JP2007290891A - Method for manufacturing resin-coated granular fertilizer - Google Patents

Method for manufacturing resin-coated granular fertilizer Download PDF

Info

Publication number
JP2007290891A
JP2007290891A JP2006118801A JP2006118801A JP2007290891A JP 2007290891 A JP2007290891 A JP 2007290891A JP 2006118801 A JP2006118801 A JP 2006118801A JP 2006118801 A JP2006118801 A JP 2006118801A JP 2007290891 A JP2007290891 A JP 2007290891A
Authority
JP
Japan
Prior art keywords
fertilizer
resin
coated
water
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006118801A
Other languages
Japanese (ja)
Other versions
JP5028848B2 (en
Inventor
Fumio Nanbu
文男 南部
Kihachiro Kodama
起八郎 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006118801A priority Critical patent/JP5028848B2/en
Publication of JP2007290891A publication Critical patent/JP2007290891A/en
Application granted granted Critical
Publication of JP5028848B2 publication Critical patent/JP5028848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a resin-coated granular fertilizer with suppressed initial elution of fertilizer components and controlled elution of fertilizer components. <P>SOLUTION: This method for manufacturing the resin-coated granular fertilizer comprises alternately coating mineral powder and a polyol compound liquid at room temperature by each 1-5 layers on the surface of granular fertilizer whose water absorption is ≥0.01 g-water/g-fertilizer at room temperature thereby making the water absorption at room temperature to ≥0.001 g-water/g-fertilizer and less than 0.01 g-water/g-fertilizer, and then coating the surface with a resin coating material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、樹脂被覆粒状肥料の製造方法に関する。詳しくは、肥料成分の初期溶出が抑制され、肥料成分の溶出が制御された樹脂被覆粒状肥料の製造方法に関する。   The present invention relates to a method for producing a resin-coated granular fertilizer. Specifically, the present invention relates to a method for producing a resin-coated granular fertilizer in which initial elution of fertilizer components is suppressed and elution of fertilizer components is controlled.

近年、農業就労者の高年齢化、就業者数の減少、兼業農家の増加から、より省力型で植物の成長に合わせて肥料成分の溶出が所定の期間持続する肥効調節型樹脂被覆粒状肥料が要求されている。中でも肥料成分の初期溶出が抑制され、肥料成分の溶出が制御された樹脂被覆粒状肥料が望まれている。
肥料成分の溶出を制御するための被膜欠陥の少ない樹脂被覆粒状肥料の製造方法としては、一般に樹脂被膜量を増やして被膜欠陥部分を補修して行く方法が取られている。しかしながらこの方法では、肥料成分量の低下およびコスト高の問題がある。
In recent years, due to the aging of agricultural workers, the decrease in the number of employed workers, and the increase in part-time farmers, it is more labor-saving and the fertilizer effect-type resin-coated granular fertilizer that keeps elution of fertilizer components as the plant grows for a predetermined period Is required. Among them, a resin-coated granular fertilizer in which initial elution of fertilizer components is suppressed and elution of fertilizer components is controlled is desired.
As a method for producing a resin-coated granular fertilizer with few coating defects for controlling the elution of fertilizer components, generally, a method of repairing a coating defect portion by increasing the amount of the resin coating is taken. However, this method has a problem that the amount of fertilizer component is reduced and the cost is high.

また、被膜欠陥の少ない被覆粒状肥料の製造方法として、粒状肥料の表面を合成樹脂を主成分とする被覆材料で被覆することによって被覆粒状肥料を製造する際に、円形度係数[(4π×粒子の投影面積)/(粒子投影図の輪郭の長さ)]が0.7以上である粒状肥料を用いる方法が知られている(特許文献1参照)。
しかしながら、肥料成分の溶出性能に与える円形度の影響以上に肥料の種類の影響が大きく、粒状肥料の円形度係数を1に近づけても、必ずしも溶出性能が向上しないという問題を有しおり、肥料成分の初期溶出が少なく、肥料成分の溶出が制御された樹脂被覆粒状肥料を製造する方法が望まれている。
特開平10−158084号公報
In addition, as a method for producing a coated granular fertilizer with few coating defects, when the coated granular fertilizer is produced by coating the surface of the granular fertilizer with a coating material containing a synthetic resin as a main component, the circularity coefficient [(4π × particle (Projected area) / (length of contour of particle projection) 2 ] is known to be a method using a granular fertilizer having a value of 0.7 or more (see Patent Document 1).
However, the effect of the fertilizer type is greater than the influence of the circularity on the elution performance of the fertilizer component, and even if the circularity coefficient of the granular fertilizer is close to 1, the elution performance is not necessarily improved. Therefore, there is a demand for a method for producing a resin-coated granular fertilizer in which the initial elution is small and the elution of fertilizer components is controlled.
Japanese Patent Laid-Open No. 10-158084

本発明は、肥料成分の初期溶出が抑制され、肥料成分の溶出が制御された、すなわち肥料成分の溶出速度が制御され、肥料成分の溶出が所定期間持続する樹脂被覆粒状肥料を製造する方法を提供することにある。   The present invention provides a method for producing a resin-coated granular fertilizer in which initial elution of fertilizer components is suppressed and elution of fertilizer components is controlled, that is, the elution rate of fertilizer components is controlled, and elution of fertilizer components lasts for a predetermined period. It is to provide.

かかる事情下に鑑み、本発明者等は、肥料成分の初期溶出が抑制され、肥料成分の溶出が制御された樹脂被覆粒状肥料の製造方法について鋭意検討した結果、樹脂被膜欠陥は使用する粒状肥料の吸水量の大きいものほど多く、吸水量が小さくなるほど少なくなることを見出し、粒状肥料表面を鉱産物粉末と室温下(20〜30℃、以下同じ)で液状のポリオール化合物とを交互にそれぞれ1〜5層被覆すれば、その吸水量を容易に小さくすることが可能となり、この方法で粒状肥料の室温下での吸水量を0.001g-水/g-肥料 以上で0.01g-水/g-肥料 未満とした後、その表面を樹脂被覆材で被覆処理することによって、肥料成分の初期溶出が抑制され、肥料成分の溶出が制御された樹脂被覆粒状肥料が得られることを見出し、本発明を完成するに至った。   In view of such circumstances, the present inventors have intensively studied a method for producing a resin-coated granular fertilizer in which the initial elution of the fertilizer component is suppressed and the elution of the fertilizer component is controlled. It is found that the larger the water absorption amount, the smaller the water absorption amount, and the smaller the water absorption amount, and the surface of the granular fertilizer is alternately changed to mineral powder and a liquid polyol compound at room temperature (20 to 30 ° C., hereinafter the same). If it is coated with ˜5 layers, it becomes possible to easily reduce the amount of water absorption. By this method, the amount of water absorption of the granular fertilizer at room temperature is 0.001 g-water / g-fertilizer. After making less than g-fertilizer, it was found that by coating the surface with a resin coating material, resin-coated granular fertilizer in which the elution of the fertilizer component was suppressed and the elution of the fertilizer component was controlled was obtained. Departure The has been completed.

