JP2007290083A - Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut-material - Google Patents
Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut-material Download PDFInfo
- Publication number
- JP2007290083A JP2007290083A JP2006121373A JP2006121373A JP2007290083A JP 2007290083 A JP2007290083 A JP 2007290083A JP 2006121373 A JP2006121373 A JP 2006121373A JP 2006121373 A JP2006121373 A JP 2006121373A JP 2007290083 A JP2007290083 A JP 2007290083A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hard coating
- cutting
- average
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高切り込みや高送りなどの重切削条件で行った場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 This invention exhibits excellent chipping resistance with a hard coating layer, especially when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel under heavy cutting conditions such as high cutting and high feed. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).
一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.
また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、
組成式:(Cr1−X−YAlXVY)N(ただし、原子比で、Xは0.30〜0.60、Yは0.05〜0.30を示す)、
を満足するCrとAlとVの複合窒化物[以下、(Cr,Al,V)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆工具が知られており、かつ前記被覆工具の硬質被覆層である(Cr,Al,V)N層が、構成成分であるAlによって高温硬さと耐熱性、同Crによって高温強度、さらにVの含有によってすぐれた潤滑特性(表面滑り性)を具備することから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
In addition, as a coated tool, on the surface of a tool base composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet,
Composition formula: (Cr 1-XY Al X V Y ) N (however, in atomic ratio, X represents 0.30 to 0.60, Y represents 0.05 to 0.30),
There is known a coated tool formed by physically vapor-depositing a hard coating layer composed of a composite nitride of Cr, Al, and V (hereinafter referred to as (Cr, Al, V) N) satisfying the following conditions with an average thickness of 1 to 15 μm. The (Cr, Al, V) N layer, which is a hard coating layer of the above-mentioned coated tool, was excellent in high-temperature hardness and heat resistance by Al as a constituent component, high-temperature strength by Cr, and further by containing V. It is also known that when it is used for continuous cutting and intermittent cutting of various general steels and ordinary cast iron, it exhibits excellent cutting performance since it has lubrication characteristics (surface slipperiness).
さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するCr−Al−V合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記(Cr,Al,V)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材(被削材)の切削加工を、切刃部に局部的に高負荷がかかる高切り込みや高送りなどの重切削条件で行った場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性度が一段と増大し、これに伴って硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. As a result, cutting tools are affected as much as possible by the material type of the work material. There is a tendency to demand a cutting tool that can cut as many grades as possible, but in the above-mentioned conventional coated tools, this is applied to general steel such as low alloy steel and carbon steel, and ductile There is no problem when it is used for cutting of ordinary cast iron such as cast iron and gray cast iron, but it is difficult to cut stainless steel, high manganese steel, and mild steel, etc., which have high chip viscosity and are easy to weld to the tool surface. If cutting of the material (work material) is performed under heavy cutting conditions such as high cutting and high feed that locally apply a high load to the cutting edge, the work material and chips are generated by the heat generated during cutting. Is heated to high temperature As a result, the viscosity increases further, and the adhesiveness and reactivity to the hard coating layer surface further increase. As a result, the occurrence of chipping (slight chipping) at the cutting edge increases rapidly, which is the cause of this. At present, the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、特にステンレス鋼や高マンガン鋼や軟鋼などの難削材の切削加工を、高切り込みや高送りなどの重切削条件で行った場合に、硬質被覆層がすぐれた耐チッピング性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Cr,Al,V)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(酸化バナジウムは、その酸化の程度によって、VO、V2O3およびVO2など種々の化合物形態をとり得るが、以下、これらを総称してVOで示す)層を形成すると、前記VO層は表面滑り性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間にはより一段とすぐれた滑り性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減され、前記下部層である(Cr,Al,V)N層は十分に保護されるようになること。
Therefore, the present inventors, from the above viewpoint, especially when cutting difficult-to-cut materials such as stainless steel, high manganese steel and mild steel under heavy cutting conditions such as high cutting and high feed, As a result of conducting research while focusing on the above conventional coated tools in order to develop a coated tool that exhibits excellent chipping resistance with a hard coating layer,
(A) The (Cr, Al, V) N layer, which is a hard coating layer of the above conventional coated carbide tool, is formed with an average layer thickness of 1 to 5 μm as a lower layer, and vanadium oxide (oxide) as an upper layer thereon Vanadium can take various compound forms such as VO, V 2 O 3 and VO 2 depending on the degree of oxidation, but when these are collectively referred to as VO), the VO layer is surface slippery. As a result, even when the work material (hard-to-cut material) and its swarf are heated at high temperature due to the heat generated during cutting, the cutting edge (the rake and flank surfaces, and the cutting edge ridge line where these two surfaces intersect) And the work material and the chips are further improved in slipperiness, the adhesiveness and reactivity of the work material and the chips to the cutting edge surface are remarkably reduced, and the lower layer. (Cr, Al, V) N layer is well protected To become so.
(b)しかし、(Cr,Al,V)N層からなる下部層上に、直接、上部層としてVO層を設けた場合には、下部層である(Cr,Al,V)N層と上部層であるVO層との密着性は十分でなく、また、上部層であるVO層自体の高温強度も十分でないため、硬質被覆層の下部層と上部層の密着性不足、上部層の高温強度不足が原因でチッピング発生を十分防止することはできない。 (B) However, when the VO layer is provided directly on the lower layer made of the (Cr, Al, V) N layer, the lower layer (Cr, Al, V) N layer and the upper layer are formed. Adhesion with the VO layer, which is the upper layer, is not sufficient, and the high temperature strength of the VO layer, which is the upper layer, is not sufficient, resulting in insufficient adhesion between the lower layer and the upper layer of the hard coating layer, and the high temperature strength of the upper layer The chipping cannot be prevented sufficiently due to the shortage.
