JP2007287532A - Dye-sensitized solar cell and its manufacturing method - Google Patents

Dye-sensitized solar cell and its manufacturing method Download PDF

Info

Publication number
JP2007287532A
JP2007287532A JP2006115110A JP2006115110A JP2007287532A JP 2007287532 A JP2007287532 A JP 2007287532A JP 2006115110 A JP2006115110 A JP 2006115110A JP 2006115110 A JP2006115110 A JP 2006115110A JP 2007287532 A JP2007287532 A JP 2007287532A
Authority
JP
Japan
Prior art keywords
dye
solar cell
corrosion
sensitized solar
resistant metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006115110A
Other languages
Japanese (ja)
Inventor
Kozo Miyoshi
三好  幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2006115110A priority Critical patent/JP2007287532A/en
Publication of JP2007287532A publication Critical patent/JP2007287532A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell which can improve the transmission factor of a facing electrode substrate and prevent deterioration in the photoelectric conversion efficiency of the dye-sensitized solar cell, while assuring low electric resistance of the facing electrode substrate with low cost, and to provide a manufacturing method for the same. <P>SOLUTION: A dye-sensitized solar cell 1 has an electrolyte 4 sealed between a photoelectrode substrate 2 with a porous semiconductor electrode film 7 which absorbs and supports a sensitizing dye and a facing electrode substrate 3. The facing electrode substrate 3 includes a facing substrate member 8 made of a transparent resin, many corrosion-resistant metal wire material pieces 11, and a conductive catalyst material film 12 for cladding each of those corrosion-resistant metal wire material pieces 11. Many corrosion-resistant metal wire material pieces 11 cladded with the conductive catalyst material film 12 are arranged so that they are separated from each other at a fixed interval and are extended in parallel and along the facing substrate member 8, wherein a part of each corrosion-resistant metal wire material piece 11 is embedded into the facing substrate member 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、色素増感型太陽電池およびその製造方法に関し、特に、増感色素を吸着または担持した多孔性半導体電極膜を備えた光電極基板と対向電極基板との間に電解質が封入された色素増感型太陽電池およびその製造方法に関する。   The present invention relates to a dye-sensitized solar cell and a method for producing the same, and in particular, an electrolyte is sealed between a photoelectrode substrate having a porous semiconductor electrode film that adsorbs or carries a sensitizing dye and a counter electrode substrate. The present invention relates to a dye-sensitized solar cell and a method for manufacturing the same.

近年、環境問題の観点から、光エネルギーを電気エネルギーに変換する太陽電池が注目を集めており、特に、製造コストを低減することができることから、色素増感型太陽電池が注目を集めている。従来の色素増感型太陽電池は、光電変換効率が低いために実用性に乏しかったが、最近、半導体電極を多孔質化して表面積を大きくすることにより、多量の色素を吸着させて、飛躍的に光電変換効率を向上させる技術が開発されている(例えば、特許文献1参照)。   In recent years, from the viewpoint of environmental problems, solar cells that convert light energy into electrical energy have attracted attention. In particular, dye-sensitized solar cells have attracted attention because they can reduce manufacturing costs. Conventional dye-sensitized solar cells were poor in practicality due to low photoelectric conversion efficiency. Recently, a large amount of dye is adsorbed by making the semiconductor electrode porous to increase the surface area. In addition, a technique for improving photoelectric conversion efficiency has been developed (for example, see Patent Document 1).

このような技術を用いた色素増感型太陽電池として、図6に模式的に示すように、光電極基板102と、対向電極基板103と、これらの間に封入された電解液104とから構成された色素増感型太陽電池101が知られている。   As schematically shown in FIG. 6, a dye-sensitized solar cell using such a technique includes a photoelectrode substrate 102, a counter electrode substrate 103, and an electrolytic solution 104 enclosed therebetween. A dye-sensitized solar cell 101 is known.

この色素増感型太陽電池101の光電極基板102は、基板部材105と、この基板部材105の表面に形成された透明電極膜106と、この透明電極膜106上に形成された酸化チタンなどからなる多孔性半導体電極膜107とから構成され、この多孔性半導体電極膜107に色素が吸着している。なお、多孔性半導体電極膜107は、透明電極膜106上に半導体粒子を含有する懸濁液を塗布し、乾燥した後に焼成することによって形成されている。   The photoelectrode substrate 102 of the dye-sensitized solar cell 101 includes a substrate member 105, a transparent electrode film 106 formed on the surface of the substrate member 105, and titanium oxide formed on the transparent electrode film 106. The porous semiconductor electrode film 107 is formed, and the dye is adsorbed on the porous semiconductor electrode film 107. The porous semiconductor electrode film 107 is formed by applying a suspension containing semiconductor particles on the transparent electrode film 106, drying it, and baking it.

一方、色素増感型太陽電池101の対向電極基板103は、対向基板部材108と、この対向基板部材108上に形成された導電性材料膜110と、この導電性材料膜110上にコーティングされた白金などの触媒からなる導電性触媒材料膜112とから構成されている(例えば、特許文献2参照)。   On the other hand, the counter electrode substrate 103 of the dye-sensitized solar cell 101 is coated on the counter substrate member 108, the conductive material film 110 formed on the counter substrate member 108, and the conductive material film 110. It is comprised from the electroconductive catalyst material film | membrane 112 which consists of catalysts, such as platinum (for example, refer patent document 2).

この導電性触媒材料膜112と多孔性半導体電極膜107が所定の間隔で離間して対向するように基板部材105と対向基板部材108が配置され、導電性触媒材料膜112と多孔性半導体電極膜107の間に電解液104が封入されて、色素増感型太陽電池101が構成されている。   The substrate member 105 and the counter substrate member 108 are disposed so that the conductive catalyst material film 112 and the porous semiconductor electrode film 107 are opposed to each other with a predetermined interval therebetween. The conductive catalyst material film 112 and the porous semiconductor electrode film An electrolyte solution 104 is enclosed between 107 to form a dye-sensitized solar cell 101.

