封止された成形材料を得ることができる。このような材料は、発光素子、受光素子、光電変換素子、光伝送関連部品等の光学部品用途に、特に好適である。当該成形硬化物を作製する際には、前述のように、該組成物中に光硬化触媒や光増感剤を適量配合することや、該組成物中の揮発分含有率を10%未満、好ましくは5%未満にすることが好ましい。
(Application to sealing material)
A molding material sealed with a transparent cured product can be obtained by applying a thick film of the ultraviolet curable resin composition or pouring the ultraviolet curable resin composition into a predetermined mold, followed by curing with ultraviolet rays. Such a material is particularly suitable for use in optical parts such as a light emitting element, a light receiving element, a photoelectric conversion element, and an optical transmission related part. When preparing the molded cured product, as described above, a suitable amount of a photocuring catalyst or a photosensitizer is blended in the composition, or the volatile content in the composition is less than 10%, Preferably it is less than 5%.

(透明基板への適用)
紫外線硬化性樹脂組成物をガラスクロス(基材)に含浸させ、紫外線硬化させることで透明基板を得ることができる。ガラスクロスとしては各種公知のものを適宜に選択使用できる。ガラスクロスとしては、各種公知のガラス繊維(Eガラス、Cガラス、ECRガラスなどから構成されるストランド、ヤーン、ロービングなど)から得られる各種の布帛が使用できるが、Eガラスから作られるガラスクロスが安価であり、入手性に優れるため特に好ましい。紫外線硬化性樹脂組成物をガラスクロスに含浸させる方法についても特に限定はされず、各種公知の方法を採用でき、またコーティング法を採用してもよい。また、得られる透明基板を無色透明とするためには、紫外線硬化性樹脂組成物から得られる硬化物とガラスクロスとの屈折率の差を0.05以内にすることが好ましく、0.01以内にすることがより好ましく、同一にすることがさらに好ましい。また、紫外線硬化性樹脂組成物を溶剤希釈することで、ガラスクロスへの含浸性をより向上させることもできる。なお、ガラスクロスに対する紫外線硬化性樹脂組成物の使用割合は、得られる透明基板の用途に応じて適宜に決定でき、通常はガラスクロス100重量部あたり20〜500重量部とされる。また得られる透明基板の厚みも、該用途に応じて適宜に決定でき、通常は20μm〜1mmとされる。上述のような紫外線硬化性樹脂組成物をガラスクロスに含浸させ、紫外線硬化させることで得られる透明基板は、透明性、耐熱性に優れるため、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、カラーフィルター、光ディスク基板、液晶セル用プラスチック基板等にコーティング層を作製するのに好適である。
(Application to transparent substrate)
A transparent substrate can be obtained by impregnating a glass cloth (base material) with an ultraviolet curable resin composition and curing it with ultraviolet rays. Various known glass cloths can be appropriately selected and used. As the glass cloth, various fabrics obtained from various known glass fibers (strands composed of E glass, C glass, ECR glass, etc., yarn, roving, etc.) can be used. It is particularly preferable because it is inexpensive and has excellent availability. The method for impregnating the glass cloth with the ultraviolet curable resin composition is not particularly limited, and various known methods can be employed, and a coating method may be employed. Further, in order to make the transparent substrate obtained colorless and transparent, it is preferable that the difference in refractive index between the cured product obtained from the ultraviolet curable resin composition and the glass cloth is within 0.05, within 0.01 More preferably, it is more preferable that they are the same. Moreover, the impregnation property to a glass cloth can also be improved more by carrying out solvent dilution of the ultraviolet curable resin composition. In addition, the usage-amount of the ultraviolet curable resin composition with respect to a glass cloth can be suitably determined according to the use of the transparent substrate obtained, and is normally 20-500 weight part per 100 weight part of glass cloth. Moreover, the thickness of the transparent substrate obtained can also be suitably determined according to this use, and is normally set to 20 μm to 1 mm. A transparent substrate obtained by impregnating a glass cloth with the ultraviolet curable resin composition as described above and curing it with ultraviolet rays is excellent in transparency and heat resistance. Therefore, a light guide plate, a polarizing plate, a liquid crystal panel, an EL panel, and a PDP. It is suitable for producing a coating layer on a panel, a color filter, an optical disk substrate, a liquid crystal cell plastic substrate, and the like.

以下、実施例および比較例をあげて本発明を具体的に説明する。なお、各例中、部および%は特記しない限り重量基準である。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In each example, parts and% are based on weight unless otherwise specified.

製造例1(縮合物(A−1)の製造)
攪拌機、冷却管、分水器、温度計、窒素吹き込み口を備えた反応装置に、3−メルカプトプロピルトリメトキシシラン(東レ・ダウコーニング(株)製:商品名「SH−6062」)190部、イオン交換水52.3部([加水分解反応に用いる水のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)=1.0)、95%ギ酸9.5部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大22℃温度上昇した。反応後、プロピレングリコールモノメチルエーテルアセテート(日本乳化剤(株)製:商品名「MFG−AC」)287.36部を仕込み、加熱した。82℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。30分かけて105℃まで昇温し、縮合反応によって発生した水を留去した。さらに1時間30分、105℃で反応させた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸、プロピレングリコールモノメチルエーテルアセテートの一部を留去することで、縮合物(A−1)を385.2g得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0.15、濃度は32.0%であった。また、縮合物(A−1)のチオール当量は、398g/eqであった。
Production Example 1 (Production of condensate (A-1))
In a reactor equipped with a stirrer, a condenser, a water separator, a thermometer, and a nitrogen inlet, 190 parts of 3-mercaptopropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd .: trade name “SH-6062”), 52.3 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [number of moles of alkoxy groups contained in component (a1)] (molar ratio) = 1.0), 95% formic acid 9.5 The portion was charged and hydrolyzed at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 22 ° C. due to exotherm. After the reaction, 287.36 parts of propylene glycol monomethyl ether acetate (manufactured by Nippon Emulsifier Co., Ltd .: trade name “MFG-AC”) was charged and heated. When the temperature was raised to 82 ° C., methanol generated by hydrolysis began to be distilled off. The temperature was raised to 105 ° C. over 30 minutes, and water generated by the condensation reaction was distilled off. The reaction was further carried out at 105 ° C. for 1 hour and 30 minutes, and then the pressure was reduced at 70 ° C. to 150 mmHg, and a part of the remaining methanol, water, formic acid, and propylene glycol monomethyl ether acetate was distilled off to obtain a condensate (A -1) 385.2g was obtained. [Mole number of unreacted hydroxyl group and alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0.15, and the concentration was 32.0%. Moreover, the thiol equivalent of the condensate (A-1) was 398 g / eq.

製造例2(縮合物(A−2)の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン190部、イオン交換水52.3部([加水分解反応に用いる水のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)=1.0)、95%ギ酸9.5部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大22℃温度上昇した。反応後、トルエン287.36部を仕込み、加熱した。72℃まで昇温したところで、加水分解によって発生したメタノールとトルエンの一部が留去され始めた。20分かけて75℃まで昇温し、縮合反応させて水を留去した。さらに1時間、75℃で反応させた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去した。メタノール200.99部で希釈して、縮合物(A−2)を525.11部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0.14、濃度は23.5%であった。また、縮合物(A−2)のチオール当量は、398g/eqであった。
Production Example 2 (Production of condensate (A-2))
In the same reactor as in Production Example 1, 190 parts of 3-mercaptopropyltrimethoxysilane, 52.3 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [alkoxy group contained in component (a1)) Number of moles] (molar ratio) = 1.0), and 9.5 parts of 95% formic acid were charged and hydrolyzed at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 22 ° C. due to exotherm. After the reaction, 287.36 parts of toluene was charged and heated. When the temperature was raised to 72 ° C., part of methanol and toluene generated by hydrolysis began to be distilled off. The temperature was raised to 75 ° C. over 20 minutes, and water was distilled off by condensation reaction. After further reacting at 75 ° C. for 1 hour, the pressure was reduced at 70 ° C. to 150 mmHg to distill off the remaining methanol, water and formic acid. Dilution with 200.99 parts of methanol gave 525.11 parts of condensate (A-2). [Mole number of unreacted hydroxyl group and alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0.14, and the concentration was 23.5%. Moreover, the thiol equivalent of the condensate (A-2) was 398 g / eq.

製造例3(縮合物(A−3)の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン190部、イオン交換水52.30部([加水分解反応に用いる水のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)=1.0)、95%ギ酸9.50部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大22℃温度上昇した。反応後、ジエチレングリコールジメチルエーテル287.36部を仕込み、加熱した。75℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。さらに30分、75℃で反応させた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去することで、縮合物(A−3)を389.44部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0.14、濃度は31.6%であった。また、縮合物(A−3)のチオール当量は、402g/eqであった。
Production Example 3 (Production of condensate (A-3))
In the same reactor as in Production Example 1, 190 parts of 3-mercaptopropyltrimethoxysilane, 52.30 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [alkoxy group contained in component (a1)) Number of moles] (molar ratio) = 1.0), and 9.50 parts of 95% formic acid were charged and hydrolyzed at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 22 ° C. due to exotherm. After the reaction, 287.36 parts of diethylene glycol dimethyl ether was charged and heated. When the temperature was raised to 75 ° C., methanol generated by hydrolysis began to be distilled off. After further reacting at 75 ° C. for 30 minutes, the pressure was reduced at 70 ° C. to 150 mmHg, and the remaining methanol, water and formic acid were distilled off to obtain 389.44 parts of condensate (A-3). [Mole number of unreacted hydroxyl group and alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0.14, and the concentration was 31.6%. Moreover, the thiol equivalent of the condensate (A-3) was 402 g / eq.