すなわち本発明は、室温下での吸水量が0.01g-水/g-肥料 以上である粒状肥料表面に、鉱産物粉末と室温下で液状のポリオール化合物とを交互にそれぞれ1〜5層被覆することにより、室温下での吸水量を0.001g-水/g-肥料 以上で0.01g-水/g-肥料 未満とした後、その表面を樹脂被覆材で被覆することを特徴とする樹脂被覆粒状肥料の製造方法である。   That is, the present invention coats the surface of granular fertilizer having a water absorption of 0.01 g-water / g-fertilizer or more at room temperature alternately with 1-5 layers of mineral product powder and liquid polyol compound at room temperature. The amount of water absorption at room temperature is 0.001 g-water / g-fertilizer more than 0.01 g-water / g-fertilizer and then the surface is coated with a resin coating. It is a manufacturing method of resin-coated granular fertilizer.

本発明の方法によって、初期溶出が抑制され、肥料成分の溶出が制御された樹脂被覆粒状肥料を製造することができ、その産業上の利用価値は頗る大きい。   By the method of the present invention, it is possible to produce a resin-coated granular fertilizer in which initial elution is suppressed and elution of fertilizer components is controlled, and its industrial utility value is very large.

本発明において用いる粒状肥料は、肥料成分を含有する粒状物であり、室温下での吸水量が0.01g-水/g-肥料 以上のものである。
肥料成分は、水稲などの植物栽培において養分を与えるために土壌に施される窒素、リン、カリウム、珪素、マグネシウム、カルシウム、マンガン、ホウ素等の種々の元素を含有する成分であり、粒状肥料の具体例としては、尿素、硝酸アンモニウム、硝酸苦土アンモニウム、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム、硝酸ソーダ、硝酸カルシウム、硝酸カリウム、石灰窒素、ホルムアルデヒド加工尿素肥料(UF)、アセトアルデヒド加工尿素肥料(CDU)、イソブチルアルデヒド加工尿素肥料(IBDU)、グアニール尿素(GU)等の窒素質肥料、過リン酸石灰、重過リン酸石灰、熔成リン肥、腐植酸リン肥、焼成リン肥、重焼リン、苦土過燐酸、ポリリン酸アンモニウム、メタリン酸カリウム、メタリン酸カルシウム、苦土リン酸、硫リン安、リン硝安カリウム、塩リン安等のリン酸質肥料、塩化カリウム、硫酸カリウム、硫酸カリソーダ、硫酸カリ苦土、重炭酸カリウム、リン酸カリウム等のカリウム質肥料、珪酸カルシウム等の珪酸質肥料、硫酸マグネシウム、塩化マグネシウム等のマグネシウム質肥料、生石灰、消石灰、炭酸カルシウム等のカルシウム質肥料、硫酸マンガン、硫酸苦土マンガン、鉱さいマンガン等のマンガン質肥料、ホウ酸、ホウ酸塩等のホウ酸質肥料等の肥料取締法に定められる普通肥料(複合肥料を含む)、および/またはこれらに粒状物の組合せによって得られる窒素―リン酸、窒素―加里、およびリン酸―加里の2成分系、窒素―リン酸―加里の3成分系、あるいはこれらにマグネシウム、マンガン、ホウ素等の植物の生育に必要な要素を含有させた粒状肥料が挙げられる。
粒状肥料の粒径は特に限定はないが、製造上の観点から通常1〜15mmの範囲であり、好ましくは2〜5mmの範囲である。
The granular fertilizer used in the present invention is a granular material containing a fertilizer component, and has a water absorption of 0.01 g-water / g-fertilizer or more at room temperature.
The fertilizer component is a component containing various elements such as nitrogen, phosphorus, potassium, silicon, magnesium, calcium, manganese, and boron that are applied to the soil to provide nutrients in plant cultivation such as paddy rice. Specific examples include urea, ammonium nitrate, ammonium nitrate, ammonium nitrate, ammonium sulfate, ammonium phosphate, sodium nitrate, calcium nitrate, potassium nitrate, lime nitrogen, formaldehyde processed urea fertilizer (UF), acetaldehyde processed urea fertilizer (CDU), Nitrogenous fertilizers such as isobutyraldehyde processed urea fertilizer (IBDU) and guaneaure urea (GU), superphosphate lime, heavy superphosphate lime, molten phosphorus fertilizer, humic phosphate fertilizer, calcined phosphorus fertilizer, heavy calcined phosphorus, bitter Soil perphosphate, ammonium polyphosphate, potassium metaphosphate, calmetaphosphate Phosphoric fertilizers such as humic, bitter phosphate, ammonium sulfate, potassium phosphate, ammonium phosphate, potassium chloride, potassium sulfate, potassium sulfate, potassium sulfate, potassium bicarbonate, potassium phosphate, etc. Fertilizers, siliceous fertilizers such as calcium silicate, magnesium fertilizers such as magnesium sulfate and magnesium chloride, calcium fertilizers such as quick lime, slaked lime and calcium carbonate, manganese fertilizers such as manganese sulfate, sulfated manganese manganese, and mineral manganese, Nitrogen-phosphoric acid, nitrogen-kari, and ordinary fertilizers (including complex fertilizers) defined by the fertilizer control law such as borate fertilizers such as acids and borates, and / or combinations of these Phosphoric acid-Kari two-component system, nitrogen-phosphoric acid-Kari three-component system, or plants such as magnesium, manganese, boron, etc. It includes granular fertilizer which contains the necessary elements for growth.
The particle size of the granular fertilizer is not particularly limited, but is usually in the range of 1 to 15 mm and preferably in the range of 2 to 5 mm from the viewpoint of production.