この色素増感型太陽電池101では、光電極基板102側から光が入射すると、多孔性半導体電極膜107の表面に吸着されている増感色素が可視領域の光を吸収して励起され、この増感色素の励起によって発生する電子が多孔性半導体電極膜107内を移動して透明電極膜106まで到達する。透明電極膜106まで移動した電子は、透明電極膜106と導電性材料膜110を導通する(図示しない)外部回路を経由して導電性材料膜110に移動する。導電性材料膜110まで移動した電子は、導電性触媒材料膜112を介して電解液104に移動し、電解液104中のイオンによって対向電極基板103側から光電極基板102側に運ばれて、多孔性半導体電極膜107の増感色素に戻る。このような作用を繰り返して電気エネルギーが取り出される。   In this dye-sensitized solar cell 101, when light is incident from the photoelectrode substrate 102 side, the sensitizing dye adsorbed on the surface of the porous semiconductor electrode film 107 is excited by absorbing light in the visible region. Electrons generated by excitation of the sensitizing dye move through the porous semiconductor electrode film 107 and reach the transparent electrode film 106. The electrons that have moved to the transparent electrode film 106 move to the conductive material film 110 via an external circuit that conducts the transparent electrode film 106 and the conductive material film 110 (not shown). The electrons that have moved to the conductive material film 110 move to the electrolyte solution 104 through the conductive catalyst material film 112, and are carried from the counter electrode substrate 103 side to the photoelectrode substrate 102 side by ions in the electrolyte solution 104. Returning to the sensitizing dye of the porous semiconductor electrode film 107. Electric energy is extracted by repeating such an action.

特表平5−504023号公報(第1頁、図1)JP-T-5-504023 (first page, FIG. 1) 特開2002−298936号公報(段落番号0018)JP 2002-298936 A (paragraph number 0018)

このような従来の色素増感型太陽電池101では、対向電極基板103の導電性触媒材料膜112の高価な白金などの触媒の使用量を少なくしてコストを削減するために、対向基板部材108上に耐食性の導電性材料(例えば、導電性酸化物として知られている酸化錫や酸化インジウム錫(以下、「ITO」という)などの金属酸化物)からなる導電性材料膜110を形成し、この導電性材料膜110上に白金などの触媒からなる導電性触媒材料膜112を薄くコーティングしている。   In such a conventional dye-sensitized solar cell 101, the counter substrate member 108 is used to reduce the cost by reducing the amount of expensive catalyst such as platinum used in the conductive catalyst material film 112 of the counter electrode substrate 103. A conductive material film 110 made of a corrosion-resistant conductive material (for example, a metal oxide such as tin oxide or indium tin oxide (hereinafter referred to as “ITO”) known as a conductive oxide) is formed thereon, A thin conductive catalyst material film 112 made of a catalyst such as platinum is coated on the conductive material film 110.

また、光電極基板102側だけでなく対向電極基板103側からも光を入射させることができるようにし、全体として略透明の所謂シースルータイプの太陽電池を作製することが望まれている。このような所謂シースルータイプの太陽電池を作製するために、対向電極基板103の対向基板部材108を透明な材料により形成するとともに導電性材料膜110を透明なITOにより形成しても、導電性材料膜110上にコーティングされる導電性触媒材料膜112が光をほとんど透過しない白金などの金属からなるので、導電性触媒材料膜112を薄くするなどの方法によって光を透過させる必要がある。   In addition, it is desired that light can be incident not only from the photoelectrode substrate 102 side but also from the counter electrode substrate 103 side, so that a so-called see-through type solar cell that is substantially transparent as a whole is manufactured. Even if the counter substrate member 108 of the counter electrode substrate 103 is formed of a transparent material and the conductive material film 110 is formed of transparent ITO in order to manufacture such a so-called see-through solar cell, the conductive material Since the conductive catalyst material film 112 coated on the film 110 is made of a metal such as platinum that hardly transmits light, it is necessary to transmit light by a method such as thinning the conductive catalyst material film 112.

しかし、導電性触媒材料膜112を薄くし過ぎると、対向電極基板103の触媒能力が低下して、光電変換効率が低下するという問題がある。すなわち、対向電極基板103の透過率を向上させるために導電性触媒材料膜112を薄くするほど、光電変換効率が低下するという問題がある。   However, if the conductive catalyst material film 112 is made too thin, there is a problem that the catalytic ability of the counter electrode substrate 103 is lowered and the photoelectric conversion efficiency is lowered. That is, there is a problem that the photoelectric conversion efficiency decreases as the conductive catalyst material film 112 is made thinner in order to improve the transmittance of the counter electrode substrate 103.

また、対向電極基板103にITOなどからなる透明な導電性材料膜110を使用しても、対向電極基板103が高価であり、電気抵抗が高いという問題もある。   Even when a transparent conductive material film 110 made of ITO or the like is used for the counter electrode substrate 103, there is a problem that the counter electrode substrate 103 is expensive and has high electric resistance.

さらに、透明電極膜106と導電性材料膜110を導通する(図示しない)外部回路への導電性材料膜110の接続が煩雑である。   Furthermore, the connection of the conductive material film 110 to an external circuit (not shown) that conducts the transparent electrode film 106 and the conductive material film 110 is complicated.

したがって、本発明は、このような従来の問題点に鑑み、対向電極基板の透過率を向上させることができ且つ色素増感型太陽電池の光電変換効率の低下を防止することができるとともに、対向電極基板の電気抵抗が低く、安価に且つ容易に製造することができる色素増感型太陽電池およびその製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention can improve the transmittance of the counter electrode substrate and prevent a decrease in photoelectric conversion efficiency of the dye-sensitized solar cell. It is an object of the present invention to provide a dye-sensitized solar cell having a low electric resistance of an electrode substrate and capable of being easily and inexpensively manufactured and a method for manufacturing the same.

本発明者は、上記課題を解決するために鋭意研究した結果、増感色素を吸着または担持した多孔性半導体電極膜を備えた光電極基板と対向電極基板との間に電解質が封入された色素増感型太陽電池の対向電極基板において、導電性触媒材料膜で被覆された耐食性金属線材を対向基板部材に沿って延びるように配置することにより、対向電極基板の透過率を向上させることができ且つ色素増感型太陽電池の光電変換効率の低下を防止することができるとともに、対向電極基板の電気抵抗が低い色素増感型太陽電池を安価に且つ容易に製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventor has found that a dye in which an electrolyte is enclosed between a photoelectrode substrate having a porous semiconductor electrode film that adsorbs or carries a sensitizing dye and a counter electrode substrate In the counter electrode substrate of the sensitized solar cell, the transmittance of the counter electrode substrate can be improved by arranging the corrosion-resistant metal wire covered with the conductive catalyst material film so as to extend along the counter substrate member. In addition, the present inventors have found that a dye-sensitized solar cell having a low electrical resistance of the counter electrode substrate can be produced inexpensively and easily while preventing a decrease in photoelectric conversion efficiency of the dye-sensitized solar cell. The invention has been completed.