製造例4(縮合物(A−4)の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン15.0部、フェニルトリメトキシシラン(東京化成(株)製)5.05部([成分(a1)に含まれるチオール基のモル数]/[成分(a1)と成分(a2)の合計モル数]=0.75、[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数]/[成分(a1)と成分(a2)の合計モル数]=3)、イオン交換水5.51部([加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)=1.0)、95%ギ酸1.00部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大20℃温度上昇した。反応後、プロピレングリコールモノメチルエーテルアセテート19.52部を仕込み、加熱した。82℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。30分かけて105℃まで昇温し、縮合反応させて水を留去した。さらに1時間30分、105℃で反応させた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去することで、縮合物(A−4)を25.13部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)は0.12、濃度は51.8%であった。また、縮合物(A−4)のチオール当量は、329g/eqであった。
Production Example 4 (Production of condensate (A-4))
In the same reactor as in Production Example 1, 15.0 parts of 3-mercaptopropyltrimethoxysilane, 5.05 parts of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) (of the thiol group contained in [component (a1)) Number of moles] / [total number of moles of component (a1) and component (a2)] = 0.75, [total number of moles of each alkoxy group contained in component (a1) and component (a2)] / [component (a1) ) And component (a2) total number of moles] = 3), 5.51 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [each alkoxy contained in component (a1) and component (a2)) Total number of moles of groups] (molar ratio) = 1.0), and 1.00 part of 95% formic acid was charged and hydrolyzed at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 20 ° C. due to exotherm. After the reaction, 19.52 parts of propylene glycol monomethyl ether acetate was charged and heated. When the temperature was raised to 82 ° C., methanol generated by hydrolysis began to be distilled off. The temperature was raised to 105 ° C. over 30 minutes, and the water was distilled off by condensation reaction. Furthermore, after making it react at 105 degreeC for 1 hour and 30 minutes, 25.13 parts of condensates (A-4) are obtained by depressurizing 70 degreeC-150 mmHg, and distilling off remaining methanol, water, and formic acid. It was. [Mole number of unreacted hydroxyl group and alkoxy group] / [total mole number of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) is 0.12, and the concentration is 51.8%. there were. Moreover, the thiol equivalent of the condensate (A-4) was 329 g / eq.

製造例5(縮合物(A−5)の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン18.0部、ジフェニルジメトキシシラン(東京化成(株)製)2.24部([成分(a1)に含まれるチオール基のモル数]/[成分(a1)と成分(a2)の合計モル数]=0.91、[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数]/[成分(a1)と成分(a2)の合計モル数]=2.9)、イオン交換水5.29部([加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)=1.0)、95%ギ酸0.90部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大20℃温度上昇した。反応後、プロピレングリコールモノメチルエーテルアセテート20.23部を仕込み、加熱した。82℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。30分かけて105℃まで昇温し、縮合反応させて水を留去した。さらに1時間30分、105℃で反応させた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去することで、縮合物(A−5)を29.0部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)は0.10、濃度は46.5%であった。また、縮合物(A−5)のチオール当量は、316g/eqであった。
Production Example 5 (Production of condensate (A-5))
In the same reactor as in Production Example 1, 18.0 parts of 3-mercaptopropyltrimethoxysilane, 2.24 parts of diphenyldimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) (moles of thiol groups contained in [component (a1)) Number] / [total number of moles of component (a1) and component (a2)] = 0.91, [total number of moles of each alkoxy group contained in component (a1) and component (a2)] / [component (a1) And the total number of moles of component (a2)] = 2.9), 5.29 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [component (a1) and component (a2)) Total number of moles of alkoxy groups] (molar ratio) = 1.0) and 0.90 part of 95% formic acid were charged and subjected to a hydrolysis reaction at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 20 ° C. due to exotherm. After the reaction, 20.23 parts of propylene glycol monomethyl ether acetate was charged and heated. When the temperature was raised to 82 ° C., methanol generated by hydrolysis began to be distilled off. The temperature was raised to 105 ° C. over 30 minutes, and the water was distilled off by condensation reaction. Furthermore, after making it react at 105 degreeC for 1 hour and 30 minutes, 29.0 parts of condensates (A-5) are obtained by depressurizing 70 degreeC-150 mmHg, and distilling off remaining methanol, water, and formic acid. It was. [Mole number of unreacted hydroxyl group and alkoxy group] / [Total mole number of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) is 0.10, and the concentration is 46.5%. there were. Moreover, the thiol equivalent of the condensate (A-5) was 316 g / eq.

製造例6(縮合物(A−6)の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン12.0部、イオン交換水3.60部([加水分解反応に用いる水のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)=1.0)、95%ギ酸0.67部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大20℃温度上昇した。反応後、テトラブチルチタネート(東京化成(株)製)1.39部、ジエチレングリコールジメチルエーテル20.25部を仕込み、加熱した。75℃まで昇温し、30分間縮合反応を行った。なお、[[成分(a1)に含まれるチオール基のモル数]/[成分(a1)と成分(a2)の合計モル数]=0.94、[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数]/[成分(a1)と成分(a2)の合計モル数]=3.1であった。さらに1時間、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去することで、縮合物(A−6)を29.39部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0.17、濃度は27.8%であった。また、縮合物(A−6)のチオール当量は、481g/eqであった。
Production Example 6 (Production of condensate (A-6))
In the same reactor as in Production Example 1, 12.0 parts of 3-mercaptopropyltrimethoxysilane and 3.60 parts of ion exchange water ([number of moles of water used in hydrolysis reaction] / [component (a1)) The number of moles of alkoxy groups] (molar ratio) = 1.0) and 0.67 part of 95% formic acid were charged and subjected to a hydrolysis reaction at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 20 ° C. due to exotherm. After the reaction, 1.39 parts of tetrabutyl titanate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 20.25 parts of diethylene glycol dimethyl ether were charged and heated. The temperature was raised to 75 ° C., and a condensation reaction was performed for 30 minutes. [[Mole number of thiol group contained in component (a1)] / [Total number of moles of component (a1) and component (a2)] = 0.94, [Included in component (a1) and component (a2) The total number of moles of each alkoxy group] / [total number of moles of component (a1) and component (a2)] = 3.1. The pressure was further reduced at 70 ° C. to 150 mmHg for 1 hour, and the remaining methanol, water and formic acid were distilled off to obtain 29.39 parts of the condensate (A-6). [Mole number of unreacted hydroxyl group and alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0.17, and the concentration was 27.8%. Moreover, the thiol equivalent of the condensate (A-6) was 481 g / eq.

製造例7(縮合物(A−7)の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン180部、イオン交換水49.55部([加水分解反応に用いる水のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)=1.0)、95%ギ酸9.00部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大22℃温度上昇した。反応後、トルエン272.23部を仕込み、加熱した。72℃まで昇温したところで、加水分解によって発生したメタノールとトルエンの一部が留去され始めた。20分かけて75℃まで昇温し、縮合反応させて水を留去した。さらに1時間、75℃で反応させた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去した。さらに70℃−5mmHgで減圧して、トルエンを留去することで、縮合物(A−7)を124.49部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0.16、濃度は93.7%であった。また、縮合物(A−7)のチオール当量は、136g/eqであった。
Production Example 7 (Production of condensate (A-7))
In the same reactor as in Production Example 1, 180 parts of 3-mercaptopropyltrimethoxysilane and 49.55 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [alkoxy group contained in component (a1)) Number of moles] (molar ratio) = 1.0), and 9.00 parts of 95% formic acid were charged, followed by hydrolysis at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 22 ° C. due to exotherm. After the reaction, 272.23 parts of toluene was charged and heated. When the temperature was raised to 72 ° C., part of methanol and toluene generated by hydrolysis began to be distilled off. The temperature was raised to 75 ° C. over 20 minutes, and water was distilled off by condensation reaction. After further reacting at 75 ° C. for 1 hour, the pressure was reduced at 70 ° C. to 150 mmHg to distill off the remaining methanol, water and formic acid. Further, the pressure was reduced at 70 ° C. to 5 mmHg, and toluene was distilled off to obtain 124.49 parts of the condensate (A-7). [Mole number of unreacted hydroxyl group and alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0.16, and the concentration was 93.7%. Moreover, the thiol equivalent of the condensate (A-7) was 136 g / eq.

製造例8(縮合物(A−8)の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン15.0部、フェニルトリメトキシシラン5.05部([成分(a1)に含まれるチオール基のモル数]/[成分(a1)と成分(a2)の合計モル数]=0.75、[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数]/[成分(a1)と成分(a2)の合計モル数]=3)、イオン交換水5.51部([加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)=1.0)、95%ギ酸1.00部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大20℃温度上昇した。反応後、トルエン19.52部を仕込み、加熱した。72℃まで昇温したところで、加水分解によって発生したメタノールとトルエンの一部が留去され始めた。20分かけて75℃まで昇温し、縮合反応させて水を留去した。さらに1時間、75℃で反応させた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去した。さらに70℃−5mmHgで減圧して、トルエンを留去することで、縮合物(A−8)を13.84部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)は0.16、濃度は94.0%であった。また、縮合物(A−8)のチオール当量は、181g/eqであった。
Production Example 8 (Production of condensate (A-8))
In the same reactor as in Production Example 1, 15.0 parts of 3-mercaptopropyltrimethoxysilane, 5.05 parts of phenyltrimethoxysilane ([number of moles of thiol group contained in component (a1)] / [component (a1 ) And the total number of moles of component (a2)] = 0.75, [total number of moles of each alkoxy group contained in component (a1) and component (a2)] / [total of component (a1) and component (a2) Number of moles] = 3), 5.51 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)]) Ratio) = 1.0), and 1.00 part of 95% formic acid was charged and hydrolyzed at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 20 ° C. due to exotherm. After the reaction, 19.52 parts of toluene was charged and heated. When the temperature was raised to 72 ° C., part of methanol and toluene generated by hydrolysis began to be distilled off. The temperature was raised to 75 ° C. over 20 minutes, and water was distilled off by condensation reaction. After further reacting at 75 ° C. for 1 hour, the pressure was reduced at 70 ° C. to 150 mmHg to distill off the remaining methanol, water and formic acid. Further, the pressure was reduced at 70 ° C. to 5 mmHg, and toluene was distilled off to obtain 13.84 parts of condensate (A-8). [Number of moles of unreacted hydroxyl group and alkoxy group] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) is 0.16, and the concentration is 94.0%. there were. Moreover, the thiol equivalent of the condensate (A-8) was 181 g / eq.