本発明で使用する鉱産物粉末としては、タルク、カオリン、珪藻土、活性白土、珪砂、ベントナイト、葉ロウ石等が挙げられる。この内、タルク、葉ロウ石が好ましく用いられる。   Examples of the mineral powder used in the present invention include talc, kaolin, diatomaceous earth, activated white clay, quartz sand, bentonite, and phyllite. Of these, talc and lozenges are preferably used.

鉱産物粉末の1層の被覆量は、通常、粒状肥料に対して約0.1〜2重量%の範囲内である。1層の被覆量が約2重量%を超える場合は、粒状肥料への添着率が低下して行くと共に、これに伴って粉立ちが増加するため操作性が悪くなるので好ましくない。被覆量および被覆回数は、使用する粒状肥料の吸水量に応じて適宜調節される。例えば、粒状肥料の吸水量が小さい場合は、被覆処理は1回で充分であり、吸水量が大きい場合は、所定の吸水量になるまで被覆処理が複数回、例えば2回〜5回、繰り返される。被覆方法としては特に制限されるものではなく、当該分野で公知の方法が適用し得る。一般的には、転動型の回転円筒や回転皿等の装置に、粒状肥料を供給して転動させながら、これに鉱産物粉末を添加、混合して被覆する方法が用いられる。   The coating amount of one layer of mineral product powder is usually in the range of about 0.1 to 2% by weight based on the granular fertilizer. When the coating amount of one layer exceeds about 2% by weight, the rate of attachment to the granular fertilizer decreases, and powdering increases with this, which is not preferable because the operability deteriorates. The amount of coating and the number of coatings are appropriately adjusted according to the amount of water absorbed by the granular fertilizer to be used. For example, when the water absorption amount of the granular fertilizer is small, the coating process is sufficient once, and when the water absorption amount is large, the coating process is repeated a plurality of times, for example, 2 to 5 times until the predetermined water absorption amount is reached. It is. The coating method is not particularly limited, and methods known in the art can be applied. Generally, a method is used in which a granular fertilizer is supplied to a rolling-type rotating cylinder, a rotating dish, or the like, and a mineral product powder is added and mixed to the rolling while being rolled.

鉱産物粉末と交互に被覆するポリオール化合物としては、室温下で液状のアミノアルコール、アミン等を開始剤としてとして用い、プロピレングリコール、トリメチロールプロパン等の脂肪族アルコールとエチレンオキサイドやプロピレンオキサイドとを重付加して得られるポリエーテルポリオール、テトラヒドロフランを重合して得られるポリテトラメチレンエーテルグリコール等のポリエーテル型ポリオール、イサノ油やひまし油等の水酸基を保有する天然油脂や多価アルコールとポリエーテルポリオールとカルボン酸化合物を反応させる等の方法で得られるポリエステル型ポリオール等が挙げられるが、中でもポリエーテルポリオールが好ましく用いられる。   The polyol compound that is alternately coated with the mineral product powder is an amino alcohol, amine, or the like that is liquid at room temperature as an initiator, and an aliphatic alcohol such as propylene glycol or trimethylol propane and ethylene oxide or propylene oxide. Polyether polyols obtained by addition, polyether type polyols such as polytetramethylene ether glycol obtained by polymerizing tetrahydrofuran, natural fats and oils having hydroxyl groups such as Isano oil and castor oil, polyhydric alcohols, polyether polyols and carboxyls Examples thereof include polyester type polyols obtained by a method of reacting an acid compound, among which polyether polyols are preferably used.

室温下で液状のポリオール化合物の1層の被覆量は、通常、粒状肥料に対して約0.1〜2重量%の範囲内である。1層の被覆量が約2重量%を超えて被覆する場合は、粒状肥料への添着率が低下して行くと共に、これに伴って液過多となり粒状肥料同士の付着が起こり易くなり、転動性が悪くなるので好ましくない。被覆量および被覆回数は前記の鉱産物粉末と同様に、使用する粒状肥料の吸水量に応じて適宜調節される。被覆処理方法としては特に制限されるものではなく、前記の鉱産物粉末と同様に当該分野で公知の方法が適用し得る。一般的には、転動型の回転円筒や回転皿等の装置で、鉱産物粉末を被覆した粒状肥料を転動させながら、これにスプレー添加、混合して被覆する方法が用いられる。   The coating amount of one layer of a polyol compound that is liquid at room temperature is usually in the range of about 0.1 to 2% by weight with respect to the granular fertilizer. If the coating amount of one layer exceeds about 2% by weight, the rate of attachment to the granular fertilizer will decrease, and with this, the liquid will become excessive and adhesion of the granular fertilizer will easily occur. This is not preferable because the properties deteriorate. The amount of coating and the number of coatings are appropriately adjusted according to the amount of water absorbed by the granular fertilizer to be used, as in the case of the mineral product powder. The coating method is not particularly limited, and methods known in the art can be applied in the same manner as the mineral powder. In general, a method is used in which a granular fertilizer coated with mineral product powder is rolled and sprayed, mixed and coated with an apparatus such as a rolling type rotating cylinder or rotating dish.

前記処理方法で、室温下での吸水量を0.001g-水/g-肥料 以上で0.01g-水/g-肥料 未満とした粒状肥料の被覆処理物の表面を被覆処理する樹脂被覆材としては、主に熱硬化性樹脂が使用される。熱硬化性樹脂としては、アルキド樹脂、ウレタン樹脂等が使用され、中でもウレタン樹脂が好ましく用いられる。ウレタン樹脂はポリイソシアネート化合物とポリオール化合物との反応により3次元架橋することにより生成するものである。また、ポリイソシアネート化合物を2種類以上および/またはポリオール化合物を2種類以上混合して用いることもできる。   Resin coating material for coating the surface of a granular fertilizer coating treated with a water absorption amount at room temperature of 0.001 g-water / g-fertilizer or more and less than 0.01 g-water / g-fertilizer by the above treatment method As for, thermosetting resin is mainly used. As the thermosetting resin, an alkyd resin, a urethane resin or the like is used, and among them, a urethane resin is preferably used. The urethane resin is produced by three-dimensional crosslinking by a reaction between a polyisocyanate compound and a polyol compound. Further, two or more polyisocyanate compounds and / or two or more polyol compounds can be mixed and used.