(c)上記上部層を、VO層とVN層の交互積層構造とし、かつ、VO層とVN層の各層間にVNO層を介在させた交互積層構造の上部層として構成すると、VN層は、VO層に不足する高温強度を補うとともに、VNO層が、VO層あるいはVN層の成膜時の成膜反応性を高めると同時に結晶粒微細化を促進するため、VO層とVN層の耐摩耗性を向上させる効果があり、さらに、VNO層はVN層およびVO層の双方に対する密着性に優れるので、VNO層を介在させたことによりVO層とVN層の各層間の接合強度も改善され、したがって、このような交互積層構造からなる上部層は、VO層の備えるすぐれた表面滑り性、VN層の有するすぐれた高温強度を備えるとともに、VNO層を介在させたことにより各層の接合強度と耐摩耗性がさらに改善されたものとなり、その結果として、硬質被覆層はすぐれた表面滑り性とより一段とすぐれた高温強度を具備し、すぐれた耐チッピング性、耐摩耗性を示すようになること。 (C) When the upper layer is configured as an alternate layered structure of VO layers and VN layers, and an upper layer of an alternate layered structure in which a VNO layer is interposed between the VO layer and VN layer, the VN layer is Wear resistance of the VO and VN layers to compensate for the high temperature strength that the VO layer lacks, and the VNO layer enhances film formation reactivity during film formation of the VO layer or VN layer and at the same time promotes grain refinement. In addition, since the VNO layer has excellent adhesion to both the VN layer and the VO layer, the intervening VNO layer also improves the bonding strength between the VO layer and the VN layer. Therefore, the upper layer composed of such an alternately laminated structure has excellent surface slipperiness provided by the VO layer and excellent high temperature strength possessed by the VN layer, and the intervening VNO layer provides the bonding strength and resistance to each layer. wear There will those further improved, as a result, the hard coating layer comprises more more excellent high-temperature strength and excellent surface slipperiness, excellent chipping resistance, it is shown the wear resistance.
(d)上記(c)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に工具基体装着用回転テーブルを設け、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を設け、その一方にはカソード電極(蒸発源)として金属Vを配置し、また、その他方にはカソード電極(蒸発源)として所定組成のCr−Al−V合金を配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、基本的に、まず前記Cr−Al−V合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記工具基体の表面に、下部層として(Cr,Al,V)N層を1〜5μmの平均層厚で蒸着形成した後、
前記Cr−Al−V合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、引き続いて装置内雰囲気を窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、VN層を0.4〜2μmの平均層厚で蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内への窒素ガスの供給を停止し、装置内を約10秒間真空引きし、
その後装置内へ酸素ガスと窒素ガスの混合ガス(但し、O2:N2=1:2の容量組成比)の供給を開始して蒸着装置内の雰囲気を1.5Paの酸素−窒素混合ガス雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて0.02〜0.2μmのVNO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内へ酸素−窒素混合ガスの供給を停止し、装置内を約10秒間真空引きし、
その後装置内への酸素ガスの供給を開始して装置内雰囲気を酸素雰囲気に切り替え、その後、再びカソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、前記VNO層に重ねて0.4〜2μmの平均層厚でVO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、装置内への酸素ガスの供給を停止し、装置内を約10秒間真空引きした後、
装置内への酸素−窒素混合ガス(O2:N2=1:2の容量組成比)の供給を開始して蒸着装置内の雰囲気を1.5Paの酸素−窒素混合ガス雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて0.02〜0.2μmのVNO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内へ酸素−窒素混合ガスの供給を停止し、装置内を約10秒間真空引きし、
その後装置内への窒素ガスの供給を開始して雰囲気を窒素雰囲気に切り替え、再びカソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、前記VNO層に重ねて0.4〜2μmの平均層厚でVN層を蒸着形成し、
さらに、VNO層とVO層とVN層の蒸着形成とを、上記と同じ手順を繰り返し行うことにより、VN層とVO層の交互積層構造からなり、かつ、VN層とVO層の各層間にVNO層を介在させた積層構造の、目標全体層厚(1〜5μm)の上部層を蒸着により形成することができること。
(D) The hard coating layer of (c) is an arc ion plating apparatus having a structure shown in, for example, a schematic plan view in FIG. 1 (a) and a schematic front view in FIG. A substrate mounting rotary table is provided, cathode electrodes (evaporation sources) are provided on opposite sides of the rotary table, and a metal V is disposed on one side as a cathode electrode (evaporation source). Uses an arc ion plating apparatus in which a Cr—Al—V alloy having a predetermined composition is arranged as a cathode electrode (evaporation source), and the outer peripheral portion is located at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. A plurality of tool bases are mounted in a ring shape along with the rotation of the rotary table with the atmosphere inside the apparatus being a nitrogen atmosphere, and the thickness of the hard coating layer formed by vapor deposition is uniformized. For the purpose of rotating the tool base itself, basically, first, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the Cr—Al—V alloy, and the surface of the tool base is formed. After the (Cr, Al, V) N layer is deposited with an average layer thickness of 1 to 5 μm as a lower layer,
The metal that is the cathode electrode (evaporation source) while stopping the arc discharge between the cathode electrode (evaporation source) of the Cr—Al—V alloy and the anode electrode, and subsequently maintaining the atmosphere in the apparatus in a nitrogen atmosphere An arc discharge is generated between V and the anode electrode, and a VN layer is deposited with an average layer thickness of 0.4 to 2 μm, and then the arc discharge between the metal V and the anode electrode is stopped, Stop supplying nitrogen gas into the device, evacuate the device for about 10 seconds,
Thereafter, the supply of a mixed gas of oxygen gas and nitrogen gas into the apparatus (however, the volume composition ratio of O 2 : N 2 = 1: 2) is started, and the atmosphere in the vapor deposition apparatus is changed to an oxygen-nitrogen mixed gas of 1.5 Pa. While maintaining the atmosphere, a current of 120 A was passed between the metal V, which is the cathode electrode (evaporation source), and the anode electrode to generate arc discharge to form a 0.02-0.2 μm VNO layer. Thereafter, the arc discharge between the metal V and the anode electrode is stopped, and at the same time, the supply of the oxygen-nitrogen mixed gas into the apparatus is stopped, and the inside of the apparatus is evacuated for about 10 seconds,
Thereafter, supply of oxygen gas into the apparatus is started to switch the atmosphere in the apparatus to an oxygen atmosphere, and then arc discharge is again generated between the metal V as the cathode electrode (evaporation source) and the anode electrode, After depositing a VO layer with an average thickness of 0.4-2 μm on the VNO layer, the arc discharge between the metal V and the anode electrode is stopped, and the supply of oxygen gas into the apparatus is stopped. After evacuating the device for about 10 seconds,
Supply of oxygen-nitrogen mixed gas (capacitance composition ratio of O 2 : N 2 = 1: 2) into the apparatus was started and the atmosphere in the vapor deposition apparatus was maintained in an oxygen-nitrogen mixed gas atmosphere of 1.5 Pa. Then, a current of 120 A is passed between the metal V as the cathode electrode (evaporation source) and the anode electrode to generate arc discharge to form a 0.02-0.2 μm VNO layer, and then the metal V The arc discharge between the anode electrode and the anode electrode is stopped, at the same time, the supply of the oxygen-nitrogen mixed gas into the apparatus is stopped, the inside of the apparatus is evacuated for about 10 seconds,
Thereafter, supply of nitrogen gas into the apparatus is started to switch the atmosphere to a nitrogen atmosphere, and arc discharge is generated again between the metal V, which is the cathode electrode (evaporation source), and the anode electrode, and is superimposed on the VNO layer. VN layer is vapor-deposited with an average layer thickness of 0.4-2 μm,
Further, the VNO layer, the VO layer, and the VN layer are deposited and formed by repeating the same procedure as described above, so that the VNO layer and the VO layer are alternately stacked, and the VNO layer is interposed between the VN layer and the VO layer. An upper layer having a target overall layer thickness (1 to 5 μm) having a laminated structure in which layers are interposed can be formed by vapor deposition.
