JP2007288933A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2007288933A
JP2007288933A JP2006114043A JP2006114043A JP2007288933A JP 2007288933 A JP2007288933 A JP 2007288933A JP 2006114043 A JP2006114043 A JP 2006114043A JP 2006114043 A JP2006114043 A JP 2006114043A JP 2007288933 A JP2007288933 A JP 2007288933A
Authority
JP
Japan
Prior art keywords
armature
electric motor
coil
generator
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006114043A
Other languages
Japanese (ja)
Inventor
Komei Kato
耕明 加藤
Makoto Misawa
誠 三澤
Masaru Akabane
賢 赤羽根
Kozo Osawa
幸造 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SELCO CO Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
SELCO CO Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SELCO CO Ltd, Institute of National Colleges of Technologies Japan filed Critical SELCO CO Ltd
Priority to JP2006114043A priority Critical patent/JP2007288933A/en
Publication of JP2007288933A publication Critical patent/JP2007288933A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To start smooth starting with low torque and low revolutions, by increasing the space factor of a winding space of an electric motor. <P>SOLUTION: In this electric motor, armature coils, which are structured by air core alpha winding of a rectangular melting wire provided with a rectangular conductor, an insulation cover that covers circumference of a conductor, and a melting cover that further covers the circumference of the insulation cover, are formed by bending so as to fit on the circumference of an armature 1 and a rotor 5 of the electric motor and mounted and fixed on the armature having no conductor storing groove. This motor provides a highly efficient electric motor having no cogging torque. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、平角融着導線を用い空芯アルファ巻電磁コイルを成形し、成形した電磁コイルを導体収納溝のない発電機の電機子または界磁コイルの円周部分に隙間無く装着固定した事を特徴とする電動機に関するものである。   In the present invention, an air-core alpha-wound electromagnetic coil is formed using a flat fused wire, and the formed electromagnetic coil is securely attached to the circumferential portion of the generator armature or field coil without a conductor housing groove. It is related with the electric motor characterized by these.

発電機の性能向上のためには電磁コイルの巻線密度向上させる方法が一般的であるが従来の発電機においては、巻線スペース形状は角錐台であり巻線時、巻形状が崩れるため巻線スペースに対する占積率を高くする事が極めて難しい。更にスロットタイプ(導体収納溝ありと類似構造)で発電出力を大きくする為には巻線数を多くするため、銅損が増加しトータル効率が低下する等の欠点を有している。またスロットタイプにはコキングトルクがあり、起動時に大きなトルクが必要のため小さい駆動出力では始動しない等の欠点を有していた。   In order to improve the performance of the generator, a method of increasing the winding density of the electromagnetic coil is generally used. However, in the conventional generator, the winding space shape is a truncated pyramid, and the winding shape collapses during winding. It is extremely difficult to increase the space factor for the line space. Further, in order to increase the power generation output in the slot type (similar structure with a conductor housing groove), the number of windings is increased, so that there are disadvantages such as an increase in copper loss and a decrease in total efficiency. Further, the slot type has a coking torque, and has a drawback that it does not start with a small drive output because a large torque is required at the time of starting.

また起動トルクを小さくするためにスロットレスタイプにした場合には、磁束密度が低下するため巻線を多くする必要があった。コキングトルクは小さくなるが巻線数が多い事による銅損が増加し結果として効率低下を招くと言う欠点があった。 Further, when the slotless type is used in order to reduce the starting torque, the magnetic flux density is reduced, so that it is necessary to increase the number of windings. Although there is a reduction in the coking torque, there is a disadvantage that the copper loss increases due to the large number of windings, resulting in a decrease in efficiency.

更に従来構造の発電機は、スリット構造のため鉄心溝による鉄損、スリットによるコキングトルクの発生、極間の磁気吸引力の変動によるトルク変動を伴い、低起動トルク駆動用としては向かないと言う欠点があった。 Furthermore, the generator with the conventional structure is not suitable for low starting torque drive due to the slit structure, which causes iron loss due to the iron core groove, generation of coking torque due to the slit, and torque fluctuation due to fluctuation of magnetic attractive force between the poles. There were drawbacks.

