JP2007290942A - Method for stopping reforming system, and the reforming system - Google Patents

Method for stopping reforming system, and the reforming system Download PDF

Info

Publication number
JP2007290942A
JP2007290942A JP2006301200A JP2006301200A JP2007290942A JP 2007290942 A JP2007290942 A JP 2007290942A JP 2006301200 A JP2006301200 A JP 2006301200A JP 2006301200 A JP2006301200 A JP 2006301200A JP 2007290942 A JP2007290942 A JP 2007290942A
Authority
JP
Japan
Prior art keywords
reforming
water
gas
steam
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006301200A
Other languages
Japanese (ja)
Other versions
JP5063986B2 (en
Inventor
Takeshi Kuwabara
武 桑原
Shiro Fujishima
史郎 藤島
Takuya Moroishi
拓也 諸石
Yasushi Yoshino
靖 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2006301200A priority Critical patent/JP5063986B2/en
Publication of JP2007290942A publication Critical patent/JP2007290942A/en
Application granted granted Critical
Publication of JP5063986B2 publication Critical patent/JP5063986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the phenomenon that, upon the stop of a reforming system, a closed system including a reforming means reaches a negative pressure region, and to protect the system. <P>SOLUTION: When the reforming system is stopped, at first, the feed of air for oxidation to a reforming means 1 is stopped, thereafter, the feed of a gaseous starting material is stopped, further, the feed of fuel to a water vapor generating means 30 is stopped, then, the gaseous starting material remaining in the reforming means 1 is purged with water vapor generated by the residual heat in the water vapor generating means 30, further, when the inside of the reforming means 1 reaches a negative pressure region or approaches a negative pressure region by the phenomenon that the water vapor at least present in a CO reducing means 17 and piping 16 communicated therefrom to the reforming means 1 is condensed by the reduction of temperature, a prescribed amount of water is fed to the reforming means 1, and the water is heated and evaporated by heat in the water vapor reforming means 1, thus the phenomenon that the inside of the reforming means 1 reaches a negative pressure state is prevented, and the system is protected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原料を水蒸気改質して水素リッチな改質ガスを生成し、その改質ガスを燃料電池等の付加設備に供給する改質システムの停止方法およびその改質システムに関し、特に、停止に際して改質手段等が負圧になることを防止・保護する改質システムの停止方法およびその改質システムに関する。   The present invention relates to a method for stopping a reforming system and a reforming system for producing a hydrogen-rich reformed gas by steam reforming a raw material and supplying the reformed gas to an additional facility such as a fuel cell. The present invention relates to a reforming system stopping method and a reforming system for preventing and protecting the reforming means and the like from becoming negative pressure when stopping.

従来から、原料ガスと水蒸気の混合物(以下、原料−水蒸気混合物という。)を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器(改質手段)が知られている。改質器で得られる水素リッチな改質ガスは、残留するCO(一酸化炭素)を触媒の存在下に酸素含有ガスと反応させてCO(炭酸ガス)へ変換し、特に低温で作動する固体高分子電解質型燃料電池用には、ppmレベルまでCOを低減してから燃料として供給される。
原料ガスには、メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類、都市ガスなどが用いられる。改質器において、メタンを原料ガスとして使用した場合の水蒸気改質の反応式は、CH+2HO →CO+4H で示すことができ、好ましい改質反応温度は、650〜750℃の範囲である。
Conventionally, there has been a reformer (reforming means) that generates a hydrogen-rich reformed gas by steam reforming a mixture of source gas and steam (hereinafter referred to as a source-steam mixture) in the presence of a reforming catalyst. Are known. The hydrogen-rich reformed gas obtained in the reformer reacts with residual oxygen (carbon monoxide) with an oxygen-containing gas in the presence of a catalyst to convert to CO 2 (carbon dioxide), and operates at a particularly low temperature. For solid polymer electrolyte fuel cells, CO is reduced to the ppm level before being supplied as fuel.
As the source gas, hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, city gas, and the like are used. In the reformer, the reaction formula of steam reforming when methane is used as a raw material gas can be expressed as CH 4 + 2H 2 O → CO 2 + 4H 2 , and the preferred reforming reaction temperature is 650 to 750 ° C. It is a range.

改質器の反応に必要な熱を供給する方式として外部加熱型と、内部加熱型がある。
外部加熱型の改質器は、外部に加熱部を設け、その熱源で原料ガスと水蒸気を反応させて改質ガスを生成するようになっている。内部加熱型の改質器はその供給側(上流側)に部分酸化反応層を設け、該部分酸化反応層で発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成するようになっている。
There are an external heating type and an internal heating type as a system for supplying heat necessary for the reaction of the reformer.
The external heating type reformer is provided with a heating unit outside, and a reformed gas is generated by reacting a raw material gas and water vapor with a heat source. The internal heating type reformer is provided with a partial oxidation reaction layer on the supply side (upstream side), and the steam reforming reaction layer disposed on the downstream side using the heat generated in the partial oxidation reaction layer is subjected to a steam reforming reaction. Heating is performed to a temperature, and a steam reforming reaction is performed in the heated steam reforming catalyst layer to generate a hydrogen-rich reformed gas.

部分酸化反応は、CH+1/2・O →CO+2Hで示すことができ、好ましい部分酸化反応の温度は250℃以上の範囲である。内部加熱型の改質器を改良したものとして自己酸化内部加熱型の改質器が例えば特許文献1,2に記載されている。特許文献1,2の改質器は外側の予備改質室とそれに連通する内側の主改質室を備えた二重構造になっており、予備改質室には改質触媒層が設けられ、主改質室には酸化用空気の供給管、改質触媒と酸化触媒が共存する混合触媒層、シフト触媒等が設けられる。なお、主改質室の中央部に酸化用空気を供給する供給管が延長され、その供給管が混合触媒層に延長する部分に複数のノズルからなる空気噴出部が形成される。 The partial oxidation reaction can be represented by CH 4 + 1/2 · O 2 → CO + 2H 2 , and the preferable partial oxidation reaction temperature is in the range of 250 ° C. or higher. For example, Patent Documents 1 and 2 describe a self-oxidation internal heating type reformer as an improvement of the internal heating type reformer. The reformers of Patent Documents 1 and 2 have a double structure including an outer pre-reforming chamber and an inner main reforming chamber communicating with the outer pre-reforming chamber, and the pre-reforming chamber is provided with a reforming catalyst layer. The main reforming chamber is provided with an oxidizing air supply pipe, a mixed catalyst layer in which the reforming catalyst and the oxidation catalyst coexist, a shift catalyst, and the like. A supply pipe for supplying the oxidizing air is extended to the central portion of the main reforming chamber, and an air ejection portion comprising a plurality of nozzles is formed at a portion where the supply pipe extends to the mixed catalyst layer.

改質触媒層は原料ガスを水蒸気改質するものであり、例えばNiO−AlあるいはNiO−SiO・AlなどのNi系改質反応触媒やWO−SiO・AlやNiO−WO・SiO・Alなどが使用される。混合触媒層を構成する改質触媒は上記と同様なものが使用され、それに均一に分散される酸化触媒は、原料−水蒸気混合物中の原料ガスを酸化発熱させて水蒸気改質反応に必要な温度を得るもので、例えば白金(Pt)やロジウム(Rh)あるいはルテニウム(Ru)あるいはパラジウム(Pd)が使用される。
なお改質触媒に対する酸化触媒の割合は、水蒸気改質すべき原料ガスの種類に応じて1〜15%程度の範囲で選択され、例えば原料ガスとしてメタンを使用する場合は5%±2%程度、メタノールの場合は2%±1%程度の混合割合とされる。
The reforming catalyst layer is for steam reforming the raw material gas. For example, a Ni-based reforming reaction catalyst such as NiO—Al 2 O 3 or NiO—SiO 2 · Al 2 O 3 or WO 2 —SiO 2 · Al 2. such as O 3 or NiO-WO 2 · SiO 2 · Al 2 O 3 is used. The reforming catalyst constituting the mixed catalyst layer is the same as described above, and the oxidation catalyst uniformly dispersed therein is the temperature required for the steam reforming reaction by oxidizing the raw material gas in the raw material-steam mixture to generate heat. For example, platinum (Pt), rhodium (Rh), ruthenium (Ru), or palladium (Pd) is used.
The ratio of the oxidation catalyst to the reforming catalyst is selected in the range of about 1 to 15% depending on the type of the raw material gas to be steam reformed. For example, when methane is used as the raw material gas, about 5% ± 2%, In the case of methanol, the mixing ratio is about 2% ± 1%.

改質器の水蒸気改質に必要な水蒸気を発生するため、改質システムには水蒸気発生手段が設けられる。水蒸気発生手段は気体燃料または液体燃料をバーナで燃焼し、その燃焼ガスで水を加熱して水蒸気を発生するものである。改質器には水蒸気発生手段で発生した水蒸気と原料ガス供給手段からの原料ガスをエジェクタからなる吸引混合手段で混合して得られた原料−水蒸気混合物が供給される。   In order to generate steam necessary for steam reforming of the reformer, the reforming system is provided with steam generating means. The water vapor generating means burns gaseous fuel or liquid fuel with a burner and heats water with the combustion gas to generate water vapor. The reformer is supplied with a raw material-water vapor mixture obtained by mixing the water vapor generated by the water vapor generating means and the raw material gas from the raw material gas supply means by the suction mixing means comprising an ejector.

改質システムを停止する際に、改質器への原料ガスおよび酸化空気の供給を停止すると、改質器の内部温度は急激に降下しないため、改質器内に残留する原料ガスが高温により炭素析出現象を起こす。その炭素析出を防止するため、例えば特許文献3に、改質システム停止に際して改質器内部に残留する原料ガスを水蒸気でパージする方法が提案されている。特許文献3の改質システムの停止方法は、改質器への原料ガス供給停止後に改質器に残留する原料ガスを水蒸気でパージした後、自然冷却に任せ、改質器の内部温度が原料ガスの炭素析出温度以下になった時点で改質器内部に原料ガスを封入している。   When stopping the reforming system, if the supply of raw material gas and oxidized air to the reformer is stopped, the internal temperature of the reformer does not drop rapidly, so the raw material gas remaining in the reformer Causes carbon deposition. In order to prevent the carbon deposition, for example, Patent Document 3 proposes a method of purging the raw material gas remaining inside the reformer with water vapor when the reforming system is stopped. The method for stopping the reforming system of Patent Document 3 is that after the raw material gas supply to the reformer is stopped, the raw material gas remaining in the reformer is purged with steam, and then left to natural cooling. The raw material gas is sealed inside the reformer when the temperature becomes lower than the carbon deposition temperature of the gas.

特開2001−192201号公報JP 2001-192201 A 特開2005−149860号公報JP-A-2005-149860 特開2002−151124号公報JP 2002-151124 A

従来の改質システムの停止方法では、改質器に残留する原料ガスを水蒸気でパージした後、改質システムを密閉状態に維持して改質器を自然冷却する。その際、改質器からCO低減手段への配管およびCO低減手段の内部は改質器より早く冷却するが、改質器からCO低減手段への配管およびCO低減手段の内部には改質システム運転時に改質ガスに並存していた水蒸気が残留しているので、これらの内部温度が水の露点領域に降下すると残留する水蒸気が凝縮する。   In the conventional method of stopping the reforming system, after the raw material gas remaining in the reformer is purged with steam, the reformer is maintained in a sealed state to naturally cool the reformer. At that time, the piping from the reformer to the CO reduction means and the inside of the CO reduction means are cooled faster than the reformer, but the piping from the reformer to the CO reduction means and the inside of the CO reduction means are in the reforming system. Since the water vapor coexisting in the reformed gas at the time of operation remains, when the internal temperature falls to the dew point region of water, the remaining water vapor is condensed.

通常、改質器およびCO低減手段を含む改質システムは密封状態に維持されているので、前期水蒸気の冷却による封入ガスの収縮や凝縮により改質システムの系内は負圧状態になる。しかし改質システムの系内を負圧状態のまま放置すると、配管に設けた弁の接続部分などから外部の空気を吸い込み、触媒を酸化劣化させ、燃料と混合した場合爆発等安全性が阻害される怖れが生まれる。また、配管等の系内の水が反応器内部にまで吸い込まれ内部の触媒層を水浸しにしてしまい、触媒の劣化、例えば粉化や不純物による触媒被毒を加速させてしまうこともある。   Usually, since the reforming system including the reformer and the CO reduction means is maintained in a sealed state, the inside of the reforming system is in a negative pressure state due to the contraction and condensation of the sealed gas due to the cooling of the previous steam. However, if the inside of the reforming system is left in a negative pressure state, external air is sucked in from the connection part of the valve provided in the piping, the catalyst is oxidized and deteriorated, and safety such as explosion is hindered when mixed with fuel. A fear is born. In addition, water in the system such as piping may be drawn into the reactor and the internal catalyst layer may be submerged, accelerating catalyst deterioration such as pulverization and catalyst poisoning due to impurities.