(e)上記の下部層、層間密着層及び積層構造の上部層で構成された硬質被覆層を蒸着形成してなる被覆工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行っても、下部層である(Cr,Al,V)N層がすぐれた高温硬さ、耐熱性、高温強度および表面滑り性を有し、また、積層構造からなる上部層が、VO層の有するすぐれた表面滑り性とVN層の有する高温強度とを備えるとともに、VNO層の介在によりVO層及びVN層の耐摩耗性が改善され、また、層間の接合強度も向上し、結果として、上部層全体がすぐれた表面滑り性を有するばかりか、すぐれた高温強度と耐摩耗性とを相兼ね備えたものとなり、このような構造からなる硬質被覆層は、全体として、より一段とすぐれた高温強度とすぐれた表面滑り性、耐摩耗性とを具備したものとなり、そして、前記難削材および切粉との間に十分な表面滑り性が確保され、難削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減された状態で重切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) The coated tool formed by vapor-depositing the hard coating layer composed of the lower layer, the interlayer adhesion layer, and the upper layer of the laminated structure is stainless steel, high manganese steel, and further mild steel having high viscosity and adhesion. Even when cutting difficult-to-cut materials such as high cuts with high loads and heavy cutting conditions such as high feed, the lower layer (Cr, Al, V) N layer has excellent high-temperature hardness and heat resistance The upper layer having a laminated structure has the excellent surface slipping property of the VO layer and the high temperature strength of the VN layer, and the VO layer is interposed by the VNO layer. And the wear resistance of the VN layer is improved, and the bonding strength between the layers is also improved. As a result, the entire upper layer not only has excellent surface slipperiness, but also has excellent high temperature strength and wear resistance. Like this As a whole, the hard coating layer made of steel has a higher temperature strength, a superior surface slipperiness and wear resistance, and a sufficient surface between the difficult-to-cut material and the chips. Since slipperiness is ensured and heavy cutting is performed with the stickiness and reactivity of difficult-to-cut materials and chips to the cutting edge surface being significantly reduced, chipping occurs at the cutting edge. It will disappear, and will exhibit excellent wear resistance over a long period of time.
The research results shown in (a) to (e) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、
組成式:(Cr1−X−YAlXVY)N(ただし、原子比で、Xは0.30〜0.60、Yは0.05〜0.30を示す)を満足するCrとAlとVの複合窒化物層からなる下部層、
(b)0.4〜2μmの一層平均層厚を有する窒化バナジウム層と0.4〜2μmの一層平均層厚を有する酸化バナジウム層の交互積層構造からなり、かつ、窒化バナジウム層と酸化バナジウム層の各層間には0.02〜0.2μmの一層平均層厚を有する酸窒化バナジウム層を介在させた、1〜5μmの全体平均層厚を有する上部層、
以上(a)、(b)で構成された硬質被覆層を形成してなる、難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(A) having an average layer thickness of 1-5 μm, and
Composition formula: (Cr 1-X-Y Al X V Y) N ( provided that an atomic ratio, X is 0.30 to 0.60, Y represents a 0.05 to 0.30) and Cr satisfying a A lower layer composed of a composite nitride layer of Al and V;
(B) a vanadium nitride layer having a single layer average layer thickness of 0.4 to 2 μm and a vanadium oxide layer having a single layer average layer thickness of 0.4 to 2 μm, and a vanadium nitride layer and a vanadium oxide layer; An upper layer having an overall average layer thickness of 1 to 5 μm, with a vanadium oxynitride layer having an average layer thickness of 0.02 to 0.2 μm interposed between each of the layers,
It is characterized by a coated tool that forms a hard coating layer constituted by (a) and (b) described above and exhibits excellent chipping resistance in heavy cutting of difficult-to-cut materials. .
つぎに、この発明の被覆工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。 Next, regarding the constituent layers of the hard coating layer of the coated tool of the present invention, the reason why the numerical values are limited as described above will be described.