すなわち、本発明による色素増感型太陽電池は、増感色素を吸着または担持した多孔性半導体電極膜を備えた光電極基板と対向電極基板との間に電解質が封入された色素増感型太陽電池において、対向電極基板が、対向基板部材と耐食性金属線材と導電性触媒材料膜とを備え、耐食性金属線材が、導電性触媒材料膜で被覆されて対向基板部材に沿って延びるように配置されていることを特徴とする。   That is, the dye-sensitized solar cell according to the present invention is a dye-sensitized solar cell in which an electrolyte is sealed between a photoelectrode substrate having a porous semiconductor electrode film that adsorbs or carries a sensitizing dye and a counter electrode substrate. In the battery, the counter electrode substrate includes a counter substrate member, a corrosion-resistant metal wire, and a conductive catalyst material film, and the corrosion-resistant metal wire is covered with the conductive catalyst material film and arranged along the counter substrate member. It is characterized by.

この色素増感型太陽電池において、耐食性金属線材の一部が、対向基板部材に埋め込まれているのが好ましい。また、耐食性金属線材が複数の耐食性金属線材片からなり、これらの複数の耐食性金属線材片が、互いに所定の間隔で離間して配置されているのが好ましい。この場合、複数の耐食性金属線材片が互いに略平行に配置されているのが好ましい。また、耐食性金属線材がチタンからなる線材であるのが好ましく、導電性触媒材料膜が白金からなる膜であるのが好ましい。   In this dye-sensitized solar cell, it is preferable that a part of the corrosion-resistant metal wire is embedded in the counter substrate member. Moreover, it is preferable that a corrosion-resistant metal wire consists of a some corrosion-resistant metal wire piece, and these some corrosion-resistant metal wire pieces are arrange | positioned mutually spaced apart by predetermined spacing. In this case, it is preferable that the plurality of corrosion-resistant metal wire pieces are arranged substantially parallel to each other. The corrosion-resistant metal wire is preferably a wire made of titanium, and the conductive catalyst material film is preferably a film made of platinum.

また、本発明による色素増感型太陽電池の製造方法は、増感色素を吸着または担持した多孔性半導体電極膜を備えた光電極基板を用意する工程と、耐食性金属線材を導電性触媒材料膜で被覆し、この導電性触媒材料膜で被覆された耐食性金属線材を対向基板部材に沿って延びるように配置して、対向電極基板を作製する工程と、光電極基板と対向電極基板を対向するように配置して、これらの間に電解質を封入する工程とを備えたことを特徴とする。   Further, the method for producing a dye-sensitized solar cell according to the present invention comprises a step of preparing a photoelectrode substrate provided with a porous semiconductor electrode film that adsorbs or carries a sensitizing dye, and a corrosion-resistant metal wire as a conductive catalyst material film. And a step of producing a counter electrode substrate by placing the corrosion-resistant metal wire coated with the conductive catalyst material film so as to extend along the counter substrate member, and the photoelectrode substrate and the counter electrode substrate are opposed to each other. And a step of encapsulating an electrolyte between them.

この色素増感型太陽電池の製造方法の対向電極基板を作製する工程において、導電性触媒材料膜で被覆された耐食性金属線材を対向基板部材上に配置した後に、加熱しながら加圧することにより、導電性触媒材料膜で被覆された耐食性金属線材の一部を対向基板部材に埋め込むのが好ましい。また、耐食性金属線材がチタンからなる線材であるのが好ましく、導電性触媒材料膜が白金からなる膜であるのが好ましい。   In the step of producing the counter electrode substrate of the method for producing the dye-sensitized solar cell, after placing the corrosion-resistant metal wire coated with the conductive catalyst material film on the counter substrate member, pressurizing while heating, It is preferable that a part of the corrosion-resistant metal wire covered with the conductive catalyst material film is embedded in the counter substrate member. The corrosion-resistant metal wire is preferably a wire made of titanium, and the conductive catalyst material film is preferably a film made of platinum.

本発明によれば、対向電極基板の透過率を向上させることができ且つ色素増感型太陽電池の光電変換効率の低下を防止することができるとともに、対向電極基板の電気抵抗が低い色素増感型太陽電池を安価に且つ容易に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the transmittance | permeability of a counter electrode substrate can be improved, the fall of the photoelectric conversion efficiency of a dye-sensitized solar cell can be prevented, and the dye sensitization with the low electrical resistance of a counter electrode substrate is possible. Type solar cell can be manufactured inexpensively and easily.

以下、添付図面を参照して、本発明による色素増感型太陽電池およびその製造方法の実施の形態について詳細に説明する。   Hereinafter, embodiments of a dye-sensitized solar cell and a method for manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明による色素増感型太陽電池の実施の形態を模式的に示している。図1に示すように、本実施の形態の色素増感型太陽電池1は、光電極基板2と、対向電極基板3と、これらの間に封入された電解質4とから構成されている。   FIG. 1 schematically shows an embodiment of a dye-sensitized solar cell according to the present invention. As shown in FIG. 1, the dye-sensitized solar cell 1 of the present embodiment includes a photoelectrode substrate 2, a counter electrode substrate 3, and an electrolyte 4 enclosed between them.

光電極基板2は、透明(光透過性)の基板部材5と、この基板部材5の表面に形成された透明電極膜6と、この透明電極膜6上に形成され、増感色素を吸着・担持する多孔性半導体電極膜7とから構成されている。なお、基板部材5は、アクリル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタリン(PEN)、ポリオレフィン、ポリカーボネート(PC)などの透明樹脂材料、あるいは透明なガラス材料により形成されている。この基板部材5を透明樹脂材料により形成する場合には、射出成形、熱圧縮成形、押出し成形などによって形成することができる。   The photoelectrode substrate 2 is formed on a transparent (light transmissive) substrate member 5, a transparent electrode film 6 formed on the surface of the substrate member 5, and the transparent electrode film 6, and absorbs a sensitizing dye. The porous semiconductor electrode film 7 is supported. The substrate member 5 is made of a transparent resin material such as acrylic, polyethylene terephthalate (PET), polyethylene naphthalene (PEN), polyolefin, polycarbonate (PC), or a transparent glass material. When the substrate member 5 is formed of a transparent resin material, it can be formed by injection molding, heat compression molding, extrusion molding, or the like.