従来の改質システムの停止方法では、改質器に水蒸気パージをしてから原料ガスを封入するまでの間に、改質器からCO低減手段への配管及びCO低減手段の内部の急激な冷却により、前記のように封入ガスの体積収縮や残留水蒸気が凝縮して改質システムの系内が負圧状態になるので、前記のような問題が発生する。   In the conventional reforming system shutdown method, the pipe from the reformer to the CO reduction means and the inside of the CO reduction means are rapidly cooled between the time when the reformer is purged with steam and the time when the raw material gas is sealed. As described above, the volume shrinkage of the sealed gas and the residual water vapor are condensed, and the inside of the reforming system is in a negative pressure state.

このような改質システムにおける負圧状態を解決するため、例えば水蒸気改質手段から新たな水蒸気を改質器に供給することも考えられる。しかし、そのためには改質システムの停止操作中も水蒸気発生手段を運転継続するか、負圧状態になった都度水蒸気発生手段を起動する必要がある。このように改質システムの停止操作中においても水蒸気発生手段を運転するとそれに応じて燃料を消費するのでシステムの熱効率が低下するという問題が生じる。   In order to solve such a negative pressure state in the reforming system, for example, it is conceivable to supply new steam from the steam reforming means to the reformer. However, for that purpose, it is necessary to continue the operation of the steam generating means even during the operation of stopping the reforming system or to start the steam generating means every time the negative pressure state is reached. As described above, even when the reforming system is stopped, if the steam generating means is operated, the fuel is consumed accordingly, so that the thermal efficiency of the system is lowered.

そこで本発明は、このような従来の改質システムの停止方法における問題を解決することを課題とし、そのための新しい改質システムの停止方法、およびその改質システムを提供することを目的とする。   Accordingly, an object of the present invention is to solve such a problem in the conventional reforming system stopping method, and an object thereof is to provide a new reforming system stopping method and a reforming system therefor.

前記課題を解決する本発明の改質システムの停止方法は、水蒸気を発生する水蒸気発生手段30と、前記水蒸気発生手段30で発生した水蒸気で原料ガスを改質して水素リッチな改質ガスを生成する改質手段1と、前記生成した改質ガスに含まれるCO(一酸化炭素)を低減するCO低減手段17を備えた改質システムの停止方法である。そして、改質システムを停止する際に、先ず改質手段1への酸化用空気の供給を停止した後、原料ガス供給を停止するとともに水蒸気発生手段30への燃料供給を停止し、ついで水蒸気発生手段30の余熱で生成する水蒸気により改質手段1に残留する原料ガスをパージし、さらに、少なくともCO低減手段17及びそれから改質手段1に連通する配管16内に存在する水蒸気が温度低下し、収縮及び/または凝縮することにより改質手段1内が負圧領域に達するかもしくは負圧領域に近づいたときに、改質手段1に所定量の水を供給してその水を改質手段1の熱で加熱・蒸発させることによって改質手段1内が負圧状態になることを防止することを特徴とする。(請求項1)   The method for stopping the reforming system of the present invention that solves the above problems includes a steam generating means 30 that generates steam, and reforming a raw material gas with the steam generated by the steam generating means 30 to generate a hydrogen-rich reformed gas. This is a method for stopping a reforming system including a reforming unit 1 to be generated and a CO reduction unit 17 for reducing CO (carbon monoxide) contained in the generated reformed gas. When stopping the reforming system, first, the supply of the oxidizing air to the reforming means 1 is stopped, then the supply of the raw material gas is stopped and the fuel supply to the steam generating means 30 is stopped, and then the steam generation is performed. The raw material gas remaining in the reforming means 1 is purged by the steam generated by the residual heat of the means 30, and the temperature of the steam present in at least the CO reducing means 17 and the pipe 16 communicating with the reforming means 1 is lowered. When the inside of the reforming means 1 reaches or approaches the negative pressure region due to contraction and / or condensation, a predetermined amount of water is supplied to the reforming means 1 and the water is reformed. It is characterized in that the inside of the reforming means 1 is prevented from being in a negative pressure state by heating and evaporating with heat. (Claim 1)

上記改質システムの停止方法において、前記CO低減手段17でCOを低減された改質ガスを水タンク60にバブリングにより流入させ、その水タンク60に貯留された水を前記改質手段1に供給することができる。(請求項2)   In the reforming system stopping method, the reformed gas whose CO has been reduced by the CO reducing means 17 is caused to flow into the water tank 60 by bubbling, and the water stored in the water tank 60 is supplied to the reforming means 1. can do. (Claim 2)

さらに上記改質システムの停止方法において、前記水タンク60から前記改質手段1への所定量の水の供給は、前記水タンク60と改質手段1との差圧を利用して行うことができる。(請求項3)   Further, in the method for stopping the reforming system, the supply of a predetermined amount of water from the water tank 60 to the reforming unit 1 can be performed using a differential pressure between the water tank 60 and the reforming unit 1. it can. (Claim 3)

上記改質システムの停止方法のいずれかにおいて、前記改質手段1に設けた所定の内容積を有する熱交換パイプ50に所定量の水を供給し、熱交換パイプ50で生成した水蒸気を改質手段1の原料ガスの供給部11に供給することができる。(請求項4)   In any one of the above reforming system stop methods, a predetermined amount of water is supplied to the heat exchange pipe 50 having a predetermined internal volume provided in the reforming means 1 to reform the steam generated by the heat exchange pipe 50. It can be supplied to the source gas supply unit 11 of the means 1. (Claim 4)

前記課題を解決する本発明の改質システムは、水蒸気を発生する水蒸気発生手段30と、前記水蒸気発生手段30で発生した水蒸気で原料ガスを改質して水素リッチな改質ガスを生成する改質手段1と、前記生成した改質ガスに含まれるCO(一酸化炭素)を低減するCO低減手段17を備えた改質システムである。そして、前記改質手段1に設けた前記水蒸気と原料ガスの混合物(原料−水蒸気混合物)を供給する原料供給部11及び所定の内容積を有する熱交換パイプ50と、前記CO低減手段17の出口側に連通された水タンク60と、前記水タンク60の水を熱交換パイプ50の入口側に供給する配管51を備え、前記熱交換パイプ50の出口側と原料供給部11が連通されていることを特徴とする。(請求項5)   The reforming system of the present invention that solves the above problems includes a steam generating unit 30 that generates steam, and a reformer that generates a hydrogen-rich reformed gas by reforming a raw material gas with the steam generated by the steam generating unit 30. The reforming system includes a quality control means 1 and a CO reduction means 17 for reducing CO (carbon monoxide) contained in the generated reformed gas. And the raw material supply part 11 which supplies the mixture (raw material-steam mixture) of the water vapor and the raw material gas provided in the reforming means 1, the heat exchange pipe 50 having a predetermined internal volume, and the outlet of the CO reduction means 17 A water tank 60 communicated to the side, and a pipe 51 for supplying the water of the water tank 60 to the inlet side of the heat exchange pipe 50, and the outlet side of the heat exchange pipe 50 and the raw material supply unit 11 are communicated with each other. It is characterized by that. (Claim 5)

上記改質システムにおいて、燃料電池15から排出するアノード排ガスを通過させてそれに含まれる水を分離回収する気液分離室61を前記水タンク60に連通して設けることができる。(請求項6)   In the above reforming system, a gas-liquid separation chamber 61 for allowing the anode exhaust gas discharged from the fuel cell 15 to pass through and separating and recovering water contained therein can be provided in communication with the water tank 60. (Claim 6)

上記いずれかの改質システムにおいて、前記水タンク60の上部に連通して設けた気液分離室62と、前記水タンク60の水を前記気液分離室62内に吸い上げる親水性充填層70と、前記親水性充填層70中に改質ガスを供給する配流部18aと、前記気液分離室62に補給水を供給する補給部68を設けることができる。(請求項7)   In any one of the above reforming systems, a gas-liquid separation chamber 62 provided in communication with the upper portion of the water tank 60, and a hydrophilic packed bed 70 that sucks water from the water tank 60 into the gas-liquid separation chamber 62; A distribution unit 18a for supplying the reformed gas into the hydrophilic packed bed 70 and a supply unit 68 for supplying makeup water to the gas-liquid separation chamber 62 can be provided. (Claim 7)

本発明の改質システムの停止方法は、請求項1に記載のように、少なくともCO低減手段及びそれから改質手段1に連通する配管内に存在する水蒸気が温度低下して、収縮や凝縮することにより改質手段1の内部が負圧領域に達するか若しくは負圧領域に近づいたときに、改質手段1に所定量の水を供給することにより、その水を改質手段1の温度で加熱・蒸発させることによって、改質手段1が負圧状態になることを抑制するとともに、必要以上の圧力(過剰な正圧)になることを防止する。   According to the method for stopping the reforming system of the present invention, at least the CO reducing means and the water vapor existing in the piping communicating with the reforming means 1 are reduced in temperature and contracted or condensed. When the interior of the reforming unit 1 reaches or approaches the negative pressure region, the water is heated at the temperature of the reforming unit 1 by supplying a predetermined amount of water to the reforming unit 1. Evaporation suppresses the reforming unit 1 from becoming a negative pressure state, and prevents the pressure from becoming higher than necessary (excessive positive pressure).

上記改質システムの停止方法において、請求項2に記載のように、CO低減手段17でCOを低減された改質ガスを水タンク60にバブリングにより流入させ、その水タンク60に貯留された水を前記改質手段1に供給するようにすると、水タンク60で改質ガス中のアンモニアをタンク水に吸収できる。このようにすると、そのアンモニアを含有したタンク水を例えば改質手段1へ供給する水蒸気発生源の水として循環供給することができ、それによって、改質手段1で窒素ガスと水素ガスの平衡反応で生成するアンモニア生成量を抑制でき、かつ生成アンモニアを十分低く抑えた改質ガスを燃料電池へ供給することが可能となる。   In the above reforming system stop method, as described in claim 2, the reformed gas whose CO is reduced by the CO reducing means 17 is caused to flow into the water tank 60 by bubbling, and the water stored in the water tank 60 is stored. Is supplied to the reforming means 1, the water tank 60 can absorb the ammonia in the reformed gas into the tank water. In this way, the tank water containing the ammonia can be circulated and supplied as, for example, water of a steam generation source that supplies the reforming means 1, whereby the reforming means 1 can perform an equilibrium reaction between nitrogen gas and hydrogen gas. This makes it possible to suppress the amount of ammonia produced in step (1) and to supply the reformed gas with the produced ammonia sufficiently low to the fuel cell.

上記改質システムの停止方法において、請求項3に記載のように、前記水タンク60から前記改質手段1への所定量の水の供給は、前記水タンク60と改質手段1との差圧を利用することができる。このようにすると特別な水供給用の駆動源が不要となる。   In the method of stopping the reforming system, as described in claim 3, the supply of a predetermined amount of water from the water tank 60 to the reforming unit 1 is a difference between the water tank 60 and the reforming unit 1. Pressure can be used. This eliminates the need for a special water supply drive source.

上記いずれかの改質システムの停止方法において、請求項4に記載のように、前記改質手段1に設けた所定の内容積を有する熱交換パイプ50に所定量の水を供給し、熱交換パイプ50で生成した水蒸気を改質手段1の原料ガスの供給部11に供給することができる。
このように所定の内容積を有する熱交換パイプ50に所定量の水を供給するように構成すると、改質手段を目標圧力に補圧するために必要最小限の所定量の水のみを熱交換パイプ50で加熱・蒸発させることが可能になるので、改質手段を適正な圧力まで昇圧できると共に、例えば過大な蒸発により改質手段内の圧力が異常に高くなる(過剰な正圧になる)ような不測の事態も回避できる。
In any one of the above reforming system stopping methods, as described in claim 4, a predetermined amount of water is supplied to the heat exchange pipe 50 having a predetermined internal volume provided in the reforming means 1 to perform heat exchange. The water vapor generated by the pipe 50 can be supplied to the raw material gas supply unit 11 of the reforming means 1.
In this way, when a predetermined amount of water is supplied to the heat exchange pipe 50 having a predetermined internal volume, only the minimum predetermined amount of water necessary for supplementing the reforming means to the target pressure is supplied to the heat exchange pipe. Since it is possible to heat and evaporate at 50, it is possible to increase the pressure of the reforming means to an appropriate pressure and, for example, the pressure in the reforming means becomes abnormally high (excessive positive pressure) due to excessive evaporation, for example. Unforeseen circumstances can be avoided.

