JP2007288193A - ソレノイド型マグネットの製造方法 - Google Patents
ソレノイド型マグネットの製造方法 Download PDFInfo
- Publication number
- JP2007288193A JP2007288193A JP2007104583A JP2007104583A JP2007288193A JP 2007288193 A JP2007288193 A JP 2007288193A JP 2007104583 A JP2007104583 A JP 2007104583A JP 2007104583 A JP2007104583 A JP 2007104583A JP 2007288193 A JP2007288193 A JP 2007288193A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- mechanical support
- mold
- support structure
- magnet structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000011347 resin Substances 0.000 claims abstract description 50
- 229920005989 resin Polymers 0.000 claims abstract description 50
- 238000004804 winding Methods 0.000 claims abstract description 15
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 35
- 239000004744 fabric Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 238000005470 impregnation Methods 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000009756 wet lay-up Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 17
- 239000000945 filler Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 239000011152 fibreglass Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/381—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/381—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
- G01R33/3815—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/3802—Manufacture or installation of magnet assemblies; Additional hardware for transportation or installation of the magnet assembly or for providing mechanical support to components of the magnet assembly
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/3804—Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/42—Screening
- G01R33/421—Screening of main or gradient magnetic field
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/005—Impregnating or encapsulating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/048—Superconductive coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/327—Encapsulating or impregnating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/12—Insulating of windings
- H01F41/127—Encapsulating or impregnating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49014—Superconductor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
- Y10T29/49071—Electromagnet, transformer or inductor by winding or coiling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
- Y10T29/49073—Electromagnet, transformer or inductor by assembling coil and core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49156—Manufacturing circuit on or in base with selective destruction of conductive paths
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49169—Assembling electrical component directly to terminal or elongated conductor
- Y10T29/49171—Assembling electrical component directly to terminal or elongated conductor with encapsulating
- Y10T29/49172—Assembling electrical component directly to terminal or elongated conductor with encapsulating by molding of insulating material
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Electromagnets (AREA)
Abstract
【課題】従来技術の問題の少なくとも一部を除くことを目的とし、かつ使用中に加わる力に耐え得る、安価で、かつ軽量の巻枠を準備し、ソレノイド型マグネットのコイルの正確で、かつ安定した位置付けを実現する。
【解決手段】コイルを巻き付ける崩壊可能な金型(40)を準備する工程と、前記金型(40)内の所定の位置(88)に電線を巻き付ける工程と、このようにして巻き付けられた前記コイルの上に機械的支持構造物(104、22)を置く工程と、前記コイルと前記機械的支持構造物(104、22)に、熱硬化性樹脂を含浸させる工程と、前記熱硬化性樹脂を硬化させる工程と、前記金型(40)を崩壊させて、かつ、前記樹脂を含浸させたコイルと前記機械的支持構造物(104、22)から成る結果的に得られた前記ソレノイド型マグネット構造物を、単一体として前記金型から取り除く工程とを含む。
【選択図】図6
【解決手段】コイルを巻き付ける崩壊可能な金型(40)を準備する工程と、前記金型(40)内の所定の位置(88)に電線を巻き付ける工程と、このようにして巻き付けられた前記コイルの上に機械的支持構造物(104、22)を置く工程と、前記コイルと前記機械的支持構造物(104、22)に、熱硬化性樹脂を含浸させる工程と、前記熱硬化性樹脂を硬化させる工程と、前記金型(40)を崩壊させて、かつ、前記樹脂を含浸させたコイルと前記機械的支持構造物(104、22)から成る結果的に得られた前記ソレノイド型マグネット構造物を、単一体として前記金型から取り除く工程とを含む。