特許文献1では、スロット占積率を向上させる為スロット断面形状に合う平角線を装着する事によりスロット占積率を向上することが出来、伝熱抵抗を格段に減少させることが出来、伝熱抵抗減少により温度上昇による損失の増加を低減でき、小型化ができるとあるが当該特許は、スロットに平角線を挿入していく方法であり本発明が使用する平角融着導線空芯アルファ巻成形電磁コイルは、巻線後電機子の円周上に隙間無く配置できるように湾曲成形加工し装着固定することにより、高い占積率をもつ発電機に関するものである。更に特許文献2においては、テース部分に占積率が高くなるように巻線する為に、板厚さを変えた平角線をテース部分に巻き、占積率を向上させることを目的とした平角線板厚さに関する発明であり、本発明が使用する平角融着導線空芯アルファ巻成形電磁コイルは、巻線後電機子の円周上に隙間無く配置できるように湾曲成形加工し装着固定することにより、高い占積率をもつ発電機に関するものである。 In Patent Document 1, in order to improve the slot space factor, the slot space factor can be improved by attaching a rectangular wire that matches the cross-sectional shape of the slot, and the heat transfer resistance can be greatly reduced. Although it is said that the increase in loss due to temperature rise can be reduced and the size can be reduced by reducing resistance, this patent is a method of inserting a flat wire into a slot, and is a method for inserting a rectangular fused wire air core alpha winding used in the present invention. The electromagnetic coil relates to a generator having a high space factor by bending and mounting and fixing so that it can be disposed on the circumference of the armature after winding. Furthermore, in Patent Document 2, in order to wind the lace portion so as to increase the space factor, a rectangular wire whose thickness is changed is wound around the tee portion to improve the space factor. The invention relates to the thickness of the wire sheet, and the flat rectangular fusion-bonded air core alpha-winding electromagnetic coil used by the present invention is bent and fixed so that it can be placed on the circumference of the armature without winding after winding. Therefore, it relates to a generator with a high space factor.

特開2001−161050JP2001-161050 特開2001−186702JP2001-186702

解決しようとする問題点は、巻線スペースをフルに活用し、尚且つ低トルクにおいてもスムースな起動が出来る事にある。平角融着導線を空芯アルファ巻にした後、平角融着導線を空芯アルファ巻単体または、積層成形した電磁コイルの巻芯空間部分に隣接コイルの軸方向部分をコイル厚さ寸法範囲内で、円周面上に段差及びコイル間の接触なく2種類のコイルを組合せ導体収納溝のない発電機の電機子に装着固定した。単体または積層電磁コイルを電機子、回転子の円周状曲線に合わせ成形し、導体収納溝のない発電機の電機子または、回転子に装着固定する事にある。回転子は界磁コイルであっても良い。 The problem to be solved is that the winding space can be fully utilized and smooth start-up can be performed even at low torque. After making the flat rectangular fused wire into an air core alpha winding, place the flat rectangular fused wire into the core space part of the air core alpha winding alone or laminated and forming the axial portion of the adjacent coil within the coil thickness dimension range. The two types of coils were mounted and fixed on the armature of the generator without the combined conductor storage groove without any step and contact between the coils on the circumferential surface. A single or laminated electromagnetic coil is formed according to the circumferential curve of the armature and the rotor, and is mounted and fixed to the armature or the rotor of the generator without the conductor housing groove. The rotor may be a field coil.