製造例9(縮合物(A−9)の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン18.0部、ジフェニルジメトキシシラン2.24部([成分(a1)に含まれるチオール基のモル数]/[成分(a1)と成分(a2)の合計モル数]=0.91、[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数]/[成分(a1)と成分(a2)の合計モル数]=2.9)、イオン交換水5.29部([加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)=1.0)、95%ギ酸0.90部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大20℃温度上昇した。反応後、トルエン20.23部を仕込み、加熱した。72℃まで昇温したところで、加水分解によって発生したメタノールとトルエンの一部が留去され始めた。20分かけて75℃まで昇温し、縮合反応させて水を留去した。さらに1時間、75℃で反応させた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去した。さらに70℃−5mmHgで減圧して、トルエンを留去することで、縮合物(A−9)を14.41部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)は0.16、濃度は93.6%であった。また、縮合物(A−9)のチオール当量は、157g/eqであった。
Production Example 9 (Production of condensate (A-9))
In the same reactor as in Production Example 1, 18.0 parts of 3-mercaptopropyltrimethoxysilane, 2.24 parts of diphenyldimethoxysilane ([number of moles of thiol group contained in component (a1)] / [component (a1)) And the total number of moles of component (a2)] = 0.91, [total number of moles of each alkoxy group contained in component (a1) and component (a2)] / [total number of moles of component (a1) and component (a2) Number] = 2.9), 5.29 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)]) (Molar ratio) = 1.0), 0.90 part of 95% formic acid was charged, followed by hydrolysis at room temperature for 30 minutes. During the reaction, the temperature rose by a maximum of 20 ° C. due to exotherm. After the reaction, 20.23 parts of toluene was charged and heated. When the temperature was raised to 72 ° C., part of methanol and toluene generated by hydrolysis began to be distilled off. The temperature was raised to 75 ° C. over 20 minutes, and water was distilled off by condensation reaction. After further reacting at 75 ° C. for 1 hour, the pressure was reduced at 70 ° C. to 150 mmHg to distill off the remaining methanol, water and formic acid. Further, the pressure was reduced at 70 ° C. to 5 mmHg, and toluene was distilled off to obtain 14.41 parts of the condensate (A-9). [Mole number of unreacted hydroxyl group and alkoxy group] / [total mole number of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) is 0.16, and the concentration is 93.6%. there were. Moreover, the thiol equivalent of the condensate (A-9) was 157 g / eq.

実施例1〜20(紫外線硬化性樹脂組成物の製造)
製造例1で得られた縮合物(A−1)10部に対し、トリアリルイソシアヌレート(日本化成(株)製:商品名「タイク」、[成分(B)に含まれる炭素−炭素2重結合のモル数]/[成分(B)のモル数]=3)2.09部([成分(A)に含まれるチオール基のモル数]/[成分(B)に含まれる炭素−炭素2重結合のモル数](モル比)=1.0)、亜リン酸トリフェニル(東京化成(株)製)0.20部を配し、紫外線硬化性樹脂組成物(F−1)とした。同様に、製造例1〜9で得られた縮合物(A−1〜9)を用い、下表に従って紫外線硬化性樹脂組成物(F−2〜F−20)とした。
Examples 1 to 20 (Production of UV curable resin composition)
For 10 parts of the condensate (A-1) obtained in Production Example 1, triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd .: trade name “Tyke”, [carbon-carbon double contained in component (B) Number of moles of bond] / [number of moles of component (B)] = 3) 2.09 parts ([number of moles of thiol group contained in component (A)] / [carbon-carbon contained in component (B) 2 The number of moles of heavy bonds] (molar ratio) = 1.0) and 0.20 part of triphenyl phosphite (manufactured by Tokyo Chemical Industry Co., Ltd.) were arranged to obtain an ultraviolet curable resin composition (F-1). . Similarly, it was set as the ultraviolet curable resin composition (F-2 to F-20) according to the following table using the condensate (A-1 to 9) obtained in Production Examples 1 to 9.

Figure 2007291313
Figure 2007291313

表中、DAP:ジアリルフタレート(ダイソー(株)製:商品名「ダイソーダップモノマー」、[成分(B)に含まれる炭素−炭素2重結合のモル数]/[成分(B)のモル数]=2)、P−30M:ペンタエリスリトールトリアリルエーテル(ダイソー(株)製:商品名「ネオアリルP−30M」、[成分(B)に含まれる炭素−炭素2重結合のモル数]/[成分(B)のモル数]=3)、SH−6062:3−メルカプトプロピルトリメトキシシラン(東レ・ダウコーニング(株)製商品名)、SR−8EG:ポリエチレングリコールジグリシジルエーテル(坂本薬品工業(株)製:商品名、エポキシ当量285g/eq)、エピコート828:ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン(株)製商品名、エポキシ当量189g/eq)、Q−1301:N−ニトロソフェニルヒドロキシルアミンアルミニウム塩(和光純薬工業(株)製商品名)を示す。   In the table, DAP: diallyl phthalate (manufactured by Daiso Co., Ltd .: trade name “Daiso Dup Monomer”, [number of moles of carbon-carbon double bonds contained in component (B)] / [number of moles of component (B)] = 2), P-30M: Pentaerythritol triallyl ether (Daiso Co., Ltd. product name: “Neoallyl P-30M”, [number of moles of carbon-carbon double bonds contained in component (B)] / [component Number of moles of (B)] = 3), SH-6062: 3-mercaptopropyltrimethoxysilane (trade name, manufactured by Toray Dow Corning Co., Ltd.), SR-8EG: polyethylene glycol diglycidyl ether (Sakamoto Pharmaceutical Co., Ltd.) ) Made: trade name, epoxy equivalent 285 g / eq), Epicoat 828: bisphenol A type liquid epoxy resin (trade name, epoxy produced by Japan Epoxy Resin Co., Ltd.) The amount 189g / eq), Q-1301: shows the N- nitrosophenylhydroxylamine aluminum salt (Wako Pure Chemical Industries, Ltd., trade name).

実施例21(紫外線硬化性樹脂組成物の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン25.0部、フェニルトリメトキシシラン8.42部、イオン交換水9.18部([加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)=1.0)、95%ギ酸1.67部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大26℃温度上昇した。反応後、トルエン50.54部を仕込み、加熱した。72℃まで昇温したところで、加水分解によって発生したメタノールとトルエンの一部が留去され始めた。1時間かけて75℃まで昇温し、縮合反応させて水を留去した。ここにトリアリルイソシアヌレート10.58gを加えた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去した。さらに70℃−5mmHgで減圧して、トルエンを留去することで、紫外線硬化性樹脂組成物(E−19)を33.97部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計のモル数](モル比)は0.14、濃度は95.0%であった。
Example 21 (Production of UV curable resin composition)
In the same reactor as in Production Example 1, 25.0 parts of 3-mercaptopropyltrimethoxysilane, 8.42 parts of phenyltrimethoxysilane, 9.18 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [Total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) = 1.0), 1.67 parts of 95% formic acid are charged and subjected to a hydrolysis reaction at room temperature for 30 minutes. It was. During the reaction, the temperature rose by a maximum of 26 ° C. due to exotherm. After the reaction, 50.54 parts of toluene was charged and heated. When the temperature was raised to 72 ° C., part of methanol and toluene generated by hydrolysis began to be distilled off. The temperature was raised to 75 ° C. over 1 hour, and the water was distilled off by condensation reaction. After adding 10.58 g of triallyl isocyanurate, the pressure was reduced at 70 ° C. to 150 mmHg to distill off the remaining methanol, water and formic acid. Furthermore, it reduced pressure at 70 degreeC-5mmHg, and 33.97 parts of ultraviolet curable resin compositions (E-19) were obtained by distilling toluene off. [Number of moles of unreacted hydroxyl group and alkoxy group] / [total number of moles of alkoxy groups contained in component (a1) and component (a2)] (molar ratio) is 0.14, and the concentration is 95.0%. Met.

実施例22(紫外線硬化性樹脂組成物の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン25.0g、フェニルトリメトキシシラン8.42部、イオン交換水9.18部([加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)=1.0)、95%ギ酸1.67部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大26℃温度上昇した。反応後、トルエン50.54部を仕込み、加熱した。72℃まで昇温したところで、加水分解によって発生したメタノールとトルエンの一部が留去され始めた。1時間かけて75℃まで昇温し、縮合反応させて水を留去した。ここにジアリルフタレート15.68部を加えた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去した。さらに70℃−5mmHgで減圧して、トルエンを留去することで、紫外線硬化性樹脂組成物(E−20)を39.65部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)は0.14、濃度は94.2%であった。
Example 22 (Production of UV curable resin composition)
In the same reactor as in Production Example 1, 25.0 g of 3-mercaptopropyltrimethoxysilane, 8.42 parts of phenyltrimethoxysilane, 9.18 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [Total number of moles of each alkoxy group contained in the component (a1) and the component (a2)] (molar ratio) = 1.0), 1.67 parts of 95% formic acid were charged, followed by hydrolysis at room temperature for 30 minutes. . During the reaction, the temperature rose by a maximum of 26 ° C. due to exotherm. After the reaction, 50.54 parts of toluene was charged and heated. When the temperature was raised to 72 ° C., part of methanol and toluene generated by hydrolysis began to be distilled off. The temperature was raised to 75 ° C. over 1 hour, and the water was distilled off by condensation reaction. After 15.68 parts of diallyl phthalate was added thereto, the pressure was reduced at 70 ° C. to 150 mmHg to distill off the remaining methanol, water and formic acid. Furthermore, it reduced pressure at 70 degreeC-5mmHg, and 39.65 parts of ultraviolet curable resin compositions (E-20) were obtained by distilling toluene off. [Mole number of unreacted hydroxyl group and alkoxy group] / [total mole number of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) is 0.14, and the concentration is 94.2%. there were.

実施例23(紫外線硬化性樹脂組成物の製造)
製造例1と同様の反応装置に、3−メルカプトプロピルトリメトキシシラン25.0部、フェニルトリメトキシシラン8.42部、イオン交換水9.18部、[加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)=1.0)、95%ギ酸1.67部を仕込み、室温で30分間加水分解反応させた。反応中、発熱によって最大26℃温度上昇した。反応後、トルエン50.54部を仕込み、加熱した。72℃まで昇温したところで、加水分解によって発生したメタノールとトルエンの一部が留去され始めた。1時間かけて75℃まで昇温し、縮合反応させて水を留去した。ここにペンタエリスリトールトリアリルエーテル10.88部を加えた後、70℃−150mmHgで減圧して、残存するメタノール、水、ギ酸を留去した。さらに70℃−5mmHgで減圧して、トルエンを留去することで、紫外線硬化性樹脂組成物(E−21)を34.69部得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)は0.14、濃度は93.9%であった。
Example 23 (Production of UV curable resin composition)
In the same reactor as in Production Example 1, 25.0 parts of 3-mercaptopropyltrimethoxysilane, 8.42 parts of phenyltrimethoxysilane, 9.18 parts of ion-exchanged water, [number of moles of water used for hydrolysis reaction] / [Total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) = 1.0), 1.67 parts of 95% formic acid are charged and subjected to a hydrolysis reaction at room temperature for 30 minutes. It was. During the reaction, the temperature rose by a maximum of 26 ° C. due to exotherm. After the reaction, 50.54 parts of toluene was charged and heated. When the temperature was raised to 72 ° C., part of methanol and toluene generated by hydrolysis began to be distilled off. The temperature was raised to 75 ° C. over 1 hour, and the water was distilled off by condensation reaction. To this was added 10.88 parts of pentaerythritol triallyl ether, and the pressure was reduced at 70 ° C. to 150 mmHg to distill off the remaining methanol, water and formic acid. Furthermore, it reduced pressure at 70 degreeC-5mmHg, and distilled off toluene, and obtained 34.69 parts of ultraviolet curable resin compositions (E-21). [Number of moles of unreacted hydroxyl group and alkoxy group] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) is 0.14, and the concentration is 93.9%. there were.