【選択図】図6
Description
本発明は、ソレノイド型マグネットコイルの製作方法と、ソレノイド型マグネットコイル自体に関する。特に、本発明は、核磁気共鳴(NMR)又は磁気共鳴映像法(MRI)等のシステムで用いる、高磁界を発生させるソレノイド型マグネットコイルに関する。
図1Aと図1Bは、核磁気共鳴(NMR)又は磁気共鳴映像法(MRI)のシステム用の従来のソレノイド型マグネット構成の断面図と軸断面図を各々示している。超電導線の幾つかのコイルが巻枠1上に巻き付けられている。その結果得られる組立体は、沸点にある液体寒剤2aで少なくとも一部満たされた寒剤容器2内に収容されている。そのためこれらコイルは、その臨界点よりも低温にて保たれる。
巻枠1は、一般に巻枠1の正確な寸法を確保すべく、切削加工したアルミニウムで構成されており、更に巻枠1が、巻枠1上に巻き付けられるコイルの正確な寸法および位置を確保する。このような精度は、結果として生ずる磁界の均一性と信頼性を保証するのに不可欠なものである。超電導マグネットは、そのコイルの1ターンが僅かに動いただけでクエンチすることがある。それ故、巻枠1は、非常に剛性なものでなければならない。これらの要件が組み合わさり、巻枠の製作を非常に費用がかかる。
図1Aと図1Bは、外側真空容器4と熱遮蔽3をも示す。周知のように、外側真空容器4と熱遮蔽3は、周囲の雰囲気から寒剤タンクを断熱する機能を果たす。外側真空容器4と熱遮蔽3との間の空間内に、断熱材5を入れることもある。しかし、図1Aと図1Bに示す如く、これら要素は、ソレノイド型マグネットの有効内径4aをも短くする。ソレノイド型マグネットの有効内径4aは、患者の出入りを可能にする一定寸法が必要なので、外側真空容器4と熱遮蔽3の存在により、マグネットコイルおよび巻枠1の直径が事実上長くなり、そのため構成全体の費用が増す。
図1Aと図1Bに示し、かつ上に説明した巻枠1を製作する費用は、労働費用と材料費でほぼ同等に占められる。他の目標の中で、本発明は、ソレノイド型マグネット構造物の製作にかかわる労働費用を減らそうとする。
特許文献1は、熱伝導性の円筒形巻枠の内面又は外面に様々なコイルを実装し、もってこの円筒形巻枠の材料を経て冷却を行うソレノイド型超電導マグネット構成を開示する。コイルは、この円筒巻枠の材料に熱接続されるが、電気的には絶縁される。
本発明は、従来技術の問題の少なくとも一部を軽減することを目的とし、また、使用中に加わる力に耐え得る、安価で、かつ軽量の巻枠を準備し、かつソレノイド型マグネットのコイルの正確で、安定した位置付けを実現しようとするものである。
よって、本発明は、特許請求の範囲に示す装置および方法を提供する。
本発明の上記および別の目的、特性および利点は、以下の添付図面と共に、例としてのみ示す本発明の幾つかの実施形態の下記説明を考察すると、更に明らかになろう。
図2は、本発明の一実施形態に従ったコイル20と側板22との組立体の全体斜視図を示す。コイル20は、内側コイル20aと外側コイル20bに分け得る。
図3は、本発明の一実施形態によるコイル20と側板22の組立体の軸断面図であり、側板22が、内側コイル20aを一部だけ取り巻いていることを示す。しかしこれら側板は、図示の実施形態では、内側コイル20aの外周全体の周りにある。側板22は、図示の如く、内側コイル20aの外周全体の周りに隣接する必要はないが、対称的に間隔を置き得る。しかし側板22は、コイル20に加わる力に耐えられる程、不動、かつ正確にコイル20を位置付けするのに充分な個数と強度でなければならない。
外側コイル20bは、内側コイル20aと同軸状に揃えた状態に保たれる。図4は、これを実現するための模範的な配置構成を示す。内側コイル20aは、それらの正確な相対的位置に、側板22で保持されている。同様に、外側コイル20bも、それらの正確な相対的位置に、側板22で保持されている。ソレノイド型マグネット組立体の全体寸法を最小限に抑えるべく、側板22を内側コイル20aの外周、又は外側コイル20bの内周に付け得る。しかし側板22は、何らかの理由で好ましければ、任意のコイルの外周でも、内周でも付け得る。内側コイル20aと外側コイル20bを所要の相対的位置に保持するためには、内側の組のコイルに対応する側板22と、外側の組のコイルに対応する側板22との間に、繋ぎ部分24が連結される。図4に示す如く、これら繋ぎ部分24は、側板22間に取付けられたアルミニウム又はガラス強化プラスチック(GRP)等の丈夫な材料でできた板の形態を取り得る。この繋ぎ部分の取付けを容易にすべく、側板22を、取付け用突片26を付けて製作する。次に、取付け用突片26の適切な地点に取付け穴を明け、かつこれら側板22を、取付け用突片26を貫くボルトやそれに類する締付け手段28で取付ける。別法として、機械式クランプを設け、繋ぎ部分24を取付け用突片26に締め付けるように構成してもよい。更に、機械式クランプを、繋ぎ部分24を側板22の本体にじかに締め付けるために設け、もって取付け用突片26を不要ともなし得る。
図2に示す如く、本発明によるソレノイド型マグネットを、内側コイル20aの直径を図1Aと図1Bに示す従来技術の構成の場合よりも小さく構成できる。これは、図1Aと図1Bの従来技術の構成では作動時にこれらコイルを支持すべく、巻枠1の圧縮強さに頼るためである。この結果、巻枠1は、内側コイルの内径の範囲内になければならず、これは、患者の収容に利用できる内径4aを小さくし、又は内側コイルの寸法を大きくし、更に、それが、これらコイルの費用を増大させ、全体としてのマグネット組立体の費用も増大させると言う影響を及ぼす。
本発明によるソレノイド型マグネット構造物を、図1Aと図1Bに示す従来技術の構成と同様に、寒剤容器内への浸漬で冷却できる。別法では、中空側板22を準備し、寒剤を中空側板22内で循環させて冷却する。この実施形態では、コイル20は、冷却した側板22と効果的に熱接触せねばならない。またその全体を、超電導コイルをそれらの臨界点より低く冷却させるくらい充分、周囲温度から隔離すべきである。かかる実施形態では、等温表面を必要とする超電導のスイッチと他の構成要素を、側板22に取付ける。次に側板22を経て冷却することで、図1Aと1B中の2に示す寒剤容器は不要となる。その結果得られるシステムの寸法、重量、費用を更に減少できる。
図5は、かかる実施形態に特に適する側板22の断面を示す。側板22は、冷却流路30が通る中空の側板である。冷却流路30の内面がリブ32を含むとよい。リブ32は、冷却流体と接触する冷却流路30の内部表面積を拡大し、側板22の冷却効果を増す。シールドコイル支持物と他の支持物を押し出し、側板22の外形を形成できる。
本発明の更に他の実施形態で、側板22を冷却する配置構成が可能な一方で、側板22の材料に沿う熱伝導で、これらコイルの冷却も可能である。かかる実施形態では、側板22を、直接冷凍にて、又は冷却ループにより冷却し得る。図9は、液体寒剤78を寒剤管20の周りに循環させる冷却ループ構成を図式的に示す。この寒剤管回路中に、比較的小さい寒剤タンク80を設ける。再凝縮冷凍機82も備える。動作時、寒剤管20中の液体寒剤78の一部は、寒剤管20から熱を、従ってこの巻枠10から熱を吸収する。この結果、液体寒剤78の一部は沸騰し気体状態になる。この気化した寒剤ガス84は、寒剤管回路の上端に向かって上昇して、再凝縮冷凍機82に入る。再凝縮冷凍機82は、寒剤ガス84を冷却し、寒剤ガス84を再凝縮して液体寒剤78にし、更に、このシステムから熱を取り去る働きをする。図10に示す如く、液体寒剤78の沸騰が、事実上、図示する回路の右側で起こり、かつ再凝縮冷凍機82迄上昇する。再凝縮冷凍機82から供給される再凝縮した液体寒剤は、図示の如く、寒剤管20の左側を通り下降する。それ故、この構成は、液体寒剤78を連続的に循環させ、効果的な冷却を行う。寒剤タンク80が必要となるが、必要な液体寒剤78の量は、このマグネットを液体寒剤浴に浸漬させた従来技術の寒剤容器2と比較して、非常に僅かである。