本発明は、上記問題を解決するために、平角融着導線を空芯アルファ巻にし、必要に応じて電磁コイルを単層または積層し、導体収納溝のない発電機の電機子または、回転子の巻線スペースに合致するように電磁コイルを湾曲成形し発電機の電機子または、回転子に2種類のコイルを円周状に隙間無く装着固定することにより、発電出力に必要な磁束と直角になる導線の占有密度はエアーギャップを除き90%以上にする事が出来た。従来の発電機の巻線に対し同一空間内での線断面積の拡大と巻線数が改善できた。前改善により銅損が減少し発電効率が向上する事と、スロットレスにすることにより磁力による吸引力の変動が無くかつコキングトルクが発生しない。ここでエアーギャップとは電機子外周に固定された電磁コイルとマグネットと間の空間を言う。本発明に用いられる押圧加工されたコイルは厚み寸法が高精度となるため、マグネットや界磁コイルとの空間を小さく設計加工することができる。巻線密度が極めて高く、コキングトルクが無く低起動トルクで起動する発電機を提供する事にある。 In order to solve the above-mentioned problem, the present invention provides a generator armature or rotor for a generator without a conductor containing groove, in which a flat fused wire is made into an air-core alpha winding, and an electromagnetic coil is single-layered or laminated as required. By bending the electromagnetic coil to match the winding space of the generator and mounting and fixing two types of coils on the generator armature or rotor circumferentially without any gaps, it is perpendicular to the magnetic flux required for power generation output. The occupancy density of the conducting wire becomes 90% or more excluding the air gap. Compared with the conventional generator windings, the cross-sectional area in the same space and the number of windings were improved. The copper loss is reduced by the previous improvement and the power generation efficiency is improved. By making the slotless, there is no fluctuation of the attractive force due to the magnetic force and no coking torque is generated. Here, the air gap refers to a space between the electromagnetic coil and the magnet fixed on the outer periphery of the armature. The press-processed coil used in the present invention has a highly accurate thickness dimension, so that the space between the magnet and the field coil can be designed and processed. An object of the present invention is to provide a generator that has a very high winding density and does not have a coking torque and starts with a low starting torque.

本発明の平角融着導線アルファ巻成形コイルを有した事を特徴とする発電機は平角融着導線アルファ巻単体または積層成形した電磁コイルを発電機の電機子の外周部分に装着固定する時、電磁コイルの軸方向の長辺部分が巻芯空間部分に挿入できるように成形し装着固定することにより、巻き線密度が高くすることができた。電磁コイルの結線は単相または三相結線をすることにより効率良く出力を得る事が出来る。コイル組合せが自由であるため多極化が容易である。さらに導体収納溝のない電機子にする事によりコキングトルクの無い発電機が完成し、起動時のトルクが極めて小さく、低トルク起動でもスムースに回転する。特に起動トルクの小さい動力からエネルギーを伝達する場合は、コキングトルクが始動のために致命的な欠点となっていた。本発明の平角融着導線を使用した空芯アルファ巻き成形電磁コイルを有した発電機はコキングトルクが極めて小さく、また巻線密度が高く極めて効率の高い発電機を提供する事ができた。コキングトルクが極めて小さいため、起動トルクの小さい風力発電等の発電機として最適である。また発電機を電動機と読み替えてもよい。   The generator characterized by having a flat fused conductor alpha winding formed coil of the present invention is mounted and fixed to the outer peripheral portion of the generator armature with a flat fused fused wire alpha winding alone or laminated molded, The winding density can be increased by forming and mounting the electromagnetic coil so that the long side portion in the axial direction can be inserted into the core space portion. As for the connection of the electromagnetic coil, the output can be obtained efficiently by the single-phase or three-phase connection. Since the coil combination is free, multipolarization is easy. Furthermore, the generator without the coking torque is completed by making the armature without the conductor housing groove, the torque at the start-up is extremely small, and it rotates smoothly even at the low torque start-up. In particular, when energy is transmitted from power having a small starting torque, the coking torque has become a fatal defect for starting. The generator having the air-core alpha-winding electromagnetic coil using the flat fused wire of the present invention has an extremely small coking torque, and has a high winding density and an extremely efficient generator. Since the coking torque is extremely small, it is optimal as a generator for wind power generation with a small starting torque. Further, the generator may be read as an electric motor.

平角融着導線を用い空芯アルファ巻きで単体または積層湾曲成形し、隣接する電磁コイルの巻き芯空間部分にも隣接電磁コイルの長辺部分を段差無く挿入出来るように成形し、導体収納溝のない発電機電機子の外周に隙間無く装着固定する。電機子に隙間無く装着固定する事により電機子の発電に関わる導体密度が高くなるため起電力が大きくなり、大きな電力がとれ、発電効率が高くコキングトルクの極めて小さい発電機が実現した。   A flat or rectangular wire is used to form a single or laminated curve with alpha core winding, so that the long side of the adjacent electromagnetic coil can be inserted into the winding core space of the adjacent electromagnetic coil without any step, Install and fix around the outer periphery of the generator armature without any gaps. By mounting and fixing to the armature without any gap, the conductor density related to the power generation of the armature is increased, so that the electromotive force is increased, a large electric power can be taken, the power generation efficiency is high, and the generator with extremely low coking torque is realized.