本発明の改質システムは、請求項5に記載のように、水蒸気と原料ガスの混合物(原料−水蒸気混合物)を供給する原料供給部11及び所定の内容積を有する熱交換パイプ50を改質手段1に設け、CO低減手段17の出口側に水タンク60を連通し、水タンク60の水を熱交換パイプ50の入口側に供給する配管51を備え、熱交換パイプ50の出口側と原料供給部11を連通している。このように構成することにより、少なくともCO低減手段及びそれから改質手段1に連通する配管内に存在する水蒸気が温度低下して収縮や凝縮することにより、改質手段1の内部が負圧領域に達するか若しくは負圧領域に近づいたときに、改質手段1の内圧を所定圧力に維持するに必要かつ十分な水蒸気を発生させる水を改質手段1に供給できる。
すなわち、改質手段1の内部が負圧領域に達するか若しくは負圧領域に近づいたときに、水タンク60の内容積に関係なく(水タンク60の水位変動に伴う水量変動に無関係に)、水タンク60の水位に対応した所定量の水が、所定の内容積を有する熱交換パイプ50に流入して、改質手段1の内圧を所定圧力に維持するに必要かつ十分な水蒸気を改質手段1に供給できる改質システムを提供できる。
The reforming system of the present invention reforms the raw material supply section 11 for supplying a mixture of steam and raw material gas (raw material-steam mixture) and the heat exchange pipe 50 having a predetermined internal volume as described in claim 5. The water tank 60 is connected to the outlet side of the CO reduction means 17 and provided with a pipe 51 for supplying water from the water tank 60 to the inlet side of the heat exchange pipe 50. The supply unit 11 is communicated. By configuring in this way, at least the CO reducing means and the water vapor existing in the piping communicating with the reforming means 1 are reduced in temperature and contracted or condensed, so that the interior of the reforming means 1 is brought into the negative pressure region. When the pressure reaches or approaches the negative pressure region, it is possible to supply the reforming unit 1 with water that generates water vapor necessary and sufficient to maintain the internal pressure of the reforming unit 1 at a predetermined pressure.
That is, when the inside of the reforming means 1 reaches the negative pressure region or approaches the negative pressure region, regardless of the internal volume of the water tank 60 (regardless of the fluctuation of the water amount accompanying the fluctuation of the water level of the water tank 60), A predetermined amount of water corresponding to the water level in the water tank 60 flows into the heat exchange pipe 50 having a predetermined internal volume, and reforms steam necessary and sufficient to maintain the internal pressure of the reforming means 1 at a predetermined pressure. A reforming system that can be supplied to the means 1 can be provided.

上記改質システムにおいて、請求項6に記載のように、燃料電池15から排出するアノード排ガスを通過させてそれに含まれる水を分離回収する気液分離室61を前記水タンク60の上部に連通して設けることができる。このように構成すると、アノード排ガスの回収水を補給水の一部として有効利用できるとともに、水系統をモジュール化でき、レイアウトの簡素化が可能となる。   In the above reforming system, a gas-liquid separation chamber 61 for allowing anode exhaust gas discharged from the fuel cell 15 to pass through and separating and recovering water contained therein is communicated with the upper portion of the water tank 60 as described in claim 6. Can be provided. If comprised in this way, while being able to use effectively the collection | recovery water of anode exhaust gas as a part of make-up water, a water system can be modularized and a simplification of a layout will be attained.

上記いずれかの改質システムにおいて、請求項7に記載のように、前記水タンク60の上部に連通して設けた気液分離室62と、前記水タンク60の水を前記気液分離室62内に吸い上げる親水性充填層70と、前記親水性充填層70中に改質ガスを供給する配流部18aと、前記気液分離室60に補給水を供給する供給部68を設けることができる。このように構成すると、十分水を含有した親水性充填層70とアンモニアを含有した改質ガスの接触が促進され、改質ガス中のアンモニアが効率よく親水性充填層に含まれる水に吸収されて除去できる。また、改質ガスは該親水性充填層70内をスムーズに通過して上昇するので、改質ガスの圧損が小さく且つその圧力変動もなく、平常運転中の改質手段1の内部の圧力を安定に維持できる。   In any one of the above reforming systems, as described in claim 7, a gas-liquid separation chamber 62 provided in communication with an upper portion of the water tank 60, and water in the water tank 60 is supplied to the gas-liquid separation chamber 62. A hydrophilic filling layer 70 sucked into the inside, a flow distribution section 18a for supplying the reformed gas into the hydrophilic filling layer 70, and a supply section 68 for supplying makeup water to the gas-liquid separation chamber 60 can be provided. With this configuration, the contact between the hydrophilic filling layer 70 containing sufficient water and the reformed gas containing ammonia is promoted, and ammonia in the reformed gas is efficiently absorbed into the water contained in the hydrophilic packed bed. Can be removed. Further, since the reformed gas smoothly passes through the hydrophilic packed bed 70 and rises, the pressure loss of the reformed gas is small and there is no pressure fluctuation, and the pressure inside the reforming means 1 during normal operation is reduced. It can be maintained stably.

次に図面を参照して本発明を実施するための最良の形態を説明する。図1は本発明の停止方法の1例を説明するための改質システムのプロセスフロー図である。改質手段1は二重に配置した外側の予備改質室2と内側の主改質室3を備えており、全体が薄型に形成される。予備改質室2と主改質室3はそれぞれ細長く断面が扁平状に形成されるとともに、それらの断面は互いに相似形とされる。予備改質室2は外側と内側の間に形成され、主改質室3は内側に形成される。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a process flow diagram of a reforming system for explaining an example of the stopping method of the present invention. The reforming means 1 is provided with an outer preliminary reforming chamber 2 and an inner main reforming chamber 3 which are arranged in a double manner, and the whole is formed thin. The preliminary reforming chamber 2 and the main reforming chamber 3 are elongated and have a flat cross section, and their cross sections are similar to each other. The preliminary reforming chamber 2 is formed between the outside and the inside, and the main reforming chamber 3 is formed on the inside.

本発明が適用できる改質手段1はこのような二重構造に構成されたものに限らず、予備改質室2と主改質室3が別体として構成されるもの、あるいは予備改質室2を有さず主改質室3のみで水蒸気改質を行うように構成されたものにも適用できる。したがって本発明における改質手段1は、図1のように二重構造の内側に配置される主改質室3を有するもの以外に、別体として配置される主改質室3、または予備改質室2を有しない主改質室3(単一の改質室)のみを有するもの等も含むことを意味する。   The reforming means 1 to which the present invention can be applied is not limited to such a double structure, and the pre-reforming chamber 2 and the main reforming chamber 3 are configured separately, or the pre-reforming chamber. The present invention can also be applied to a configuration in which steam reforming is performed only in the main reforming chamber 3 without having 2. Therefore, the reforming means 1 according to the present invention has a main reforming chamber 3 disposed separately from the main reforming chamber 3 arranged in the double structure as shown in FIG. It means that what has only the main reforming chamber 3 (single reforming chamber) which does not have the quality chamber 2 is included.

二重構造の外側には予備改質室2に改質触媒層4が設けられ、内側には主改質室3に改質触媒と酸化触媒を共存させた混合触媒層5とシフト触媒層6が設けられ、シフト触媒層6は高温シフト触媒層7と低温シフト触媒層8により構成される。そして主改質室3の中央部に沿って酸化空気を供給する供給管9が混合触媒層5まで延長され、その混合触媒層5の延長部分に空気の噴出部10が設けられる。供給管9は酸化用空気を供給する配管9aに接続され、配管9aの途中に後述するCO低減手段(いわゆるPROX)17内に配置した予熱用の熱交換部が設けられる。   A reforming catalyst layer 4 is provided in the preliminary reforming chamber 2 outside the dual structure, and a mixed catalyst layer 5 and a shift catalyst layer 6 in which the reforming catalyst and the oxidation catalyst coexist in the main reforming chamber 3 are arranged inside. Is provided, and the shift catalyst layer 6 includes a high temperature shift catalyst layer 7 and a low temperature shift catalyst layer 8. A supply pipe 9 for supplying oxidized air is extended to the mixed catalyst layer 5 along the central portion of the main reforming chamber 3, and an air ejection portion 10 is provided at an extended portion of the mixed catalyst layer 5. The supply pipe 9 is connected to a pipe 9a for supplying oxidation air, and a heat exchange section for preheating arranged in a CO reduction means (so-called PROX) 17 described later is provided in the middle of the pipe 9a.

予備改質室2の下部に原料ガスの供給部11(具体的には原料−水蒸気混合物の供給部11)が設けられ、主改質室3の下部には改質ガスの排出部12が設けられる。なお改質器1の周囲には電熱ヒータからなる加熱部1aが設けられ、改質システムの停止中に改質器1の内部を水蒸気の凝縮温度以上(例えば100〜120℃程度以上)に保温するようになっている。   A raw material gas supply unit 11 (specifically, a raw material-steam mixture supply unit 11) is provided at the lower part of the preliminary reforming chamber 2, and a reformed gas discharge unit 12 is provided at the lower part of the main reforming chamber 3. It is done. A heating unit 1a including an electric heater is provided around the reformer 1, and the interior of the reformer 1 is kept at a temperature equal to or higher than the condensation temperature of water vapor (for example, about 100 to 120 ° C. or higher) while the reforming system is stopped. It is supposed to be.

主改質室3の上部に起動用のプレヒータ13が連接される。プレヒータ13は改質システムの起動時に燃料ガスを酸化用空気で酸化(燃焼)して高温ガスを生成し、その高温ガスで混合触媒層5を含む改質手段1の内部を迅速に平常運転状態に昇温するものであり、その内部には電気ヒータが配置されるとともに、白金(Pt)やパラジウム(Pd)等の酸化触媒が充填される。   A preheater 13 for activation is connected to the upper part of the main reforming chamber 3. The preheater 13 oxidizes (combusts) fuel gas with oxidizing air to generate a high-temperature gas when the reforming system is started, and the high-temperature gas quickly and normally operates in the reforming means 1 including the mixed catalyst layer 5. In the interior, an electric heater is disposed and an oxidation catalyst such as platinum (Pt) or palladium (Pd) is filled.

そして改質システムの起動時には、エジェクタからなる第1の吸引混合手段14の出口側から原料ガス(もしくは燃料ガス)とスタート空気の混合物がプレヒータ13に供給され、該混合物中の原料ガスが酸化触媒の存在下に空気に含まれる酸素と反応し、その酸化熱により発生する高温ガスが混合触媒層5に流出する。混合触媒層5に流入した高温ガスは、混合触媒層5を含む改質手段1の内部を加熱しながら排出部12から改質手段1の外側に排出される。   When the reforming system is started, a mixture of raw material gas (or fuel gas) and start air is supplied to the preheater 13 from the outlet side of the first suction mixing means 14 made of an ejector, and the raw material gas in the mixture is converted into an oxidation catalyst. Reacts with oxygen contained in the air in the presence of hot water, and high-temperature gas generated by the oxidation heat flows out to the mixed catalyst layer 5. The hot gas flowing into the mixed catalyst layer 5 is discharged from the discharge unit 12 to the outside of the reforming unit 1 while heating the inside of the reforming unit 1 including the mixed catalyst layer 5.

改質手段1の排出部12は配管16を経てCO低減手段17の入口側に連通し、その入口側に設けたエジェクタからなる混合部17aで酸化用空気と混合される。CO低減手段17には白金等の酸化触媒を充填され、あるいはハニカム構造に担持した酸化触媒層が設けられ、そこで改質ガスに微量残留するCO(一酸化炭素)を酸素と反応させ炭酸ガスに変換して低減する。   The discharge unit 12 of the reforming unit 1 communicates with the inlet side of the CO reducing unit 17 through the pipe 16 and is mixed with the oxidizing air in a mixing unit 17a including an ejector provided on the inlet side. The CO reduction means 17 is provided with an oxidation catalyst layer filled with an oxidation catalyst such as platinum or carried on a honeycomb structure, where a small amount of CO (carbon monoxide) remaining in the reformed gas is reacted with oxygen to form carbon dioxide gas. Convert and reduce.