本発明の構成の利点は、図1Aと図1Bに示すコイルと巻枠との間の摩擦境界面34を無くしている点である。巻枠と摩擦接触した状態でコイルが動くと、クエンチを起こすに足りる局部的な発熱が生じるから、この摩擦境界面は、従来技術の構成ではクエンチを引き起こす可能性がある。本発明の構成では、この摩擦境界面がない故、かかる虞はない。コイルに作用する電磁力であるボディフォースは、コイルと、側板又は他の機械的支持構造物との間のせん断結合強さで抑えられる。該コイルは、本出願内の他の場所に記載の方法の何れかで製作し、かつ機械的支持構造物により保持でき、また製作方法は、巻枠を必要とせずに、所要の本体強度を与える。コイルと側板が電磁負荷を受けた際、その位置を保つのにコイルと側板との間に必要となる境界面せん断強さは、3MPa以下であり、一般には、個々のターンの動きを防止すべく、コイル内で、上記結合方法により達成されるせん断強さの10%であり、それ故、これは現行技術の性能の範囲内にある。
患者の快適さと、MRIシステム内への臨床医の近づき易さは、両方共、マグネットの長さを短くすることで向上し得る。磁界の品質を保ちつつ、このように長さを短縮するコイル構成により、コイルのボディフォースが、マグネットの中心から遠ざかる軸方向に働く。この力を抑える従来の方法は、追加の巻枠材料をコイルの端部に位置付けることを要求し、そのため、マグネットシステムの長さが増加する。コイルと、側板又は他の機械的支持構造物との間の境界面のせん断強さを利用すれば、このような追加材料を避けて、マグネットシステムの長さを更に短縮できる。
本発明は、ソレノイド型マグネット構造物の製造方法を提供する。ここで、本発明の一実施形態を説明する。
最初に、コイルを巻き付ける正確な金型が必要となる。巻枠を用いないことを前提としているので、コイルの正確な寸法と相対的間隔は、この金型により定まる。よって、この金型は、唯一の金型を使用して多くのマグネット構造物を製作可能とすべく、非常に正確に、かつ丈夫な材料で作らねばならない。この金型は、崩壊可能なように構成する。金型内の所定の位置に超電導線を巻き付ける。一般にこの位置は、金型表面中の凹みである。側板22等の機械的支持構造物を、上記のように巻き付けたコイル上に置ける。或いは強化材をコイル上に巻き、次に、以下で説明するように樹脂を含浸することで、強化樹脂製の複合管を、上記のように巻き付けたコイル上に形成してもよい。これらコイルと機械的支持構造物上に別の金型を置き、包囲する金型空洞を形成できる。この金型内のコイルと機械的支持構造物に、一体として熱硬化性樹脂を含浸させる。これを硬化させ、かつ樹脂を含浸したコイルと、機械的支持構造物を、単一体として金型から取り除く。この含浸工程は、普通なら巻線に閉じ込められ、その完成部片に応力を生じさせる空気や他の気体の気泡を避けるべく、真空で行うとよい。図6は、適切な金型40を、更に詳しく示す。金型40は、完成品の取外しを用意にすべく、例えばポリテトラフルオロエチレンPTFE製のライニングを備え得る。
このようにソレノイド型コイル構成を形成する方法の利点は、コイルを、この金型の形状で、正確に寸法を決め、かつ相対的に位置付け可能な点である。コイルの位置付けが金型で定まる故、コイル上に形成される機械的支持構造物は、それ自体、正確に寸法を決める必要はなく、また、この機械的支持構造物は、金型で定められる通りにコイルをそれらの相対的な位置に確実に支持するのに役立つにすぎない。
この金型は非常に正確に寸法を決めなければならから、製作に費用がかかるが、その金型を数回再使用し、幾つかの同様なソレノイド型マグネット構造物を製作できるので、特に有利である。従来機械的支持構造物は、それ自体正確に寸法を決めた高価な構成要素であった。よって、正確に切削加工した金型を用い、コイルの寸法と相対的な位置を定める本発明の方法によれば、従来の製作方法と比較し、費用と時間を削減しつつ、正確なソレノイド型マグネット構造物を製作できる。
内側界磁コイル20a(図2)と外側シールドコイル20bを有するソレノイド型マグネットの製作時、互いのシールドコイルの相対的位置と、互いの界磁コイルの相対的位置は、界磁コイルに対するシールドコイルの相対的位置よりも重要である。界磁コイルとシールドコイルは、各々上述の方法で製作し、かつ機械的支持構造物に取付け得る。
図4は、界磁コイル20aの組立体に対し界磁コイル20bの組立体を保持すべく使用可能な機械的支持構造物を示す。側板22は各々、この目的で設けた、図4に示す取付け用突片26備え得る。取付け用突片26に、ボルトを固定すべく穴を備える。これに代えて、これらの穴とボルトは、側板22自体の本体を貫いてもよい。
本発明の一形態に従い、熱硬化性樹脂を施し、組立体全体を一体として嵌め込んで単一体の製品を製作すると、側板22を含浸工程前に、金型内で、コイル20と接触した状態で位置付けできる。一般には真空含浸を用いる。コイル20は、クロスに熱硬化性樹脂を含浸させ、側板22に取付ける。この場合も、金型は、完成品の取外しを容易にすべく、例えばポリテトラフルオロエチレンPTFE製のライニングを備え得る。
幾つかの代替実施形態では、この樹脂を、コイル導体上の被覆として、機械的支持構造物の一部として、側板上の被覆として、或いは含浸布又はそれに類する材料として、ウェットレイアップ法で施し得る。
側板22は、適宜に、アルミニウム押出し品として製作できる。このアルミニウム押出し品は、比較的に安価であるが、本発明の目的に足りる機械的剛性と熱伝導性がある。別法として、側板22は、圧延管と溶接管、或いはフィラメント巻き管で形成できる。
一般に、ソレノイド型マグネット構造物では、一部のコイルは、他のコイルとは異なる内径又は外径を持ち得る。コイルを全て、真直ぐな側板に取付け可能とすべく、全部のコイルを共通の直径にする必要も生じる。別法として、これらのコイルの様々な直径に対応する異形の側板を準備してもよい。しかしこの代案は、現在、不経済である。図3AとBは、各々が本出願に役立つ真直ぐな側板と、異形の側板とを示す。これらコイルの関連直径の差は、樹脂を含浸した布の重畳して巻回した充填層、一般にはガラス繊維の層を用いて補正できる。該層は、コイルが金型内にある間に追加でき、樹脂を含浸した布か、金型内で含浸すべき乾燥した布として追加できる。
コイル20は、上述の方法で、金型の対応する部分内で巻く。この金型で、樹脂を含浸したガラス繊維等の充填材をコイルの上に巻き、金型の上端迄充填材を詰める。例えばこの充填材は、5〜10mmの深さ迄設け得る。図6に示す如く、この金型は、少なくとも1つの取り外せる部分42を持つ崩壊可能な心棒を含む。その結果、金型を解体し、この成形済みのコイル20の内部から取り除くことができる。
正確に加工すれば、アルミニウムの押出し品又は管の側板である比較的不正確な機械的支持構造物をコイルに使用可能となる。ソレノイド型構造物の要所の重要な相対的位置は全て、これら金型又は他の組立品の加工により定まり、その結果、比較的低単価のソレノイドマグネット構成を製作する一方で、比較的高価な金型と加工を数回再使用し、幾つかのソレノイド型マグネットコイル組立体を製作できる。
使用する側板の著しい全ての変形をも防止すべく、最終構造物を更に強化するとよい。
冷却ループによる冷凍を用いるとき、コイルと、例えば上記側板内に導入する冷却ループとの間にガラス充填層を入れることは、回避すべきである。これは、図3Bに示すような異型の側板を使用して、達成できる。或いは、異なる外径のコイルを不要とすべく、このソレノイド型コイル構造物を設計し直す必要があろう。冷却と機械的支持のため、側板を使用可能であり、機械的支持のためには、12枚又はそれ以上の側板を設けるべきであるが、一方、冷却のためには、僅か6枚の側板で充分であることが判明した。
幾つかの好ましい実施形態では、組立体の端コイルに機械的支持物を追加する。該端コイルは、発生した磁界の影響で最大の機械負荷を受ける。この支持物は、圧延押出し品又は樹脂を含浸させたガラス支持リングの形態であり得る。これら支持物は、シールドコイル上に締め付けられる。
一般的な傾向は、ソレノイド型マグネットをできるだけ短く設計することであるが、ソレノイド型マグネットの本体から遠ざかる方向に端コイルを押し動かそうとする反発力を端コイルが受けるなら限界がある。この際、端コイルを所定の位置に置くことで得られる長さ縮小を少なくとも一部覆すような機械的保持手段が、コイル外面上に必要となる。