図1は、本発明の発電機の立体図であって、1は電機子、2は固定軸挿入部、3は電機子の積層珪素鋼板、4は電機子コイル、5は回転子、6はヨーク、7はN極の永久磁石、8はS極の永久磁石を示す。   FIG. 1 is a three-dimensional view of a generator according to the present invention, in which 1 is an armature, 2 is a fixed shaft insertion portion, 3 is a laminated silicon steel plate of the armature, 4 is an armature coil, 5 is a rotor, A yoke, 7 is an N-pole permanent magnet, and 8 is an S-pole permanent magnet.

図2は、本発明の発電機電機子の立体図であって、9は固定軸挿入部、10は電機子の積層珪素鋼板、11は外側の装着電磁コイル、12は内側の装着電磁コイル、13は電磁コイル間の隙間を示す。 FIG. 2 is a three-dimensional view of the generator armature of the present invention, wherein 9 is a fixed shaft insertion portion, 10 is a laminated silicon steel plate of the armature, 11 is an outer mounting electromagnetic coil, 12 is an inner mounting electromagnetic coil, Reference numeral 13 denotes a gap between the electromagnetic coils.

図3は、本発明の発電機回転子の立体図であって、14はヨーク、15はN極の永久磁石、16はS極の永久磁石を示す。   FIG. 3 is a three-dimensional view of the generator rotor of the present invention, in which 14 is a yoke, 15 is an N-pole permanent magnet, and 16 is an S-pole permanent magnet.

図4は、本発明の発電機の断面図であって、17は電機子、18は固定軸、19は回転軸、20は外側の装着電磁コイル、21は内側の装着電磁コイル、22は回転子、23はエアーギャップ、24はN極の永久磁石、25はS極の永久磁石、26は電機子の積層珪素鋼板を示す。 FIG. 4 is a sectional view of the generator of the present invention, in which 17 is an armature, 18 is a fixed shaft, 19 is a rotating shaft, 20 is an outer mounting electromagnetic coil, 21 is an inner mounting electromagnetic coil, and 22 is rotating. 23, an air gap, 24 an N pole permanent magnet, 25 an S pole permanent magnet, and 26 an armature laminated silicon steel sheet.

図5は、本発明の発電機に使用した成形前の電磁コイルの立体図であり、27は平角融着導線、28は巻芯空間部分、29は軸方向長辺部分を示す。図6は、本発明の発電機に使用した成形後電磁コイルの立体図であって、30は湾曲部分、31は平角融着導線、32は巻芯空間部分、33は引出しリード線を示す。図7は、外側装着電磁コイルの湾曲部拡大図であり、34は外側装着湾曲部分、35は平角融着導線、36は巻芯空間部分を示す。図8は、内側装着電磁コイルの湾曲部拡大図であり、37は内側装着湾曲部分、38は平角融着導線、39は巻芯空間部分を示す。   FIG. 5 is a three-dimensional view of the electromagnetic coil before molding used in the generator of the present invention, 27 is a rectangular fusion conducting wire, 28 is a core space portion, and 29 is a long side portion in the axial direction. FIG. 6 is a three-dimensional view of the molded electromagnetic coil used in the generator of the present invention, in which 30 is a curved portion, 31 is a flat fused conductor, 32 is a core space portion, and 33 is a lead wire. FIG. 7 is an enlarged view of the curved portion of the outer-mounted electromagnetic coil, wherein 34 is an outer-mounted curved portion, 35 is a flat fused wire, and 36 is a core space portion. FIG. 8 is an enlarged view of the bending portion of the inner mounting electromagnetic coil, 37 is an inner mounting bending portion, 38 is a flat fusion wire, and 39 is a core space portion.

図9は電機子巻線の直列接続であって、40は電機子コイル、41は電機子コイル接続部分、42は直列接続出力端子を示す。図10は電機子巻線の並列接続であって、43は電機子コイル、44は電機子コイル接続部分、45は並列接続出力端子を示す。 FIG. 9 is a series connection of armature windings, 40 is an armature coil, 41 is an armature coil connection portion, and 42 is a series connection output terminal. FIG. 10 shows parallel connection of armature windings, where 43 is an armature coil, 44 is an armature coil connection portion, and 45 is a parallel connection output terminal.