(a)下部層の組成および平均層厚
下部層を構成する(Cr1−X−YAlXVY)Nの構成成分であるAl成分には硬質被覆層における高温硬さと耐熱性を向上させ、また、同Cr成分には高温強度を向上させ、さらにV成分には潤滑性(表面滑り性)を向上させる作用があるが、Alの割合を示すX値がCrとVの合量に占める割合(原子比、以下同じ)で0.30未満になると、相対的にCrの割合が多くなり過ぎて、所定の高温硬さおよび耐熱性を確保することができず、これが耐摩耗性低下の原因となり、一方Alの割合を示すX値が同0.60を越えると、相対的にCrの含有割合が減少し、難削材の重切削加工で必要とされる高温強度を確保することができず、チッピングの発生を防止することが困難になることから、X値を0.30〜0.60と定めたものであり、さらにVの割合を示すY値がAlとCrの合量に占める割合で0.05未満では所望の潤滑特性(表面滑り性)が得られず、一方同Y値が0.30を超えると、高温強度が急激に低下するようになることから、Y値を0.05〜0.30と定めた。
(A) The Al component is a component of the constituting composition and average layer thickness lower layer of the lower layer (Cr 1-X-Y Al X V Y) N improves high-temperature hardness and heat resistance in the hard coating layer In addition, the Cr component has the effect of improving the high temperature strength, and the V component has the effect of improving the lubricity (surface slipperiness), but the X value indicating the proportion of Al occupies the total amount of Cr and V. If the ratio (atomic ratio, hereinafter the same) is less than 0.30, the ratio of Cr becomes relatively large, and the predetermined high-temperature hardness and heat resistance cannot be ensured, which reduces the wear resistance. On the other hand, when the X value indicating the Al ratio exceeds 0.60, the Cr content ratio is relatively decreased, and the high temperature strength required for heavy cutting of difficult-to-cut materials can be secured. X. Since it becomes difficult to prevent occurrence of chipping, X The value is set to 0.30 to 0.60, and if the Y value indicating the ratio of V is less than 0.05 in the ratio of the total amount of Al and Cr, desired lubrication characteristics (surface slipperiness) are obtained. On the other hand, if the Y value exceeds 0.30, the high-temperature strength suddenly decreases, so the Y value was set to 0.05 to 0.30.
また、その平均層厚が1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の粘性の高い難削材の重切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。 Further, if the average layer thickness is less than 1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, whereas if the average layer thickness exceeds 5 μm, the above-mentioned high viscosity is difficult. In the heavy cutting of the cutting material, chipping is likely to occur at the cutting edge, so the average layer thickness was set to 1 to 5 μm.
(b)上部層の交互積層構造を構成する窒化バナジウム層(VN層)の一層平均層厚
硬質被覆層の上部層の交互積層構造を構成するVN層は、それ自体すぐれた高温強度を有し、VO層の高温強度不足を補うが、VN層の一層平均層厚が0.4μm未満では、上部層の高温強度の改善が十分ではなく、一方その平均層厚が2μmを越えると、難削材の重切削加工において硬質被覆層の上部層に必要とされる潤滑特性(表面滑り性)を十分発揮することができなくなり、また、硬質被覆層の高温硬さも低下することとなり、これが耐摩耗性低下の原因となることから、その平均層厚を0.4〜2μmと定めた。
(B) Single layer average layer thickness of the vanadium nitride layer (VN layer) constituting the alternate layer structure of the upper layer The VN layer constituting the alternate layer structure of the upper layer of the hard coating layer itself has excellent high-temperature strength. However, if the average layer thickness of the VN layer is less than 0.4 μm, the improvement of the high temperature strength of the upper layer is not sufficient, while if the average layer thickness exceeds 2 μm, In the heavy cutting of the material, the lubricating properties (surface slipperiness) required for the upper layer of the hard coating layer cannot be fully exhibited, and the high temperature hardness of the hard coating layer also decreases, which is wear resistant. The average layer thickness was determined to be 0.4 to 2 μm.
(c)上部層の交互積層構造を構成する酸化バナジウム層(VO層)の一層平均層厚
硬質被覆層の上部層の交互積層構造を構成するVO層は、すぐれた表面滑り性を有し、被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Cr,Al,V)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が0.4μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が2μmを越えて厚くなり過ぎると、VN層との交互積層構造により高温強度を補強したとしてもチッピングが発生し易くなることから、その平均層厚を0.4〜2μmと定めた。
(C) Single layer average layer thickness of the vanadium oxide layer (VO layer) constituting the alternate layer structure of the upper layer The VO layer constituting the alternate layer structure of the upper layer of the hard coating layer has excellent surface slipperiness, The adhesion and reactivity to the work material (difficult-to-cut material) and swarf are extremely low, and this is the lower layer because the work material is maintained without change even when the work material is heated at the time of cutting. The Cr, Al, V) N layer is protected from the high-temperature heated work material and chips and exhibits an effect of suppressing the occurrence of chipping, but if the average layer thickness is less than 0.4 μm, the effect On the other hand, if the average layer thickness exceeds 2 μm, the chipping is likely to occur even if the high temperature strength is reinforced by the alternately laminated structure with the VN layer. Layer thickness is 0.4-2μm It was determined.
(d)上部層の積層構造を構成する酸窒化バナジウム層(VNO層)の一層平均層厚
VNO層は、VNO層上にVO層あるいはVN層を成膜した際に、VO層あるいはVN層の成膜反応性を高めるとともに、成膜時の結晶粒微細化を促進するので、VO層あるいはVN層の耐摩耗性を向上させる作用があり、しかも、VN層とVO層のいずれに対してもすぐれた密着性を有することから、VNO層を、VN層とVO層間に介在させることによって、積層構造の上部層の各層間の密着性・接合強度を改善し、結果として、上部層全体としての高温強度の向上・耐摩耗性の改善に寄与するが、VNO層の一層平均層厚が0.02μm未満では、接合強度・耐摩耗性の改善効果が十分ではなく、一方その平均層厚が0.2μmを越えると、硬質被覆層の上部層に必要とされる表面滑り性を十分発揮することができなくなることから、その平均層厚を0.02〜0.2μmと定めた。
(D) Single layer average layer thickness of the vanadium oxynitride layer (VNO layer) constituting the laminated structure of the upper layer The VNO layer is formed by forming the VO layer or VN layer on the VNO layer. It enhances film formation reactivity and promotes crystal grain refinement during film formation, thus improving the wear resistance of the VO layer or VN layer. In addition, both the VN layer and the VO layer are effective. Since it has excellent adhesion, by interposing the VNO layer between the VN layer and the VO layer, the adhesion / bonding strength between the layers of the upper layer of the laminated structure is improved. As a result, the upper layer as a whole is improved. Although it contributes to the improvement of high temperature strength and wear resistance, if the average layer thickness of the VNO layer is less than 0.02 μm, the effect of improving the bonding strength and wear resistance is not sufficient, while the average layer thickness is 0 Hard coating when exceeding 2μm Since the can not be sufficiently exhibited surface slip properties required for the upper layer, it was determined and the average layer thickness and 0.02~0.2Myuemu.