外側シールドコイルと支持側板とから成る組立体を、図7に断面で例示する以下の方法で組み立て得る。側板22全体の少なくとも一部を収容すべく、空洞52のある巻枠50を準備する。側板22を、巻枠50に設けた空洞52に入れ、かつコイル20bを、側板22上で、巻枠50に巻き付ける。コイル20bを含浸し、更にこれを、他のコイルで用いられる方法で、唯一の工程で側板に接合する。2つの組立体、即ち側板で一緒に固定した界磁コイルを含む第1の組立体と、別の組の側板で一緒に固定したシールドコイルを含む第2の組立体とを互いに機械的に保持すべく、支柱又は繋ぎ部分を設け得る。図4を参照し、適切な配置構成を前述した。ある実施形態では、強化樹脂側板を準備すべく、上記の方法の間、これら側板を樹脂含浸したガラス繊維布等の強化材で形成してもよい。
図8A〜Dは、本発明によるソレノイド型マグネット構造物の製造における工程の幾つかを図示する。これらの図で、機械的支持構造物は、強化樹脂管102から成る。図8AとBは、強化樹脂管の機械的支持構造物102を持つ本発明によるソレノイド型マグネットコイル組立体の製作時、コイルと支持構造物を詰める金型の部分端面図と部分軸断面図を各々示す。この金型は、工具部品(82、84)を保持する内部管部材80を含む。内部管部材80は、単体の円筒管でも、切片に分けてもよい。使用時、内部管部材80と、工具部品(82、84)を、図示のボルト86等の着脱自在な機械的保持手段により一緒に保持し、概ね円筒形の金型の内面を形成し得る。
図8Bに示す如く、工具部品82、84は、コイル90を金型上に巻き付ける際にコイル90を保持する空洞88と、電気リードおよび他の給電部品を保持する空洞92を備える。端コイル94を収容すべく、特定の配置構成も可能である。図示の如く、工具部品82、84の端部に段96を刻み、かつ、平らなツール端部片98を内部管部材80の端部に取付けて、端コイル94を巻き付ける際に端コイル94を保持する空洞を形成できる。充填材104のスリーブ104を、内側コイルの組を巻き付けた後で嵌め、端コイル94を巻き付ける支えにできる。
コイル90と電気リードと給電部品92の上端部上に、充填材104を置く。該充填材104は、通常ガラス繊維布であるが、使用する樹脂と両立でき、かつ適合した熱膨張係数を持つ他の種類の充填材でもよい。工具部品82、84を囲い、かつ金型空洞99を工具部品82、84と端部片98で画成すべく、外側金型100を設ける。工具部品82、84は、正確に形作り、かつ正確に位置付けねばならないが、この精度を金型100の位置と形状に適用する必要はない。
図8Bに示す如く、金型空洞99は工具部品82、84と金型100と端部片98で画成する。金型空洞99は幾つかの場所108、例えば金型空洞99の両端で開いている。金型100を通る開口も設け得る。金型構造物の周りに含浸溝110を取付け、かつ含浸樹脂を含浸溝110から開口108を経て金型に押し込み、コイル90、電気リード、給電部品92および充填材104を一体的に含浸し、コイルと機械的支持構造物から成るソレノイド型マグネット構造物である単一体の製品を作る。この組立体を充分に含浸し、樹脂が固まった後で、成形した構造物から金型の様々な部片82、84、98、100を引き離す。最初に、含浸溝108と端部片98を、金型から除去する。金型100も、この段階で、又はその後で除去し得る。図8AとBを参照すると、管80を工具部品82、84から取り外す。管80が単一体であれば、組立体の中心穴から管80を滑らせて引き出せる。管80を切片に分割した場合には、これら切片を解体し、この中心穴から取り除ける。次に成形した製品から、工具部品82、84を取り除く。図8Aの例では、工具部品82にテーパーを付け、金型の中心穴から遠ざかる方向に工具部品82を狭くしている。この切片を最初に取り除き、残りの工具部品84を取り除くための余裕を与え得る。
図8Cは、上述の方法により製作したソレノイド型コイル組立体111の一例を示す。コイル90は樹脂を含浸してあり、かつコイル90の寸法は、工具部品82、84の正確な表面により定まっている。コイル90は、充填材を詰め含浸した樹脂から成る機械的支持構造物112に対し、含浸樹脂で接合される。樹脂含浸で形成したコイル90と側板との間の機械的接合部のせん断強さは、両方向に同等に効果的である。よって、機械的支持構造物112により、コイル90を正確な相対的な位置に不動に保ち得る。端コイル94は、やや異なる構造物で保持する。更に厚い充填層114を端コイル94の隣に設け、上記含浸樹脂で、端コイル94に接合する。端コイル94の外周上に別の充填層116を設け、上記含浸樹脂により端コイル94に接合する。
図8Dは、本発明の一実施形態に係るシールドコイル構成の部分断面図を示す。シールドコイル118は、樹脂を含浸し、かつ該樹脂で機械的支持構造物120に接合する。この図では、機械的支持構造物120を、位置選定手段124を備えた容器122内に取付けている。
図8A〜Dに関し述べた方法の変形例では、充填材104と金型100は、図2又は図7に示すものと同様な配置構成において、コイル90の外面上か内面上に、単体の強化樹脂管102を作り出すのではなくて、幾つかの強化樹脂側板を作り出すべく構成できる。
本発明を、特に核磁気共鳴(NMR)又は磁気共鳴映像法(MRI)等のシステム用のソレノイド型マグネットコイルを参照して説明したが、本発明は、任意の用途、特に正確なコイル整列を必要とする用途のために、ソレノイド型マグネットコイルの製作およびソレノイド型マグネットコイル自体に適用可能である。
10、50 巻枠、20 コイル、20a 内側コイル、20b 外側コイル、22 側板、24 繋ぎ部分、26 取付け用突片、28 締め付け手段、30 冷却流路、32 リブ、40 崩壊可能な金型、52 空洞、78 寒剤、80 寒剤タンク、82 再凝縮冷凍機、84 寒剤ガス、88 空洞、94 端コイル、98 ツール端部片、99 金型空洞、100 金型、102 強化支持管、104 充填材、110 含浸溝、120 支持構造物、122 容器、124 位置選定手段
Claims (29)
- コイルを巻き付ける崩壊可能な金型(40)を準備する工程と、
前記金型(40)内の所定の位置(88)に電線を巻き付ける工程と、
この電線を巻き付けたコイル上に機械的支持構造物(104、22)を置く工程と、
前記コイルと機械的支持構造物(104、22)に、熱硬化性樹脂を含浸する工程と、
前記熱硬化性樹脂を硬化させる工程と、
前記金型(40)を崩壊させ、かつ前記樹脂を含浸したコイルと前記機械的支持構造物(104、22)から成る前記ソレノイド型マグネット構造物を、単一体として前記金型から取り除く工程と
を含むソレノイド型マグネット構造物の製造方法。 - コイルを巻き付ける崩壊可能な金型(40)を準備する工程と、
前記金型(40)内の所定の位置(52)に機械的支持構造物(104、22)を入れる工程と、
このようにして入れられた前記機械的支持構造物(104、22)上に電線(20b)を巻き付ける工程と、
前記コイルと機械的支持構造物(104、22)に、熱硬化性樹脂を含浸する工程と、
前記熱硬化性樹脂を硬化させる工程と、
前記金型(40)を崩壊させ、かつ、前記樹脂を含浸させたコイルと前記機械的支持構造物(104、22)から成る前記ソレノイド型マグネット構造物を、単一体として前記金型から取り除く工程と
を含むソレノイド型マグネット構造物の製造方法。 - 前記金型が、該金型を解体させ、かつ前記金型を、前記ソレノイド型マグネット構造物の内部から取り除かし得る少なくとも1つの取り外せる部分(42、82)を有する崩壊可能な心棒を含む請求項1又は2記載の方法。
- 電気リードと他の給電部品を保持すべく、前記金型内に空洞(92)を設ける請求項1から3の1つに記載の方法。
- 前記所定の位置が、金型の表面中の凹みである請求項1から4の1つに記載の方法。
- 前記電線が超電導線である請求項1から5の1つに記載の方法。
- 別の金型(100)を、前記コイルおよび前記機械的支持構造物の上に置き、包囲された金型空洞(99)を形成する請求項1から6の1つに記載の方法。
- 前記含浸する工程を真空で行う請求項1から7の1つに記載の方法。
- 前記金型が、前記ソレノイド型マグネット構造物を前記金型から外すのに役立つライニングを備える請求項1から8の1つに記載の方法。