CO低減手段17の出口側は開閉弁21dを設けた配管18を経て水タンク60に連通する。なお開閉弁21dの作用は後述する。本実施形態における水タンク60は、改質ガスに微量含まれるアンモニア成分を水に吸収させて除去するもので、配管18の先端を水中に開口して改質ガスをバブリングにより噴出するようになっている。このように配管18の先端を水中に開口することにより、配管18の先端部分が水封される。   The outlet side of the CO reduction means 17 communicates with the water tank 60 through a pipe 18 provided with an on-off valve 21d. The operation of the on-off valve 21d will be described later. The water tank 60 in the present embodiment removes the ammonia component contained in the reformed gas in a small amount by absorbing it into the water, and opens the tip of the pipe 18 into the water to eject the reformed gas by bubbling. ing. Thus, the front-end | tip part of the piping 18 is water-sealed by opening the front-end | tip of the piping 18 in water.

水タンク60は隔壁65,66により3室に分離されている。すなわち、隔壁65,66の下部は水タンク60の水中まで伸びて気相部である気液分離室61,62,63の3室を互いに分離しているが、それらの下端は水タンク60の底面から所定の距離だけ離反しており、タンク水はその底面と隔壁65,66の下端との間隙を通って自由に行き来することができる構成となっている。したがって、気液分離室61,62,63は水封されて互いに分離されてそれらの気相間混合が防止され且つ水流通が確保されている。なお水タンク60の底部には冷却器67bが設けられ、冷却水でタンク水を所定温度に冷却できるようになっている。   The water tank 60 is separated into three chambers by partition walls 65 and 66. That is, the lower portions of the partition walls 65 and 66 extend to the water in the water tank 60 and separate the three gas-liquid separation chambers 61, 62, and 63, which are gas phase portions, with their lower ends at the water tank 60. The tank water is separated from the bottom surface by a predetermined distance, and the tank water can freely come and go through the gap between the bottom surface and the lower ends of the partition walls 65 and 66. Therefore, the gas-liquid separation chambers 61, 62, and 63 are sealed with water and separated from each other to prevent mixing between the gas phases and to ensure water circulation. A cooler 67b is provided at the bottom of the water tank 60 so that the tank water can be cooled to a predetermined temperature with the cooling water.

配管18から水タンク60に供給される改質ガスは、隔壁65,66の機能により、水タンク60の上部空間の1つである気液分離室62のみに流入する。気液分離室62の上部は開閉弁21aを設けた配管20を介して燃料電池15に連通し、配管20には燃料電池15をバイパスする開閉弁21bを設けたバイパス配管が接続される。また、燃料電池15のアノード排ガスを流出させる配管は開閉弁21cを経て前記バイパス配管に合流している。燃料電池15には配管22からカソード空気が供給され、さらにポンプ25を設けた配管23に燃料電池15を冷却する冷却水が循環する。   The reformed gas supplied from the pipe 18 to the water tank 60 flows only into the gas-liquid separation chamber 62 which is one of the upper spaces of the water tank 60 by the function of the partition walls 65 and 66. The upper part of the gas-liquid separation chamber 62 communicates with the fuel cell 15 via a pipe 20 provided with an on-off valve 21a, and a bypass pipe provided with an on-off valve 21b that bypasses the fuel cell 15 is connected to the pipe 20. Further, a pipe for allowing the anode exhaust gas of the fuel cell 15 to flow out joins the bypass pipe via the on-off valve 21c. Cathode air is supplied to the fuel cell 15 from a pipe 22, and cooling water for cooling the fuel cell 15 circulates in a pipe 23 provided with a pump 25.

燃料電池15で水素と酸素が反応して生成する水は、配管26によりカソードコンデンサー67aに排出し、そこで冷却水との熱交換により冷却される。またカソードコンデンサー67a内の回収水は配管27を経て水タンク60の回収水槽64に補給水として供給され、該補給水に含まれる気体成分は回収水槽64の上部に設けられた気液分離室63で分離されて図示しない排出部から系外に排出される。なお必要により配管27に開閉弁を設けてもよく、回収水槽64には必要により外部より補給水を補給できるように構成することもできる。   The water produced by the reaction of hydrogen and oxygen in the fuel cell 15 is discharged to the cathode condenser 67a through the pipe 26, where it is cooled by heat exchange with the cooling water. The recovered water in the cathode condenser 67 a is supplied as makeup water to the recovery water tank 64 of the water tank 60 through the pipe 27, and the gas component contained in the makeup water is a gas-liquid separation chamber 63 provided in the upper part of the recovery water tank 64. And is discharged out of the system from a discharge unit (not shown). Note that an opening / closing valve may be provided in the pipe 27 as necessary, and the recovery water tank 64 may be configured so that makeup water can be replenished from the outside if necessary.

水タンク60の気液分離室61には、配管40が連通しており、開閉弁42を介してアノード排ガスを第2の吸引混合手段35に供給する構成となっている。なお燃料電池15から流出するアノード排ガスは、バイパス配管との合流部の下流側に設けられたアノード排ガスコンデンサー67cで冷却水によって冷却される。アノード排ガスコンデンサー67cから流出するアノード排ガスは、気液分離室61に流入し、そこで含まれている気体成分を分離した後、開閉弁42を設けた配管40から第2の吸引混合手段35に流入し、そこから水蒸気発生手段30の燃焼部に燃料として供給される。なお、上記コンデンサー67c,および前記コンデンサー67a,67cの冷却水の流通方向を被冷却媒体に対して対向流とすることによって、それらの熱交換効率を向上できる。   A pipe 40 communicates with the gas-liquid separation chamber 61 of the water tank 60, and the anode exhaust gas is supplied to the second suction and mixing means 35 via the on-off valve 42. The anode exhaust gas flowing out from the fuel cell 15 is cooled by the cooling water in the anode exhaust gas condenser 67c provided on the downstream side of the junction with the bypass pipe. The anode exhaust gas flowing out from the anode exhaust gas condenser 67c flows into the gas-liquid separation chamber 61, and after separating the gas components contained therein, it flows into the second suction mixing means 35 from the pipe 40 provided with the on-off valve 42. From there, it is supplied as fuel to the combustion section of the water vapor generating means 30. The heat exchange efficiency of the condenser 67c and the condensers 67a and 67c can be improved by making the flow direction of the cooling water counter flow with respect to the medium to be cooled.

水タンク60における隔壁65と66の間における下方の水中から配管29aが外部に延長し、水タンク60のタンク水は配管29a,ポンプ32,配管29等を経て水蒸気発生手段30の水ドラム31に供給される。なお配管29aの端部は配管18から改質ガスがバブリングされる部位より上部に開口し、改質ガス中のアンモニアを吸収した水を該開口部の周囲から吸い込むようになっている。前記のように水蒸気発生手段30は改質器1に水蒸気を供給するもので、その下部にはバーナ33を有する燃焼部34が設けられる。燃焼部34にはエジェクタで構成される第2の吸引混合手段35から配管36を経て燃料と一次空気の混合物が供給され、さらに配管37から二次空気が供給される。そして燃焼部34で生成する燃焼ガスは配管38から外部に排出される。   The pipe 29a extends from the lower water between the partition walls 65 and 66 in the water tank 60 to the outside, and the tank water in the water tank 60 passes through the pipe 29a, the pump 32, the pipe 29, etc. to the water drum 31 of the water vapor generating means 30. Supplied. Note that the end of the pipe 29a opens above the portion where the reformed gas is bubbled from the pipe 18, and sucks water that has absorbed ammonia in the reformed gas from the periphery of the opening. As described above, the steam generating means 30 supplies steam to the reformer 1, and a combustion section 34 having a burner 33 is provided below the steam generator 30. The combustion section 34 is supplied with a mixture of fuel and primary air from a second suction mixing means 35 constituted by an ejector via a pipe 36 and further supplied with secondary air from a pipe 37. And the combustion gas produced | generated in the combustion part 34 is discharged | emitted from the piping 38 outside.

第2の吸引混合手段35には天然ガスや都市ガス等が燃料として配管39により供給され、燃料電池15からの水素を含むアノード排ガスが燃料として配管40により供給される。なお配管39に設けた開閉弁41や配管40に設けた開閉弁42を開閉操作することにより燃料の供給形態を選択できるようになっている。なお必要により両方のガスを重畳して燃焼させることもできる。   Natural gas, city gas, or the like is supplied as fuel to the second suction mixing means 35 through the pipe 39, and anode exhaust gas containing hydrogen from the fuel cell 15 is supplied as fuel through the pipe 40. The fuel supply mode can be selected by opening and closing the on-off valve 41 provided on the pipe 39 and the on-off valve 42 provided on the pipe 40. If necessary, both gases can be burned together.

水蒸気発生手段30の水ドラム31で発生する水蒸気は配管31aを経て吸引混合手段14に供給される。第1の吸引混合手段14には改質手段1に原料ガスを供給する配管43が接続されるが、この配管43はCO低減手段17に設けた熱交換部に接続され、原料ガスはそこで予熱されて第1の吸引混合手段14に流入する。吸引混合手段14にはさらにスタート用空気を供給する配管44が接続される。   The water vapor generated in the water drum 31 of the water vapor generating means 30 is supplied to the suction mixing means 14 through the pipe 31a. A pipe 43 for supplying a raw material gas to the reforming means 1 is connected to the first suction mixing means 14, and this pipe 43 is connected to a heat exchange section provided in the CO reduction means 17, and the raw material gas is preheated there. And flows into the first suction mixing means 14. A pipe 44 for supplying start air is further connected to the suction mixing means 14.

吸引混合手段14の出口側にはCO低減手段17に設けた熱交換部を通る配管45が接続され、配管45は配管46と配管47に分岐される。分岐された一方の配管46の途中に開閉弁48が設けられ、その先端は改質手段1の供給部11に連通する。また分岐された他方の配管47の途中に開閉弁49が設けられ、その先端はプレヒータ13に連通する。   A pipe 45 passing through a heat exchange section provided in the CO reduction unit 17 is connected to the outlet side of the suction mixing unit 14, and the pipe 45 is branched into a pipe 46 and a pipe 47. An on-off valve 48 is provided in the middle of one branched pipe 46, and the tip thereof communicates with the supply unit 11 of the reforming means 1. In addition, an on-off valve 49 is provided in the middle of the other branched pipe 47, and its tip communicates with the preheater 13.

改質手段1のシフト触媒層6の出口部12の外壁に水を蒸発させるための熱交換パイプ50が設けられ、その熱交換パイプ50の入口側は開閉弁52を設けた配管51を経て前記水タンク60内の下部に連通し、熱交換パイプ50の出口側は改質手段1の供給部11に連通する。水タンク60から改質手段1に設けた熱交換パイプ50の加熱部位の位置関係を予め適切に設計することにより、後述するように、開閉弁52を開けるだけで反応器の内圧を任意に設定・調整することができる。   A heat exchange pipe 50 for evaporating water is provided on the outer wall of the outlet portion 12 of the shift catalyst layer 6 of the reforming means 1, and the inlet side of the heat exchange pipe 50 passes through a pipe 51 provided with an on-off valve 52. The water tank 60 communicates with the lower part of the water tank 60, and the outlet side of the heat exchange pipe 50 communicates with the supply unit 11 of the reforming means 1. By appropriately designing the positional relationship of the heating parts of the heat exchange pipe 50 provided in the reforming means 1 from the water tank 60 in advance, the internal pressure of the reactor can be arbitrarily set by simply opening the on-off valve 52 as will be described later.・ It can be adjusted.

次に図1の改質システムの作用を説明する。改質システムが平常運転しているときは、水蒸気発生手段30には燃料電池からのアノード排ガスが燃料として供給される。水蒸気発生手段30で発生した水蒸気は配管31aから吸引混合手段14に供給され、そこで配管43から供給される原料ガスと混合される。吸引混合手段14から流出する原料−水蒸気混合物は配管45,46をへて改質手段1の供給部11に供給される。   Next, the operation of the reforming system of FIG. 1 will be described. When the reforming system is operating normally, the anode exhaust gas from the fuel cell is supplied to the steam generating means 30 as fuel. The water vapor generated by the water vapor generating means 30 is supplied from the pipe 31a to the suction mixing means 14, where it is mixed with the raw material gas supplied from the pipe 43. The raw material-steam mixture flowing out from the suction mixing unit 14 is supplied to the supply unit 11 of the reforming unit 1 through the pipes 45 and 46.