図11は発電機の出力特性比較を示す。図12は発電機の効率特性比較を示す。 FIG. 11 shows a comparison of the output characteristics of the generator. FIG. 12 shows a comparison of generator efficiency characteristics.

平角融着導線で図5のように空芯アルファ巻きをし、更に電機子に密着するように湾曲成形する。要求出力電圧に合わせ電磁コイルは単体、または積層状態にし同様に電機子の円周に密着するように湾曲成形する。隣接する電磁コイルの巻き芯空間部分に隣りの電磁コイルの長辺部分が段差無く装着固定できるように成形し、電機子の外周部分に隙間無く装着固定する。電磁コイルの巻き始め、巻き終りをスターまたはデルタ結線をする事により三相出力を得る事が出来る。   As shown in FIG. 5, the flat core fusion lead wire is wound with an air core alpha and is further bent so as to be in close contact with the armature. In accordance with the required output voltage, the electromagnetic coil is made into a single body or a laminated state, and is similarly bent so as to be in close contact with the circumference of the armature. The adjacent electromagnetic coil is formed so that the long side portion of the adjacent electromagnetic coil can be mounted and fixed without a step in the winding core space portion of the adjacent electromagnetic coil, and is fixed to the outer peripheral portion of the armature without a gap. Three-phase output can be obtained by star or delta connection at the beginning and end of winding of the electromagnetic coil.

更に低回転で十分な出力を得るために、発電機の巻き線の接続を図9のように直列接続する事により、低回転時高い出力電圧を得る事ができる、回転が速く発電量が大きい時は図10のように並列接続し出力電流を多く取り銅損を少なくする事が出来る。回転数により最適な出力が得られ、尚且つ優れた効率で発電出来る発電機が得られた。 Furthermore, in order to obtain a sufficient output at a low rotation, a high output voltage can be obtained at low rotation by connecting the windings of the generator in series as shown in FIG. In some cases, as shown in FIG. 10, parallel connection can be used to increase output current and reduce copper loss. An optimal output was obtained depending on the number of revolutions, and a generator capable of generating electricity with excellent efficiency was obtained.

本発明の発電機に使用する空芯アルファ巻き単体または積層成形電磁コイルは、電機子の外周に隙間無く配置できるように湾曲成形をする。電磁コイルを電機子の円周上に配置した場合、電磁コイルの両端は相互に重なり合うため電磁コイル同士が接触し絶縁低下をする危険性がある。絶縁低下危険性を回避するために、図7、図8に示すように湾曲特殊成形し、電磁コイル間に隙間が出来るようにする。湾曲特殊成形した電磁コイルを導体収納溝のない電機子の外周に装着固定し出来上がったのが図2に示す電機子で、当該電機子と永久磁石を有する図3の回転子を組合せ図1の発電機が出来た。   The air-core alpha winding single-piece or laminated molding electromagnetic coil used for the generator of the present invention is curved so that it can be disposed on the outer periphery of the armature without any gap. When the electromagnetic coil is arranged on the circumference of the armature, both ends of the electromagnetic coil overlap each other, so there is a risk that the electromagnetic coils come into contact with each other and insulation is lowered. In order to avoid the risk of lowering the insulation, a special curve is formed as shown in FIGS. 7 and 8 so that a gap is formed between the electromagnetic coils. A curved specially formed electromagnetic coil is mounted and fixed on the outer periphery of an armature without a conductor housing groove, and the armature shown in FIG. 2 is completed. The armature and the rotor of FIG. 3 having a permanent magnet are combined in FIG. A generator was made.