- 前記含浸工程をウェットレイアップ法にて実行し、かつ前記熱硬化性樹脂を、前記電線上の被覆として、また前記機械的支持構造物の一部として、側板(22)上の被覆か、含浸布(104)又はそれに類する材料として施す請求項1から9の1つに記載の方法。
- 概ね円筒形の外側の組のコイル(20b、118)により、同心に取り巻かれた円筒形の内側の組のコイル(20a、98)を有するソレノイド型マグネット構造物の製造方法であって、以下の工程を含む方法。
請求項1から10の1つに記載の方法により、前記内側の組のコイルを含む第1のソレノイド型マグネット構造物(111)を製造する工程、
請求項1から10の1つに記載の方法により、前記外側の組のコイルを含む第2のソレノイド型マグネット構造物(120)を製造する工程、および
別の機械的支持構造物(24、26、28)を用いて、前記第1のソレノイド型マグネット構造物(111)と前記第2のソレノイド型マグネット構造物(120)を機械的に結合する工程。 - 前記機械的支持構造物が、前記ソレノイド型構造物の軸線に平行に配置された側板(22)を含む請求項1から11の1つに記載の方法。
- 前記側板を、アルミニウム押出し品、圧延又は溶接管或いはフィラメント巻き管として製作する請求項12記載の方法。
- 一部のコイルが他のコイルと異なる直径を持ち、かつ前記コイルの直径の差異を、充填層の使用により補償する請求項1から13の1つに記載の方法。
- 前記充填層が、樹脂を含浸した布の重畳した層から成る請求項14記載の方法。
- 前記樹脂を含浸した布の重畳体を、前記コイルが前記金型内にある間に、樹脂を含浸した布か、金型内にある間に含浸する乾燥した布として追加する請求項15記載の方法。
- 前記ソレノイド型マグネット構造物の端コイルを、該端コイルの隣の充填層(114)により前記機械的支持構造物の箇所に保持し、かつ含浸樹脂により機械的支持構造物に接合し、更に端コイルの外周上の別の充填層(116)を、含浸樹脂により端コイルに接合する請求項1から16の1つに記載の方法。
- 巻いてコイルを形成する電線と、前記コイル上に置かれた機械的支持構造物(104、22)とを含み、前記機械的支持構造物(104、22)全体に、熱硬化性樹脂が一体的に含浸されたソレノイド型マグネット構造物。
- 機械的支持構造物(104、22)と、巻いて前記機械的支持構造物(104、22)上にコイル(20b)を形成する電線とを含み、前記機械的支持構造物(104、22)全体に、熱硬化性樹脂が一体的に含浸されたソレノイド型マグネット構造物。
- 前記熱硬化性樹脂の中に別の電気リードが封止された請求項18又は19記載のマグネット構造物。
- 前記電線が超電導線である請求項18から20の1つに記載のマグネット構造物。
- 円筒形の外側の組のコイル(20b、118)で同心に取り巻かれた円筒形の内側の組のコイル(20a、98)を有する請求項18から21の1つに記載のソレノイド型マグネット構造物であって、以下の部品を含むマグネット構造物。
請求項18から22の1つによる、前記内側の組のコイルを含む第1のソレノイド型マグネット構造物(111)、
請求項18から22の1つによる、前記外側の組のコイルを含む第2のソレノイド型マグネット構造物(120)、および
前記第1のソレノイド型マグネット構造物(111)と前記第2のソレノイド型マグネット構造物(120)を機械的に結合する別の機械的支持構造物(24、26、28)。 - 前記機械的支持構造物が、ソレノイド型構造物の軸線に平行に配置された側板(22)を含む請求項18から22の1つに記載のマグネット構造物。
- 前記側板が、アルミニウム押出し品、圧延又は溶接管、或いはフィラメント巻き管である請求項23記載のマグネット構造物。
- 前記側板が強化樹脂製であり、前記熱硬化性樹脂を含浸した充填材料から成る請求項23又は24記載のマグネット構造物。
- 前記機械的支持構造物が、強化樹脂管から成る請求項18から22の1つに記載のマグネット構造物。
- 一部のコイルが、他のコイルと異なる直径を持ち、かつ前記コイルの直径の差が、充填層の使用で補償された請求項18から26の1つに記載のマグネット構造物。
- 前記充填層が、樹脂を含浸した布の重畳する層から成る請求項27記載のマグネット構造物。
- ソレノイド型マグネット構造物の端コイルが、前記端コイルの隣の充填層(114)により、前記機械的支持構造物の所に保持され、かつ前記含浸樹脂により前記機械的支持構造物に接合され、更に、前記端コイルの外周上の別の充填層(116)が、前記含浸樹脂により前記端コイルに接合された請求項18から28の1つに記載のマグネット構造物。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0607463A GB2437114B (en) | 2006-04-13 | 2006-04-13 | Method Of Manufacturing A Solenoidal Magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007288193A true JP2007288193A (ja) | 2007-11-01 |
Family
ID=36571792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007104583A Pending JP2007288193A (ja) | 2006-04-13 | 2007-04-12 | ソレノイド型マグネットの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US7849587B2 (ja) |
JP (1) | JP2007288193A (ja) |
CN (1) | CN101075497B (ja) |
GB (2) | GB2437114B (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010272633A (ja) * | 2009-05-20 | 2010-12-02 | Mitsubishi Electric Corp | 超電導マグネット |
JP2011023724A (ja) * | 2009-07-16 | 2011-02-03 | Siemens Plc | ソレノイド磁石コイルの製造方法およびソレノイド磁石コイル |
JP2012175110A (ja) * | 2011-02-23 | 2012-09-10 | Siemens Plc | 支持構造体に結合されたコイルを有する超電導電磁石 |
JP2013031658A (ja) * | 2011-07-29 | 2013-02-14 | General Electric Co <Ge> | 超伝導マグネットシステム |
JP2013542748A (ja) * | 2010-05-26 | 2013-11-28 | シーメンス ピーエルシー | 幾つかの軸方向に位置合わせされるコイルから成るソレノイドマグネット |
JP2014086457A (ja) * | 2012-10-19 | 2014-05-12 | Sumitomo Heavy Ind Ltd | 超電導磁石 |
JP2014512682A (ja) * | 2011-04-20 | 2014-05-22 | シーメンス ピーエルシー | 熱輻射シールドを有する超電導マグネット |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JO2785B1 (en) * | 2003-05-27 | 2014-03-15 | شركة جانسين فارماسوتيكا ان. في | Quinazoline derivatives |
GB2451515B (en) * | 2007-08-03 | 2009-07-08 | Siemens Magnet Technology Ltd | A method of producing a former for winding a magnet coil and a method of producing a magnet coil |