ポリイソシアネート化合物としては、例えばトルエンジイソシアネート(以下、TDIと略称することがある。)、ジフェニルメタンジイソシアネート(MDIと略称することがある。)、ナフタレンジイソシアネート、トリジンイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等を挙げることができ、必要に応じてこれらの混合物を用いることができる。中でも、MDI、TDIまたはこれらから誘導されるオリゴマー体(ポリメリックMDI、ポリメリックTDI等)が好適に用いられる。   Examples of the polyisocyanate compound include toluene diisocyanate (hereinafter sometimes abbreviated as TDI), diphenylmethane diisocyanate (sometimes abbreviated as MDI), naphthalene diisocyanate, tolidine isocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diene. An isocyanate etc. can be mentioned and these mixtures can be used as needed. Among these, MDI, TDI or oligomers derived from these (polymeric MDI, polymeric TDI, etc.) are preferably used.

ポリイソシアネート化合物と反応させるポリオール化合物としては、前記と同様の例えばアミノアルコール、アミン等を開始材として用い、プロピレングリコール、トリメチロールプロパン等の脂肪族アルコールとエチレンオキサイドやプロピレンオキサイドとを重付加して得られるポリエーテルポリオール、テトラヒドロフランを重合して得られるポリテトラメチレンエーテルグリコール等のポリエーテル型ポリオール、イサノ油やひまし油等の水酸基を保有する天然油脂や多価アルコールとポリエーテルポリオールとカルボン酸化合物を反応させる等の方法で得られるポリエステル型ポリオール等が挙げられる。   As the polyol compound to be reacted with the polyisocyanate compound, for example, amino alcohol, amine and the like as described above are used as a starting material, and an aliphatic alcohol such as propylene glycol and trimethylolpropane is polyadded with ethylene oxide and propylene oxide. Polyether polyol obtained, polyether type polyol such as polytetramethylene ether glycol obtained by polymerizing tetrahydrofuran, natural fats and oils possessing hydroxyl groups such as Isano oil and castor oil, polyhydric alcohol, polyether polyol and carboxylic acid compound Examples thereof include polyester-type polyols obtained by a method such as reaction.

使用するポリイソシアネート化合物に由来するNCO基とポリオール化合物に由来するOH基の当量比、いわゆるNCO/OHは、通常0.9〜1.2の間で調整される。   The equivalent ratio of the NCO group derived from the polyisocyanate compound to be used and the OH group derived from the polyol compound, so-called NCO / OH, is usually adjusted between 0.9 and 1.2.

ウレタン樹脂原料の硬化促進の目的で添加される触媒としては、例えば、トリエチレンジアミン、N−メチルモルフォリン、N,N−ジメチルモルフォリン、ジアザビシクロウンデセン、イミダゾール、エチルメチルイミダゾール、ジアザビシクロオクタン、2,4,6,−トリス(ジメチルアミノミチル)フェノール等のアミン系触媒、尿素等のアンモニア誘導体、水酸化ナトリウム、水酸化カリウム等のアルカリ性化合物、ジブチルスズラウレート、ジブチルスズマレート等の有機スズ化合物が挙げられる。中でもアミン系触媒が好適に用いられる。これら触媒の量は、ポリイソシアネート化合物とポリオール化合物の総重量に対して、通常、0.05〜5重量%程度である。   Examples of the catalyst added for the purpose of accelerating the curing of the urethane resin raw material include triethylenediamine, N-methylmorpholine, N, N-dimethylmorpholine, diazabicycloundecene, imidazole, ethylmethylimidazole, diazabicyclo. Amine catalysts such as octane, 2,4,6, -tris (dimethylaminomytyl) phenol, ammonia derivatives such as urea, alkaline compounds such as sodium hydroxide and potassium hydroxide, organic compounds such as dibutyltin laurate and dibutyltin malate A tin compound is mentioned. Of these, amine-based catalysts are preferably used. The amount of these catalysts is usually about 0.05 to 5% by weight based on the total weight of the polyisocyanate compound and the polyol compound.

樹脂被覆材の量は、特に制限されるものではなく、所望する溶出速度、溶出期間に応じて適宜調節される。通常は、粒状肥料に対して3〜15重量%の範囲内において行なわれる。   The amount of the resin coating material is not particularly limited, and is appropriately adjusted according to a desired elution rate and elution period. Usually, it is performed within a range of 3 to 15% by weight with respect to the granular fertilizer.

樹脂被覆材の被覆処理方法としては特に制限されるものではなく、当該分野で公知の方法が適用し得る。一般的には、温度制御可能な転動型の回転円筒や回転皿等の装置に、前記処理方法で、室温下での吸水量を0.001g-水/g-肥料 以上で0.01g-水/g-肥料 未満とした粒状肥料の被覆処理物を供給して転動させながら、これに液状の熱硬化性樹脂を添加被覆し、次いで熱硬化させて被覆処理する方法が用いられる。   The method for coating the resin coating material is not particularly limited, and methods known in the art can be applied. In general, the water absorption amount at room temperature is 0.001 g-water / g-fertilizer or more and 0.01 g- There is used a method in which a liquid thermosetting resin is added to and coated with a granular fertilizer coating treated with less than water / g-fertilizer and rolled, followed by thermal curing and coating.

本発明の方法によって、初期溶出が抑制され、肥料成分の溶出が制御された樹脂被覆粒状肥料が得られる理由は定かでないが、以下のように推察される。
従来の樹脂被覆法では、粒状肥料の細孔の有る部分と無い部分で樹脂の被膜の状態が不均一となる。細孔径が大きく、かつ吸水量の大きい場合には更に被膜の状態が不均一となり、このため被覆量に応じた溶出制御ができなくなると共に、使用する粒状肥料の吸水量が異なる度に、溶出が不安定となり、被覆量に応じた溶出制御が困難になる。
一方、本発明方法では、最初に添加される鉱産物粉末が細孔に取込まれ、次いで添加される室温下で液状のポリオール化合物が更に細孔に取込まれて細孔が埋められる。細孔が大きい場合は、これが数回繰返されることにより、細孔が完全に埋められ、結果、極めて細孔の少ない粒状肥料を得ることが出来る。このようにして得られた粒状肥料を樹脂溶液で被覆処理する際には、樹脂溶液は細孔に取込まれることなく被膜を重ねて行くことができることから、被膜厚が均一となり、従って、被覆量に応じた溶出制御が可能になる。
The reason for obtaining a resin-coated granular fertilizer in which initial elution is suppressed and elution of fertilizer components is controlled by the method of the present invention is not clear, but is presumed as follows.
In the conventional resin coating method, the state of the resin coating becomes non-uniform between the portion of the granular fertilizer having pores and the portion having no pores. When the pore size is large and the amount of water absorption is large, the state of the coating is further non-uniform, so that elution control according to the amount of coating becomes impossible, and elution occurs every time the amount of water absorption of the granular fertilizer used differs. It becomes unstable and it becomes difficult to control elution according to the coating amount.
On the other hand, in the method of the present invention, the mineral powder added first is taken into the pores, and then the liquid polyol compound is further taken into the pores at room temperature, and the pores are filled. When the pores are large, this is repeated several times to completely fill the pores, and as a result, a granular fertilizer with very few pores can be obtained. When coating the granular fertilizer thus obtained with a resin solution, the resin solution can be layered without being taken into the pores, so that the film thickness becomes uniform, and therefore the coating Elution control according to the amount becomes possible.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例によって何ら限定されるものではない。
なお、実施例中の部および%は特記しない限りすべて重量部および重量百分率を示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
In addition, unless otherwise indicated, all the parts and% in an Example show a weight part and a weight percentage.