供給部11に供給された原料−水蒸気混合物は、予備改質室2の改質触媒層4を通過する間に原料ガスの一部が改質されて主改質室3の混合触媒層5に流入する。混合触媒層5には空気供給管9から酸化用空気が供給され、予備改質ガスの一部が酸素と反応して改質反応に必要な熱を発生する。そして残った原料ガスは混合触媒層5で改質されて水素リッチな改質ガスを生成し、その改質ガスはシフト触媒層6に流入する。   The raw material-steam mixture supplied to the supply unit 11 is partly reformed while passing through the reforming catalyst layer 4 in the preliminary reforming chamber 2 to form the mixed catalyst layer 5 in the main reforming chamber 3. Inflow. Oxidizing air is supplied to the mixed catalyst layer 5 from the air supply pipe 9, and a part of the pre-reformed gas reacts with oxygen to generate heat necessary for the reforming reaction. The remaining raw material gas is reformed in the mixed catalyst layer 5 to generate a hydrogen-rich reformed gas, and the reformed gas flows into the shift catalyst layer 6.

改質ガスはシフト触媒層6を通過する間に含まれているCOの大部分が除去され、排出部12からCO低減手段17に流入する。流入した改質ガスはCO低減手段17で微量残留するCOがさらにppmオーダーまで低減された後、配管18から水タンク60にバブリングされ、そこで含まれているアンモニアが除去される。アンモニアを除去された改質ガスは水タンク60の上部空間の気液分離室62から配管20をへて燃料電池15に供給される。燃料電池15のアノード排ガスは、前記のように配管40により水蒸気発生手段30の燃料として供給され、水タンク60の回収アンモニアを含有している水は配管29により水蒸気発生手段30に補給水として供給される。   While the reformed gas passes through the shift catalyst layer 6, most of the CO contained therein is removed and flows into the CO reduction means 17 from the discharge unit 12. The inflowing reformed gas is further reduced to a ppm order by the CO reduction means 17 and then the residual CO is bubbled from the pipe 18 to the water tank 60 where the ammonia contained therein is removed. The reformed gas from which the ammonia has been removed is supplied to the fuel cell 15 from the gas-liquid separation chamber 62 in the upper space of the water tank 60 through the pipe 20. The anode exhaust gas of the fuel cell 15 is supplied as fuel for the steam generating means 30 through the pipe 40 as described above, and the water containing the recovered ammonia in the water tank 60 is supplied as makeup water to the steam generating means 30 through the pipe 29. Is done.

改質ガスが流入する水タンク60のバブリング部の上部に位置する隔壁65と隔壁66の間の水は改質ガスから吸収したアンモニアを含有しており、その水面下の位置に配管29aの端部が開口し、十分アンモニアを吸収した水、即ち水タンク60で最もアンモニア濃度の高い水が、配管29aから水蒸気発生手段30に補給水として供給されることになる。その結果、タンク水のアンモニアは水タンク60から効率よく排出されるので、そのアンモニア濃度はシステム運転に差し支えない所定値以下に維持される。   The water between the partition wall 65 and the partition wall 66 located above the bubbling portion of the water tank 60 into which the reformed gas flows in contains ammonia absorbed from the reformed gas, and the end of the pipe 29a is positioned below the water surface. The water that has sufficiently absorbed ammonia, that is, the water having the highest ammonia concentration in the water tank 60, is supplied as makeup water to the water vapor generating means 30 from the pipe 29a. As a result, since the ammonia in the tank water is efficiently discharged from the water tank 60, the ammonia concentration is maintained at a predetermined value or less that does not interfere with the system operation.

一方、水蒸気発生手段30で発生した水蒸気中には、供給水に含まれていたアンモニアがガスとして混入したまま改質手段1に供給される。しかし改質手段1における改質反応は平衡反応であるため、生成する改質ガスに含まれるアンモニアの濃度は抑制される。したがって、改質システム内におけるアンモニアは所定量以下の平衡濃度以下に維持されて循環されるので、改質システムの安定な運転継続が可能となる。改質システムの運転を継続しているとき、気液分離室61の水槽にはアノード排ガスから分離した回収水およびカソード排ガスから分離した回収水、さらには外部からの補給水が、隔壁65及び66の下端と水タンク底部の隙間を通して補給されるので、蒸気発生手段30に供給される水のアンモニア濃度はかなり低く維持される。   On the other hand, ammonia contained in the supply water is supplied to the reforming means 1 while being mixed as a gas in the steam generated by the steam generating means 30. However, since the reforming reaction in the reforming means 1 is an equilibrium reaction, the concentration of ammonia contained in the generated reformed gas is suppressed. Accordingly, since ammonia in the reforming system is circulated while being maintained at an equilibrium concentration equal to or less than a predetermined amount, stable operation of the reforming system can be continued. When the operation of the reforming system is continued, the recovered water separated from the anode exhaust gas, the recovered water separated from the cathode exhaust gas, and the supplementary water from the outside are supplied to the partition walls 65 and 66 in the water tank of the gas-liquid separation chamber 61. Since the water is replenished through the gap between the lower end of the water tank and the bottom of the water tank, the ammonia concentration of the water supplied to the steam generating means 30 is kept fairly low.

次に図1の改質システムの停止方法について説明する。改質システムの停止指令に基づき、先ず配管9aから改質手段1の混合触媒層5への酸化用空気の供給を停止すると共に、配管43から改質手段1への原料ガスの供給を停止する。それと共にCO低減手段17への酸化用空気の供給も停止し,水蒸気発生手段30への燃料供給を停止する。一方、開閉弁21aを閉じて燃料電池15への改質ガスの供給を停止すると同時に開閉弁21bを開け、バイパス配管と開閉弁21bで構成されるバイパスラインを連通状態とする。   Next, a method for stopping the reforming system in FIG. 1 will be described. Based on the reforming system stop command, the supply of the oxidizing air from the pipe 9a to the mixed catalyst layer 5 of the reforming means 1 is first stopped and the supply of the raw material gas from the pipe 43 to the reforming means 1 is stopped. . At the same time, the supply of the oxidizing air to the CO reduction means 17 is stopped, and the fuel supply to the steam generation means 30 is stopped. On the other hand, the on-off valve 21a is closed to stop the supply of the reformed gas to the fuel cell 15, and at the same time, the on-off valve 21b is opened to bring the bypass line composed of the bypass pipe and the on-off valve 21b into communication.

水蒸気発生手段30の燃焼が停止しても暫くの間はその余熱で水蒸気が生成し、その生成する水蒸気により改質手段1に残留する原料ガスをパージする。なお、必要により原料ガス及び燃焼空気を燃焼部34に供給し、追焚することによって水蒸気を追加供給することができることはいうまでもない。パージされた原料ガスは水蒸気と共に配管16からCO低減手段17を通って配管18から水タンク60にバブリングされ、開閉弁21b、42、配管36,38を経て外部に導かれる。あるいは、開閉弁21aを開けて燃料電池側に供給される場合もある。なお、開閉弁42は省略することもできる。   Even after the combustion of the steam generating means 30 is stopped, steam is generated by the residual heat for a while, and the raw material gas remaining in the reforming means 1 is purged by the generated steam. Needless to say, if necessary, water vapor can be additionally supplied by supplying the raw material gas and the combustion air to the combustion section 34 and tracking them. The purged source gas is bubbled together with water vapor from the pipe 16 through the CO reduction means 17 and from the pipe 18 to the water tank 60, and is guided to the outside through the on-off valves 21b and 42 and the pipes 36 and 38. Alternatively, the on-off valve 21a may be opened and supplied to the fuel cell side. The on-off valve 42 can be omitted.

水蒸気パージを行うと改質手段1は水蒸気雰囲気になるが、水タンク60の上部の気液分離室62に流入した改質ガスと水蒸気の混合ガスの組成管理は十分に行えない場合もある。例えば前記のように水蒸気発生手段30の余熱で発生する水蒸気により系内を水蒸気パージする程度であれば、水タンク60に流入する蒸気量はタンク水に凝縮させて吸収することは可能なので、例えば燃料電池15への配管20のライン圧を大きく変化させるまでには至らないと考えられる。
しかし改質システムの停止後も、水蒸気発生手段30を例えば短時間運転して系内に積極的により多くの蒸気パージを行うようなときは、水タンク60に流入する水蒸気がタンク水により十分に凝縮しきれない場合があり、配管20のラインに水蒸気が充満して改質ガスを下流側に追い出し、配管20のラインの内部に多くの水分が含まれてしまう場合もあり、そのようなときは温度低下に伴い配管20ラインの水分が凝縮して負圧状態になる恐れがある。
When the steam purge is performed, the reforming means 1 becomes a steam atmosphere, but there are cases where the composition management of the reformed gas and steam mixed gas flowing into the gas-liquid separation chamber 62 at the upper part of the water tank 60 cannot be sufficiently performed. For example, the amount of steam flowing into the water tank 60 can be condensed and absorbed in the tank water as long as the inside of the system is steam purged with the steam generated by the residual heat of the steam generating means 30 as described above. It is considered that the line pressure of the pipe 20 to the fuel cell 15 is not greatly changed.
However, even after the reforming system is stopped, when the steam generating means 30 is operated for a short time, for example, and more steam purge is actively performed in the system, the steam flowing into the water tank 60 is sufficiently absorbed by the tank water. In some cases, condensation may not be possible, and the line of the pipe 20 may be filled with water vapor to expel the reformed gas downstream, and a large amount of moisture may be contained inside the line of the pipe 20. There is a possibility that the moisture in the piping 20 line condenses as the temperature drops, resulting in a negative pressure state.

また、改質システムの停止直後において、まだ改質手段1の水蒸気パージを行っていないときには、改質手段1,CO低減手段17および水タンク60の上部の気液体分離室61-配管40のラインは常圧の改質ガスが封入されたままの状態となっている。その状態から水蒸気パージを行って系内を水蒸気補圧すると、改質手段1の内圧が上昇し、配管18内に存在している改質ガスが一挙に水タンク60に押し出されるので、その下流側の配管20の内圧も上昇して前記補圧レベルの正圧状態になる。即ち水蒸気補圧のレベルの影響を受けて配管20内部の適性な所定圧(基準圧)が上昇することになる。
これらのことは、水蒸気補圧した当初は水タンク60の上部の気液分離室62は大気圧またはそれ以上の適正な所定圧に維持できず、過剰な正圧レベルになることを意味する。例えば、改質手段1,CO低減手段17が水蒸気補圧により例えば50kPa程度まで昇圧されると、改質手段1側の改質ガスが水タンク60のバブリング部から気液分離室62側に移動してその圧力を上昇させ、配管20のライン圧も50kPa程度に達する。即ち適正とされる基準圧が過剰な正圧にシフトする事態が生ずる。
Further, immediately after the reforming system is stopped, when the steam purging of the reforming unit 1 is not yet performed, the reforming unit 1, the CO reduction unit 17 and the gas / liquid separation chamber 61-pipe 40 line above the water tank 60 are connected. Is in a state in which the reformed gas at normal pressure remains sealed. When steam purge is performed in this state by steam purge, the internal pressure of the reforming means 1 rises and the reformed gas existing in the pipe 18 is pushed out to the water tank 60 all at once. The internal pressure of the pipe 20 on the side also rises and becomes a positive pressure state at the supplementary pressure level. That is, the appropriate predetermined pressure (reference pressure) inside the pipe 20 is increased under the influence of the level of the steam supplement pressure.
These mean that the gas-liquid separation chamber 62 in the upper part of the water tank 60 cannot be maintained at an appropriate predetermined pressure equal to or higher than the atmospheric pressure at the beginning of the steam supplementation, and becomes an excessive positive pressure level. For example, when the reforming unit 1 and the CO reduction unit 17 are boosted to about 50 kPa, for example, by steam supplement pressure, the reformed gas on the reforming unit 1 side moves from the bubbling portion of the water tank 60 to the gas-liquid separation chamber 62 side. Then, the pressure is increased, and the line pressure of the pipe 20 reaches about 50 kPa. That is, a situation occurs in which the appropriate reference pressure is shifted to an excessive positive pressure.