GB2467369B (en) * | 2009-02-03 | 2011-01-19 | Siemens Magnet Technology Ltd | Method and tools for fixing a cylindrical magnet former within a housing, and a cylindrical magnet former fixed within a housing |
US8726489B2 (en) * | 2009-06-11 | 2014-05-20 | Hitachi Medical Corporation | Adjustment method of a magnetic resonance imaging apparatus |
US8314615B2 (en) | 2009-12-22 | 2012-11-20 | General Electric Company | Apparatus and method to improve magnet stability in an MRI system |
US8415952B2 (en) | 2009-12-23 | 2013-04-09 | General Electric Company | Superconducting magnet coil interface and method providing coil stability |
CN102148083B (zh) | 2010-02-09 | 2013-04-03 | 通用电气公司 | 超导磁体 |
GB2480637B (en) * | 2010-05-26 | 2013-02-20 | Siemens Plc | Solenoidal magnets having supported outer coils |
GB2484066B (en) | 2010-09-22 | 2013-01-09 | Siemens Plc | Adhesively bonded cylindrical magnets comprising annular coils, and method of manufacture thereof |
GB2490325B (en) * | 2011-04-21 | 2013-04-10 | Siemens Plc | Combined MRI and radiation therapy equipment |
US9535143B2 (en) | 2011-06-27 | 2017-01-03 | General Electric Company | Coil support for a magnetic resonance imaging (MRI) magnet and method of support |
CN102866370B (zh) * | 2011-07-06 | 2016-05-11 | 西门子(深圳)磁共振有限公司 | 超导磁体装置及磁共振成像系统 |
EP2755484A1 (en) * | 2011-09-16 | 2014-07-23 | Bayer Intellectual Property GmbH | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013053498A2 (en) | 2011-10-14 | 2013-04-18 | Fluid Automation Systems S.A. | Solenoid valve with a metallic tube bobbin |
EP2586586A1 (en) * | 2011-10-24 | 2013-05-01 | GE Energy Power Conversion Technology Ltd | Coil support members |
GB2503190A (en) * | 2012-01-05 | 2013-12-25 | Siemens Plc | Structurally self-supporting superconducting magnet with support for shield coils |
GB2498999A (en) * | 2012-02-02 | 2013-08-07 | Siemens Plc | Mechanical superconducting switch |
USRE45942E1 (en) | 2012-02-21 | 2016-03-22 | Siemens Plc | Superconducting electromagnets comprising coils bonded to a support structure |
GB2507801B (en) * | 2012-11-12 | 2015-12-30 | Siemens Plc | Cylindrical Superconducting Magnet |
GB2510410B (en) * | 2013-02-04 | 2016-03-09 | Siemens Plc | Quench pressure reduction for superconducting magnet |
RU2687843C2 (ru) * | 2014-05-21 | 2019-05-16 | Конинклейке Филипс Н.В. | Способ и устройство для поддерживания сверхпроводящей катушки и аппарат, включающий в себя устройство для поддерживания сверхпроводящей катушки |
GB2530030A (en) * | 2014-09-09 | 2016-03-16 | Siemens Healthcare Ltd | Cooling a superconducting magnet device |
GB2532314B (en) * | 2014-10-27 | 2018-05-02 | Siemens Healthcare Ltd | Support of superconducting coils for MRI systems |
GB2540729B (en) * | 2015-05-01 | 2018-03-21 | Oxford Instruments Nanotechnology Tools Ltd | Superconducting magnet |
CN106298148B (zh) * | 2015-05-11 | 2019-04-23 | 通用电气公司 | 超导磁体系统及冷却件 |
GB2538788A (en) * | 2015-05-29 | 2016-11-30 | Siemens Healthcare Ltd | Cryogen storage for superconducting magnets |
CN106653280B (zh) * | 2015-10-30 | 2019-10-08 | 上海联影医疗科技有限公司 | 一种用于磁共振成像的超导磁体组件及制造方法 |
CN105788801B (zh) * | 2015-12-28 | 2017-11-28 | 沈阳东软医疗系统有限公司 | 一种用于mri梯度放大器性能测试的线圈组件 |
CN106653282B (zh) * | 2016-11-03 | 2018-07-06 | 东莞中子科学中心 | 一种线圈可调式聚焦螺线管磁铁 |
GB2561164B (en) * | 2017-03-30 | 2020-04-29 | Siemens Healthcare Ltd | Connection of coils to support structures in superconducting magnets |
US11209509B2 (en) * | 2018-05-16 | 2021-12-28 | Viewray Technologies, Inc. | Resistive electromagnet systems and methods |
CN109894550B (zh) * | 2019-03-12 | 2021-01-26 | 佛山市迪华科技有限公司 | 螺旋形网篮定型模具以及螺旋形网篮成型方法 |