(e)上部層の全体平均層厚
上部層の全体平均層厚が1μm未満では、難削材の重切削加工において、硬質被覆層がすぐれた表面滑り性を十分発揮することができないため、被削材(難削材)および切粉の切刃部表面に対する粘着性・反応性低減効果を期待することはできず、一方、その全体平均層厚が5μmを超えると硬質被覆層の高温硬さが急激に低下し耐摩耗性が不十分になるため、その全体平均層厚を1〜5μmと定めた。
(E) Overall average layer thickness of the upper layer If the overall average layer thickness of the upper layer is less than 1 μm, the hard coating layer cannot sufficiently exhibit excellent surface slipperiness in heavy cutting of difficult-to-cut materials. The effect of reducing the adhesion and reactivity of the cutting material (difficult-to-cut material) and chips to the cutting edge surface cannot be expected. On the other hand, if the overall average layer thickness exceeds 5 μm, the high temperature hardness of the hard coating layer Decreases rapidly and wear resistance becomes insufficient, so the total average layer thickness is set to 1 to 5 μm.
この発明の被覆工具は、硬質被覆層を構成する下部層の(Cr,Al,V)N層が、すぐれた高温硬さ、耐熱性、高温強度、表面滑り性を有し、また、VNO層を介在させた交互積層構造からなる上部層が、上部層全体として一段とすぐれた高温強度、表面滑り性、耐摩耗性を兼ね備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性およびより一段とすぐれた潤滑特性(表面滑り性)を備え、その結果、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の大きな発熱を伴い、かつ高負荷のかかる重切削加工であっても、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated tool of the present invention, the lower (Cr, Al, V) N layer constituting the hard coating layer has excellent high-temperature hardness, heat resistance, high-temperature strength, and surface slipperiness, and the VNO layer Since the upper layer composed of an alternating layer structure with intervening layers has excellent high temperature strength, surface slipperiness, and wear resistance as a whole, the hard coating layer as a whole has excellent high temperature hardness, It has heat resistance, high temperature strength, wear resistance, and even better lubrication characteristics (surface slipperiness). As a result, it is particularly difficult to cut difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel with high viscosity and adhesion. Even heavy cutting with high heat and high load exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.
つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.
(a)ついで、上記の工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方にはカソード電極(蒸発源)として金属Vを配置し、また、その他方にはカソード電極(蒸発源)として所定組成の下部層形成用のCr−Al−V合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記下部層形成用Cr−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al−V合金によってボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−V合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表4に示される目標組成、目標層厚の下部層としての(Cr,Al,V)N層を1〜5μmの平均層厚で蒸着形成した後、前記Cr−Al−V合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3、表4に示される一層目標層厚のVN層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内への窒素ガスの供給を停止し、装置内を約10秒間真空引きし、
(e)その後装置内へ酸素ガスと窒素ガスの混合ガス(但し、O2:N2=1:2の容量組成比)の供給を開始して蒸着装置内の雰囲気を1.5Paの酸素−窒素混合ガス雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて、もって表3、表4に示される一層目標層厚のVNO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内へ酸素−窒素混合ガスの供給を停止し、装置内を約10秒間真空引きし、
(f)その後装置内への酸素ガスの供給を開始して蒸着装置内の雰囲気を0.2Paの酸素雰囲気に切り替え、再びカソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記VNO層上に、同じく表3、表4に示される一層目標層厚のVO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、装置内への酸素ガスの供給を停止し、装置内を約10秒間真空引きし
(g)その後装置内へ酸素−窒素混合ガス(O2:N2=1:2の容量組成比)の供給を開始して蒸着装置内の雰囲気を1.5Paの酸素−窒素混合ガス雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて、もって表3、表4に示される一層目標層厚のVNO層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内へ酸素−窒素混合ガスの供給を停止し、装置内を約10秒間真空引きし、
(h)その後装置内への窒素ガスの供給を開始して蒸着装置内の雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させて、もって表3、表4に示される一層目標層厚のVN層を蒸着形成した後、前記金属Vとアノード電極との間のアーク放電を停止し、同時に装置内への窒素ガスの供給を停止し、装置内を約10秒間真空引きし、
(j)上記手順(e)〜(h)を繰り返し、表3、表4に示される、VNO層を介したVN層とVO層の交互積層構造からなる目標全体層厚の上部層を蒸着形成する。
上記(a)〜(j)により硬質被覆層を蒸着形成し、本発明被覆工具としての本発明表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 and B-1 to B-6 is ultrasonically cleaned in acetone and dried, and then the arc ion plating shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the apparatus, cathode electrodes (evaporation sources) are arranged on opposite sides across the rotary table, one of which Is arranged with a metal V as a cathode electrode (evaporation source), and a Cr-Al-V alloy for forming a lower layer having a predetermined composition as a cathode electrode (evaporation source) on the other side.