また、吸水量および肥料成分の溶出量の測定は以下の方法で行なった。
(1)吸水量の測定:
室温下に、市販のパン型造粒機(容器:ステンレス、容器寸法:240mmφ×75mm、傾斜角度:45度、回転数:50rpm)に粒状肥料300gを入れ、転動させながら電動ビュレットを使用し、水を0.2g/秒の添加速度で、転動する粒状肥料の上部より添加し、粒状肥料が転動しなくなるまで添加し、転動しなくなった時までの水量を測定し、吸水量とした。
(2)肥料成分の溶出量の測定:
複数本の100mlの栓付きガラス管のそれぞれに、測定する樹脂被覆粒状肥料5gを入れ、水100mlを添加して浸漬し、栓をして25℃の恒温槽に静置した。
所定期間毎に、ガラス管を恒温槽から取り出し、溶液を化学濾紙で濾過して水中に溶出した肥料成分を定量分析し、溶出量(%)を算出した。
Moreover, the water absorption amount and the elution amount of the fertilizer component were measured by the following methods.
(1) Measurement of water absorption:
At room temperature, put 300g of granular fertilizer into a commercial bread granulator (container: stainless steel, container dimensions: 240mmφ x 75mm, tilt angle: 45 degrees, rotation speed: 50rpm), and use an electric burette while rolling. Add water from the top of the rolling granular fertilizer at an addition rate of 0.2 g / sec, add until the granular fertilizer stops rolling, measure the amount of water until it stops rolling, It was.
(2) Measurement of fertilizer component elution amount:
5 g of resin-coated granular fertilizer to be measured was put into each of a plurality of 100 ml glass tubes with stoppers, 100 ml of water was added and immersed, stoppered and placed in a thermostatic bath at 25 ° C.
At predetermined intervals, the glass tube was taken out of the thermostat, the solution was filtered with chemical filter paper, and the fertilizer components eluted in water were quantitatively analyzed, and the elution amount (%) was calculated.

実施例1
(1)室温下での吸水量が、0.01g-水/g-肥料 未満の粒状肥料の被覆処理物の製造:
室温下において、転動型の被覆装置に粒状硫酸加里(室温下の吸水量:0.082g-水/g-肥料 、平均粒径3.5mm)20kgを仕込んだ。被覆装置の回転部を20〜30rpmで回転させ、仕込んだ粒状硫酸加里を転動状態にした。この転動物の上部から、鉱産物粉末のタルク[149μm(100メッシュ)パス品、以下同じ]200gを除々に添加し被覆処理した。次いで、ポリオール化合物の分岐ポリオールポリエーテル(スミフェン(商標登録)TM、住友バイエルウレタン社製)200gをこの転動物の上部からスプレー添加し被覆処理した。得られた被覆処理物の吸水量は0.046g-水/g-肥料 であった。吸水量が0.01g-水/g-肥料 未満になっていないため、更にこの被覆処理物を前記と同様の装置、同様の条件で転動させながら、この転動物の上部から、前記のタルク200gを除々に添加して被覆処理した。次いで、前記の分岐ポリエーテルポリオール200gをこの転動物の上部からスプレー添加し被覆処理した。得られた被覆処理物の吸水量は0.007g-水/g-肥料 であった。
Example 1
(1) Manufacture of a coated processed product of granular fertilizer having a water absorption at room temperature of less than 0.01 g-water / g-fertilizer:
At room temperature, 20 kg of granular sulfuric acid (water absorption at room temperature: 0.082 g-water / g-fertilizer, average particle size 3.5 mm) was charged into a rolling type coating apparatus. The rotating part of the coating apparatus was rotated at 20 to 30 rpm, and the charged granular sulfuric acid was brought into a rolling state. Mineral powder talc [149 μm (100 mesh) pass product, the same applies hereinafter] 200 g was gradually added from the upper part of the animal to be coated. Next, 200 g of a branched polyol polyether of a polyol compound (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) was spray-applied from the upper part of the animals and coated. The amount of water absorption of the obtained coated processed product was 0.046 g-water / g-fertilizer. Since the water absorption amount is not less than 0.01 g-water / g-fertilizer, the coated product is further rolled using the same apparatus and the same conditions as above, while 200 g was gradually added for coating. Next, 200 g of the branched polyether polyol was spray-applied from the upper part of the animal and coated. The amount of water absorption of the resulting coated product was 0.007 g-water / g-fertilizer.

(2)樹脂被覆粒状肥料の製造:
前記(1)で得た吸水量0.007g-水/g-肥料 の被覆処理物の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。被覆処理物に対するウレタン樹脂の被覆量は4%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)208.8gと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール4gを加え、30分撹拌し、混合物212.8gを得た(以下、混合物Aと記す。)。
温度制御可能な転動型の被覆装置に被覆処理物10kgを仕込んだ。被覆装置の回転部を20〜30rpmで回転させ、仕込んだ被覆処理物を転動状態にした。被覆処理物の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)187.2gと混合物A212.8gを混合して得られる液状の未硬化ウレタン樹脂組成物を除々に添加し熱硬化させながら被覆処理した。この被覆処理に要した時間は約28分であった。
このようにして得たウレタン樹脂被覆量4%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
(2) Production of resin-coated granular fertilizer:
The surface of the coated water treated product of 0.007 g-water / g-fertilizer obtained in (1) above was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin on the coated product was 4%.
At room temperature, 208.8 g of branched polyether polyol (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 4 g of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst were added to a polyol mixing tank, and 30 The mixture was stirred for a minute to obtain 212.8 g of a mixture (hereinafter referred to as a mixture A).
10 kg of the coated product was charged in a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating device was rotated at 20 to 30 rpm, and the charged coated product was brought into a rolling state. While maintaining the temperature of the coated product to 70 to 75 ° C., 187.2 g of polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) as a polyisocyanate compound and 212.8 g of mixture A were mixed. The liquid uncured urethane resin composition obtained in this manner was gradually added and coated while being thermally cured. The time required for this coating treatment was about 28 minutes.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 4% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