本発明の発電機は、起動トルクが小さく、さらに鉄損、銅損が小さいため発電効率が高く、低速回転から発電電力が得られる。同等出力の発電機特性比較を図11、図12で示す。従来型発電機に比較し出力電流に対する発電効率は出力電流全域に渡り優れている事が解る、また出力電力については、出力電流に対し本発明の発電機は比例して増加に対し従来型では、出力電流に対し最大出力電力点が電流値の比較的小さいところにあり、それ以降については急激に低下する、従って最大出力電力の限界が早く、使用可能電流範囲が狭い、本発明の発電機は広範囲の電流値迄出力電力が得られ、大電流範囲まで使用できると言う利点がある。   Since the generator according to the present invention has a small starting torque and a small iron loss and copper loss, the power generation efficiency is high, and the generated power can be obtained from the low speed rotation. 11 and 12 show comparison of generator characteristics with equivalent output. It can be seen that the power generation efficiency with respect to the output current is superior over the entire output current compared to the conventional generator, and the output power of the generator of the present invention increases in proportion to the output current. The generator of the present invention has a maximum output power point with respect to the output current, where the current value is relatively small, and then rapidly decreases, so that the maximum output power limit is fast and the usable current range is narrow. Has the advantage that the output power can be obtained up to a wide range of current values and can be used up to a large current range.

本発明の発電機は、起動トルクが小さく、さらに鉄損、銅損が小さい為発電効率が高く、低速回転から発電電力が得られるため、駆動動力変動の大きな風力発電の発電機として最適である。更に低速回転から発電電力が得られるため、回転数の低い水力発電の発電機としても適している。従来の風力発電機では高速回転時には発電電力が得られるが、低速回転では発電電力が急激に低下する等の問題が有った。更に風速の小さい状態では風車の回転トルクが小さく発電機の起動トルクに達しない為回転しない等の問題が有った。本発明の発電機は起動トルクが極めて小さい為微風時においてもスムースに回転し、微弱であるが発電開始する特徴がある。本発明の発電機と風車、または水車を組合せることにより駆動エネルギーが小さいところから発電でき、また鉄損、銅損が小さい為発電効率が高く駆動エネルギーを有効に活用でき、マイクロ風力、小型水力等の普及に貢献する。   The generator of the present invention is optimal as a wind power generator with a large driving power fluctuation because the starting torque is small and the iron loss and copper loss are small, so the power generation efficiency is high and the generated power can be obtained from low speed rotation. . Furthermore, since generated power can be obtained from low-speed rotation, it is also suitable as a hydroelectric power generator with a low rotational speed. Conventional wind power generators can generate power at high speeds, but have problems such as a sharp drop in power at low speeds. Furthermore, when the wind speed is low, the rotational torque of the windmill is so small that it does not reach the starting torque of the generator, causing problems such as not rotating. The generator according to the present invention has a feature that since the starting torque is extremely small, the generator rotates smoothly even in a light wind and starts to generate electricity although it is weak. By combining the generator of the present invention with a wind turbine or water turbine, power can be generated from a small driving energy, and since the iron loss and copper loss are small, the power generation efficiency is high and the driving energy can be effectively utilized. Contribute to the spread of

本発明の発電機の立体図。The three-dimensional view of the generator of this invention. 本発明の発電機電機子の立体図。The three-dimensional view of the generator armature of the present invention. 本発明の発電機回転子の立体図。3 is a three-dimensional view of the generator rotor of the present invention. FIG. 本発明の発電機の断面図。Sectional drawing of the generator of this invention. 本発明の発電機に使用した成形前の電磁コイルの立体図。The solid diagram of the electromagnetic coil before shaping | molding used for the generator of this invention. 本発明の発電機に使用した成形加工後の電磁コイルの立体図。The solid view of the electromagnetic coil after the shaping | molding process used for the generator of this invention. 外側装着電磁コイルの湾曲部拡大図。The curved part enlarged view of an outside mounting | wearing electromagnetic coil. 内側装着電磁コイルの湾曲部拡大図。The curved part enlarged view of an inner side installation electromagnetic coil. 発電機の直列接続。Series connection of generators. 発電機の並列接続。Parallel connection of generators. 発電機の出力特性比較。Comparison of generator output characteristics. 発電機の効率特性比較。Comparison of efficiency characteristics of generators.