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the lower electrode forming Cr—Al—V alloy of the cathode electrode and the anode electrode, whereby the surface of the tool base is placed on the Cr—Al -Bombarded with V alloy,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and An arc discharge is generated by passing a current of 120 A between the Cr—Al—V alloy of the cathode electrode and the anode electrode, and the target composition and target layer thickness shown in Tables 3 and 4 are formed on the surface of the tool base. The (Cr, Al, V) N layer as the lower layer is deposited with an average layer thickness of 1 to 5 μm, and then an arc between the cathode electrode (evaporation source) and the anode electrode of the Cr—Al—V alloy is formed. Stop discharging,
(D) Subsequently, while maintaining the atmosphere in the apparatus in a 2 Pa nitrogen atmosphere, a current of 120 A was passed between the metal V as the cathode electrode (evaporation source) and the anode electrode to generate arc discharge, and 3. After vapor-depositing a VN layer having a target layer thickness shown in Table 4, arc discharge between the metal V and the anode electrode is stopped, and at the same time, supply of nitrogen gas into the apparatus is stopped. The inside is evacuated for about 10 seconds,
(E) Thereafter, supply of a mixed gas of oxygen gas and nitrogen gas (however, a volume composition ratio of O 2 : N 2 = 1: 2) into the apparatus was started, and the atmosphere in the vapor deposition apparatus was changed to 1.5 Pa of oxygen − While maintaining the nitrogen mixed gas atmosphere, a current of 120 A is passed between the cathode V (evaporation source) metal V and the anode electrode to generate arc discharge, and thus the single layer shown in Tables 3 and 4 After the VNO layer having the target layer thickness is formed by vapor deposition, the arc discharge between the metal V and the anode electrode is stopped. At the same time, the supply of the oxygen-nitrogen mixed gas is stopped into the apparatus, and the apparatus is evacuated for about 10 seconds. Pull,
(F) Thereafter, supply of oxygen gas into the apparatus is started to switch the atmosphere in the vapor deposition apparatus to an oxygen atmosphere of 0.2 Pa, and again 120 A between the metal V as the cathode electrode (evaporation source) and the anode electrode. Then, an arc discharge is generated by depositing a VO layer having a target layer thickness shown in Tables 3 and 4 on the VNO layer, and then an arc between the metal V and the anode electrode is formed. The discharge is stopped, the supply of oxygen gas into the apparatus is stopped, the inside of the apparatus is evacuated for about 10 seconds (g), and then the oxygen-nitrogen mixed gas (O 2 : N 2 = 1: 2 capacity) is entered into the apparatus. (Composition ratio) was started, and the atmosphere in the vapor deposition apparatus was maintained in a 1.5 Pa oxygen-nitrogen mixed gas atmosphere, while 120 A of the cathode V (evaporation source) was placed between the metal V and the anode electrode. An electric current is passed to generate an arc discharge, Thus, after the VNO layer having the target layer thickness shown in Tables 3 and 4 is formed by vapor deposition, the arc discharge between the metal V and the anode electrode is stopped, and at the same time, the oxygen-nitrogen mixed gas is supplied into the apparatus. Stop and evacuate the device for about 10 seconds,
(H) Thereafter, supply of nitrogen gas into the apparatus is started, and the atmosphere in the vapor deposition apparatus is kept at a nitrogen atmosphere of 2 Pa, and 120 A is provided between the metal V as the cathode electrode (evaporation source) and the anode electrode. Then, arc discharge is caused to flow, and after VN layer having a target layer thickness shown in Tables 3 and 4 is formed by vapor deposition, arc discharge between the metal V and the anode electrode is stopped, At the same time, the supply of nitrogen gas into the apparatus is stopped, the inside of the apparatus is evacuated for about 10 seconds,
(J) The above steps (e) to (h) are repeated, and an upper layer having a target total layer thickness consisting of an alternately laminated structure of VN layers and VO layers through VNO layers as shown in Tables 3 and 4 is formed by vapor deposition. To do.
Hard coating layers were formed by vapor deposition according to the above (a) to (j), and surface coating throwaway tips (hereinafter referred to as the present invention coated tips) 1 to 16 as the present invention coated tools were produced, respectively.
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の組成をもったCr−Al−V合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al−V合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al−V合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5、表6に示される目標組成および目標層厚の(Cr,Al,V)N層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来表面被覆スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。 For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plating shown in FIG. Insert the Cr-Al-V alloy with various compositions as the cathode electrode (evaporation source), and first evacuate the apparatus and keep it at a vacuum of 0.1 Pa or less with a heater. After heating the inside of the apparatus to 500 ° C., a DC bias voltage of −1000 V is applied to the tool base, and a current of 100 A is applied between the Cr—Al—V alloy of the cathode electrode and the anode electrode to cause arc discharge. Thus, the surface of the tool base is bombarded with the Cr—Al—V alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to create a reaction atmosphere of 3 Pa, and the tool base is marked. The bias voltage is reduced to -100V, and arc discharge is generated between the cathode electrode and the anode electrode of the Cr-Al-V alloy, so that the tool bases A-1 to A-10 and B-1 to B are generated. A conventional surface as a conventional coating tool is formed by vapor-depositing a (Cr, Al, V) N layer having the target composition and target layer thickness shown in Tables 5 and 6 on each surface of -6 as a hard coating layer. Coated throwaway chips (hereinafter referred to as conventional coated chips) 1 to 16 were produced.
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 200 m/min.、
切り込み: 3.5 mm、
送り: 0.25 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのステンレス鋼の乾式断続高切り込み切削加工試験(通常の切り込みは1.5mm)、
被削材:JIS・S15Cの丸棒、
切削速度: 220 m/min.、
切り込み: 4 mm、
送り: 0.3 mm/rev.、
切削時間: 10 分、
の条件(切削条件B)での軟鋼の乾式連続高切り込み切削加工試験(通常の切り込みは1.5mm)、
被削材:JIS・SCMnH1の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 180 m/min.、
切り込み: 1.5 mm、
送り: 0.5 mm/rev.、
切削時間: 5 分、
の条件(切削条件C)での高マンガン鋼の乾式断続高送り切削加工試験(通常の送りは0.25mm/rev.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 16 and the conventional coated chips 1 to 16 are as follows.