US11307276B2 (en) * | 2019-10-09 | 2022-04-19 | General Electric Company | Use of a spacer between layered coil sections in a superconducting magnet structure |
CN115547660A (zh) * | 2021-06-29 | 2022-12-30 | 西门子(深圳)磁共振有限公司 | 磁共振成像系统的超导磁体及其加工工具和加工方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4385248A (en) | 1980-12-17 | 1983-05-24 | General Electric Company | Support method and structure for epoxy impregnated saddle-shaped superconducting windings |
FR2541551A1 (fr) * | 1983-02-21 | 1984-08-24 | Drusch & Cie | Dispositif de maintien et de fixation de bobines destinees a la realisation d'un champ magnetique constant et homogene |
US4660013A (en) | 1985-09-23 | 1987-04-21 | General Electric Company | Compact whole body resistive magnetic resonance imaging magnet |
US4924198A (en) * | 1988-07-05 | 1990-05-08 | General Electric Company | Superconductive magnetic resonance magnet without cryogens |
US4935714A (en) * | 1988-07-05 | 1990-06-19 | General Electric Company | Low thermal conductance support for a radiation shield in a MR magnet |
JP2752156B2 (ja) * | 1989-05-30 | 1998-05-18 | 株式会社東芝 | Mri装置用コイル部品の製造方法 |
US5280247A (en) | 1992-03-27 | 1994-01-18 | Picker International, Inc. | Filamentary cold shield for superconducting magnets |
US5023584A (en) * | 1989-08-17 | 1991-06-11 | General Electric Company | Magnet cartridge for magnetic resonance magnet |
US5045826A (en) | 1990-04-05 | 1991-09-03 | General Electric Company | Actively shielded magnetic resonance magnet without cryogens |
US5235283A (en) * | 1991-02-07 | 1993-08-10 | Siemens Aktiengesellschaft | Gradient coil system for a nuclear magnetic resonance tomography apparatus which reduces acoustic noise |
JPH04332530A (ja) * | 1991-05-09 | 1992-11-19 | Toshiba Corp | Mri用傾斜磁場発生装置 |
US5278502A (en) * | 1991-09-13 | 1994-01-11 | General Electric Company | Refrigerated superconducting MR magnet with integrated cryogenic gradient coils |
JP3117255B2 (ja) * | 1991-12-09 | 2000-12-11 | 株式会社東芝 | Mri装置用超電導磁石 |
US5489848A (en) * | 1992-09-08 | 1996-02-06 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus |
US5668516A (en) * | 1995-12-29 | 1997-09-16 | General Electric Company | Simplified active shield superconducting magnet assembly for magnetic resonance imaging |
US5917393A (en) * | 1997-05-08 | 1999-06-29 | Northrop Grumman Corporation | Superconducting coil apparatus and method of making |
US6011394A (en) | 1997-08-07 | 2000-01-04 | Picker International, Inc. | Self-shielded gradient coil assembly and method of manufacturing the same |
DE19856802A1 (de) * | 1998-12-09 | 2000-08-17 | Siemens Ag | Gradientenspule |
CN1268756A (zh) | 1999-03-24 | 2000-10-04 | 浙江亚克科技有限公司 | 一种高温超导线圈及其磁共振仪 |
US6377047B1 (en) | 2000-06-08 | 2002-04-23 | Varian, Inc. | Superconducting birdcage coils |
DE10101071C2 (de) * | 2001-01-11 | 2002-11-14 | Siemens Ag | Magnetresonanzgerät mit einem Gradientenspulensystem mit Versteifungselementen |
US20060138646A1 (en) * | 2001-02-15 | 2006-06-29 | Thomas Aisenbrey | Low cost electromechanical devices manufactured from conductively doped resin-based materials |
AU2002353408A1 (en) * | 2001-12-21 | 2003-07-09 | Koninklijke Philips Electronics N.V. | Cooling of a mri system |
GB2408804B (en) * | 2003-12-05 | 2006-11-01 | Ge Med Sys Global Tech Co Llc | Near net shape coil support structure |
US7497086B2 (en) | 2005-03-23 | 2009-03-03 | Siemens Magnet Technology Ltd. | Method and apparatus for maintaining apparatus at cryogenic temperatures over an extended period without active refrigeration |
GB0505903D0 (en) | 2005-03-23 | 2005-04-27 | Siemens Magnet Technology Ltd | A cryogen tank for cooling equipment |