この過剰な正圧の発生現象は、それを吸収できる手段を系に設けることにより解決できる。すなわち本実施形態では、熱交換パイプ50の設置レベルを所定の範囲に設定しており、それによって改質システムの停止に際して発生する(系内の過剰な正圧への変動を含む)余計な蒸気圧力変動を所定範囲内に容易に抑制することが可能となる。即ち水タンク60に対して熱交換パイプ50の位置を所定の関係を維持した位置に予め定めておき、開閉弁52を一時的に開けると水タンク60の水位と熱交換パイプ50の差圧(水位差)に見合う水タンク60のタンク水(所定量の水)が所定の内容積を有する熱交換パイプ50に一時的に送り込まれる。
それによって熱交換パイプ50において所定量の水が加熱蒸発されることになり、その蒸発量は改質手段1の内圧を適正な所定値の範囲に昇圧・補圧するに必要最小限の蒸気を供給する。その所定量の水と昇圧レベルの関係は予め実験等により求めておけば、改質システムの停止時に水蒸気パージした際も、また水蒸気パージをしない前であっても、前記のような過剰な圧力上昇の発生を防止することが可能となり、系内を適正な補圧レベルに自動的に制御可能となる。
This phenomenon of excessive positive pressure can be solved by providing the system with means capable of absorbing it. That is, in the present embodiment, the installation level of the heat exchange pipe 50 is set within a predetermined range, thereby causing extra steam (including fluctuation to excessive positive pressure in the system) generated when the reforming system is stopped. It becomes possible to easily suppress the pressure fluctuation within a predetermined range. That is, when the position of the heat exchange pipe 50 with respect to the water tank 60 is set in advance to a position that maintains a predetermined relationship, and the on-off valve 52 is temporarily opened, the pressure difference between the water level of the water tank 60 and the heat exchange pipe 50 ( The tank water (predetermined amount of water) in the water tank 60 corresponding to the (water level difference) is temporarily sent to the heat exchange pipe 50 having a predetermined internal volume.
As a result, a predetermined amount of water is heated and evaporated in the heat exchange pipe 50, and the evaporation amount supplies the minimum amount of steam necessary for boosting / compensating the internal pressure of the reforming means 1 to an appropriate predetermined value range. To do. If the relationship between the predetermined amount of water and the pressure increase level is obtained in advance through experiments or the like, the excessive pressure as described above can be obtained either when the reforming system is stopped or before the steam purge is performed. It is possible to prevent the occurrence of the rise, and it is possible to automatically control the inside of the system to an appropriate supplemental pressure level.

なお本発明における「所定量の水」とは、上記のように「改質システムの停止時における系内の過剰な昇圧発生の防止のために必要最小量の水」を表現するために使用しているが、本発明では後述するように、系内の負圧発生防止のために改質手段1に供給すべき水の量」を表現するためにも使用している。
前記水蒸気パージ後、改質手段1の内部温度は徐々に低下するが、それに接続された配管16やCO低減手段17の内部温度の低下速度はそれより大きく、そのため配管16やCO低減手段17の内部に残留する水蒸気が比較的早い時期に凝縮してくる。CO低減手段17の出口側の配管18の先端は水タンク60で水封されているので、改質手段1、配管16、CO低減手段17及び配管18は密閉系を形成し、その密閉系の内圧は封入ガスの収縮及び前記水蒸気の凝縮により低下して負圧方向に向かう。
The “predetermined amount of water” in the present invention is used to express “the minimum amount of water necessary for preventing excessive pressure increase in the system when the reforming system is stopped” as described above. However, in the present invention, as will be described later, it is also used to express “the amount of water to be supplied to the reforming means 1 in order to prevent the generation of negative pressure in the system”.
After the steam purge, the internal temperature of the reforming unit 1 gradually decreases, but the rate of decrease in the internal temperature of the piping 16 and the CO reduction unit 17 connected to the reforming unit 1 is larger than that. The water vapor remaining inside condenses relatively early. Since the tip of the pipe 18 on the outlet side of the CO reduction means 17 is sealed with a water tank 60, the reforming means 1, the pipe 16, the CO reduction means 17 and the pipe 18 form a closed system. The internal pressure decreases due to the contraction of the sealed gas and the condensation of the water vapor, and proceeds in the negative pressure direction.

上記密閉系の内圧が次第に低下して負圧領域になると、前記密閉系を構成する図示しない開閉弁や装置接続部等から大気が侵入し、あるいは、水タンク60や配管ラインに残留している水が反応器の内部に吸引浸入して触媒が水没することにより、触媒の酸化劣化あるいは触媒の粉化や被毒による劣化を加速する怖れがある。そこで本実施形態では、少なくともCO低減手段17及びそれから改質手段1に連通する配管16内に残留する水蒸気が温度低下により凝縮し、改質手段1内が負圧領域に達するかもしくは負圧領域に近づいた時に、開閉弁52を開けて水タンク60から改質手段1に設けた所定の内容積の熱交換パイプ50に水を供給するようにしている。
なお、ここで「所定の内容積」とは、「熱交換パイプ50における上記負圧防止機能を損なわない十分な内容積、または熱交換パイプ50における前記した改質システム停止に際しての系内の過剰正圧防止機能を損なわない十分な内容積」を意味する。
When the internal pressure of the closed system gradually decreases to a negative pressure region, the atmosphere enters from an unillustrated on-off valve or device connection part constituting the closed system, or remains in the water tank 60 or the piping line. If water is sucked into the reactor and the catalyst is submerged, there is a fear of accelerating the deterioration due to oxidation of the catalyst or deterioration due to powdering or poisoning of the catalyst. Therefore, in the present embodiment, at least the CO reducing means 17 and the water vapor remaining in the piping 16 communicating with the reforming means 1 are condensed due to a temperature drop, and the reforming means 1 reaches the negative pressure region or the negative pressure region. When the temperature approaches, the on-off valve 52 is opened so that water is supplied from the water tank 60 to the heat exchange pipe 50 having a predetermined internal volume provided in the reforming means 1.
Here, the “predetermined internal volume” means “a sufficient internal volume that does not impair the negative pressure prevention function in the heat exchange pipe 50, or an excess in the system at the time of stopping the reforming system in the heat exchange pipe 50. It means a sufficient internal volume that does not impair the positive pressure prevention function.

水タンク60から改質手段1の熱交換パイプ50に水を供給するために開閉弁52を自動的に開けるには、例えば改質手段1または配管16の圧力を圧力検出手段(図示せず)で検出し、その検出信号を制御装置(図示せず)に入力し、その検出圧力が制御装置に予め設定された圧力(例えば大気圧もしくはその前後付近の圧力)より低下したとき、制御装置から開閉弁52に開信号を出力するように構成する。   In order to automatically open the on-off valve 52 in order to supply water from the water tank 60 to the heat exchange pipe 50 of the reforming means 1, for example, the pressure of the reforming means 1 or the piping 16 is a pressure detecting means (not shown). And the detection signal is input to a control device (not shown), and when the detected pressure falls below a pressure preset in the control device (for example, atmospheric pressure or a pressure around it), the control device An open signal is output to the on-off valve 52.

開閉弁52が開いた時点では、改質手段1の圧力は負圧領域に達するか若しくは負圧領域に近づいた状態であり、一方、水タンク60は前記のように初期の大気圧状態に維持されているので、両者の差圧(圧力差)により水タンクの水は、配管51から改質手段1の熱交換パイプ50に自動的に吸引される。所定内容積を有する熱交換パイプ50に供給された水は、その時点では比較的高温状態にある改質手段1の内部温度により加熱・蒸発され、生成した所定量の水蒸気は、熱交換パイプ50の出口側から改質手段1の供給部11に流出する。そして水蒸気の生成量に応じて改質手段1を含む密閉系の内圧は上昇するので、該部分が負圧領域に維持されることを防止できる。   When the on-off valve 52 is opened, the pressure of the reforming means 1 reaches or approaches the negative pressure region, while the water tank 60 is maintained at the initial atmospheric pressure state as described above. Therefore, the water in the water tank is automatically sucked from the pipe 51 into the heat exchange pipe 50 of the reforming means 1 by the differential pressure (pressure difference) between the two. The water supplied to the heat exchange pipe 50 having a predetermined internal volume is heated and evaporated by the internal temperature of the reforming means 1 that is at a relatively high temperature at that time, and the generated predetermined amount of water vapor is the heat exchange pipe 50. From the outlet side to the supply unit 11 of the reforming means 1. Since the internal pressure of the closed system including the reforming unit 1 increases according to the amount of steam generated, it is possible to prevent the portion from being maintained in the negative pressure region.

前記水蒸気の生成により密閉系の内圧が上昇すると、改質手段1を含む密閉系の内圧は上昇するので、その圧力上昇に応じて前記差圧が減少する。差圧が減少すると水タンク60から熱交換パイプ50への水供給量も減少し、場合によっては供給が自動的に停止して水蒸気の発生量も低下する。   When the internal pressure of the closed system rises due to the generation of the water vapor, the internal pressure of the closed system including the reforming means 1 rises, so that the differential pressure decreases as the pressure rises. When the differential pressure decreases, the amount of water supplied from the water tank 60 to the heat exchange pipe 50 also decreases. In some cases, the supply automatically stops and the amount of water vapor generated also decreases.

しかし水蒸気の発生量が低下すると、密閉系に圧力が再び負圧領域に達するかそれに近づき、差圧もそれに応じて回復するので、水タンク60から所定の内容積を有する熱交換パイプ50への水供給量が自動的に開始される。このように自動的な水供給と水蒸気発生が繰り返されることにより、改質手段1を含む密閉系が負圧領域に留まる現象を防止することが可能となる。   However, when the amount of generated water vapor decreases, the pressure reaches or approaches the negative pressure region again in the closed system, and the differential pressure also recovers accordingly, so that the water tank 60 transfers the heat exchange pipe 50 having a predetermined internal volume. Water supply is automatically started. Thus, by repeating automatic water supply and water vapor generation, it is possible to prevent a phenomenon in which the closed system including the reforming means 1 remains in the negative pressure region.

ここで、本発明の有利な点は、本発明を例えば家庭用や自動車用の燃料電池に改質ガスを供給するための一般的な改質システムに適用する場合、改質手段1における熱交換パイプ50の内部容積はせいぜい数ミリリットルでよく、この補圧や負圧防止に必要な水量は、精々数ミリリットルでよいことになる。例えば、3ml(3g)の水は、標準状態で4リットル弱の水蒸気となる(=3g/18*22.4)ので、熱交換パイプ50の内容積は数ミリリットルの容量で十分である。
それに応じて熱交換パイプ50の蒸発部も必要最小限でよく、それ以上の水の蒸発は過剰な昇圧となり、系内の圧力振動を誘発することになり、安定な補圧力制御は困難となる。かくして、水タンク60の水位と水量の関係に無関係に、単純に水位関係を事前に調整・設計することにより必要な蒸発量を自動的に制御することが可能となる。なお、上記関係は改質システムの容量が大きくなっても本質的には変わらない。またカソード回収水は別に独立に敷設してもよいことは言うまでもない。
Here, the advantage of the present invention is that when the present invention is applied to a general reforming system for supplying reformed gas to, for example, a home or automobile fuel cell, heat exchange in the reforming means 1 is performed. The internal volume of the pipe 50 may be at most several milliliters, and the amount of water necessary for this supplemental pressure or prevention of negative pressure may be at most several milliliters. For example, 3 ml (3 g) of water turns into a little less than 4 liters of water vapor in a standard state (= 3 g / 18 * 22.4), so that the capacity of the heat exchange pipe 50 is enough for several milliliters.
Correspondingly, the evaporation part of the heat exchange pipe 50 may be the minimum necessary, and further evaporation of water will cause excessive pressure increase, which will induce pressure oscillation in the system, making stable supplemental pressure control difficult. . Thus, regardless of the relationship between the water level of the water tank 60 and the amount of water, it is possible to automatically control the required evaporation amount by simply adjusting and designing the water level relationship in advance. The above relationship does not change substantially even when the capacity of the reforming system is increased. Needless to say, the cathode recovery water may be laid separately.