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 3.5 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes,
Stainless steel dry interrupted cutting test (normal cutting is 1.5 mm) under the above conditions (cutting condition A),
Work material: JIS / S15C round bar,
Cutting speed: 220 m / min. ,
Cutting depth: 4 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-cut cutting test of mild steel under the above conditions (cutting condition B) (normal cutting is 1.5 mm),
Work material: JIS · SCMnH1 lengthwise equidistant four round grooved round bars,
Cutting speed: 180 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 5 minutes,
The high-manganese steel dry interrupted high-feed cutting test (normal feed is 0.25 mm / rev.) Under the above conditions (cutting condition C). It was measured. The measurement results are shown in Table 7.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表8に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of tool base forming round bar sintered bodies having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three kinds of round bar sintered bodies are shown in Table 8 by grinding. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.
ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚の(Cr,Al,V)N層からなる下部層、および、同じく表9に示される一層目標層厚のVN層とVNO層とVO層との積層構造からなる(目標全体層厚の)上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, a lower layer composed of a (Cr, Al, V) N layer having the target composition and target layer thickness shown in Table 9, and a VN layer having a single target layer thickness also shown in Table 9 The surface coating cemented carbide end mill of the present invention (hereinafter referred to as the coated tool) of the present invention is formed by vapor-depositing a hard coating layer composed of an upper layer (having a target total layer thickness) having a laminated structure of a VNO layer and a VO layer. (Referred to as the present invention coated end mill) 1 to 8 were produced.
また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の(Cr,Al,V)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. And by depositing a hard coating layer comprising a (Cr, Al, V) N layer having the target composition and target layer thickness shown in Table 10 under the same conditions as in Example 1 above, Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced, respectively.
つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 4.5 mm、
テーブル送り: 200 mm/分、
の条件でのステンレス鋼の乾式高切り込み溝切削加工試験(通常の溝深さは3mm)、
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度: 75 m/min.、
溝深さ(切り込み): 4.5 mm、
テーブル送り: 280 mm/分、
の条件での軟鋼の乾式高送り溝切削加工試験(通常のテーブル送りは140mm/分)、
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 15 mm、
テーブル送り: 180 mm/分、
の条件での高マンガン鋼の乾式高切り込み溝切削加工試験(通常の溝深さは10mm)、
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9、表10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and the conventional coated end mills 1-8,
About this invention coated end mills 1-3 and conventional coated end mills 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 4.5 mm,
Table feed: 200 mm / min,
Stainless steel dry-type high-grooving groove cutting test (normal groove depth is 3 mm),
About this invention coated end mills 4-6 and conventional coated end mills 4-6,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 75 m / min. ,
Groove depth (cut): 4.5 mm,
Table feed: 280 mm / min,
Dry high feed groove cutting test of mild steel under normal conditions (normal table feed is 140 mm / min),
For the coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 15 mm,
Table feed: 180 mm / min,
High-manganese steel dry-type high-grooving groove cutting test under normal conditions (normal groove depth is 10 mm),
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Table 9 and Table 10, respectively.
上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。 The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.
ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚の(Cr,Al,V)N層からなる下部層、および、同じく表11に示される一層目標層厚、VNO層を介したVN層およびVO層の交互積層構造からなる(目標全体層厚の)上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. The lower layer consisting of the (Cr, Al, V) N layer of the target composition and target layer thickness shown in Table 11 and the single layer target also shown in Table 11 under the same conditions as in Example 1 above. The present invention as a coated tool of the present invention is formed by vapor-depositing a hard coating layer composed of an upper layer (having a target total layer thickness) having a layer thickness, an alternately laminated structure of a VN layer and a VO layer via a VNO layer. Surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 8 were produced.
また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表12に示される目標組成および目標層厚を有する(Cr,Al,V)N層からなる硬質被覆層を蒸着形成することにより、従来被覆工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, the surface of the tool base (drill) D-1 to D-8 is subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. A hard coating layer composed of a (Cr, Al, V) N layer having the target composition and target layer thickness shown in Table 12 is formed by vapor deposition under the same conditions as in Example 1 above. Thus, conventional surface coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated tools were manufactured, respectively.
つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度: 70 m/min.、
送り: 0.38 mm/rev、
穴深さ: 8 mm、
の条件でのステンレス鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.2mm/rev)、
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度: 100 m/min.、
送り: 0.45 mm/rev、
穴深さ: 20 mm、
の条件での軟鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.25mm/rev)、
本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度: 125 m/min.、
送り: 0.45 mm/rev、
穴深さ: 28 mm、
の条件での高マンガン鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.25mm/rev)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11、表12にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 70 m / min. ,
Feed: 0.38 mm / rev,
Hole depth: 8 mm,
Stainless steel wet high feed drilling cutting test under normal conditions (normal feed is 0.2 mm / rev),
About this invention coated drill 4-6 and conventional coated drills 4-6,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 100 m / min. ,
Feed: 0.45 mm / rev,
Hole depth: 20 mm,
Wet high feed drilling test of mild steel under normal conditions (normal feed is 0.25 mm / rev),
About this invention covering drills 7 and 8 and conventional covering drills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 125 m / min. ,
Feed: 0.45 mm / rev,
Hole depth: 28 mm,
Wet high feed drilling test of high manganese steel under normal conditions (normal feed is 0.25 mm / rev),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.
この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Cr,Al,V)N層(下部層)の組成、並びに、従来被覆工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Cr,Al,V)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 (Cr, Al, V) N constituting the hard coating layer of the present coated tips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated tool obtained as a result. The composition of the layer (lower layer) and the conventional coating tip 1-16 as a conventional coating tool, the conventional coating end mills 1-8, and the hard coating comprising the (Cr, Al, V) N layer of the conventional coating drills 1-8 The composition of the layers was measured by energy dispersive X-ray analysis using a transmission electron microscope, and each showed substantially the same composition as the target composition.
さらに、本発明被覆工具の硬質被覆層の上部層を構成する窒化バナジウム層、酸窒化バナジウム層、酸化バナジウム層の組成を同じく透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、窒化バナジウム層はVNを主体とする組織、酸窒化バナジウム層はVNOを主体とする組織、また、酸化バナジウム層は、VOを主体とし、これにV2O3およびVO2などを含有する混合組織を示した。 Furthermore, when the composition of the vanadium nitride layer, vanadium oxynitride layer, and vanadium oxide layer constituting the upper layer of the hard coating layer of the coated tool of the present invention was measured by energy dispersive X-ray analysis using a transmission electron microscope, The vanadium nitride layer is composed mainly of VN, the vanadium oxynitride layer is composed mainly of VNO, and the vanadium oxide layer is composed mainly of VO, which contains V 2 O 3 and VO 2. Showed the organization.