GB2426630B (en) * | 2005-05-26 | 2007-11-21 | Siemens Magnet Technology Ltd | Electromagnet |
US7053740B1 (en) | 2005-07-15 | 2006-05-30 | General Electric Company | Low field loss cold mass structure for superconducting magnets |
US7626477B2 (en) * | 2005-11-28 | 2009-12-01 | General Electric Company | Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet |
US7522027B2 (en) * | 2005-12-29 | 2009-04-21 | Siemens Magnet Technology Ltd. | Magnet assembly and a method for constructing a magnet assembly |
-
2006
- 2006-04-13 GB GB0607463A patent/GB2437114B/en not_active Expired - Fee Related
- 2006-04-13 GB GB0807899A patent/GB2446974B/en not_active Expired - Fee Related
-
2007
- 2007-04-12 CN CN2007100971994A patent/CN101075497B/zh not_active Expired - Fee Related
- 2007-04-12 JP JP2007104583A patent/JP2007288193A/ja active Pending
- 2007-04-13 US US11/734,915 patent/US7849587B2/en not_active Expired - Fee Related
-
2009
- 2009-01-22 US US12/357,975 patent/US8013697B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010272633A (ja) * | 2009-05-20 | 2010-12-02 | Mitsubishi Electric Corp | 超電導マグネット |
US8305173B2 (en) | 2009-05-20 | 2012-11-06 | Mitsubishi Electric Corporation | Superconductive magnet |
JP2011023724A (ja) * | 2009-07-16 | 2011-02-03 | Siemens Plc | ソレノイド磁石コイルの製造方法およびソレノイド磁石コイル |
US8943676B2 (en) | 2009-07-16 | 2015-02-03 | Siemens Plc. | Method of manufacturing a solenoidal magnet structure |
JP2013542748A (ja) * | 2010-05-26 | 2013-11-28 | シーメンス ピーエルシー | 幾つかの軸方向に位置合わせされるコイルから成るソレノイドマグネット |
KR101919952B1 (ko) * | 2010-05-26 | 2019-02-08 | 지멘스 헬스케어 리미티드 | 다수의 축방향으로 정렬된 코일로 구성된 솔레노이드 자석 |
JP2012175110A (ja) * | 2011-02-23 | 2012-09-10 | Siemens Plc | 支持構造体に結合されたコイルを有する超電導電磁石 |
JP2014512682A (ja) * | 2011-04-20 | 2014-05-22 | シーメンス ピーエルシー | 熱輻射シールドを有する超電導マグネット |
JP2013031658A (ja) * | 2011-07-29 | 2013-02-14 | General Electric Co <Ge> | 超伝導マグネットシステム |
JP2014086457A (ja) * | 2012-10-19 | 2014-05-12 | Sumitomo Heavy Ind Ltd | 超電導磁石 |
Also Published As
Publication number | Publication date |
---|---|
CN101075497A (zh) | 2007-11-21 |
US20070247263A1 (en) | 2007-10-25 |
GB2446974B (en) | 2009-01-14 |
US20090128270A1 (en) | 2009-05-21 |
GB0807899D0 (en) | 2008-06-04 |
US7849587B2 (en) | 2010-12-14 |
GB2446974A (en) | 2008-08-27 |
GB0607463D0 (en) | 2006-05-24 |
US8013697B2 (en) | 2011-09-06 |
CN101075497B (zh) | 2012-07-04 |
GB2437114B (en) | 2008-12-17 |
GB2437114A (en) | 2007-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007288193A (ja) | ソレノイド型マグネットの製造方法 | |
US8943676B2 (en) | Method of manufacturing a solenoidal magnet structure | |
US7616083B2 (en) | Resin-impregnated superconducting magnet coil comprising a cooling layer | |
KR101812030B1 (ko) | 열 방사 실드들을 갖는 초전도 자석들 | |
CN102314987B (zh) | 用于磁共振成像系统的螺线管电磁装置 | |
US9536659B2 (en) | Solenoidal magnets composed of multiple axially aligned coils | |
US10535463B2 (en) | Method of constructing a cylindrical superconducting magnet coil assembly | |
GB2484079A (en) | Cylindrical stiffener for cryoshield | |
GB2441795A (en) | Tubular support system for a superconducting magnet | |
KR102581940B1 (ko) | Mri 시스템들을 위한 초전도성 코일들의 지지 | |
JP5106072B2 (ja) | 電磁石の巻型の中央に成形端コイルを配置して保持する方法 | |
US9711267B2 (en) | Support structure for cylindrical superconducting coil structure | |
GB2519811A (en) | Superconducting magnet assembly | |
JP2016049159A (ja) | 超電導磁石および磁気共鳴イメージング装置 | |
JP2008147665A (ja) | 現場で巻き付けられる成形磁石端コイルとその製造方法 | |
JP3104268B2 (ja) | 超電導磁石応用装置 | |
JP2017046987A (ja) | 超電導磁石装置、それを用いた磁気共鳴イメージング装置 | |
US6883226B2 (en) | Near net shape coil support structure | |
EP4010719A1 (en) | Support structure for superconducting coil |