比較例1(紫外線硬化性樹脂組成物の製造)
ジペンタエリスリトールヘキサアクリレート(荒川化学工業(株)製:商品名「ビームセット−700」)をそのまま用いた。
Comparative Example 1 (Production of UV curable resin composition)
Dipentaerythritol hexaacrylate (manufactured by Arakawa Chemical Industries, Ltd .: trade name “Beamset-700”) was used as it was.

比較例2(紫外線硬化性樹脂組成物の製造)
ジペンタエリスリトールヘキサアクリレート10部に対し、光ラジカル開始剤(チバスペシャルティケミカルズ(株)製:商品名「イルガキュアIrg−184」)0.5部を配合し、紫外線硬化性樹脂組成物とした。
Comparative Example 2 (Production of UV curable resin composition)
To 10 parts of dipentaerythritol hexaacrylate, 0.5 part of a photo radical initiator (manufactured by Ciba Specialty Chemicals Co., Ltd .: trade name “Irgacure Irg-184”) was blended to prepare an ultraviolet curable resin composition.

比較例3(紫外線硬化性樹脂組成物の製造)
ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)(堺化学工業(株)製:商品名「PEMP」)10部に対し、トリアリルイソシアヌレート6.20部、亜リン酸トリフェニル0.20部を配合し、紫外線硬化性樹脂組成物とした。
Comparative Example 3 (Production of UV curable resin composition)
For 10 parts of pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by Sakai Chemical Industry Co., Ltd .: trade name “PEMP”), 6.20 parts of triallyl isocyanurate and 0.20 part of triphenyl phosphite It mix | blended and it was set as the ultraviolet curable resin composition.

比較例4(紫外線硬化性樹脂組成物の製造)
ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)10部に対し、ジアリルフタレート10.08部、亜リン酸トリフェニル0.20部を配合し、紫外線硬化性樹脂組成物とした。
Comparative Example 4 (Production of UV curable resin composition)
To 10 parts of pentaerythritol tetrakis (3-mercaptopropionate), 10.08 parts of diallyl phthalate and 0.20 part of triphenyl phosphite were blended to obtain an ultraviolet curable resin composition.

比較例5(紫外線硬化性樹脂組成物の製造)
ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)10部に対し、ペンタエリスリトールトリアクリレート6.99部、亜リン酸トリフェニル0.20部を配合し、紫外線硬化性樹脂組成物とした。
Comparative Example 5 (Production of UV curable resin composition)
To 99 parts of pentaerythritol tetrakis (3-mercaptopropionate), 6.99 parts of pentaerythritol triacrylate and 0.20 part of triphenyl phosphite were blended to obtain an ultraviolet curable resin composition.

比較例6(熱硬化性組成物の製造)
特開2005−290286号公報の実施例3に従い、比較用の熱硬化性組成物を合成した。具体的には、ビスフェノールA型グリシジルエーテル(ジャパンエポキシレジン(株)製、商品名「エピコート828」、エポキシ当量190g/eq)8部をテトラヒドロフラン8部に溶解し樹脂溶液とした。ついで、フェニルトリメトキシシラン18部、3−グリシドキシプロピルトリエトキシシラン8部、蟻酸の10重量%水溶液8部、テトラヒドロフラン49部を攪拌しながら60℃で3時間還流し、熱硬化剤(旭電化工業(株)製、商品名「アデカオプトンCP−66」)1部および前記樹脂溶液16部を加え、熱硬化性組成物とした。
Comparative Example 6 (Production of thermosetting composition)
A comparative thermosetting composition was synthesized according to Example 3 of JP-A-2005-290286. Specifically, 8 parts of bisphenol A glycidyl ether (manufactured by Japan Epoxy Resin Co., Ltd., trade name “Epicoat 828”, epoxy equivalent 190 g / eq) was dissolved in 8 parts of tetrahydrofuran to obtain a resin solution. Next, 18 parts of phenyltrimethoxysilane, 8 parts of 3-glycidoxypropyltriethoxysilane, 8 parts of a 10% by weight aqueous solution of formic acid, and 49 parts of tetrahydrofuran were refluxed at 60 ° C. for 3 hours with stirring, and a thermosetting agent (Asahi) 1 part of Denka Kogyo Co., Ltd., trade name “ADEKA OPTON CP-66”) and 16 parts of the resin solution were added to obtain a thermosetting composition.

(組成物の硬化性)
実施例1〜8、14〜18で得られた紫外線硬化性樹脂組成物を鋼板上に、硬化後膜厚が約15μmとなるようコーティングし、120℃で30分間溶剤乾燥させた。乾燥後、紫外線照射装置(ウシオ電機(株)製:商品名「UV−152」)を用い、365nmの紫外線検出器で積算光量が200mJ/cm2となるよう紫外線を照射した。同様に、実施例9〜13、19〜23、比較例1〜5で得られた紫外線硬化性樹脂組成物についても、硬化後膜厚が約15μmとなるようコーティングし、紫外線照射装置(ウシオ電機(株)製:商品名「UV−152」)を用い、365nmの紫外線検出器で積算光量が200mJ/cm2となるよう紫外線を照射した。比較例6で得られた熱硬化性組成物は、硬化後膜厚が約15μmとなるようコーティングし、60℃で30分間溶剤乾燥させた。続いて、120℃で3時間、150℃で1時間熱硬化させた。得られた硬化物の硬化性は、JIS K−5401の一般試験法による鉛筆硬度試験により評価した。
(Curability of composition)
The ultraviolet curable resin compositions obtained in Examples 1 to 8 and 14 to 18 were coated on a steel plate so that the film thickness after curing was about 15 μm, and the solvent was dried at 120 ° C. for 30 minutes. After drying, using an ultraviolet irradiation device (USHIO INC., Trade name “UV-152”), ultraviolet light was irradiated with a 365 nm ultraviolet detector so that the integrated light amount was 200 mJ / cm 2 . Similarly, the ultraviolet curable resin compositions obtained in Examples 9 to 13, 19 to 23, and Comparative Examples 1 to 5 were also coated so that the film thickness after curing was about 15 μm, and an ultraviolet irradiation device (USHIO INC. Ltd.: using trade name "UV-152"), integrated light quantity at 365nm UV detector was irradiated with ultraviolet rays so as to be 200 mJ / cm 2. The thermosetting composition obtained in Comparative Example 6 was coated so that the film thickness after curing was about 15 μm, and the solvent was dried at 60 ° C. for 30 minutes. Subsequently, thermosetting was performed at 120 ° C. for 3 hours and at 150 ° C. for 1 hour. The curability of the obtained cured product was evaluated by a pencil hardness test according to a general test method of JIS K-5401.

Figure 2007291313
Figure 2007291313

表2から明らかなように、比較例1の紫外線硬化性樹脂組成物はまったく硬化せず、比較例2の紫外線硬化性樹脂組成物は硬化が不充分であった。すなわち、一般的なラジカル重合による硬化では、開始剤なしで硬化を行うことができず、また硬化剤を配合しても厚膜では硬化しないことが分かる。これに対し、実施例1〜21、比較例3〜5の紫外線硬化性樹脂組成物は問題なく硬化しており、エン−チオール反応を用いた硬化系では開始剤なしで紫外線硬化可能であること、本願発明の硬化系でも、従来の有機−有機系と同等の硬化性を有することが分かる。また、比較例3〜5の硬化物に比べ、同一の成分(B)を用いて硬化させた実施例1〜21の硬化物では表面硬度が高いことから、本発明の紫外線硬化性樹脂組成物はハードコート剤として好適であると認められる。   As is clear from Table 2, the ultraviolet curable resin composition of Comparative Example 1 was not cured at all, and the ultraviolet curable resin composition of Comparative Example 2 was insufficiently cured. That is, it can be seen that curing by general radical polymerization cannot be performed without an initiator, and even if a curing agent is added, the thick film does not cure. On the other hand, the ultraviolet curable resin compositions of Examples 1 to 21 and Comparative Examples 3 to 5 are cured without any problem, and the curing system using the ene-thiol reaction is ultraviolet curable without an initiator. It can be seen that the curing system of the present invention has the same curability as that of the conventional organic-organic system. Moreover, since the surface hardness is high in the hardened | cured material of Examples 1-21 cured using the same component (B) compared with the hardened | cured material of Comparative Examples 3-5, the ultraviolet curable resin composition of this invention Is recognized as suitable as a hard coating agent.

(紫外線硬化性樹脂組成物の安定性)
実施例9、19、20で得られた紫外線硬化性樹脂組成物を褐色ビンに取って室温下で放置し、ゲル化までの日数によって紫外線硬化性樹脂組成物の安定性を評価した。
(Stability of UV curable resin composition)
The ultraviolet curable resin compositions obtained in Examples 9, 19, and 20 were taken in brown bottles and allowed to stand at room temperature, and the stability of the ultraviolet curable resin composition was evaluated by the number of days until gelation.

Figure 2007291313
Figure 2007291313

表2および表3より明らかなように、実施例19、20の紫外線硬化性樹脂組成物は、実施例9の紫外線硬化性樹脂組成物と同等の硬化性を有し、安定性については大きく向上していることが分かる。このため、1液化した際に安定性が特に求められる用途においては、ベンジルジメチルアミンのような3級アミン類、N−ニトロソフェニルヒドロキシルアミンアルミニウム塩のようなラジカル重合禁止剤を添加することで安定性を改善することが出来る。   As is clear from Tables 2 and 3, the ultraviolet curable resin compositions of Examples 19 and 20 have the same curability as the ultraviolet curable resin composition of Example 9, and the stability is greatly improved. You can see that For this reason, in applications where stability is particularly required when it is made into one solution, it is stable by adding a tertiary amine such as benzyldimethylamine and a radical polymerization inhibitor such as N-nitrosophenylhydroxylamine aluminum salt. Can be improved.

(硬化膜の耐候性)
実施例8〜10、比較例2〜5で得られた紫外線硬化性樹脂組成物をガラス板上に、硬化後膜厚が約5μmとなるようコーティングし、前記の紫外線照射装置を用い、365nmの紫外線検出器で積算光量が200mJ/cm2となるよう紫外線を照射した。得られた硬化物に対し、さらに積算光量が20000mJ/cm2となるよう紫外線を照射し、照射後の着色の程度を目視評価した。評価基準は次の通りである。
○:ほとんど着色なし △:少し着色あり(やや黄色) ×:濃い着色あり(茶色)
(Weather resistance of cured film)
The ultraviolet curable resin compositions obtained in Examples 8 to 10 and Comparative Examples 2 to 5 were coated on a glass plate so that the film thickness after curing was about 5 μm, and using the above ultraviolet irradiation apparatus, Ultraviolet rays were irradiated with an ultraviolet detector so that the integrated light amount was 200 mJ / cm 2 . The obtained cured product was further irradiated with ultraviolet rays so that the integrated light amount was 20000 mJ / cm 2, and the degree of coloring after irradiation was visually evaluated. The evaluation criteria are as follows.
○: Almost not colored Δ: Slightly colored (slightly yellow) ×: Darkly colored (brown)

Figure 2007291313
Figure 2007291313

表4から明らかなように、比較例2の硬化物は茶色に、比較例3〜5の硬化物はやや黄色に着色している。これに対し、実施例8〜10の硬化物はほとんど着色がなく、本願発明の硬化物は、従来の有機−有機系に比べより耐候性に優れることが分かる。   As is apparent from Table 4, the cured product of Comparative Example 2 is colored brown, and the cured products of Comparative Examples 3 to 5 are slightly colored yellow. On the other hand, the cured products of Examples 8 to 10 are hardly colored, and it can be seen that the cured product of the present invention is superior in weather resistance compared to conventional organic-organic systems.

(無機材への密着性)
実施例9、14で得られた紫外線硬化性樹脂組成物を各種無機基材に硬化後膜厚が約15μmとなるようコーティングし、前記の紫外線照射装置を用い、365nmの紫外線検出器で積算光量が500mJ/cm2となるよう紫外線を照射した。得られた硬化物について、JIS K−5400の一般試験法によるゴバン目セロハンテープ剥離試験により評価した。
(Adhesion to inorganic materials)
The ultraviolet curable resin compositions obtained in Examples 9 and 14 were coated on various inorganic substrates so as to have a film thickness of about 15 μm after curing, and using the aforementioned ultraviolet irradiation device, the integrated light intensity was measured with a 365 nm ultraviolet detector. Was irradiated with ultraviolet rays so as to be 500 mJ / cm 2 . About the obtained hardened | cured material, it evaluated by the gobang eyes cellophane tape peeling test by the general test method of JISK-5400.

Figure 2007291313
Figure 2007291313

表2および表5より明らかなように、成分(C)を配合した実施例14の硬化物は、実施例9の硬化物に比べて、硬化性は同等であるとともに、無機基材への密着性が大きく向上していることが分かる。このことより、実施例14の紫外線硬化性樹脂組成物は、無機基材よりなる導光板、偏光板、液晶パネル、ELパネル、PDPパネル、光ファイバー、カラーフィルター、光ディスク基板、レンズ、プリズム等へのコーティング剤や、無機基材よりなる液晶パネル、ELパネル、PDPパネル、カラーフィルター、光ディスク基板の接着剤として好適であると認められる。   As is clear from Table 2 and Table 5, the cured product of Example 14 in which the component (C) was blended had the same curability as that of the cured product of Example 9, and adhered to the inorganic substrate. It can be seen that the performance is greatly improved. From this, the ultraviolet curable resin composition of Example 14 is applied to a light guide plate, a polarizing plate, a liquid crystal panel, an EL panel, a PDP panel, an optical fiber, a color filter, an optical disk substrate, a lens, a prism and the like made of an inorganic base material. It is recognized that it is suitable as an adhesive for coating agents, liquid crystal panels made of inorganic substrates, EL panels, PDP panels, color filters, and optical disk substrates.

(有機材への密着性)
実施例9、16、17で得られた紫外線硬化性樹脂組成物を各種無機基材に硬化後膜厚が約15μmとなるようコーティングし、前記の紫外線照射装置を用い、365nmの紫外線検出器で積算光量が500mJ/cm2となるよう紫外線を照射した。得られた硬化物について、JIS K−5400の一般試験法によるゴバン目セロハンテープ剥離試験により評価した。
(Adhesion to organic materials)
The ultraviolet curable resin compositions obtained in Examples 9, 16, and 17 were coated on various inorganic substrates so as to have a film thickness of about 15 μm after curing, and using the above ultraviolet irradiation device, a 365 nm ultraviolet detector. Ultraviolet rays were irradiated so that the integrated light amount was 500 mJ / cm 2 . About the obtained hardened | cured material, it evaluated by the gobang eyes cellophane tape peeling test by the general test method of JISK-5400.

Figure 2007291313
Figure 2007291313

表2および表6より明らかなように、成分(D)を配した実施例16、17の硬化物は、実施例9の硬化物に比べて、表面硬度が若干低下するものの、有機基材への密着性が大きく向上していることが分かる。このことより、実施例16、17の紫外線硬化性樹脂組成物は、有機基材よりなる導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板、プリズム等へのコーティング剤や、有機基材よりなる液晶パネル、ELパネル、PDPパネル、カラーフィルター、光ディスク基板の接着剤として好適であると認められる。   As is clear from Tables 2 and 6, the cured products of Examples 16 and 17 in which the component (D) is arranged have a slightly lower surface hardness than the cured product of Example 9, but the organic base material is obtained. It can be seen that the adhesion is greatly improved. From this, the ultraviolet curable resin compositions of Examples 16 and 17 are light guide plates, polarizing plates, liquid crystal panels, EL panels, PDP panels, OHP films, optical fibers, color filters, optical disk substrates, lenses made of organic substrates. It is recognized that it is suitable as a coating agent for plastic substrates for liquid crystal cells, prisms, etc., and as an adhesive for liquid crystal panels, EL panels, PDP panels, color filters, and optical disk substrates made of organic base materials.

(屈折率)
実施例8、9、15、18、比較例3で得られた紫外線硬化性樹脂組成物を、不揮発分が30重量%となるよう、プロピレングリコールモノメチルエーテルアセテートで希釈した後、シリコン基板上に硬化後膜厚が約50nmとなるようコーティングし、120℃で15分間溶剤乾燥させた。乾燥後、前記の紫外線照射装置を用い、365nmの紫外線検出器で積算光量が200mJ/cm2となるよう紫外線を照射した。また、比較例6で得られた熱硬化性組成物を、不揮発分が30重量%となるよう、プロピレングリコールモノメチルエーテルアセテートで希釈した後、シリコン基板上に硬化後膜厚が約50nmとなるようコーティングし、60℃で10分間溶剤乾燥させた。続いて120℃で30分間熱硬化させた。得られた硬化物について、エリプソメーター(日本真空技術(株)製:商品名「ESM−1」)を用いて屈折率を測定した。
(Refractive index)
The ultraviolet curable resin composition obtained in Examples 8, 9, 15, 18 and Comparative Example 3 was diluted with propylene glycol monomethyl ether acetate so that the nonvolatile content was 30% by weight, and then cured on a silicon substrate. The film thickness after coating was about 50 nm, and the solvent was dried at 120 ° C. for 15 minutes. After drying, using the above-described ultraviolet irradiation device, ultraviolet rays were irradiated with a 365 nm ultraviolet detector so that the integrated light amount was 200 mJ / cm 2 . Moreover, after diluting the thermosetting composition obtained in Comparative Example 6 with propylene glycol monomethyl ether acetate so that the non-volatile content is 30% by weight, the film thickness after curing on the silicon substrate is about 50 nm. Coated and solvent dried at 60 ° C. for 10 minutes. Subsequently, it was thermally cured at 120 ° C. for 30 minutes. About the obtained hardened | cured material, the refractive index was measured using the ellipsometer (Nippon Vacuum Technology Co., Ltd. product name: "ESM-1").

Figure 2007291313
Figure 2007291313

表7より明らかなように、成分(a2)としてチタネートを配した実施例8の硬化物、および成分(E)としてチタネートを配した実施例15の硬化物は、実施例9の硬化物に比べて、屈折率が向上していることが分かる。このことより、実施例8、15の紫外線硬化性樹脂組成物は、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板、プリズム等の反射防止膜用コーティング剤として好適であると認められる。   As apparent from Table 7, the cured product of Example 8 in which titanate was arranged as component (a2) and the cured product of Example 15 in which titanate was arranged as component (E) were compared with the cured product of Example 9. It can be seen that the refractive index is improved. Accordingly, the ultraviolet curable resin compositions of Examples 8 and 15 were a light guide plate, a polarizing plate, a liquid crystal panel, an EL panel, a PDP panel, an OHP film, an optical fiber, a color filter, an optical disk substrate, a lens, and a plastic for a liquid crystal cell. It is recognized that it is suitable as a coating agent for antireflection films such as substrates and prisms.

(透明基板の作製)
実施例18および比較例3で得られた組成物を、硬化後に(ガラスクロスの重量)/(組成物の重量)が100/200となるよう市販のガラスクロス(クリッパー ガラスクロス マイクロB、膜厚28μm、屈折率1.54)に含浸させ、前記の紫外線照射装置を用い、365nmの紫外線検出器で積算光量が2000mJ/cm2となるよう紫外線を照射することで、厚さ80μmの基板を得た。また、比較例6で得られた組成物をガラスクロスに含浸させ、60℃の乾燥器で溶剤を揮散させた後、120℃で3時間加熱し、150℃で1時間プレス成形することで厚さ80μmの基板を得た。得られた基板の外観を目視評価した。評価基準は以下の通りである。
○・・・ほぼ透明
△・・・半透明
×・・・不透明
また、該基板の柔軟性については、該基板を曲げた際にクラックが生じる曲率半径によって評価した。
(Production of transparent substrate)
Commercially available glass cloth (clipper glass cloth micro B, film thickness) so that (weight of glass cloth) / (weight of composition) becomes 100/200 after curing the compositions obtained in Example 18 and Comparative Example 3. The substrate having a thickness of 80 μm is obtained by impregnating 28 μm with a refractive index of 1.54) and irradiating the ultraviolet light with the 365 nm ultraviolet detector so that the integrated light quantity becomes 2000 mJ / cm 2 using the above-mentioned ultraviolet irradiation device. It was. Further, the glass cloth was impregnated with the composition obtained in Comparative Example 6, the solvent was stripped off with a dryer at 60 ° C., heated at 120 ° C. for 3 hours, and press molded at 150 ° C. for 1 hour to increase the thickness. A substrate having a thickness of 80 μm was obtained. The appearance of the obtained substrate was visually evaluated. The evaluation criteria are as follows.
O: Almost transparent Δ: Translucent x: Opaque Further, the flexibility of the substrate was evaluated by the radius of curvature at which a crack occurred when the substrate was bent.