一方、対向電極基板3は、透明の対向基板部材8と、複数の耐食性金属線材片11と、導電性触媒材料膜12とから構成されている。複数の耐食性金属線材片11の各々は、導電性触媒材料膜12で被覆され、所定の間隔(略一定の間隔)で互いに離間して略平行に配置され、半分程度または半分以上の部分が対向基板部材8に埋め込まれている。   On the other hand, the counter electrode substrate 3 includes a transparent counter substrate member 8, a plurality of corrosion-resistant metal wire pieces 11, and a conductive catalyst material film 12. Each of the plurality of corrosion-resistant metal wire pieces 11 is covered with a conductive catalyst material film 12 and arranged substantially parallel to each other at a predetermined interval (substantially constant interval), with approximately half or more than half facing each other. Embedded in the substrate member 8.

対向基板部材8は、アクリル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタリン(PEN)、ポリオレフィン、ポリカーボネート(PC)などの透明樹脂材料により形成され、射出成形、熱圧縮成形、押出し成形などによって形成することができる。   The counter substrate member 8 is formed of a transparent resin material such as acrylic, polyethylene terephthalate (PET), polyethylene naphthalene (PEN), polyolefin, polycarbonate (PC), and can be formed by injection molding, thermal compression molding, extrusion molding, or the like. it can.

耐食性金属線材片11は、チタン、タンタル、チタン合金またはタンタル合金のような耐食性金属材料からなり、チタンからなるのが好ましい。また、導電性触媒材料膜12は、白金、カーボンまたはパラジウムのような導電性触媒材料からなり、白金からなるのが好ましい。   The corrosion-resistant metal wire rod 11 is made of a corrosion-resistant metal material such as titanium, tantalum, titanium alloy, or tantalum alloy, and is preferably made of titanium. The conductive catalyst material film 12 is made of a conductive catalyst material such as platinum, carbon or palladium, and is preferably made of platinum.

図2および図3に示すように、本実施の形態の色素増感型太陽電池の対向電極基板3では、直径20〜200μm程度の略円形の断面の複数の耐食性金属線材片11の各々が、厚さ5〜30nm、好ましくは10〜20nmの導電性触媒材料膜12で被覆されている。これらの耐食性金属線材片11は、所定の間隔(50〜100μm、好ましくは100〜300μm)で互いに離間して略平行に且つ対向基板部材8に沿って延びるように配置されており、それぞれ半分程度または半分以上の部分が対向基板部材8に埋め込まれている。このように各々の耐食性金属線材片11の半分程度の部分、特に半分以上の部分を対向基板部材8に埋め込むと、光電極基板2と対向電極基板3の間を隙間なく電解質4で満たすことができる。すなわち、各々の耐食性金属線材片11が対向基板部材8に埋め込まれずに、単に対向基板部材8上に載置されているだけでは、各々の耐食性金属線材片11の対向基板部材8側の部分と対向基板部材8との間隙に電解質4が回り込み難くなるが、各々の耐食性金属線材片11の半分程度または半分以上の部分を対向基板部材8に埋め込むと、そのような間隙が形成されないので、光電極基板2と対向電極基板3の間を隙間なく電解質4で満たすことができる。なお、導電性触媒材料膜12で被覆された耐食性金属線材片11の間隔(離間距離)は、光電変換効率を考慮して適宜設定することができ、耐食性金属線材片11の直径と導電性触媒材料膜12の厚さは、必要な透過率から適宜設定することができる。なお、耐食性金属線材片11の断面形状は、円形に限らず、多角形でもよい。   As shown in FIGS. 2 and 3, in the counter electrode substrate 3 of the dye-sensitized solar cell of the present embodiment, each of the plurality of corrosion-resistant metal wire pieces 11 having a substantially circular cross section with a diameter of about 20 to 200 μm The conductive catalyst material film 12 is coated with a thickness of 5 to 30 nm, preferably 10 to 20 nm. These corrosion-resistant metal wire pieces 11 are arranged so as to be spaced apart from each other at a predetermined interval (50 to 100 μm, preferably 100 to 300 μm) and to extend substantially in parallel and along the counter substrate member 8. Alternatively, more than half of the portion is embedded in the counter substrate member 8. As described above, when about half of each of the corrosion-resistant metal wire pieces 11, in particular, more than half is embedded in the counter substrate member 8, the gap between the photoelectrode substrate 2 and the counter electrode substrate 3 can be filled with the electrolyte 4 without any gap. it can. That is, each of the corrosion-resistant metal wire pieces 11 is not embedded in the counter substrate member 8 but is simply placed on the counter substrate member 8. Although it is difficult for the electrolyte 4 to enter the gap with the counter substrate member 8, if about half or more than half of each corrosion-resistant metal wire piece 11 is embedded in the counter substrate member 8, such a gap is not formed. The gap between the electrode substrate 2 and the counter electrode substrate 3 can be filled with the electrolyte 4 without a gap. In addition, the space | interval (separation distance) of the corrosion-resistant metal wire piece 11 coat | covered with the electroconductive catalyst material film | membrane 12 can be suitably set in consideration of photoelectric conversion efficiency, and the diameter of the corrosion-resistant metal wire piece 11 and an electroconductive catalyst. The thickness of the material film 12 can be set as appropriate from the required transmittance. In addition, the cross-sectional shape of the corrosion-resistant metal wire piece 11 is not limited to a circle but may be a polygon.

上述した構造の色素増感型太陽電池1は、以下のように製造することができる。   The dye-sensitized solar cell 1 having the above-described structure can be manufactured as follows.

まず、アルゴンガスと微量の酸素ガスを導入した(図示しない)真空装置内において、ITOをターゲット材とし、高周波放電により生成したプラズマを使用してスパッタリング処理を施すことにより、光電極基板2の透明の基板部材5の表面にITOからなる透明電極膜6を成膜する。   First, in a vacuum apparatus (not shown) into which argon gas and a small amount of oxygen gas are introduced (not shown), ITO is used as a target material, and sputtering is performed using plasma generated by high-frequency discharge, whereby the photoelectrode substrate 2 is transparent. A transparent electrode film 6 made of ITO is formed on the surface of the substrate member 5.