符号の説明Explanation of symbols

1、17、 電機子
2,9、 固定軸挿入部
3、10、26、 積層珪素鋼板
4、40、43、 電機子コイル
5、22、 回転子
6、14、 ヨーク
7、15、24、 N極の永久磁石
8、16、25、 S極の永久磁石
11、20、 外側の装着電磁コイル
12、21、 内側の装着電磁コイル
13、 電磁コイル間の隙間
18、 固定軸
19、 回転軸
23、 エアーギャップ
27、31、35、38、 平角融着導線
28、32、36、39、 巻芯空間部分
29、 軸方向長辺部分
33、 引出し線
34、 外側湾曲部分
37、 内側湾曲部分
41、44、 電機子コイル接続部分
42、 直列接続出力端子
45、 並列接続出力端子
1, 17, Armatures 2, 9, Fixed shaft insertion portions 3, 10, 26, Laminated silicon steel plates 4, 40, 43, Armature coils 5, 22, Rotors 6, 14, Yoke 7, 15, 24, N Pole permanent magnets 8, 16, 25, S pole permanent magnets 11, 20, outer mounting electromagnetic coils 12, 21, inner mounting electromagnetic coil 13, gap 18 between the electromagnetic coils, fixed shaft 19, rotating shaft 23, Air gaps 27, 31, 35, 38, flat fused conductors 28, 32, 36, 39, core space portion 29, axial long side portion 33, lead wire 34, outer curved portion 37, inner curved portions 41, 44 , Armature coil connection portion 42, series connection output terminal 45, parallel connection output terminal

Claims (5)

平角導線と、該導線の周りを被覆する絶縁皮膜と、該絶縁皮膜の周りをさらに被覆する融着皮膜とを備える融着導線(以降融着導線と言う)をもちい空芯アルファ巻成形した電磁コイルを導体収納溝のない電動機の電機子に、装着固定した事を特徴とする電動機。 An electromagnetic core formed by air-core alpha winding using a fusion lead wire (hereinafter referred to as a fusion lead wire) comprising a flat lead wire, an insulation film covering the periphery of the lead wire, and a fusion film further covering the periphery of the insulation film. An electric motor characterized in that a coil is attached and fixed to an armature of an electric motor having no conductor housing groove. 平角融着導線を空芯アルファ巻単体または、積層成形した電磁コイルを導体収納溝のない電動機の電機子、界磁コイルに装着固定した事を特徴とする電動機。 An electric motor characterized by mounting and fixing a flat fused wire with an air core alpha winding alone or a laminated molded electromagnetic coil to an armature or field coil of an electric motor without a conductor housing groove. 平角融着導線を空芯アルファ巻単体または、積層成形した電磁コイルの巻芯空間部分に隣接コイルの軸方向長辺部分をコイル厚さ寸法範囲内で円周面上に段差及びコイル間の接触なく2種類のコイルを組合せ、導体収納溝のない電動機の電機子に装着固定した事を特徴とする電動機。 Steps on the circumferential surface within the coil thickness dimension and contact between the coils in the space area of the coil in the axial space of the flat core fused lead wire with the air core alpha winding unit or laminated magnet coil An electric motor characterized by combining two types of coils and fixing them to the armature of an electric motor without a conductor storage groove. 電機子及び界磁コイルに装着された複数個の電磁コイルの端面が相互に接触しないように成形されたことを特徴とする電磁コイルを有する電動機。   An electric motor having an electromagnetic coil, wherein the end surfaces of a plurality of electromagnetic coils mounted on the armature and the field coil are not in contact with each other. 導体収納溝のない電機子、界磁コイルに平角融着導線を空芯アルファ巻成形した電磁コイルを装着固定した、コキングトルクの無い請求項1から4の電動機。
The electric motor according to any one of claims 1 to 4, wherein there is no coking torque, wherein an armature without a conductor housing groove and an electromagnetic coil formed by air-core alpha winding of a flat-angle fused conductor are attached to a field coil.
JP2006114043A 2006-04-18 2006-04-18 Motor Pending JP2007288933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114043A JP2007288933A (en) 2006-04-18 2006-04-18 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114043A JP2007288933A (en) 2006-04-18 2006-04-18 Motor

Publications (1)

Publication Number Publication Date
JP2007288933A true JP2007288933A (en) 2007-11-01

Family

ID=38760200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114043A Pending JP2007288933A (en) 2006-04-18 2006-04-18 Motor

Country Status (1)