また、上記の硬質被覆層の下部層の平均層厚、交互積層構造の上部層を構成する窒化バナジウム層、酸窒化バナジウム層および酸化バナジウム層の一層平均層厚、上部層の全体層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 In addition, the average layer thickness of the lower layer of the hard coating layer, the average layer thickness of the vanadium nitride layer, vanadium oxynitride layer and vanadium oxide layer constituting the upper layer of the alternately laminated structure, and the total thickness of the upper layer are scanned. When a cross-section was measured using a scanning electron microscope, all showed an average value (average value of five locations) substantially the same as the target layer thickness.
表7、9〜12に示される結果から、本発明被覆工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高切り込みや高送りなどの重切削条件での切削加工でも、硬質被覆層の下部層である(Cr,Al,V)N層が工具基体表面に強固に密着接合した状態で、すぐれた高温硬さ、耐熱性、高温強度および表面滑り性を有し、かつ、酸窒化バナジウム層を介在した窒化バナジウム層と酸化バナジウム層の交互積層構造からなる上部層によって、前記被削材および切粉との間のより一段とすぐれた表面滑り性が確保されると同時に上部層全体として一段とすぐれた高温強度、耐摩耗性が保持されていることによって、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する。これに対して、硬質被覆層が(Cr,Al,V)N層で構成された従来被覆工具においては、いずれも前記難削材の重切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなり、かつ、前記硬質被覆層の工具基体表面に対する密着性も不十分であるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 and 9-12, the coated tools of the present invention are particularly heavy, such as high cutting and high feed of difficult-to-cut materials such as stainless steel and high manganese steel, and also mild steel with high viscosity and adhesion. Even in cutting under the cutting conditions, the (Cr, Al, V) N layer, which is the lower layer of the hard coating layer, is firmly adhered and bonded to the surface of the tool base, and has excellent high temperature hardness, heat resistance, high temperature strength, and Surface slipperiness, and a superior surface slip between the work material and the chips by the upper layer composed of an alternately laminated structure of vanadium nitride layers and vanadium oxide layers with vanadium oxynitride layers interposed The high temperature strength and wear resistance of the upper layer as a whole are maintained at the same time, and thus excellent wear resistance is exhibited over a long period of time without occurrence of chipping. On the other hand, in the conventional coated tool in which the hard coating layer is composed of the (Cr, Al, V) N layer, the work material (hard-cutting material) and the chips in the heavy cutting of the difficult-to-cut material Since the adhesion and reactivity between the hard coating layer and the hard coating layer are further increased, and the adhesion of the hard coating layer to the tool substrate surface is insufficient, chipping occurs in the cutting edge portion, It is clear that the service life is reached in a relatively short time.
上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に上記の難削材の重切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention exhibits excellent chipping resistance not only for cutting of general steel and ordinary cast iron, but particularly for heavy cutting of the above difficult-to-cut materials, and for a long time. Since it shows excellent cutting performance, it can fully satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.
Claims (1)
(a)1〜5μmの平均層厚を有し、かつ、
組成式:(Cr1−X−YAlXVY)N(ただし、原子比で、Xは0.30〜0.60、Yは0.05〜0.30を示す)を満足するCrとAlとVの複合窒化物層からなる下部層、
(b)0.4〜2μmの一層平均層厚を有する窒化バナジウム層と0.4〜2μmの一層平均層厚を有する酸化バナジウム層の交互積層構造からなり、かつ、窒化バナジウム層と酸化バナジウム層の各層間には0.02〜0.2μmの一層平均層厚を有する酸窒化バナジウム層を介在させた、1〜5μmの全体平均層厚を有する上部層、
以上(a)、(b)で構成された硬質被覆層を形成してなる、難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 1-5 μm, and
Composition formula: (Cr 1-X-Y Al X V Y) N ( provided that an atomic ratio, X is 0.30 to 0.60, Y represents a 0.05 to 0.30) and Cr satisfying a A lower layer composed of a composite nitride layer of Al and V;
(B) a vanadium nitride layer having a single layer average layer thickness of 0.4 to 2 μm and a vanadium oxide layer having a single layer average layer thickness of 0.4 to 2 μm, and a vanadium nitride layer and a vanadium oxide layer; An upper layer having an overall average layer thickness of 1 to 5 μm, with a vanadium oxynitride layer having an average layer thickness of 0.02 to 0.2 μm interposed between each of the layers,
A surface-coated cutting tool that exhibits a chipping resistance in which the hard coating layer is excellent in heavy cutting of difficult-to-cut materials, which is formed by forming the hard coating layer configured as described above in (a) and (b).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006121373A JP2007290083A (en) | 2006-04-25 | 2006-04-25 | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut-material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006121373A JP2007290083A (en) | 2006-04-25 | 2006-04-25 | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut-material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007290083A true JP2007290083A (en) | 2007-11-08 |
Family
ID=38761206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006121373A Withdrawn JP2007290083A (en) | 2006-04-25 | 2006-04-25 | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut-material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007290083A (en) |
-
2006
- 2006-04-25 JP JP2006121373A patent/JP2007290083A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007038378A (en) | Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material | |
JP2007030098A (en) | Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut | |
JP2007021650A (en) | Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material | |
JP2007290090A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP2007290091A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP4849221B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007030100A (en) | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut | |
JP2007038379A (en) | Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP4747719B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4682826B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4682827B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007313582A (en) | Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material | |
JP2007144595A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP2008188739A (en) | Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material | |
JP5077743B2 (en) | Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer | |
JP4789069B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4789068B2 (en) | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials | |
JP4682825B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials | |
JP2007038341A (en) | Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material | |
JP2007290083A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut-material | |
JP2007290081A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP2007290080A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP2007290084A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material | |
JP2007290082A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material hard to work | |
JP2007030099A (en) | Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090707 |