次に、このようにして形成された透明電極膜6上に、二酸化チタン(TiO)などからなる多孔性半導体電極膜7を形成する。この多孔性半導体電極膜7は、半導体粒子を含有する懸濁液を透明電極膜6上に塗布し、その塗布した懸濁液を乾燥した後に焼成することによって形成することができる。このようにして形成された多孔性半導体電極膜7に、光電変換機能を有する増感色素(例えば、ルテニウム錯体)を吸着・担持させる。なお、多孔性半導体電極膜7は、二酸化チタンの代わりに酸化亜鉛などによって形成してもよく、焼成法の代わりに電析法や水熱処理法などによって形成してもよい。 Next, a porous semiconductor electrode film 7 made of titanium dioxide (TiO 2 ) or the like is formed on the transparent electrode film 6 thus formed. The porous semiconductor electrode film 7 can be formed by applying a suspension containing semiconductor particles on the transparent electrode film 6, drying the applied suspension, and firing the suspension. A sensitizing dye (for example, ruthenium complex) having a photoelectric conversion function is adsorbed and supported on the porous semiconductor electrode film 7 thus formed. The porous semiconductor electrode film 7 may be formed by zinc oxide or the like instead of titanium dioxide, or may be formed by an electrodeposition method or a hydrothermal treatment method instead of the firing method.

また、真空装置内にチタンワイヤなどの耐食性金属線材を設置し、この耐食性金属線材をリールで巻き取りながら、耐食性金属線材上に導電性触媒材料膜12を連続的に成膜する。白金からなる導電性触媒材料膜12を成膜する場合には、ターゲット材として白金を使用し、直流放電により生成したプラズマによりスパッタリング処理を施す。   Further, a corrosion-resistant metal wire such as a titanium wire is installed in the vacuum apparatus, and the conductive catalyst material film 12 is continuously formed on the corrosion-resistant metal wire while winding the corrosion-resistant metal wire with a reel. When the conductive catalyst material film 12 made of platinum is formed, platinum is used as a target material, and a sputtering process is performed using plasma generated by direct current discharge.

次に、図4に示すように、固定側の下型30上に載置した樹脂製の対向基板部材8上に、導電性触媒材料膜12で被覆した複数の耐食性金属線材片11を、一定の間隔で互いに離間して略平行に且つ対向基板部材8に沿って延びるように配置した後、矢印で示すように可動側の上型32によって圧力を加えるとともに熱を加えて、導電性触媒材料膜12で被覆した複数の耐食性金属線材片11の各々の一部を対向基板部材8に埋め込む。   Next, as shown in FIG. 4, a plurality of corrosion-resistant metal wire rods 11 covered with a conductive catalyst material film 12 are fixed on a resin-made counter substrate member 8 placed on a fixed lower mold 30. After being arranged so as to be separated from each other at an interval of approximately parallel and to extend along the counter substrate member 8, pressure is applied and heat is applied by the movable upper mold 32 as indicated by the arrow to thereby form a conductive catalyst material. A part of each of the plurality of corrosion-resistant metal wire pieces 11 covered with the film 12 is embedded in the counter substrate member 8.

このようにして形成された対向電極基板3の導電性触媒材料膜12と光電極基板2の多孔性半導体電極膜7が対向するように配置し、導電性触媒材料膜12と多孔性半導体電極膜7との間に電解質4を封入して、本実施の形態の色素増感型太陽電池1が完成する(図1参照)。なお、電解質4としては、通常、ヨウ素−ヨウ素化合物、臭素−臭素化合物などの酸化還元対を含有するレドックス電解液を使用することができる。また、電解質4として、液体状の電解質の他、ゲル化剤やP型半導体(CuI)などにより固体化した電解質を使用してもよい。   The conductive catalyst material film 12 of the counter electrode substrate 3 thus formed and the porous semiconductor electrode film 7 of the photoelectrode substrate 2 are arranged to face each other, and the conductive catalyst material film 12 and the porous semiconductor electrode film are arranged. The electrolyte 4 is sealed between the two and the dye-sensitized solar cell 1 of the present embodiment is completed (see FIG. 1). In addition, as the electrolyte 4, a redox electrolyte solution containing an oxidation-reduction pair such as an iodine-iodine compound or a bromine-bromine compound can be usually used. In addition to the liquid electrolyte, an electrolyte solidified with a gelling agent or a P-type semiconductor (CuI) may be used as the electrolyte 4.

このようにして形成された色素増感型太陽電池1では、外部から太陽光が光電極基板2に入射すると、多孔性半導体膜7に吸着・担持された増感色素が励起され、増感色素の電子が基底状態から励起状態へ遷移する。励起された増感色素の電子は、多孔性半導体電極膜7を構成するTiOの伝導帯に注入され、透明電極膜6に移動し、この透明電極膜6から(図示しない)外部回路を経由して対向電極基板3の耐食性金属線材片11に移動する。この耐食性金属線材片11に移動した電子は、導電性触媒材料膜12を介して電解質4側に移動し、電解質4中のイオンに運ばれて増感色素に戻る。このような作用を繰り返して電気エネルギーが取り出される。 In the dye-sensitized solar cell 1 formed in this way, when sunlight enters the photoelectrode substrate 2 from the outside, the sensitizing dye adsorbed and supported on the porous semiconductor film 7 is excited, and the sensitizing dye Transition from the ground state to the excited state. The excited electrons of the sensitizing dye are injected into the conduction band of TiO 2 constituting the porous semiconductor electrode film 7, move to the transparent electrode film 6, and pass through an external circuit (not shown) from the transparent electrode film 6. Then, it moves to the corrosion-resistant metal wire piece 11 of the counter electrode substrate 3. The electrons that have moved to the corrosion-resistant metal wire piece 11 move to the electrolyte 4 side through the conductive catalyst material film 12 and are carried by the ions in the electrolyte 4 to return to the sensitizing dye. Electric energy is extracted by repeating such an action.

なお、上述した実施の形態では、耐食性金属線材片11の全面を導電性触媒材料膜12で被覆しているが、耐食性金属線材片11の電解質4に接触する部分が導電性触媒材料膜12で被覆されていればよい。   In the above-described embodiment, the entire surface of the corrosion-resistant metal wire piece 11 is covered with the conductive catalyst material film 12, but the portion of the corrosion-resistant metal wire piece 11 that contacts the electrolyte 4 is the conductive catalyst material film 12. It only has to be covered.