Country Link
JP (1) JP2007288933A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333146A (en) * 2014-10-28 2015-02-04 上海交通大学 Three-dimensional orthogonal energy receiver applied to weak coupling wireless energy transmission system
WO2015173969A1 (en) * 2014-05-15 2015-11-19 由次 近藤 Driving/power-generation motor
JP2016039768A (en) * 2014-08-11 2016-03-22 由次 近藤 Driving/power-generation motor
CN108233579A (en) * 2016-12-09 2018-06-29 本田技研工业株式会社 The stator of slot coil and electric rotating machine
JPWO2018139245A1 (en) * 2017-01-30 2019-11-14 啓佐敏 竹内 Coreless electromechanical device and method of manufacturing coreless electromechanical device
WO2020255899A1 (en) * 2019-06-20 2020-12-24 株式会社デンソー Armature
WO2021153562A1 (en) * 2020-01-28 2021-08-05 株式会社デンソー Rotating electrical machine
WO2021192864A1 (en) * 2020-03-25 2021-09-30 株式会社デンソー Rotary electrical machine
JP7472631B2 (en) 2020-04-28 2024-04-23 株式会社デンソー Rotating electric machine and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173969A1 (en) * 2014-05-15 2015-11-19 由次 近藤 Driving/power-generation motor
JP2016039768A (en) * 2014-08-11 2016-03-22 由次 近藤 Driving/power-generation motor
CN104333146A (en) * 2014-10-28 2015-02-04 上海交通大学 Three-dimensional orthogonal energy receiver applied to weak coupling wireless energy transmission system
CN104333146B (en) * 2014-10-28 2016-07-06 上海交通大学 Three-dimensional orthogonal energy acceptance device for weak coupling wireless energy transfer system
CN108233579A (en) * 2016-12-09 2018-06-29 本田技研工业株式会社 The stator of slot coil and electric rotating machine
US10461588B2 (en) 2016-12-09 2019-10-29 Honda Motor Co., Ltd. Slot coil and stator for electric rotary machine
CN108233579B (en) * 2016-12-09 2020-06-02 本田技研工业株式会社 Slot coil and stator of rotating electric machine
JPWO2018139245A1 (en) * 2017-01-30 2019-11-14 啓佐敏 竹内 Coreless electromechanical device and method of manufacturing coreless electromechanical device
WO2020255899A1 (en) * 2019-06-20 2020-12-24 株式会社デンソー Armature
WO2021153562A1 (en) * 2020-01-28 2021-08-05 株式会社デンソー Rotating electrical machine
WO2021192864A1 (en) * 2020-03-25 2021-09-30 株式会社デンソー Rotary electrical machine
JP7472631B2 (en) 2020-04-28 2024-04-23 株式会社デンソー Rotating electric machine and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2007288933A (en) Motor
JP5070255B2 (en) Rotating electric machine
JP2762257B2 (en) Manufacturing method of grooveless motor
KR100947352B1 (en) Generator
JP4311643B2 (en) Method for manufacturing permanent magnet type rotating electric machine and method for manufacturing permanent magnet type synchronous generator for wind power generation
EP2592721A2 (en) Permanent magnet electrical rotating machine, wind power generating system, and a method of magnetizing a permanent magnet
JP2006109549A (en) Permanent magnet dynamo-electric machine and wind force power generating system
JP4940252B2 (en) Manufacturing method of rotating electrical machine
JP2011036010A (en) Rotating electrical machine
JP5248751B2 (en) Slotless permanent magnet type rotating electrical machine
JP2009232607A (en) Winding for stator of rotating electric machine and rotating electric machine
JP2010011686A (en) Power generator and wind-power generation apparatus equipped with the same
CN110247488B (en) Cooling of end windings of a generator
JP2010288424A (en) Stator of rotary electric machine, and rotary electric machine
KR101956021B1 (en) Cooling structure of drive motor
CN200987085Y (en) High speed permanent-magnetic motor generator
KR101265825B1 (en) Dual stator rfpm(radial flux permanent magnet) generator
JP5918760B2 (en) Rotating electric machine
CN104753280A (en) Hybrid excitation switched reluctance motor and stator structure thereof
JP5988840B2 (en) Rotating electric machine stator
JP2009296745A (en) Multipole axial gap-type capacitor motor and its manufacturing method
WO2010128674A1 (en) Motive-force generator using a dynamo-electric device
CN219227303U (en) High-speed permanent magnet motor
KR20130102315A (en) Large capacity generator
JP2013094030A (en) Armature coil and synchronous rotary machine