実施例2
実施例1で得た吸水量0.007g-水/g-肥料 の被覆処理物の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。被覆処理物に対するウレタン樹脂の被覆量は8%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)417.7gと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール7.9gを加え、30分撹拌し、混合物425.6gを得た(以下、混合物Bと記す。)。
温度制御可能な転動型の被覆装置に被覆処理物10kgを仕込んだ。被覆装置の回転部を20〜30rpmで回転させ、仕込んだ被覆処理物を転動状態にした。該被覆処理物の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)374.4gと混合物B425.6gを混合して得られる液状の未硬化ウレタン樹脂組成物を除々に添加し熱硬化させながら被覆処理した。この被覆処理に要した時間は約56分であった。
このようにして得たウレタン樹脂被覆量8%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Example 2
The surface of the coated product with a water absorption of 0.007 g-water / g-fertilizer obtained in Example 1 was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin with respect to the coated product was 8%.
Add 417.7 g of branched polyether polyol (Sumiten (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 7.9 g of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst to a polyol mixing tank at room temperature. The mixture was stirred for 30 minutes to obtain 425.6 g of a mixture (hereinafter referred to as the mixture B).
10 kg of the coated product was charged in a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating device was rotated at 20 to 30 rpm, and the charged coated product was brought into a rolling state. While maintaining the temperature of the coated product to 70 to 75 ° C., 374.4 g of polymeric MDI (Sumidur (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 425.6 g of mixture B were mixed as the polyisocyanate compound. The liquid uncured urethane resin composition obtained in this manner was gradually added and coated while being thermally cured. The time required for this coating treatment was about 56 minutes.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 8% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

比較例1
実施例1で用いたものと同じ粒状硫酸加里(室温下の吸水量:0.082g-水/g-肥料、平均粒径3.5mm)をそのまま用いて、実施例1と同様にしてウレタン樹脂の被覆量が4%の樹脂被覆粒状肥料を製造した。
この樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Comparative Example 1
The same granular sulfuric acid as that used in Example 1 (water absorption at room temperature: 0.082 g-water / g-fertilizer, average particle size 3.5 mm) was used as it was in the same manner as in Example 1 to obtain a urethane resin. A resin-coated granular fertilizer having a coating amount of 4% was produced.
For this resin-coated granular fertilizer, the fertilizer component elution performance was measured. The results are shown in Table 1.

比較例2
実施例1で用いたものと同じ粒状硫酸加里(室温下の吸水量:0.082g-水/g-肥料、平均粒径3.5mm)をそのまま用いて、実施例2と同様にしてウレタン樹脂の被覆量が8%の樹脂被覆粒状肥料を製造した。
この樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Comparative Example 2
The same granular sulfuric acid as used in Example 1 (water absorption at room temperature: 0.082 g-water / g-fertilizer, average particle size 3.5 mm) was used as it was in Example 2 to obtain a urethane resin. A resin-coated granular fertilizer having a coating amount of 8% was produced.
For this resin-coated granular fertilizer, the fertilizer component elution performance was measured. The results are shown in Table 1.

実施例3
(1)室温下での吸水量が、0.01g-水/g-肥料 未満の粒状肥料の被覆処理物の製造:
室温下において、転動型の被覆装置に粒状塩化加里(室温下の吸水量0.107g-水/g-肥料、平均粒径3.2mm)20kgを仕込んだ。被覆装置の回転部を20〜30rpmで回転させ、仕込んだ粒状塩化加里を転動状態にした。この転動物の上部から、鉱産物粉末の葉ロウ石[149μm(100メッシュ)パス品、以下同じ]200gを除々に添加し被覆処理した。次いで、ポリオール化合物の分岐ポリオールポリエーテル(スミフェン(商標登録)TM、住友バイエルウレタン社製)200gをこの転動物の上部からスプレー添加し被覆処理した。得られた被覆処理物の吸水量は0.073g-水/g-肥料 であった。吸水量が0.01g-水/g-肥料 未満なっていないため、更にこの被覆処理物を前記と同様の装置、同様の条件で転動させながら、この転動物の上部から、前記の葉ロウ石200gを除々に添加して被覆処理した。次いで、前記の分岐ポリエーテルポリオール200gをこの転動物の上部からスプレー添加し被覆処理した。得られた被覆処理物の吸水量は0.039g-水/g-肥料 であった。2回の被覆処理でもまだ吸水量が0.01g-水/g-肥料 未満になっていないため、更にこの被覆処理物を前記と同様の装置、同様の条件で転動させながら、この転動物の上部から、前記の葉ロウ石200gを除々に添加して被覆処理した。次いで、前記の分岐ポリエーテルポリオール200gをこの転動物の上部からスプレー添加し被覆処理した。得られた被覆処理物の吸水量は0.006g-水/g-肥料 であった。
Example 3
(1) Manufacture of a coated processed product of granular fertilizer having a water absorption at room temperature of less than 0.01 g-water / g-fertilizer:
At room temperature, 20 kg of granular potassium chloride (water absorption at room temperature: 0.107 g-water / g-fertilizer, average particle size: 3.2 mm) was charged in a rolling type coating apparatus. The rotating part of the coating apparatus was rotated at 20 to 30 rpm, and the charged granular chloride was put into a rolling state. From the upper part of this animal, 200 g of mineral powder chlorophyll [149 μm (100 mesh) pass product, the same applies hereinafter] was gradually added and coated. Next, 200 g of a branched polyol polyether of a polyol compound (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) was spray-applied from the upper part of the animals and coated. The water absorption of the obtained coated product was 0.073 g-water / g-fertilizer. Since the water absorption is not less than 0.01 g-water / g-fertilizer, the coated product is further rolled under the same apparatus and the same conditions as above, 200 g of stone was gradually added to perform the coating treatment. Next, 200 g of the branched polyether polyol was spray-applied from the upper part of the animal and coated. The amount of water absorption of the coated product thus obtained was 0.039 g-water / g-fertilizer. Since the water absorption amount is not yet less than 0.01 g-water / g-fertilizer even after the two coating treatments, this coated animal is further rolled with the same equipment and the same conditions as above. From above, 200 g of the above-mentioned mesophyll was gradually added and coated. Next, 200 g of the branched polyether polyol was spray-applied from the upper part of the animal and coated. The amount of water absorption of the obtained coated processed product was 0.006 g-water / g-fertilizer.