以下、本発明による色素増感型太陽電池およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the dye-sensitized solar cell and the method for manufacturing the same according to the present invention will be described in detail.

まず、ポリエチレンナフタレート(PEN)からなる基板部材5上にITOからなる透明電極膜(ITO膜)6が形成されたITO付き基板部材(一辺の長さが5cmの矩形の平面形状を有し、厚さが125μm、電気抵抗値が10Ω/□の板状部材)を用意した。このITO付き基板部材のITO膜6上に、低温成膜用チタニア塗布ペーストを厚さ50μmになるように塗布した後、150℃で5分間加熱してITO膜6上に膜厚5μmの多孔性半導体電極膜7を形成し、その後、多孔性半導体電極膜7にルテニウム錯体色素を吸着させた。このようにして、増感色素が吸着・担持された多孔性半導体電極膜7がITO膜6上に形成された光電極基板2を作製した。   First, a substrate member with ITO in which a transparent electrode film (ITO film) 6 made of ITO is formed on a substrate member 5 made of polyethylene naphthalate (PEN) (having a rectangular planar shape with a side length of 5 cm, A plate member having a thickness of 125 μm and an electric resistance value of 10Ω / □ was prepared. After applying a titania coating paste for low-temperature film formation to a thickness of 50 μm on the ITO film 6 of the substrate member with ITO, the film is heated at 150 ° C. for 5 minutes to have a thickness of 5 μm on the ITO film 6. A semiconductor electrode film 7 was formed, and then a ruthenium complex dye was adsorbed on the porous semiconductor electrode film 7. Thus, the photoelectrode substrate 2 in which the porous semiconductor electrode film 7 on which the sensitizing dye was adsorbed and supported was formed on the ITO film 6 was produced.

また、ターゲット材として白金を使用する真空装置内に耐食性金属線材として直径127μmのチタンワイヤを設置し、この耐食性金属線材をリールで巻き取りながら、直流放電により生成したプラズマによりスパッタリング処理を施すことにより、耐食性金属線材上に厚さ50nmの白金からなる導電性触媒材料膜12を連続的に成膜した。このようにして導電性触媒材料膜12で被覆した10本の耐食性金属線材片11を、等間隔で互いに離間して略平行に且つポリエチレンテレフタレート(PET)からなる対向基板部材8(一辺の長さが5cmの矩形の平面形状を有し、厚さが125μmの板状部材)に沿って延びるように、対向基板部材8上に配置した後、上下から圧力と熱を加えて、導電性触媒材料膜12で被覆した10本の耐食性金属線材片11の各々の一部を対向基板部材8に埋め込んだ。このようにして作製した対向電極基板3としての導電性フィルムのシート抵抗は0.1Ω/□であり、透過率は79%であった。   In addition, a titanium wire having a diameter of 127 μm is installed as a corrosion-resistant metal wire in a vacuum apparatus using platinum as a target material, and the corrosion-resistant metal wire is wound with a reel and subjected to sputtering treatment with plasma generated by direct current discharge. Then, a conductive catalyst material film 12 made of platinum having a thickness of 50 nm was continuously formed on the corrosion-resistant metal wire. The ten corrosion-resistant metal wire pieces 11 covered with the conductive catalyst material film 12 in this way are separated from each other at equal intervals and substantially in parallel, and the opposing substrate member 8 (length of one side) made of polyethylene terephthalate (PET). Is placed on the counter substrate member 8 so as to extend along a plate-like member having a rectangular plane shape of 5 cm and a thickness of 125 μm. A part of each of the ten corrosion-resistant metal wire rods 11 covered with the film 12 was embedded in the counter substrate member 8. The sheet resistance of the conductive film as the counter electrode substrate 3 thus produced was 0.1Ω / □, and the transmittance was 79%.

上記のように作製した光電極基板2の多孔性半導体電極膜7と対向電極基板3の導電性触媒材料膜12が対向するように配置し、多孔性半導体電極膜7と導電性触媒材料膜12との間に電解質4としてレドックス電解液を封入して、実施例の色素増感型太陽電池1を作製した。   It arrange | positions so that the porous semiconductor electrode film 7 of the photoelectrode substrate 2 produced as mentioned above and the conductive catalyst material film 12 of the counter electrode substrate 3 may face each other, and the porous semiconductor electrode film 7 and the conductive catalyst material film 12 are arranged. Between them, a redox electrolyte solution was sealed as the electrolyte 4 to prepare the dye-sensitized solar cell 1 of the example.

このようにして作製した色素増感型太陽電池1に、ソーラーシミュレータを用いて光照射エネルギー10mW/cmの疑似太陽光を照射し、電池特性試験を行った。また、比較例として、対向電極基板3の代わりに対向電極基板103を使用した以外、すなわち、厚さ50nmの白金からなる導電性触媒材料膜112を対向電極基板103の全面に形成した以外は同一の構成を有するように図6に示す従来の色素増感型太陽電池101を作製し、同様の電池特性試験を行った。その結果を図5および表1に示す。なお、図5は、実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101に表面側(光電極基板側)から光を照射した場合の電流−電圧特性についての実験結果を比較して示している。また、表1において、Iscは色素増感型太陽電池の出力端子を短絡させたときに両端子間に流れる電流(短絡電流)、Vocは色素増感型太陽電池の出力端子を開放したときの両端子間の電圧(開放電圧)、F.F.は最大出力Pmax(=Imax・Vmax)を開放電圧Vocと電流密度Jsc(1cm当たりの短絡電流Isc)の積で除した値(曲線因子(Fill Factor)F.F.=Pmax/Voc・Jsc)、ηは最大出力Pmaxを(1cm当たりの)照射光量(W)で除した値に100を乗じてパーセントで表示した値(変換効率)を示している。 The dye-sensitized solar cell 1 thus produced was irradiated with pseudo-sunlight having a light irradiation energy of 10 mW / cm 2 using a solar simulator, and a battery characteristic test was performed. Further, as a comparative example, the same except that the counter electrode substrate 103 was used instead of the counter electrode substrate 3, that is, the conductive catalyst material film 112 made of platinum having a thickness of 50 nm was formed on the entire surface of the counter electrode substrate 103. A conventional dye-sensitized solar cell 101 shown in FIG. 6 was prepared so as to have the structure described above, and the same battery characteristic test was performed. The results are shown in FIG. FIG. 5 shows an experiment on current-voltage characteristics when the dye-sensitized solar cell 1 of the example and the dye-sensitized solar cell 101 of the comparative example are irradiated with light from the surface side (photoelectrode substrate side). The results are shown in comparison. In Table 1, Isc is a current (short-circuit current) flowing between both terminals when the output terminal of the dye-sensitized solar cell is short-circuited, and Voc is when the output terminal of the dye-sensitized solar cell is opened. Voltage between both terminals (open voltage); F. Is a value obtained by dividing the maximum output Pmax (= Imax · Vmax) by the product of the open circuit voltage Voc and the current density Jsc (short circuit current Isc per 1 cm 2 ) (fill factor) FF = Pmax / Voc · Jsc ), Η represents a value (conversion efficiency) expressed as a percentage by multiplying 100 by a value obtained by dividing the maximum output Pmax by the irradiation light quantity (W) (per 1 cm 2 ).