前記のように改質手段1が負圧領域になると、熱交換パイプ50で水蒸気を発生して系内を正圧領域に維持する動作を行うが、この動作に時間遅れが生じたり何らかの不具合が生じると、水タンク60から配管18にタンク水が吸い上げられ、その水がCO低減手段17に流入する恐れがある。そこで本実施形態では、配管18の圧力を検出する圧力検出器(図示せず)と制御装置(図示せず)を設け、その検出圧力が予め設定された値を下回ったときに、制御装置が配管18に設けた開閉弁21dを閉じる制御を行うようにしている。なお、開閉弁21dの代わりに逆止弁を配管18に設けてもよく、その場合は上記の圧力検出器や制御装置は不要になる。また状況によっては開閉弁21dや逆止弁を省略することもできる。
図1に示すように、本実施形態では水タンク60と熱交換パイプ50を連通する配管51に逆止弁52aを設けている。改質システムが平常運転時においては改質手段1が正圧状態になるが、その際逆止弁52aが閉作動し、改質手段1の改質ガスが水タンク60に流出するのを防止する。
As described above, when the reforming means 1 is in the negative pressure region, the heat exchange pipe 50 generates steam to maintain the system in the positive pressure region, but this operation has a time delay or some trouble. When this occurs, the tank water is sucked into the pipe 18 from the water tank 60 and the water may flow into the CO reduction means 17. Therefore, in this embodiment, a pressure detector (not shown) and a control device (not shown) for detecting the pressure in the pipe 18 are provided, and when the detected pressure falls below a preset value, the control device Control to close the on-off valve 21d provided in the pipe 18 is performed. Note that a check valve may be provided in the pipe 18 in place of the on-off valve 21d. In this case, the above-described pressure detector and control device are not necessary. Depending on the situation, the on-off valve 21d and the check valve can be omitted.
As shown in FIG. 1, in this embodiment, a check valve 52 a is provided in a pipe 51 that communicates a water tank 60 and a heat exchange pipe 50. During the normal operation of the reforming system, the reforming means 1 is in a positive pressure state. At this time, the check valve 52a is closed to prevent the reformed gas from the reforming means 1 from flowing out to the water tank 60. To do.

図2は図1の変形例を示すプロセスフロー図である。図2の改質システムの実施形態が図1の例と異なる部分は、水タンク60とその周辺部分のみで、そのほかは同様に構成される。従って図2において図1と同一の部分には図1と同一の符号を付し、重複する説明は省略する。図1の例では水タンク60とカソード回収水槽64が一体構成になっているが、本実施形態では水タンク60とカソード回収水槽64を別構成とし、隔壁66を隔てて隣接配置している。   FIG. 2 is a process flow diagram showing a modification of FIG. 2 is different from the example of FIG. 1 only in the water tank 60 and its peripheral part, and the rest is configured in the same manner. Therefore, in FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals as those in FIG. In the example of FIG. 1, the water tank 60 and the cathode recovery water tank 64 are integrally configured. However, in this embodiment, the water tank 60 and the cathode recovery water tank 64 are configured separately and are arranged adjacent to each other with a partition wall 66 therebetween.

回収水槽64には燃料電池15からのカソード回収水と外部からの補給水が回収され、その回収水槽64の貯留水を供給部68から水タンク60側へ補給水として供給できるようになっている。さらにカソード回収水槽64の内部には配流板69が傾斜して配置され、カソード回収水及び外部からの補給水が均一に混合された状態で供給部68から水タンク60側へ流出させるようになっている。
水タンク60の上部は隔壁65で仕切られた気液分離室61,62が設けられ、気液分離室61には燃料電池15から排出するアノード排ガスが流入し、気液分離室62の内部には親水性充填層70が配置されている。該親水性充填層70は、セラミックスまたはシンタリングガラス等の親水性粒子の集合体、布構造またはハニカム構造の不織布、あるいはスポンジ等の親水性および水吸収性を有する3次元網目構造の材料で構成することができる。親水性充填層70の下部は、水タンク60の下方に延長してタンク水の中に一部浸漬することによりタンク水を吸い上げる機能を有している。また親水性充填層70は改質ガスが3次元的に通過できる構造を有しており、タンク水の水面直上に配置された複数の噴出孔を有する配流部18aから改質ガスが親水性充填層70に分散もしくは拡散的に浸透して供給される。
The recovered water tank 64 collects cathode recovered water from the fuel cell 15 and externally supplied water, and the stored water in the recovered water tank 64 can be supplied as supply water from the supply unit 68 to the water tank 60 side. . Further, a flow distribution plate 69 is disposed inside the cathode recovery water tank 64 so as to flow out from the supply unit 68 to the water tank 60 side in a state where the cathode recovery water and the makeup water from the outside are uniformly mixed. ing.
The upper part of the water tank 60 is provided with gas-liquid separation chambers 61 and 62 partitioned by a partition wall 65, and the anode exhaust gas discharged from the fuel cell 15 flows into the gas-liquid separation chamber 61, and enters the gas-liquid separation chamber 62. Is provided with a hydrophilic filling layer 70. The hydrophilic filling layer 70 is made of a material having a three-dimensional network structure having hydrophilicity and water absorption such as an aggregate of hydrophilic particles such as ceramics or sintered glass, a nonwoven fabric having a cloth structure or a honeycomb structure, or a sponge. can do. The lower part of the hydrophilic filling layer 70 has a function of sucking up the tank water by extending below the water tank 60 and partially immersing it in the tank water. Further, the hydrophilic filling layer 70 has a structure that allows the reformed gas to pass three-dimensionally, and the reformed gas is hydrophilicly filled from the distribution section 18a having a plurality of ejection holes arranged immediately above the surface of the tank water. The layer 70 is supplied by being dispersed or diffusely penetrating.

次にタンク60等の作用を説明する。親水性充填層70は、水タンクの水を吸い上げるともに、補給水供給部68からの水で常に湿潤状態に維持される。配流部18aから供給される改質ガスは水を含んだ親水性充填層70と接触してその内部を分散上昇し、その際改質ガス中に含有するアンモニアは親水性充填層70に含有している水に吸収されて除去される。カソード回収槽64のカソード補給水は、供給部68を経て親水性充填層70の上部から供給され、分散しながら滴下する水により改質ガスから吸収したアンモニアを効率よく下方に洗い流されて水タンクに回収する。かくして親水性充填層70の単位容積当たりに吸収されているアンモニア量は常に所定値以下に抑制されるので、親水性充填層70は改質ガス中のアンモニアを長期間効率よく吸収除去できる。さらに、従来のバブリング方式と異なり、改質ガスの流れはスムーズに維持され、圧力変動も抑制されるとともに、圧力損失も小さく維持できる。   Next, the operation of the tank 60 will be described. The hydrophilic filling layer 70 sucks up water in the water tank and is always kept wet with water from the makeup water supply unit 68. The reformed gas supplied from the distribution section 18a comes into contact with the hydrophilic packed bed 70 containing water to disperse and rise in the inside thereof. At this time, the ammonia contained in the modified gas is contained in the hydrophilic packed bed 70. It is absorbed and removed by water. Cathode replenishment water in the cathode recovery tank 64 is supplied from the upper part of the hydrophilic packed bed 70 via the supply unit 68, and the ammonia absorbed from the reformed gas is efficiently washed down by the water dropped while being dispersed, and the water tank To recover. Thus, since the amount of ammonia absorbed per unit volume of the hydrophilic packed bed 70 is always suppressed to a predetermined value or less, the hydrophilic packed bed 70 can efficiently absorb and remove ammonia in the reformed gas for a long period of time. Further, unlike the conventional bubbling method, the flow of the reformed gas is maintained smoothly, the pressure fluctuation is suppressed, and the pressure loss can be kept small.

本発明の改質システムの停止方法及びその改質システムは、原料ガスを水蒸気改質して水素リッチな改質ガスを生成し、燃料電池等の付加設備に供給する改質システムに利用できる。   The method for stopping a reforming system and the reforming system of the present invention can be used in a reforming system that generates a hydrogen-rich reformed gas by steam reforming a raw material gas and supplies it to additional equipment such as a fuel cell.

本発明の改質システムの停止方法及びその改質システムを説明するためのプロセスフロー説明図。The process flow explanatory drawing for demonstrating the stop method of the reforming system of this invention, and its reforming system. 本発明の改質システムの停止方法及びその改質システムの変形例を説明するためのプロセスフロー説明図。Process flow explanatory drawing for demonstrating the stop method of the reforming system of this invention, and the modification of the reforming system.

符号の説明Explanation of symbols

1 改質手段
2 予備改質室
3 主改質室
4 改質触媒層
5 混合触媒層
6 シフト触媒層
7 高温シフト触媒層
8 低温シフト触媒層
9 供給管
9a 配管
10 噴出部
11 供給部
12 排出部
13 プレヒータ
DESCRIPTION OF SYMBOLS 1 Reforming means 2 Preliminary reforming chamber 3 Main reforming chamber 4 Reforming catalyst layer 5 Mixed catalyst layer 6 Shift catalyst layer 7 High temperature shift catalyst layer 8 Low temperature shift catalyst layer 9 Supply pipe 9a Piping 10 Jetting section 11 Supply section 12 Discharge Part 13 Preheater

14 第1の吸引混合手段
15 燃料電池
16 配管
17 CO低減手段
17a 混合部
18 配管
18a 配流部
20 配管
21a〜21d 開閉弁
22,23 配管
25 ポンプ
26,27 配管
29,29a 配管
14 1st suction mixing means 15 Fuel cell 16 Piping 17 CO reduction means 17a Mixing part 18 Piping 18a Distribution part 20 Piping 21a-21d On-off valve 22,23 Piping
25 Pump 26, 27 Piping 29, 29a Piping

30 水蒸気発生手段
31 水ドラム
31a 配管
32 ポンプ
33 バーナ
34 燃焼部
35 第2の吸引混合手段
30 Water vapor generating means 31 Water drum 31a Piping 32 Pump 33 Burner 34 Combustion part 35 Second suction and mixing means

36〜40 配管
41,42 開閉弁
43〜47 配管
48,49 開閉弁
50 熱交換パイプ
51 配管
52 開閉弁
52a 逆止弁
55 開閉弁
36 to 40 Piping 41 and 42 On-off valve 43 to 47 Piping 48 and 49 On-off valve 50 Heat exchange pipe 51 Piping 52 On-off valve 52a Check valve 55 On-off valve

60 水タンク
61,62,63 気液分離室
64 回収水槽
65,66 隔壁
67a カソードコンデンサー
67b 冷却器
67c アノード排ガスコンデンサー
68 供給部
69 配流板
70 親水性充填層
60 Water tank 61, 62, 63 Gas-liquid separation chamber 64 Recovery water tank 65, 66 Partition 67a Cathode condenser 67b Cooler 67c Anode exhaust gas condenser
68 Supply section 69 Distribution plate 70 Hydrophilic packed bed

Claims (7)