(2)樹脂被覆粒状肥料の製造:
前記(1)で得た吸水量0.006g-水/g-肥料 の被覆処理物の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。被覆処理物に対するウレタン樹脂の被覆量は6%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)313.3gと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール5.9gを加え、30分撹拌し、混合物319.2gを得た(以下、混合物Cと記す。)。
温度制御可能な転動型の被覆装置に被覆処理物10kgを仕込んだ。被覆装置の回転部を20〜30rpmで回転させ、仕込んだ被覆処理物を転動状態にした。被覆処理物の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)280.8gと混合物C319.2gを混合して得られる液状の未硬化ウレタン樹脂組成物を除々に添加し熱硬化させながら被覆処理した。この被覆処理に要した時間は約42分であった。
このようにして得たウレタン樹脂被覆量6%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
(2) Production of resin-coated granular fertilizer:
The surface of the coated product of water absorption 0.006 g-water / g-fertilizer obtained in (1) was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin with respect to the coated product was 6%.
Add 313.3 g of branched polyether polyol (Sumiphen (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 5.9 g of 2,4,6-tris (dimethylaminomethyl) phenol as a curing catalyst to a polyol mixing tank at room temperature. The mixture was stirred for 30 minutes to obtain 319.2 g of a mixture (hereinafter referred to as the mixture C).
10 kg of the coated product was charged in a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating device was rotated at 20 to 30 rpm, and the charged coated product was brought into a rolling state. While maintaining the temperature of the coated product to 70 to 75 ° C., 280.8 g of polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) as a polyisocyanate compound and 319.2 g of mixture C were mixed. The liquid uncured urethane resin composition obtained in this manner was gradually added and coated while being thermally cured. The time required for this coating treatment was about 42 minutes.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 6% obtained in this manner, the fertilizer component elution performance was measured. The results are shown in Table 1.

実施例4
樹脂被覆粒状肥料の製造:
実施例3で得た吸水量0.006g-水/g-肥料 の被覆処理物の表面を、以下の方法でウレタン樹脂で被覆して樹脂被覆粒状肥料を製造した。被覆処理物に対するウレタン樹脂の被覆量は10%とした。
室温下でポリオール混合槽に分岐ポリエーテルポリオール(スミフェン(商標登録)TM、住友バイエルウレタン社製)522.1gと硬化触媒として2,4,6−トリス(ジメチルアミノメチル)フェノール9.9gを加え、30分撹拌し、混合物532gを得た(以下混合物Dと記す)。
温度制御可能な転動型の被覆装置に被覆処理物10kgを仕込んだ。被覆装置の回転部を20〜30rpmで回転させ、仕込んだ被覆処理物を転動状態にした。該被覆処理物の温度を70〜75℃になるまで加熱保持しながら、ポリイソシアネート化合物としてポリメリックMDI(スミジュール(登録商標)44V10、住友バイエルウレタン社製)468gと混合物D532gを混合して得られる液状の未硬化ウレタン樹脂組成物を除々に添加し熱硬化させながら被覆処理した。この被覆処理に要した時間は約70分であった。
このようにして得たウレタン樹脂被覆量10%の樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Example 4
Production of resin-coated granular fertilizer:
The surface of the coated product of water absorption 0.006 g-water / g-fertilizer obtained in Example 3 was coated with a urethane resin by the following method to produce a resin-coated granular fertilizer. The coating amount of the urethane resin with respect to the coated product was 10%.
At room temperature, 522.1 g of branched polyether polyol (Sumiten (registered trademark) TM, manufactured by Sumitomo Bayer Urethane Co., Ltd.) and 9.9 g of 2,4,6-tris (dimethylaminomethyl) phenol were added as a curing catalyst to a polyol mixing tank. The mixture was stirred for 30 minutes to obtain 532 g of a mixture (hereinafter referred to as the mixture D).
10 kg of the coated product was charged in a rolling type coating apparatus capable of controlling the temperature. The rotating part of the coating device was rotated at 20 to 30 rpm, and the charged coated product was brought into a rolling state. Obtained by mixing 468 g of polymeric MDI (Sumijoule (registered trademark) 44V10, manufactured by Sumitomo Bayer Urethane Co., Ltd.) as a polyisocyanate compound and 532 g of a mixture D while maintaining the temperature of the coated product to 70 to 75 ° C. The liquid uncured urethane resin composition was gradually added and coated while being thermally cured. The time required for this coating treatment was about 70 minutes.
With respect to the resin-coated granular fertilizer having a urethane resin coating amount of 10%, the fertilizer component elution performance was measured. The results are shown in Table 1.

比較例3
実施例3で用いたものと同じ粒状塩化加里(室温下の吸水量:0.107g-水/g-肥料、平均粒径3.2mm)をそのまま用いて、実施例3と同様にしてウレタン樹脂の被覆量が6%の樹脂被覆粒状肥料を製造した。
この樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Comparative Example 3
Using the same granular potassium chloride as used in Example 3 (water absorption at room temperature: 0.107 g-water / g-fertilizer, average particle size of 3.2 mm) as it is, urethane resin in the same manner as in Example 3. A resin-coated granular fertilizer with a coating amount of 6% was produced.
For this resin-coated granular fertilizer, the fertilizer component elution performance was measured. The results are shown in Table 1.

比較例4
実施例3で用いたものと同じ粒状塩化加里(室温下の吸水量:0.107g-水/g-肥料、平均粒径3.2mm)をそのまま用いて、実施例4と同様にしてウレタン樹脂の被覆量が10%の樹脂被覆粒状肥料を製造した。
この樹脂被覆粒状肥料について、肥料成分溶出性能を測定した。結果を表1に示す。
Comparative Example 4
Using the same granular potassium chloride as used in Example 3 (water absorption at room temperature: 0.107 g-water / g-fertilizer, average particle size 3.2 mm) as it is, urethane resin as in Example 4 A resin-coated granular fertilizer having a coating amount of 10% was produced.
For this resin-coated granular fertilizer, the fertilizer component elution performance was measured. The results are shown in Table 1.