Figure 2007287532
Figure 2007287532

図5および表1に示すように、実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101の表面側(光電極基板側)から光を照射した場合には、実施例の色素増感型太陽電池1では、比較例の色素増感型太陽電池101と比べて、短絡電流がそれ程減少しておらず(比較例では0.752mAであるのに対して、実施例では0.642mA)、曲線因子もそれ程減少していないため(比較例では0.669であるのに対して、実施例では0.610)、変換効率がそれ程低下していない(比較例では3.39%であるのに対して、実施例では2.63%)。一方、実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101の裏面側(対向電極基板側)から光を照射した場合には、比較例の色素増感型太陽電池101では、光をほとんど透過しないので発電しないが、実施例の色素増感型太陽電池1では、複数の耐食性金属線材11が互いに離間して配置されているので、対向電極基板3側からも十分に光を取り込んで発電することができる。   As shown in FIG. 5 and Table 1, when light was irradiated from the surface side (photoelectrode substrate side) of the dye-sensitized solar cell 1 of the example and the dye-sensitized solar cell 101 of the comparative example, In the dye-sensitized solar cell 1 of the example, the short-circuit current is not so reduced as compared with the dye-sensitized solar cell 101 of the comparative example (in contrast to 0.752 mA in the comparative example, the example In the comparative example, the conversion factor does not decrease so much (3 in the comparative example). .39% compared to 2.63% in the example). On the other hand, when light is irradiated from the back side (counter electrode substrate side) of the dye-sensitized solar cell 1 of the example and the dye-sensitized solar cell 101 of the comparative example, the dye-sensitized solar cell of the comparative example In 101, since light is hardly transmitted, it does not generate electric power. However, in the dye-sensitized solar cell 1 of the example, since the plurality of corrosion-resistant metal wires 11 are arranged apart from each other, it is sufficient from the counter electrode substrate 3 side. It is possible to generate electricity by taking in light.

本発明による対向電極基板を備えた色素増感型太陽電池を複数直列に接続し、あるいは、このように複数直列に接続した太陽電池列を並列に接続して、色素増感型太陽電池組立体を構成すれば、所望の電気エネルギーを得ることができる。また、所謂シースルーの色素増感型太陽電池を作製することもできる。   A plurality of dye-sensitized solar cells each having a counter electrode substrate according to the present invention are connected in series, or a plurality of solar cell arrays connected in series are connected in parallel to form a dye-sensitized solar cell assembly. If desired, the desired electrical energy can be obtained. In addition, so-called see-through dye-sensitized solar cells can also be produced.

本発明による色素増感型太陽電池の実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically embodiment of the dye-sensitized solar cell by this invention. 図1に示す色素増感型太陽電池の対向電極基板を模式的に示す断面図である。It is sectional drawing which shows typically the counter electrode substrate of the dye-sensitized solar cell shown in FIG. 図2に示す色素増感型太陽電池の対向電極基板の斜視図である。It is a perspective view of the counter electrode substrate of the dye-sensitized solar cell shown in FIG. 図2に示す色素増感型太陽電池の対向電極基板の製造方法を説明する図である。It is a figure explaining the manufacturing method of the counter electrode board | substrate of the dye-sensitized solar cell shown in FIG. 実施例と比較例の色素増感型太陽電池の光電極基板側から光を入射された場合の電流−電圧特性についての実験結果を比較して示す図である。It is a figure which compares and shows the experimental result about the electric current-voltage characteristic when light injects from the photoelectrode substrate side of the dye-sensitized solar cell of an Example and a comparative example. 従来の色素増感型太陽電池を模式的に示す断面図である。It is sectional drawing which shows the conventional dye-sensitized solar cell typically.

符号の説明Explanation of symbols

1…色素増感型太陽電池、2…光電極基板、3…対向電極基板、4…電解質、5…基板部材、6…透明電極膜(ITO膜)、7…多孔性半導体電極膜、8…対向基板部材、11…耐食性金属線材片、12…導電性触媒材料膜 DESCRIPTION OF SYMBOLS 1 ... Dye-sensitized solar cell, 2 ... Photoelectrode substrate, 3 ... Counter electrode substrate, 4 ... Electrolyte, 5 ... Substrate member, 6 ... Transparent electrode film (ITO film), 7 ... Porous semiconductor electrode film, 8 ... Counter substrate member, 11 ... corrosion-resistant metal wire piece, 12 ... conductive catalyst material film

Claims (10)