Figure 2007291313
Figure 2007291313

表8から明らかなように、比較例3で得られた基板は半透明であるのに対し、実施例18、比較例6で得られた基板はいずれもほぼ透明であった。また、比較例6の基板は曲率半径が5cm以下になるとクラックを生じるのに対し、実施例18、比較例3の基板はいずれも曲率半径が1cm以下となるよう曲げてもクラックが生じなかった。前記の各種試験結果より、比較例3、比較例6の基板に比べて実施例18の基板は諸物性に優れており、フレキシブルな液晶パネル、ELパネル、PDPパネル、カラーフィルター等の基材として用いるのにより好適であると認められる。   As is clear from Table 8, the substrate obtained in Comparative Example 3 was translucent, whereas the substrates obtained in Example 18 and Comparative Example 6 were almost transparent. The substrate of Comparative Example 6 cracked when the radius of curvature was 5 cm or less, whereas the substrates of Example 18 and Comparative Example 3 did not crack even when bent so that the radius of curvature was 1 cm or less. . From the above-mentioned various test results, the substrate of Example 18 is superior to the substrates of Comparative Example 3 and Comparative Example 6 in various physical properties, and as a base material for flexible liquid crystal panels, EL panels, PDP panels, color filters, etc. It is recognized that it is more suitable to use.

(接着性)
実施例9、比較例2、3で得られた紫外線硬化性樹脂組成物を鋼板上に、硬化後膜厚が約5μmとなるようコーティングし、厚み2mmのポリカーボネート板または厚み2mmのガラス板で蓋をし、前記の紫外線照射装置を用い、365nmの紫外線検出器で蓋がない場合に積算光量が1000mJ/cm2となるよう紫外線を照射した。得られた硬化物について、硬化性をJIS K−5401の一般試験法による鉛筆硬度試験により評価した。
(Adhesiveness)
The ultraviolet curable resin compositions obtained in Example 9 and Comparative Examples 2 and 3 were coated on a steel plate so that the film thickness after curing was about 5 μm, and the lid was covered with a polycarbonate plate having a thickness of 2 mm or a glass plate having a thickness of 2 mm. Then, using the above-described ultraviolet irradiation device, ultraviolet light was irradiated so that the integrated light amount was 1000 mJ / cm 2 when the 365 nm ultraviolet detector did not have a lid. About the obtained hardened | cured material, sclerosis | hardenability was evaluated by the pencil hardness test by the general test method of JISK-5401.

Figure 2007291313
Figure 2007291313

表9より明らかなように、比較例2の紫外線硬化性樹脂組成物はまったく硬化しなかったのに対し、比較例3、実施例9の紫外線硬化性樹脂組成物は問題なく硬化した。前記の各種試験結果より、比較例3の硬化物に比べて実施例9の硬化物は諸物性に優れており、液晶パネル、ELパネル、PDPパネル、カラーフィルター、光ディスク基板の接着剤として用いるのにより好適であると認められる。   As is clear from Table 9, the ultraviolet curable resin composition of Comparative Example 2 was not cured at all, whereas the UV curable resin compositions of Comparative Example 3 and Example 9 were cured without problems. From the above various test results, the cured product of Example 9 is superior in physical properties to the cured product of Comparative Example 3, and is used as an adhesive for liquid crystal panels, EL panels, PDP panels, color filters, and optical disk substrates. Is more suitable.

(耐熱性)
実施例9、比較例3で得られた紫外線硬化性樹脂組成物を、硬化後膜厚が約1mmとなるようアルミカップに流し込み、前記の紫外線照射装置を用い、365nmの紫外線検出器で積算光量が5000mJ/cm2となるよう紫外線を照射した。得られた硬化物を200℃の乾燥機で30分間加熱した。該硬化物を5mm×25mmにカットし、粘弾性測定器(セイコーインスツル(株)製、商品名「DMS6100」、測定条件:振動数1Hz、スロープ3℃/分)を用いて動的貯蔵弾性率を測定して、耐熱性を評価した。測定結果を図1に示す。図1から明らかなように、実施例9では比較例3に比べTgが向上しており、かつ、高温でも弾性率の低下が少なく、耐熱性に優れていることが認められる。
(Heat-resistant)
The ultraviolet curable resin composition obtained in Example 9 and Comparative Example 3 was poured into an aluminum cup so that the film thickness after curing was about 1 mm, and the integrated light amount was measured with a 365 nm ultraviolet detector using the above ultraviolet irradiation device. There was irradiated with ultraviolet rays so as to be 5000 mJ / cm 2. The resulting cured product was heated with a dryer at 200 ° C. for 30 minutes. The cured product is cut into 5 mm × 25 mm, and dynamic storage elasticity is measured using a viscoelasticity measuring device (manufactured by Seiko Instruments Inc., trade name “DMS6100”, measurement condition: frequency 1 Hz, slope 3 ° C./min). The heat resistance was evaluated by measuring the rate. The measurement results are shown in FIG. As is apparent from FIG. 1, in Example 9, Tg is improved as compared with Comparative Example 3, and it is recognized that there is little decrease in elastic modulus even at high temperatures and excellent heat resistance.

実施例9および比較例3の組成物から得られる硬化物についての温度と動的貯蔵弾性率との相関関係を図示したものである。The correlation of the temperature and dynamic storage elastic modulus about the hardened | cured material obtained from the composition of Example 9 and Comparative Example 3 is illustrated.

Claims (24)

一般式(1):
1Si(OR23 (1)
(式中、R1は少なくとも1つのチオール基を有する炭素数1〜8の炭化水素基、または少なくとも1つのチオール基を有する芳香族炭化水素基を表し、R2は水素原子、炭素数1〜8の炭化水素基、または芳香族炭化水素基を表す。)で示されるチオール基含有アルコキシシラン類(a1)を加水分解および縮合して得られる縮合物(A)、ならびに炭素−炭素2重結合を有する化合物(B)を含有することを特徴とする紫外線硬化性樹脂組成物。
General formula (1):
R 1 Si (OR 2 ) 3 (1)
(In the formula, R 1 represents a hydrocarbon group having 1 to 8 carbon atoms having at least one thiol group, or an aromatic hydrocarbon group having at least one thiol group, and R 2 represents a hydrogen atom, having 1 to 1 carbon atoms. And a condensate (A) obtained by hydrolyzing and condensing a thiol group-containing alkoxysilane (a1) represented by 8) or a carbon-carbon double bond. The ultraviolet curable resin composition characterized by containing the compound (B) which has this.
縮合物(A)が、アルコキシシラン類(a1)をギ酸の存在下に加水分解した後、溶剤の存在下に縮合反応させて得られたものである請求項1記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to claim 1, wherein the condensate (A) is obtained by hydrolyzing the alkoxysilane (a1) in the presence of formic acid and then performing a condensation reaction in the presence of a solvent. . 一般式(1):
1Si(OR23 (1)
(式中、R1は少なくとも1つのチオール基を有する炭素数1〜8の炭化水素基、または少なくとも1つのチオール基を有する芳香族炭化水素基を表し、R2は水素原子、炭素数1〜8の炭化水素基、または芳香族炭化水素基を表す。)で示されるチオール基含有アルコキシシラン類(a1)をギ酸の存在下に加水分解した後、溶剤および炭素−炭素2重結合を有する化合物(B)の存在下に縮合反応させて得られることを特徴とする紫外線硬化性樹脂組成物。
General formula (1):
R 1 Si (OR 2 ) 3 (1)
(In the formula, R 1 represents a hydrocarbon group having 1 to 8 carbon atoms having at least one thiol group, or an aromatic hydrocarbon group having at least one thiol group, and R 2 represents a hydrogen atom, having 1 to 1 carbon atoms. And a thiol group-containing alkoxysilane (a1) represented by formula (8) is hydrolyzed in the presence of formic acid, and then a solvent and a compound having a carbon-carbon double bond An ultraviolet curable resin composition obtained by a condensation reaction in the presence of (B).
縮合物(A)が、その構成成分としてチオール基を有しない金属アルコキシド類(a2)を含む請求項1〜3のいずれかに記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition in any one of Claims 1-3 in which a condensate (A) contains the metal alkoxide (a2) which does not have a thiol group as the structural component. アルコキシシラン類(a1)が3−メルカプトプロピルトリメトキシシランである請求項1〜4のいずれかに記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to claim 1, wherein the alkoxysilane (a1) is 3-mercaptopropyltrimethoxysilane. 化合物(B)がアリル基含有化合物である請求項1〜5のいずれかに記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to any one of claims 1 to 5, wherein the compound (B) is an allyl group-containing compound. さらに、アルコキシシラン類(a1)および/またはその加水分解物(但し、縮合物は含まず)(C)を含有する請求項1〜6のいずれかに記載の紫外線硬化性樹脂組成物。 Furthermore, the ultraviolet curable resin composition in any one of Claims 1-6 containing alkoxysilane (a1) and / or its hydrolyzate (however, a condensate is not included) (C). 成分(C)が、3−メルカプトプロピルトリメトキシシランおよび/またはその加水分解物(但し、縮合物は含まず)である請求項7記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to claim 7, wherein the component (C) is 3-mercaptopropyltrimethoxysilane and / or a hydrolyzate thereof (however, a condensate is not included). さらに、エポキシ基含有化合物(D)を含有する請求項1〜8のいずれかに記載の紫外線硬化性樹脂組成物。 Furthermore, the ultraviolet curable resin composition in any one of Claims 1-8 containing an epoxy group containing compound (D). エポキシ基含有化合物(D)が、当該1分子あたりエポキシ基を2つ以上有するものである請求項9記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to claim 9, wherein the epoxy group-containing compound (D) has two or more epoxy groups per molecule. さらに、金属アルコキシド類(a2)および/またはその加水分解物(但し、縮合物は含まず)(E)を含有する請求項1〜10のいずれかに記載の紫外線硬化性樹脂組成物。 Furthermore, the ultraviolet curable resin composition in any one of Claims 1-10 containing metal alkoxide (a2) and / or its hydrolyzate (however, a condensate is not included) (E). 成分(E)が、アルコキシシラン類、アルコキシチタン類、アルコキシジルコニウム類からなる群より選ばれる少なくとも1種である請求項11記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to claim 11, wherein the component (E) is at least one selected from the group consisting of alkoxysilanes, alkoxytitaniums, and alkoxyzirconiums. 不揮発分含有率が90重量%以上である請求項1〜12のいずれかに記載の紫外線硬化性樹脂組成物。 The ultraviolet curable resin composition according to claim 1, wherein the nonvolatile content is 90% by weight or more. さらに、エン−チオール反応を抑制する化合物を含有する請求項1〜13のいずれかに記載の紫外線硬化性樹脂組成物。 Furthermore, the ultraviolet curable resin composition in any one of Claims 1-13 containing the compound which suppresses ene-thiol reaction. 請求項1〜14のいずれかに記載の紫外線硬化性樹脂組成物を紫外線硬化させて得られることを特徴とする硬化物。 A cured product obtained by ultraviolet curing the ultraviolet curable resin composition according to claim 1. 請求項1〜14いずれかに記載の紫外線硬化性樹脂組成物を紫外線硬化させて得られたコーティング層を基材上に有することを特徴とする塗装物品。 A coated article comprising a coating layer obtained by ultraviolet-curing the ultraviolet-curable resin composition according to claim 1 on a substrate. コーティング層が基材よりも屈折率が高くなるように形成されている請求項16記載の塗装物品。 The coated article according to claim 16, wherein the coating layer is formed so as to have a refractive index higher than that of the substrate. 導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板またはプリズムの用途に適した請求項17記載の塗装物品。 18. The coated article according to claim 17, which is suitable for use as a light guide plate, a polarizing plate, a liquid crystal panel, an EL panel, a PDP panel, an OHP film, an optical fiber, a color filter, an optical disk substrate, a lens, a plastic substrate for a liquid crystal cell, or a prism. 請求項1〜14のいずれかに記載の紫外線硬化性樹脂組成物を被着物に塗布し、これと別の部材とを貼りあわせ、ついで紫外線硬化させて得られることを特徴とする多層構造体。 A multilayer structure obtained by applying the ultraviolet curable resin composition according to any one of claims 1 to 14 to an adherend, adhering this to another member, and then ultraviolet curing. 液晶パネル、ELパネル、PDPパネル、カラーフィルターまたは光ディスク基板の用途に適した請求項19記載の多層構造体。 The multilayer structure according to claim 19, which is suitable for a liquid crystal panel, an EL panel, a PDP panel, a color filter, or an optical disk substrate. 請求項1〜14のいずれかに記載の紫外線硬化性樹脂組成物を封止材として用い、紫外線硬化させて得られることを特徴とする封止物品。 A sealed article obtained by ultraviolet curing using the ultraviolet curable resin composition according to claim 1 as a sealing material. 発光素子、受光素子、光電変換素子、または光伝送関連部品の用途に適した請求項21記載の封止物品。 The sealed article according to claim 21, which is suitable for use as a light emitting element, a light receiving element, a photoelectric conversion element, or an optical transmission related part. 請求項1〜14のいずれかに記載の紫外線硬化性樹脂組成物をガラスクロスに含浸させた後、紫外線硬化させて得られることを特徴とする透明基板。 A transparent substrate obtained by impregnating a glass cloth with the ultraviolet curable resin composition according to any one of claims 1 to 14, followed by ultraviolet curing. 導光板、偏光板、液晶パネル、ELパネル、PDPパネル、カラーフィルター、光ディスク基板または液晶セル用プラスチック基板の用途に適した請求項23記載の透明基板。 The transparent substrate according to claim 23, which is suitable for use as a light guide plate, a polarizing plate, a liquid crystal panel, an EL panel, a PDP panel, a color filter, an optical disk substrate, or a plastic substrate for a liquid crystal cell.
JP2006203024A 2005-07-28 2006-07-26 Ultraviolet curable resin composition, the cured product, and various articles derived therefrom Active JP5489389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203024A JP5489389B2 (en) 2005-07-28 2006-07-26 Ultraviolet curable resin composition, the cured product, and various articles derived therefrom

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005219428 2005-07-28
JP2005219428 2005-07-28
JP2006008729 2006-01-17
JP2006008729 2006-01-17
JP2006088279 2006-03-28
JP2006088279 2006-03-28
JP2006203024A JP5489389B2 (en) 2005-07-28 2006-07-26 Ultraviolet curable resin composition, the cured product, and various articles derived therefrom

Publications (2)

Publication Number Publication Date
JP2007291313A true JP2007291313A (en) 2007-11-08
JP5489389B2 JP5489389B2 (en) 2014-05-14

Family

ID=38762247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203024A Active JP5489389B2 (en) 2005-07-28 2006-07-26 Ultraviolet curable resin composition, the cured product, and various articles derived therefrom

Country Status (1)

Country Link
JP (1) JP5489389B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217673A (en) * 2006-01-17 2007-08-30 Osaka City Thermosetting resin composition, cured product thereof, and various goods derived from these
JP2010149487A (en) * 2008-12-26 2010-07-08 Arakawa Chem Ind Co Ltd Laminated body having pattern formed on its surface
JP2010155896A (en) * 2008-12-26 2010-07-15 Arakawa Chem Ind Co Ltd Transparent adhesive
JP2011026492A (en) * 2009-07-28 2011-02-10 Dic Corp Active energy ray-curable resin composition and cured product thereof
JP2012180464A (en) * 2011-03-02 2012-09-20 Arakawa Chem Ind Co Ltd Method for producing thiol group-containing silsesquioxane, curable resin composition containing thiol group-containing silsesquioxane, cured product of the resin composition and various goods derived therefrom
US8318885B2 (en) 2005-07-28 2012-11-27 Arakawa Chemical Industries Ltd. Curable resin composition, cured product thereof, and various articles derived from those
WO2014061687A1 (en) 2012-10-18 2014-04-24 三菱瓦斯化学株式会社 Polymerizable composition, and cured article
JP2014153623A (en) * 2013-02-12 2014-08-25 Rohm & Haas Denshi Zairyo Kk Negative-type radiation-sensitive resin composition
JP2014221852A (en) * 2013-05-13 2014-11-27 地方独立行政法人 大阪市立工業研究所 Composition for surface protective coating and base material with surface protective layer formed thereon
JP2015081319A (en) * 2013-10-24 2015-04-27 セイコーインスツル株式会社 Coating film, coating agent and method of manufacturing coating agent
WO2015111640A1 (en) 2014-01-24 2015-07-30 和光純薬工業株式会社 Borate-based base generator, and base-reactive composition comprising such base generator
JP2016125020A (en) * 2015-01-07 2016-07-11 東京インキ株式会社 Ultraviolet ray-curable composition and organic-inorganic hybrid coloring material
WO2016117292A1 (en) * 2015-01-22 2016-07-28 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition, cured product thereof, and cured film formation method
WO2017131047A1 (en) * 2016-01-26 2017-08-03 和光純薬工業株式会社 Photocuring method, compound and composition used therein
JP2017179381A (en) * 2012-09-21 2017-10-05 日本化薬株式会社 Transparent encapsulation material
JP2017228520A (en) * 2016-06-16 2017-12-28 荒川化学工業株式会社 Seal material composition for lithium ion battery, cured product thereof, and lithium ion battery arranged by use thereof
JP2018123199A (en) * 2017-01-30 2018-08-09 日立化成株式会社 Adhesive composition, circuit connection material, film-like adhesive, connection structure and method for producing the same
WO2018194064A1 (en) 2017-04-21 2018-10-25 国立研究開発法人産業技術総合研究所 Laminate and method for producing same
JPWO2019124514A1 (en) * 2017-12-20 2021-01-14 日産化学株式会社 Photocurable Silicon-Containing Coating Film Forming Composition
CN114874694A (en) * 2022-05-17 2022-08-09 广东希贵光固化材料有限公司 Anti-oxygen polymerization-inhibiting UVLED coating

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141862A (en) * 1976-05-20 1977-11-26 Dow Corning Radiationncuring polydiorganosiloxane contained composition
JPS6058464A (en) * 1983-09-09 1985-04-04 Shin Etsu Chem Co Ltd Photosetting silicone composition
JPS63168434A (en) * 1986-12-22 1988-07-12 ワツカー シリコンス コーポレーシヨン Sulfur-containng organopolysiloxane wax and its production
JPH0331362A (en) * 1989-06-05 1991-02-12 Wacker Chemie Gmbh Thermally curable compound and manufacture of covering using said compound
JPH0641307A (en) * 1992-01-23 1994-02-15 Showa Denko Kk Graft modified ladder silicone and its composition
JPH06128379A (en) * 1992-10-20 1994-05-10 Showa Denko Kk Polyorganosilsesquioxane and its production
JPH0820707A (en) * 1994-07-07 1996-01-23 Matsushita Electric Works Ltd Sealing epoxy resin composition
JPH09501511A (en) * 1993-08-06 1997-02-10 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Light conditioning device with silicon-containing matrix
JPH09151328A (en) * 1995-11-30 1997-06-10 Toray Dow Corning Silicone Co Ltd Curing catalyst for organopolysiloxane composition and curable organopolysiloxane composition
JPH1030068A (en) * 1996-07-12 1998-02-03 Shin Etsu Chem Co Ltd Coating agent composition and article treated with the same coating agent composition
JPH1095920A (en) * 1996-09-25 1998-04-14 Shin Etsu Chem Co Ltd Photocurable liquid silicone rubber composition for impression master block
JPH10130393A (en) * 1996-09-03 1998-05-19 Showa Denko Kk Wholly side-chain mercapto group-bearing polyorganosilsesquioxane and its production
JPH10176081A (en) * 1996-12-19 1998-06-30 Yokohama Rubber Co Ltd:The Rubber composition
JPH10273559A (en) * 1997-01-29 1998-10-13 Yokohama Rubber Co Ltd:The Rubber composition for tire tread improved in processibility
JPH11227092A (en) * 1998-02-17 1999-08-24 Asahi Glass Co Ltd Transparent coated molding
JP2003049118A (en) * 2001-08-06 2003-02-21 Dainippon Toryo Co Ltd Coating composition
JP2003113243A (en) * 2001-07-06 2003-04-18 Degussa Ag Oligomeric organosilane, process for producing the same, its use, rubber mixture containing the same, and molded product including the mixture
JP2005105246A (en) * 2003-08-27 2005-04-21 Lintec Corp Polysilsesquioxane graft polymer, method for producing the same, and pressure-sensitive adhesive
JP2005171159A (en) * 2003-12-12 2005-06-30 Yokohama Rubber Co Ltd:The One pack type curable resin composition
JP2005179444A (en) * 2003-12-17 2005-07-07 Yokohama Rubber Co Ltd:The Curable composition
JP2005213345A (en) * 2004-01-29 2005-08-11 Taki Chem Co Ltd Coating composition for silver plating and its manufacturing method
JP2006002087A (en) * 2004-06-18 2006-01-05 Cmet Inc Resin composition for optical solid creation
JP2006022146A (en) * 2004-07-06 2006-01-26 Yokohama Rubber Co Ltd:The Curable resin composition
JP2006022142A (en) * 2004-07-06 2006-01-26 Yokohama Rubber Co Ltd:The Curable resin composition
WO2007013329A1 (en) * 2005-07-28 2007-02-01 Arakawa Chemical Industries, Ltd. Curable resin composition, cured product thereof, various articles derived from those
JP2007217673A (en) * 2006-01-17 2007-08-30 Osaka City Thermosetting resin composition, cured product thereof, and various goods derived from these
JP2008520809A (en) * 2004-11-18 2008-06-19 ヘキソン・スペシヤルテイ・ケミカルズ・インコーポレーテツド Ultrathin thiol-ene coating

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141862A (en) * 1976-05-20 1977-11-26 Dow Corning Radiationncuring polydiorganosiloxane contained composition
JPS6058464A (en) * 1983-09-09 1985-04-04 Shin Etsu Chem Co Ltd Photosetting silicone composition
JPS63168434A (en) * 1986-12-22 1988-07-12 ワツカー シリコンス コーポレーシヨン Sulfur-containng organopolysiloxane wax and its production
JPH0331362A (en) * 1989-06-05 1991-02-12 Wacker Chemie Gmbh Thermally curable compound and manufacture of covering using said compound
JPH0641307A (en) * 1992-01-23 1994-02-15 Showa Denko Kk Graft modified ladder silicone and its composition
JPH06128379A (en) * 1992-10-20 1994-05-10 Showa Denko Kk Polyorganosilsesquioxane and its production
JPH09501511A (en) * 1993-08-06 1997-02-10 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Light conditioning device with silicon-containing matrix
JPH0820707A (en) * 1994-07-07 1996-01-23 Matsushita Electric Works Ltd Sealing epoxy resin composition
JPH09151328A (en) * 1995-11-30 1997-06-10 Toray Dow Corning Silicone Co Ltd Curing catalyst for organopolysiloxane composition and curable organopolysiloxane composition
JPH1030068A (en) * 1996-07-12 1998-02-03 Shin Etsu Chem Co Ltd Coating agent composition and article treated with the same coating agent composition
JPH10130393A (en) * 1996-09-03 1998-05-19 Showa Denko Kk Wholly side-chain mercapto group-bearing polyorganosilsesquioxane and its production
JPH1095920A (en) * 1996-09-25 1998-04-14 Shin Etsu Chem Co Ltd Photocurable liquid silicone rubber composition for impression master block
JPH10176081A (en) * 1996-12-19 1998-06-30 Yokohama Rubber Co Ltd:The Rubber composition
JPH10273559A (en) * 1997-01-29 1998-10-13 Yokohama Rubber Co Ltd:The Rubber composition for tire tread improved in processibility
JPH11227092A (en) * 1998-02-17 1999-08-24 Asahi Glass Co Ltd Transparent coated molding
JP2003113243A (en) * 2001-07-06 2003-04-18 Degussa Ag Oligomeric organosilane, process for producing the same, its use, rubber mixture containing the same, and molded product including the mixture
JP2003049118A (en) * 2001-08-06 2003-02-21 Dainippon Toryo Co Ltd Coating composition
JP2005105246A (en) * 2003-08-27 2005-04-21 Lintec Corp Polysilsesquioxane graft polymer, method for producing the same, and pressure-sensitive adhesive
JP2005171159A (en) * 2003-12-12 2005-06-30 Yokohama Rubber Co Ltd:The One pack type curable resin composition
JP2005179444A (en) * 2003-12-17 2005-07-07 Yokohama Rubber Co Ltd:The Curable composition
JP2005213345A (en) * 2004-01-29 2005-08-11 Taki Chem Co Ltd Coating composition for silver plating and its manufacturing method
JP2006002087A (en) * 2004-06-18 2006-01-05 Cmet Inc Resin composition for optical solid creation
JP2006022146A (en) * 2004-07-06 2006-01-26 Yokohama Rubber Co Ltd:The Curable resin composition
JP2006022142A (en) * 2004-07-06 2006-01-26 Yokohama Rubber Co Ltd:The Curable resin composition
JP2008520809A (en) * 2004-11-18 2008-06-19 ヘキソン・スペシヤルテイ・ケミカルズ・インコーポレーテツド Ultrathin thiol-ene coating
WO2007013329A1 (en) * 2005-07-28 2007-02-01 Arakawa Chemical Industries, Ltd. Curable resin composition, cured product thereof, various articles derived from those
JP2007217673A (en) * 2006-01-17 2007-08-30 Osaka City Thermosetting resin composition, cured product thereof, and various goods derived from these

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014005930; Optical Materials Vol.26,2004, p.173-179 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318885B2 (en) 2005-07-28 2012-11-27 Arakawa Chemical Industries Ltd. Curable resin composition, cured product thereof, and various articles derived from those
JP2007217673A (en) * 2006-01-17 2007-08-30 Osaka City Thermosetting resin composition, cured product thereof, and various goods derived from these
JP2010149487A (en) * 2008-12-26 2010-07-08 Arakawa Chem Ind Co Ltd Laminated body having pattern formed on its surface
JP2010155896A (en) * 2008-12-26 2010-07-15 Arakawa Chem Ind Co Ltd Transparent adhesive
JP2011026492A (en) * 2009-07-28 2011-02-10 Dic Corp Active energy ray-curable resin composition and cured product thereof
JP2012180464A (en) * 2011-03-02 2012-09-20 Arakawa Chem Ind Co Ltd Method for producing thiol group-containing silsesquioxane, curable resin composition containing thiol group-containing silsesquioxane, cured product of the resin composition and various goods derived therefrom
JP2017179381A (en) * 2012-09-21 2017-10-05 日本化薬株式会社 Transparent encapsulation material
US9376603B2 (en) 2012-10-18 2016-06-28 Mitsubishi Gas Chemical Company, Inc. Polymerizable composition, and cured article
WO2014061687A1 (en) 2012-10-18 2014-04-24 三菱瓦斯化学株式会社 Polymerizable composition, and cured article
KR20150070090A (en) 2012-10-18 2015-06-24 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polymerizable composition, and cured article
JPWO2014061687A1 (en) * 2012-10-18 2016-09-05 三菱瓦斯化学株式会社 Polymerizable composition and cured product
JP2014153623A (en) * 2013-02-12 2014-08-25 Rohm & Haas Denshi Zairyo Kk Negative-type radiation-sensitive resin composition
JP2014221852A (en) * 2013-05-13 2014-11-27 地方独立行政法人 大阪市立工業研究所 Composition for surface protective coating and base material with surface protective layer formed thereon
JP2015081319A (en) * 2013-10-24 2015-04-27 セイコーインスツル株式会社 Coating film, coating agent and method of manufacturing coating agent
WO2015111640A1 (en) 2014-01-24 2015-07-30 和光純薬工業株式会社 Borate-based base generator, and base-reactive composition comprising such base generator
JP2016125020A (en) * 2015-01-07 2016-07-11 東京インキ株式会社 Ultraviolet ray-curable composition and organic-inorganic hybrid coloring material
WO2016117292A1 (en) * 2015-01-22 2016-07-28 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition, cured product thereof, and cured film formation method
WO2017131047A1 (en) * 2016-01-26 2017-08-03 和光純薬工業株式会社 Photocuring method, compound and composition used therein
JPWO2017131047A1 (en) * 2016-01-26 2019-01-24 富士フイルム和光純薬株式会社 Photocuring method, compound and composition used therefor
US10774062B2 (en) 2016-01-26 2020-09-15 Fujifilm Wako Pure Chemical Corporation Photocuring method, compound and composition used therein
JP2017228520A (en) * 2016-06-16 2017-12-28 荒川化学工業株式会社 Seal material composition for lithium ion battery, cured product thereof, and lithium ion battery arranged by use thereof
JP2018123199A (en) * 2017-01-30 2018-08-09 日立化成株式会社 Adhesive composition, circuit connection material, film-like adhesive, connection structure and method for producing the same
JP7130917B2 (en) 2017-01-30 2022-09-06 昭和電工マテリアルズ株式会社 Adhesive composition, circuit connection material, film adhesive, connection structure and method for producing the same
WO2018194064A1 (en) 2017-04-21 2018-10-25 国立研究開発法人産業技術総合研究所 Laminate and method for producing same
JPWO2019124514A1 (en) * 2017-12-20 2021-01-14 日産化学株式会社 Photocurable Silicon-Containing Coating Film Forming Composition
JP7315900B2 (en) 2017-12-20 2023-07-27 日産化学株式会社 Photocurable silicon-containing coating film-forming composition
CN114874694A (en) * 2022-05-17 2022-08-09 广东希贵光固化材料有限公司 Anti-oxygen polymerization-inhibiting UVLED coating

Also Published As

Publication number Publication date
JP5489389B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5489389B2 (en) Ultraviolet curable resin composition, the cured product, and various articles derived therefrom
JP5311744B2 (en) Ultraviolet curable resin composition, the cured product, and various articles derived therefrom
US8318885B2 (en) Curable resin composition, cured product thereof, and various articles derived from those
JP6347902B1 (en) Active energy ray-curable hot melt silicone composition, cured product thereof, and method for producing film
JP6853668B2 (en) Light and thermosetting resin compositions, cured products, and laminates
WO2007074813A1 (en) Curable composition
JP6021605B2 (en) Cage type silsesquioxane compound, curable resin composition and resin cured product using the same
US20120172483A1 (en) process for production of cured molded article, and cured molded article
WO2013094585A1 (en) Glass fiber composite resin substrate
TW201641540A (en) A polyorganosiloxane and a moisture and radiation curable adhesive composition comprising the same
JP2011006610A (en) Transparent composite
JP5773131B2 (en) Method for producing thiol group-containing silsesquioxane, curable resin composition containing thiol group-containing silsesquioxane, the cured product, and various articles derived therefrom
JPWO2013031798A1 (en) Thermal shock-resistant cured product and method for producing the same
JP7202253B2 (en) Radiation-curable organopolysiloxane composition and release sheet
JPS62141065A (en) Curable organopolysiloxane composition
JP2016160342A (en) Photo- or thermal-setting resin composition, cured article and laminate
JP5278742B2 (en) Transparent sheet
JP2012180462A (en) Curable resin composition, cured product thereof, and various articles derived from the same
JP6681317B2 (en) Ultraviolet curable silicone composition and method for forming cured film
JP2013091703A (en) Resin composition, resin molded body using the same, and method for producing resin molded body
KR102221378B1 (en) Organosilicon compound-containing thermosetting composition and cured product thereof
JP2010155896A (en) Transparent adhesive
JP2009108109A (en) Thermosetting resin composition, cured product, and light emitting diode derived from them
JP5729744B2 (en) Laminate with a pattern formed on the surface
JP2004323619A (en) Silane-modified epoxy resin containing no unsaturated bond, semicured material and cured material obtained from composition containing the resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250