Figure 2007290891
Figure 2007290891

表1に示すとおり、本発明の方法によって得られた樹脂被覆粒状肥料は、肥料成分の初期溶出が抑制され、肥料成分の溶出が制御されたものとなっている。


As shown in Table 1, in the resin-coated granular fertilizer obtained by the method of the present invention, the initial elution of the fertilizer component is suppressed and the elution of the fertilizer component is controlled.


Claims (3)

室温下での吸水量が0.01g-水/g-肥料 以上である粒状肥料表面に、鉱産物粉末と室温下で液状のポリオール化合物とを交互にそれぞれ1〜5層被覆することにより、室温下での吸水量を0.001g-水/g-肥料 以上で0.01g-水/g-肥料 未満とした後、その表面を樹脂被覆材で被覆することを特徴とする樹脂被覆粒状肥料の製造方法。   By coating 1 to 5 layers of mineral powder and a liquid polyol compound alternately at room temperature on a granular fertilizer surface having a water absorption of 0.01 g-water / g-fertilizer or more at room temperature, A resin-coated granular fertilizer characterized in that the amount of water absorption below is 0.001 g-water / g-fertilizer or more and less than 0.01 g-water / g-fertilizer and then the surface is coated with a resin coating material. Production method. 鉱産物粉末と室温下で液状のポリオール化合物のそれぞれ1層の被覆量が、粒状肥料に対して0.1〜2重量%である請求項1記載の樹脂被覆粒状肥料の製造方法。   The method for producing a resin-coated granular fertilizer according to claim 1, wherein the coating amount of each layer of the mineral product powder and the polyol compound that is liquid at room temperature is 0.1 to 2 wt% with respect to the granular fertilizer. 樹脂被覆材が熱硬化性樹脂である請求項1記載の樹脂被覆粒状肥料の製造方法。

The method for producing a resin-coated granular fertilizer according to claim 1, wherein the resin coating material is a thermosetting resin.

JP2006118801A 2006-04-24 2006-04-24 Method for producing resin-coated granular fertilizer Active JP5028848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118801A JP5028848B2 (en) 2006-04-24 2006-04-24 Method for producing resin-coated granular fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118801A JP5028848B2 (en) 2006-04-24 2006-04-24 Method for producing resin-coated granular fertilizer

Publications (2)

Publication Number Publication Date
JP2007290891A true JP2007290891A (en) 2007-11-08
JP5028848B2 JP5028848B2 (en) 2012-09-19

Family

ID=38761901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118801A Active JP5028848B2 (en) 2006-04-24 2006-04-24 Method for producing resin-coated granular fertilizer

Country Status (1)

Country Link
JP (1) JP5028848B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215129A (en) * 2008-03-12 2009-09-24 Sumitomo Chemical Co Ltd Method of producing resin coated granular fertilizer
CN102001876A (en) * 2009-09-30 2011-04-06 深圳市芭田生态工程股份有限公司 Preparation method for water storage fertilizer and product thereof
CN102001878A (en) * 2009-09-30 2011-04-06 深圳市芭田生态工程股份有限公司 Water-holding fertilizer manufacturing method and product
CN102001877A (en) * 2009-09-30 2011-04-06 深圳市芭田生态工程股份有限公司 Method for manufacturing water storage fertilizer
JP2012046381A (en) * 2010-08-27 2012-03-08 Sumitomo Chemical Co Ltd Method for producing resin-coated granular fertilizer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047725A (en) * 2003-07-30 2005-02-24 Sumitomo Chemical Co Ltd Granular fertilizer composition and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047725A (en) * 2003-07-30 2005-02-24 Sumitomo Chemical Co Ltd Granular fertilizer composition and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215129A (en) * 2008-03-12 2009-09-24 Sumitomo Chemical Co Ltd Method of producing resin coated granular fertilizer
CN102001876A (en) * 2009-09-30 2011-04-06 深圳市芭田生态工程股份有限公司 Preparation method for water storage fertilizer and product thereof
CN102001878A (en) * 2009-09-30 2011-04-06 深圳市芭田生态工程股份有限公司 Water-holding fertilizer manufacturing method and product
CN102001877A (en) * 2009-09-30 2011-04-06 深圳市芭田生态工程股份有限公司 Method for manufacturing water storage fertilizer
JP2012046381A (en) * 2010-08-27 2012-03-08 Sumitomo Chemical Co Ltd Method for producing resin-coated granular fertilizer

Also Published As

Publication number Publication date
JP5028848B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5028848B2 (en) Method for producing resin-coated granular fertilizer
JP5810544B2 (en) Coated granule and method for producing the coated granule
US20140298873A1 (en) Modified release agrochemical composition and a process for preparing the same
CN101679588B (en) Granule coated with urethane resin
TWI756183B (en) Coated granular fertilizer, method for producing coated granular fertilizer, and fertilizer composition
JP2011173780A (en) Method for producing coated water-soluble particulate
RU2604497C2 (en) Encapsulated particle
JP5604819B2 (en) Method for producing resin-coated granular fertilizer
JP2005067904A (en) Coated granular fertilizer and method for manufacturing coated granular fertilizer
JP2012046381A (en) Method for producing resin-coated granular fertilizer
JPH10265288A (en) Coated granular fertilizer and its production
JP5002909B2 (en) Polyurethane coated granular fertilizer
JP4433533B2 (en) Coated granular fertilizer and method for producing the same
JP2009215129A (en) Method of producing resin coated granular fertilizer
JP5589440B2 (en) Coated granular fertilizer
JP2003246692A (en) Method of manufacturing granular coated fertilizer
JP3836386B2 (en) Coated granular fertilizer and method for producing the same
JP2005001957A (en) Granular coated fertilizer and its manufacturing method
JPH09202683A (en) Production of coated fertilizer
JP2004307736A (en) Method for manufacturing prepolymer for coating granulated fertilizer
JP2003104787A (en) Multilayer-coated granular fertilizer
JP2004203667A (en) Granular coated fertilizer and method of manufacturing the same
WO2022131217A1 (en) Method for manufacturing coated granular fertilizer, and coated granular fertilizer
JP2005041708A (en) Coated granular fertilizer and method for producing the same
JP2005041700A (en) Coated granular fertilizer

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R151 Written notification of patent or utility model registration

Ref document number: 5028848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350