増感色素を吸着または担持した多孔性半導体電極膜を備えた光電極基板と対向電極基板との間に電解質が封入された色素増感型太陽電池において、前記対向電極基板が、対向基板部材と耐食性金属線材と導電性触媒材料膜とを備え、前記耐食性金属線材が、前記導電性触媒材料膜で被覆されて前記対向基板部材に沿って延びるように配置されていることを特徴とする、色素増感型太陽電池。 In a dye-sensitized solar cell in which an electrolyte is sealed between a photoelectrode substrate having a porous semiconductor electrode film that adsorbs or carries a sensitizing dye and a counter electrode substrate, the counter electrode substrate includes a counter substrate member and A dye comprising: a corrosion-resistant metal wire and a conductive catalyst material film, wherein the corrosion-resistant metal wire is covered with the conductive catalyst material film and arranged so as to extend along the counter substrate member Sensitized solar cell. 前記耐食性金属線材の一部が、前記対向基板部材に埋め込まれていることを特徴とする、請求項1に記載の色素増感型太陽電池。 2. The dye-sensitized solar cell according to claim 1, wherein a part of the corrosion-resistant metal wire is embedded in the counter substrate member. 前記耐食性金属線材が複数の耐食性金属線材片からなり、これらの複数の耐食性金属線材片が、互いに所定の間隔で離間して配置されていることを特徴とする、請求項1または2に記載の色素増感型太陽電池。 The said corrosion-resistant metal wire consists of several corrosion-resistant metal wire pieces, These several corrosion-resistant metal wire pieces are mutually arrange | positioned at predetermined intervals, It is characterized by the above-mentioned. Dye-sensitized solar cell. 前記複数の耐食性金属線材片が互いに略平行に配置されていることを特徴とする、請求項3に記載の色素増感型太陽電池。 The dye-sensitized solar cell according to claim 3, wherein the plurality of corrosion-resistant metal wire pieces are arranged substantially parallel to each other. 前記耐食性金属線材がチタンからなる線材であることを特徴とする、請求項1乃至4のいずれかに記載の色素増感型太陽電池。 The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the corrosion-resistant metal wire is a wire made of titanium. 前記導電性触媒材料膜が白金からなる膜であることを特徴とする、請求項1乃至5のいずれかに記載の色素増感型太陽電池。 The dye-sensitized solar cell according to any one of claims 1 to 5, wherein the conductive catalyst material film is a film made of platinum. 増感色素を吸着または担持した多孔性半導体電極膜を備えた光電極基板を用意する工程と、耐食性金属線材を導電性触媒材料膜で被覆し、この導電性触媒材料膜で被覆された耐食性金属線材を対向基板部材に沿って延びるように配置して、対向電極基板を作製する工程と、前記光電極基板と前記対向電極基板を対向するように配置して、これらの間に電解質を封入する工程とを備えたことを特徴とする、色素増感型太陽電池の製造方法。 A step of preparing a photoelectrode substrate provided with a porous semiconductor electrode film that adsorbs or carries a sensitizing dye, a corrosion-resistant metal wire covered with a conductive catalyst material film, and a corrosion-resistant metal coated with the conductive catalyst material film A step of producing a counter electrode substrate by arranging the wire material so as to extend along the counter substrate member, and a step of arranging the photoelectrode substrate and the counter electrode substrate to face each other and enclosing an electrolyte therebetween. And a process for producing a dye-sensitized solar cell. 前記対向電極基板を作製する工程において、前記導電性触媒材料膜で被覆された耐食性金属線材を前記対向基板部材上に配置した後に、加熱しながら加圧することにより、前記導電性触媒材料膜で被覆された耐食性金属線材の一部を前記対向基板部材に埋め込むことを特徴とする、請求項7に記載の色素増感型太陽電池の製造方法。 In the step of manufacturing the counter electrode substrate, the corrosion-resistant metal wire coated with the conductive catalyst material film is disposed on the counter substrate member, and then coated with the conductive catalyst material film by applying pressure while heating. The method for producing a dye-sensitized solar cell according to claim 7, wherein a part of the corrosion-resistant metal wire thus formed is embedded in the counter substrate member. 前記耐食性金属線材がチタンからなる線材であることを特徴とする、請求項7または8に記載の色素増感型太陽電池の製造方法。 The method for producing a dye-sensitized solar cell according to claim 7 or 8, wherein the corrosion-resistant metal wire is a wire made of titanium. 前記導電性触媒材料膜が白金からなる膜であることを特徴とする、請求項7乃至9のいずれかに記載の色素増感型太陽電池の製造方法。
The method for producing a dye-sensitized solar cell according to any one of claims 7 to 9, wherein the conductive catalyst material film is a film made of platinum.
JP2006115110A 2006-04-19 2006-04-19 Dye-sensitized solar cell and its manufacturing method Withdrawn JP2007287532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115110A JP2007287532A (en) 2006-04-19 2006-04-19 Dye-sensitized solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115110A JP2007287532A (en) 2006-04-19 2006-04-19 Dye-sensitized solar cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007287532A true JP2007287532A (en) 2007-11-01

Family

ID=38759108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115110A Withdrawn JP2007287532A (en) 2006-04-19 2006-04-19 Dye-sensitized solar cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007287532A (en)

Similar Documents

Publication Publication Date Title
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP5531300B2 (en) Dye-sensitized solar cell
JP2009245750A (en) Dye-sensitized solar battery and method of manufacturing the same
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
Kwon et al. Highly efficient monolithic dye-sensitized solar cells
US10147554B2 (en) Energy storage dye-sensitized solar cell
JP5586489B2 (en) Electrode substrate for dye-sensitive solar cell and dye-sensitive solar cell comprising the same
KR101172361B1 (en) Manufacturing method of photo electrode for dye-sensitized solar cell
KR101140784B1 (en) Preparation method of dye-sensitized solar cell module including scattering layers
JP5148835B2 (en) Dye-sensitized solar cell and its photoelectrode substrate
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
KR20070050906A (en) Dye sensitization solar cell and manufacturing method thereof
US20100300523A1 (en) Dye-sensitized solar cell and method of fabricating the same
KR101447618B1 (en) Light sensitized Solar Cell and Method for manufacturing the same
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell
KR100993847B1 (en) Dye-sensitized solar cell molule and manufacturing method thereof
JP5025938B2 (en) Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode
KR101462356B1 (en) Dye sensitized solar cell and method of fabricating the same
JP2007287532A (en) Dye-sensitized solar cell and its manufacturing method
Shaban et al. Efficiency Performance Effect of TiO 2 Thickness Deposited on FTO Coated Glass Photoanode
JP5685708B2 (en) Method for producing dye-sensitized solar cell
KR20120080796A (en) Dye sensitized solar cell comprising multi-functional oxide layer and preparation method thereof
TWI322510B (en) Method for forming photoelectric conversion substrate
KR101714971B1 (en) Metal substrate for flexible dye-sensitized solar cell and flexible dye-sensitized solar cell using the same
JP2007048590A (en) Dye-sensitized solar cell, its photoelectrode substrate, and manufacturing method of photoelectrode substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707