水蒸気を発生する水蒸気発生手段30と、前記水蒸気発生手段30で発生した水蒸気で原料ガスを改質して水素リッチな改質ガスを生成する改質手段1と、前記生成した改質ガスに含まれるCO(一酸化炭素)を低減するCO低減手段17を備えた改質システムの停止方法において、
改質システムを停止する際に、先ず改質手段1への酸化用空気の供給を停止した後、原料ガス供給を停止するとともに水蒸気発生手段30への燃料供給を停止し、ついで水蒸気発生手段30の余熱で生成する水蒸気により改質手段1に残留する原料ガスをパージし、
さらに、少なくともCO低減手段17及びそれから改質手段1に連通する配管16内に存在する水蒸気が温度低下し、収縮及び/または凝縮することにより改質手段1内が負圧領域に達するかもしくは負圧領域に近づいたときに、前記改質手段1に所定量の水を供給してその水を改質手段1の熱で加熱・蒸発させることによって改質手段1内が負圧状態になることを防止することを特徴とする改質システムの停止方法。
Included in the generated reformed gas, the steam generating means 30 for generating steam, the reforming means 1 for reforming the raw material gas with the steam generated by the steam generating means 30 to generate a hydrogen-rich reformed gas, and In a method for stopping a reforming system provided with CO reduction means 17 for reducing CO (carbon monoxide),
When stopping the reforming system, first, the supply of the oxidizing air to the reforming means 1 is stopped, then the supply of the raw material gas is stopped and the fuel supply to the steam generating means 30 is stopped, and then the steam generating means 30 is stopped. The raw material gas remaining in the reforming means 1 is purged with steam generated by the residual heat of
Further, at least the CO reducing means 17 and the water vapor existing in the piping 16 communicating with the reforming means 1 are lowered in temperature, contracted and / or condensed, so that the inside of the reforming means 1 reaches a negative pressure region or is negative. When a pressure region is approached, a predetermined amount of water is supplied to the reforming means 1 and the water is heated and evaporated by the heat of the reforming means 1 so that the inside of the reforming means 1 becomes a negative pressure state. A method for stopping a reforming system characterized in that
請求項1において、前記CO低減手段17でCOを低減された改質ガスを水タンク60にバブリングにより流入させ、その水タンク60に貯留された水を前記改質手段1に供給することを特徴とする改質システムの停止方法。   2. The reformed gas whose CO has been reduced by the CO reducing means 17 is caused to flow into the water tank 60 by bubbling, and the water stored in the water tank 60 is supplied to the reforming means 1. A method for stopping the reforming system. 請求項2において、前記水タンク60から前記改質手段1への所定量の水の供給は、前記水タンク60と改質手段1との差圧を利用して行うことを特徴とする改質システムの停止方法。   3. The reforming process according to claim 2, wherein a predetermined amount of water is supplied from the water tank 60 to the reforming unit 1 by using a differential pressure between the water tank 60 and the reforming unit 1. How to stop the system. 請求項1乃至請求項3のいずれかにおいて、前記改質手段1に設けた所定の内容積を有する熱交換パイプ50に所定量の水を供給し、熱交換パイプ50で生成した水蒸気を改質手段1の原料ガスの供給部11に供給するようにしたことを特徴とする改質システムの停止方法。   4. The water vapor generated in the heat exchange pipe 50 is reformed by supplying a predetermined amount of water to the heat exchange pipe 50 having a predetermined internal volume provided in the reforming means 1 in any one of claims 1 to 3. A method for stopping a reforming system, characterized in that it is supplied to the raw material gas supply unit 11 of means 1. 水蒸気を発生する水蒸気発生手段30と、前記水蒸気発生手段30で発生した水蒸気で原料ガスを改質して水素リッチな改質ガスを生成する改質手段1と、前記生成した改質ガスに含まれるCO(一酸化炭素)を低減するCO低減手段17を備えた改質システムにおいて、
前記改質手段1に設けた前記水蒸気と原料ガスの混合物(原料−水蒸気混合物)を供給する原料供給部11及び所定の内容積を有する熱交換パイプ50と、前記CO低減手段17の出口側に連通した水タンク60と、前記水タンク60の水を熱交換パイプ50の入口側に供給する配管51を備え、前記熱交換パイプ50の出口側と前記原料供給部11が連通されていることを特徴とする改質システム。
Included in the generated reformed gas, the steam generating means 30 for generating steam, the reforming means 1 for reforming the raw material gas with the steam generated by the steam generating means 30 to generate a hydrogen-rich reformed gas, and In the reforming system provided with CO reduction means 17 for reducing CO (carbon monoxide) generated,
On the outlet side of the CO reduction means 17, the raw material supply section 11 for supplying the steam and raw material gas mixture (raw material-steam mixture) provided in the reforming means 1 and the heat exchange pipe 50 having a predetermined internal volume. A water tank 60 communicated with the pipe 51 for supplying water from the water tank 60 to the inlet side of the heat exchange pipe 50, and the outlet side of the heat exchange pipe 50 and the raw material supply section 11 are in communication with each other; A characteristic reforming system.
請求項5において、燃料電池15から排出するアノード排ガスを通過させてそれに含まれる水を分離回収する気液分離室61が前記水タンク60に連通して設けられていることを特徴とする改質システム。   6. The reforming process according to claim 5, wherein a gas-liquid separation chamber 61 for allowing the anode exhaust gas discharged from the fuel cell 15 to pass through and separating and recovering water contained therein is provided in communication with the water tank 60. system. 請求項5または請求項6において、前記水タンク60の上部に連通して設けた気液分離室62と、前記水タンク60の水を前記気液分離室62内に吸い上げる親水性充填層70と、前記親水性充填層70中に改質ガスを供給する配流部18aと、前記気液分離室62に補給水を供給する補給部68が設けられていることを特徴とする改質システム。   The gas-liquid separation chamber 62 provided in communication with the upper portion of the water tank 60, and the hydrophilic packed bed 70 that sucks up water from the water tank 60 into the gas-liquid separation chamber 62. The reforming system is characterized in that a distribution section 18a for supplying a reformed gas into the hydrophilic packed bed 70 and a supply section 68 for supplying makeup water to the gas-liquid separation chamber 62 are provided.
JP2006301200A 2006-03-30 2006-11-07 Method for stopping reforming system and reforming system thereof Expired - Fee Related JP5063986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301200A JP5063986B2 (en) 2006-03-30 2006-11-07 Method for stopping reforming system and reforming system thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006093588 2006-03-30
JP2006093588 2006-03-30
JP2006301200A JP5063986B2 (en) 2006-03-30 2006-11-07 Method for stopping reforming system and reforming system thereof

Publications (2)

Publication Number Publication Date
JP2007290942A true JP2007290942A (en) 2007-11-08
JP5063986B2 JP5063986B2 (en) 2012-10-31

Family

ID=38761947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301200A Expired - Fee Related JP5063986B2 (en) 2006-03-30 2006-11-07 Method for stopping reforming system and reforming system thereof

Country Status (1)

Country Link
JP (1) JP5063986B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184864A (en) * 2008-02-05 2009-08-20 T Rad Co Ltd Stopping method of reformer
JP2010067539A (en) * 2008-09-12 2010-03-25 Casio Comput Co Ltd Power generation system, and control device of power generation system
JP2010108770A (en) * 2008-10-30 2010-05-13 Toshiba Corp Fuel cell power generation system, and control method of fuel cell power generation system
WO2010116685A1 (en) * 2009-03-30 2010-10-14 パナソニック株式会社 Hydrogen generation device, fuel battery system, and method for operating hydrogen generation device
WO2011077752A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
WO2011111400A1 (en) * 2010-03-11 2011-09-15 パナソニック株式会社 Fuel cell system and method for running a fuel cell system
US9174901B2 (en) 2012-03-27 2015-11-03 IFP Energies Nouvelles Temporary desulphurization reactor for pre-treating a hydrocarbon feed before steam reforming with a view to hydrogen production
JP2016096110A (en) * 2014-11-17 2016-05-26 東京瓦斯株式会社 Fuel cell system
KR101729530B1 (en) * 2015-10-12 2017-04-24 세종공업 주식회사 Water Trap for Reforming Water Circulation and Fuel Cell System using thereof
EP3226335A4 (en) * 2014-11-27 2018-01-24 Panasonic Corporation Fuel-cell system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114502A (en) * 1999-10-13 2001-04-24 Hitachi Ltd Fuel reformer and fuel cell system
JP2001223017A (en) * 2000-02-09 2001-08-17 Toyota Motor Corp Fuel gas generating system for fuel cell
JP2002063922A (en) * 2000-08-16 2002-02-28 Sanyo Electric Co Ltd Fuel cell system and its operation method
JP2003327404A (en) * 2002-05-13 2003-11-19 Babcock Hitachi Kk Hydrogen manufacturing apparatus and its operation method
JP2004152540A (en) * 2002-10-29 2004-05-27 Aisin Seiki Co Ltd Method of stopping fuel cell system operation, and fuel cell system provided with same
JP2004155602A (en) * 2002-11-05 2004-06-03 Matsushita Electric Ind Co Ltd Hydrogen generation system and fuel cell power-generation device
JP2005243330A (en) * 2004-02-25 2005-09-08 Aisin Seiki Co Ltd Gas reforming system for fuel cell
JP2005314180A (en) * 2004-04-30 2005-11-10 T Rad Co Ltd Method for stopping auto-oxidizable internal heating reformer
JP2006176345A (en) * 2004-12-21 2006-07-06 Aisin Seiki Co Ltd System and method for stopping fuel reformer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114502A (en) * 1999-10-13 2001-04-24 Hitachi Ltd Fuel reformer and fuel cell system
JP2001223017A (en) * 2000-02-09 2001-08-17 Toyota Motor Corp Fuel gas generating system for fuel cell
JP2002063922A (en) * 2000-08-16 2002-02-28 Sanyo Electric Co Ltd Fuel cell system and its operation method
JP2003327404A (en) * 2002-05-13 2003-11-19 Babcock Hitachi Kk Hydrogen manufacturing apparatus and its operation method
JP2004152540A (en) * 2002-10-29 2004-05-27 Aisin Seiki Co Ltd Method of stopping fuel cell system operation, and fuel cell system provided with same
JP2004155602A (en) * 2002-11-05 2004-06-03 Matsushita Electric Ind Co Ltd Hydrogen generation system and fuel cell power-generation device
JP2005243330A (en) * 2004-02-25 2005-09-08 Aisin Seiki Co Ltd Gas reforming system for fuel cell
JP2005314180A (en) * 2004-04-30 2005-11-10 T Rad Co Ltd Method for stopping auto-oxidizable internal heating reformer
JP2006176345A (en) * 2004-12-21 2006-07-06 Aisin Seiki Co Ltd System and method for stopping fuel reformer

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184864A (en) * 2008-02-05 2009-08-20 T Rad Co Ltd Stopping method of reformer
JP2010067539A (en) * 2008-09-12 2010-03-25 Casio Comput Co Ltd Power generation system, and control device of power generation system
JP2010108770A (en) * 2008-10-30 2010-05-13 Toshiba Corp Fuel cell power generation system, and control method of fuel cell power generation system
WO2010116685A1 (en) * 2009-03-30 2010-10-14 パナソニック株式会社 Hydrogen generation device, fuel battery system, and method for operating hydrogen generation device
CN102272040A (en) * 2009-03-30 2011-12-07 松下电器产业株式会社 Hydrogen generation device, fuel battery system, and method for operating hydrogen generation device
JPWO2010116685A1 (en) * 2009-03-30 2012-10-18 パナソニック株式会社 Hydrogen generator, fuel cell system, and operation method of hydrogen generator
JP5490102B2 (en) * 2009-03-30 2014-05-14 パナソニック株式会社 Hydrogen generator, fuel cell system, and operation method of hydrogen generator
US8906564B2 (en) 2009-03-30 2014-12-09 Panasonic Corporation Hydrogen generator, fuel cell system, and method for operating hydrogen generator
US9252443B2 (en) 2009-12-25 2016-02-02 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation apparatus, fuel cell system, and hydrogen generation apparatus operation method
WO2011077752A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
CN102574679A (en) * 2009-12-25 2012-07-11 松下电器产业株式会社 Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
JP5636001B2 (en) * 2009-12-25 2014-12-03 パナソニック株式会社 Hydrogen generator, fuel cell system, and operation method of hydrogen generator
WO2011111400A1 (en) * 2010-03-11 2011-09-15 パナソニック株式会社 Fuel cell system and method for running a fuel cell system
US9023542B2 (en) 2010-03-11 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system including an ammonia remover and method of operating the same
US9174901B2 (en) 2012-03-27 2015-11-03 IFP Energies Nouvelles Temporary desulphurization reactor for pre-treating a hydrocarbon feed before steam reforming with a view to hydrogen production
JP2016096110A (en) * 2014-11-17 2016-05-26 東京瓦斯株式会社 Fuel cell system
EP3226335A4 (en) * 2014-11-27 2018-01-24 Panasonic Corporation Fuel-cell system
US10741858B2 (en) 2014-11-27 2020-08-11 Panasonic Corporation Fuel cell system
US11081709B2 (en) 2014-11-27 2021-08-03 Panasonic Corporation Fuel cell system
KR101729530B1 (en) * 2015-10-12 2017-04-24 세종공업 주식회사 Water Trap for Reforming Water Circulation and Fuel Cell System using thereof

Also Published As

Publication number Publication date
JP5063986B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5063986B2 (en) Method for stopping reforming system and reforming system thereof
CA2594394C (en) Method of starting-up solid oxide fuel cell system
KR100466381B1 (en) Fuel reforming system
JP2005276757A (en) Fuel cell cogeneration system
JP2009227526A (en) Reforming apparatus
JP3813391B2 (en) Solid polymer fuel cell power generator and method of operating the same
JP5032025B2 (en) Liquid fuel solid polymer battery system and method for stopping the same
JP2008063159A (en) Method for stopping reformer, reformer, and fuel cell system
JP2006096601A (en) Hydrogen production device
JP2010116304A (en) Reforming apparatus, fuel cell system, and method for operating reforming apparatus
JP2007284265A (en) Method for stopping reforming system
RU2664516C2 (en) Method and system for producing methanol using integrated oxygen transport membrane based reforming system
JP2008115058A (en) Fuel reforming apparatus
JP2009084135A (en) Fuel processor, driving method therefor, and fuel cell system
JP4940567B2 (en) Polymer electrolyte fuel cell system
JP4486832B2 (en) Steam reforming system
JP4945878B2 (en) Hydrogen generator
JP2014107220A (en) Solid oxide type fuel cell system
JP4610906B2 (en) Fuel cell power generation system and method for starting fuel cell power generation system
JP2009221082A (en) Reformer
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP2001206701A (en) Fuel reforming device and starting-up method
JP2005314180A (en) Method for stopping auto-oxidizable internal heating reformer
JP2007284287A (en) Method for starting reforming system
JP5255291B2 (en) How to stop the reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees