JP2007048590A - Dye-sensitized solar cell, its photoelectrode substrate, and manufacturing method of photoelectrode substrate - Google Patents

Dye-sensitized solar cell, its photoelectrode substrate, and manufacturing method of photoelectrode substrate Download PDF

Info

Publication number
JP2007048590A
JP2007048590A JP2005231763A JP2005231763A JP2007048590A JP 2007048590 A JP2007048590 A JP 2007048590A JP 2005231763 A JP2005231763 A JP 2005231763A JP 2005231763 A JP2005231763 A JP 2005231763A JP 2007048590 A JP2007048590 A JP 2007048590A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005231763A
Other languages
Japanese (ja)
Inventor
Kozo Miyoshi
三好  幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2005231763A priority Critical patent/JP2007048590A/en
Publication of JP2007048590A publication Critical patent/JP2007048590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell capable of preventing degradation of power generation characteristics of the dye-sensitized solar cell by preventing reverse electron movement from a transparent electrode membrane to a semiconductor layer of a photoelectrode substrate of the solar cell, its photoelectrode substrate, and a manufacturing method of the photoelectrode substrate. <P>SOLUTION: The photoelectrode substrate 2 of a dye-sensitized solar cell 1 has an electrolyte 4 sealed between the photoelectrode substrate 2 and an opposed electrode of an opposed electrode substrate 3. A metal membrane 7 consisting of titanium is formed on a transparent electrode membrane 6 formed on the surface of a substrate member 5, and a porous semiconductor electrode membrane 8 is formed on this metal membrane 7, and a sensitized dye is adsorbed to or carried on this semiconductor electrode membrane 8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、色素増感型太陽電池、その光電極基板およびその光電極基板の製造方法に関し、特に、光電極基板と対向電極基板の対向電極との間に電解質が封入された色素増感型太陽電池、その光電極基板およびその光電極基板の製造方法に関する。   The present invention relates to a dye-sensitized solar cell, a photoelectrode substrate thereof, and a method of manufacturing the photoelectrode substrate, and more particularly, a dye-sensitized type in which an electrolyte is sealed between a photoelectrode substrate and a counter electrode of the counter electrode substrate. The present invention relates to a solar cell, a photoelectrode substrate thereof, and a method of manufacturing the photoelectrode substrate.

近年、環境問題の観点から、光エネルギーを電気エネルギーに変換する太陽電池が注目を集めており、特に、製造コストを低くすることができることから、色素増感型太陽電池が注目を集めている。従来の色素増感型太陽電池は、光電変換効率が低いために実用性に乏しかったが、最近、半導体電極を多孔質化して表面積を大きくすることにより、多量の色素を吸着させて、飛躍的に光電変換効率を向上させる技術が開発されている(例えば、特許文献1参照)。   In recent years, from the viewpoint of environmental problems, solar cells that convert light energy into electrical energy have attracted attention, and in particular, dye-sensitized solar cells have attracted attention because they can reduce manufacturing costs. Conventional dye-sensitized solar cells were poor in practicality due to low photoelectric conversion efficiency. Recently, a large amount of dye is adsorbed by making the semiconductor electrode porous to increase the surface area. In addition, a technique for improving photoelectric conversion efficiency has been developed (for example, see Patent Document 1).

このような技術を用いた色素増感型太陽電池として、図6に模式的に示すように、光電極基板102と、対向電極基板103と、これらの間に封入された電解液104とから構成された色素増感型太陽電池101が知られている。この色素増感型太陽電池101の光電極基板102は、基板部材105と、この基板部材105の表面105aに形成された透明電極膜106と、この透明電極膜106上に形成された酸化チタンなどからなる多孔性半導体電極膜108とから構成され、この多孔性半導体電極膜108に色素が吸着している。なお、多孔性半導体電極膜108は、透明電極膜106上に半導体粒子を含有する懸濁液を塗布し、乾燥した後に焼成することによって形成されている。一方、色素増感型太陽電池101の対向電極基板103は、対向基板部材110と、この対向基板部材110上に白金などの触媒をコーティングすることによって形成された対向電極111とから構成されている。この対向電極111と多孔性半導体電極膜108が所定の間隔で離間して対向するように基板部材105と対向基板部材110が配置され、対向電極111と多孔性半導体電極膜108の間に電解液104が封入されて、色素増感型太陽電池101が構成されている。この色素増感型太陽電池101では、多孔性半導体電極膜108の表面に吸着されている色素分子が光を吸収して、半導体に電子を注入し、多孔性半導体電極膜108側が負極になって発電するようになっている。   As schematically shown in FIG. 6, a dye-sensitized solar cell using such a technique includes a photoelectrode substrate 102, a counter electrode substrate 103, and an electrolytic solution 104 enclosed therebetween. A dye-sensitized solar cell 101 is known. The photoelectrode substrate 102 of the dye-sensitized solar cell 101 includes a substrate member 105, a transparent electrode film 106 formed on the surface 105 a of the substrate member 105, and titanium oxide formed on the transparent electrode film 106. The porous semiconductor electrode film 108 is made up of, and a dye is adsorbed to the porous semiconductor electrode film 108. The porous semiconductor electrode film 108 is formed by applying a suspension containing semiconductor particles on the transparent electrode film 106, drying it, and baking it. On the other hand, the counter electrode substrate 103 of the dye-sensitized solar cell 101 includes a counter substrate member 110 and a counter electrode 111 formed by coating the counter substrate member 110 with a catalyst such as platinum. . A substrate member 105 and a counter substrate member 110 are disposed so that the counter electrode 111 and the porous semiconductor electrode film 108 are opposed to each other with a predetermined interval, and an electrolyte solution is interposed between the counter electrode 111 and the porous semiconductor electrode film 108. 104 is enclosed, and the dye-sensitized solar cell 101 is configured. In this dye-sensitized solar cell 101, the dye molecules adsorbed on the surface of the porous semiconductor electrode film 108 absorb light, inject electrons into the semiconductor, and the porous semiconductor electrode film 108 side becomes a negative electrode. It is designed to generate electricity.

特表平5−504023号公報(第1頁、図1)JP-T-5-504023 (first page, FIG. 1)

しかし、上述した従来の色素増感型太陽電池101では、多孔性半導体電極膜108から透明電極膜106までの電子の移動が拡散によって行われるため、透明電極膜106から半導体層への逆電子移動も同時に生じてしまい、多孔性半導体電極膜108内の電子の滞在時間が長くなり、その電子と色素との再結合の確率が増大するため、結果的に色素増感太腸電池101の発電特性が低下するという問題がある。   However, in the conventional dye-sensitized solar cell 101 described above, electrons move from the porous semiconductor electrode film 108 to the transparent electrode film 106 by diffusion, so that reverse electron transfer from the transparent electrode film 106 to the semiconductor layer occurs. At the same time, the residence time of electrons in the porous semiconductor electrode film 108 becomes longer, and the probability of recombination between the electrons and the dye increases. As a result, the power generation characteristics of the dye-sensitized large intestine battery 101 There is a problem that decreases.

したがって、本発明は、このような従来の問題点に鑑み、色素増感型太陽電池の光電極基板の透明電極膜から半導体層への逆電子移動を防止し、色素増感型太陽電池の発電特性の低下を防止することができる、色素増感型太陽電池、その光電極基板およびその光電極基板の製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention prevents back-electron transfer from the transparent electrode film of the photoelectrode substrate of the dye-sensitized solar cell to the semiconductor layer, and generates power in the dye-sensitized solar cell. An object of the present invention is to provide a dye-sensitized solar cell, a photoelectrode substrate thereof, and a method for producing the photoelectrode substrate, which can prevent deterioration of characteristics.

本発明者は、上記課題を解決するために鋭意研究した結果、光電極基板の透明電極膜と対向電極基板の対向電極との間に電解質が封入され、増感色素を吸着または担持する多孔性半導体電極膜が透明電極膜上に形成された色素増感型太陽電池において、金属膜を介して多孔性半導体電極膜を透明電極膜上に形成することにより、色素増感型太陽電池の光電極基板の透明電極膜から半導体層への逆電子移動を防止し、色素増感型太陽電池の発電特性の低下を防止することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventor has a porous structure in which an electrolyte is enclosed between the transparent electrode film of the photoelectrode substrate and the counter electrode of the counter electrode substrate to adsorb or carry the sensitizing dye. In the dye-sensitized solar cell in which the semiconductor electrode film is formed on the transparent electrode film, the photoelectrode of the dye-sensitized solar cell is formed by forming the porous semiconductor electrode film on the transparent electrode film through the metal film. It has been found that the reverse electron transfer from the transparent electrode film of the substrate to the semiconductor layer can be prevented, and the power generation characteristics of the dye-sensitized solar cell can be prevented from being lowered, and the present invention has been completed.

すなわち、本発明による色素増感型太陽電池の光電極基板は、基板部材と、この基板部材上に形成された透明電極膜と、この透明電極膜上に形成された金属膜と、この金属膜上に形成された多孔性半導体電極膜と、この多孔性半導体電極膜に吸着または担持された増感色素とを備えたことを特徴とする。この色素増感型太陽電池の光電極基板において、金属膜がチタンまたはタンタルからなる膜であるのが好ましく、金属膜の厚さが1〜100nmであるのが好ましく、金属膜が可視光線に対して10%以上の透過率を有するのが好ましい。   That is, the photoelectrode substrate of the dye-sensitized solar cell according to the present invention includes a substrate member, a transparent electrode film formed on the substrate member, a metal film formed on the transparent electrode film, and the metal film. A porous semiconductor electrode film formed thereon and a sensitizing dye adsorbed or supported on the porous semiconductor electrode film are provided. In the photoelectrode substrate of the dye-sensitized solar cell, the metal film is preferably a film made of titanium or tantalum, the thickness of the metal film is preferably 1 to 100 nm, and the metal film is visible light. The transmittance is preferably 10% or more.

また、本発明による色素増感型太陽電池は、上記の光電極基板と、この光電極基板の多孔性半導体電極膜に対向して配置された対向電極を備えた対向電極基板と、この対向電極基板と光電極基板の間に封入された電解質とからなることを特徴とする。   Further, the dye-sensitized solar cell according to the present invention includes the above-described photoelectrode substrate, a counter electrode substrate provided with a counter electrode disposed to face the porous semiconductor electrode film of the photoelectrode substrate, and the counter electrode It consists of the electrolyte enclosed between the board | substrate and the photoelectrode board | substrate, It is characterized by the above-mentioned.

さらに、本発明による色素増感型太陽電池の光電極基板の製造方法は、基板部材上に透明電極膜を形成する工程と、この透明電極膜上に金属膜を形成する工程と、この金属膜上に多孔性半導体電極膜を形成する工程と、この多孔性半導体電極膜に増感色素を吸着または担持させる工程とを備えたことを特徴とする。この色素増感型太陽電池の光電極基板の製造方法において、金属膜がチタンまたはタンタルからなる膜であるのが好ましく、金属膜の厚さが1〜100nmであるのが好ましく、金属膜が可視光線に対して10%以上の透過率を有するのが好ましい。   Furthermore, the method for producing a photoelectrode substrate of a dye-sensitized solar cell according to the present invention includes a step of forming a transparent electrode film on a substrate member, a step of forming a metal film on the transparent electrode film, and the metal film. The method includes a step of forming a porous semiconductor electrode film thereon and a step of adsorbing or carrying a sensitizing dye on the porous semiconductor electrode film. In the method for producing a photoelectrode substrate of the dye-sensitized solar cell, the metal film is preferably a film made of titanium or tantalum, the metal film is preferably 1 to 100 nm in thickness, and the metal film is visible. It preferably has a transmittance of 10% or more with respect to light.

本発明によれば、透明電極膜上に形成したチタンなどからなる金属膜と酸化チタンなどからなる多孔性半導体電極膜との接触(金属と半導体との接触)がショットキー接触になって整流特性が現れるようにすることができる。すなわち、多孔性半導体膜から透明電極側に電子が移動し易いのに対して、その逆方向には電子が移動し難くなり、これによって、透明電極膜から半導体層への逆電子移動を防止して電子と色素との再結合の確率を減少させることができ、その結果、太陽電池の発電効率を向上させることができる。   According to the present invention, the contact between the metal film made of titanium or the like formed on the transparent electrode film and the porous semiconductor electrode film made of titanium oxide or the like (contact between the metal and the semiconductor) becomes a Schottky contact, and the rectification characteristics Can appear. That is, while electrons are likely to move from the porous semiconductor film to the transparent electrode side, electrons are less likely to move in the opposite direction, thereby preventing reverse electron movement from the transparent electrode film to the semiconductor layer. Thus, the probability of recombination of electrons and dyes can be reduced, and as a result, the power generation efficiency of the solar cell can be improved.

本発明によれば、色素増感型太陽電池の光電極基板の透明電極膜から半導体層への逆電子移動を防止し、色素増感型太陽電池の発電特性の低下を防止することができる、色素増感型太陽電池およびその光電極基板を提供することができる。   According to the present invention, it is possible to prevent reverse electron transfer from the transparent electrode film of the photoelectrode substrate of the dye-sensitized solar cell to the semiconductor layer, and to prevent a decrease in power generation characteristics of the dye-sensitized solar cell. A dye-sensitized solar cell and a photoelectrode substrate thereof can be provided.

以下、添付図面を参照して、本発明による色素増感型太陽電池、その光電極基板およびその光電極基板の製造方法の実施の形態について詳細に説明する。   Hereinafter, embodiments of a dye-sensitized solar cell, a photoelectrode substrate thereof, and a method of manufacturing the photoelectrode substrate according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明による色素増感型太陽電池の実施の形態を模式的に示している。図1に示すように、本実施の形態の色素増感型太陽電池1は、光電極基板2と、対向電極基板3と、これらの間に封入された電解質4とから構成されている。光電極基板2は、透明のプラスチック製の基板部材5と、この基板部材5の表面5aに形成された透明電極膜6と、この透明電極膜6上に形成されたチタンからなる金属膜7と、この金属膜7上に形成され、増感色素を吸着・担持する多孔性半導体電極膜8とから構成されている。一方、対向電極基板3は、プラスチック製の対向基板部材10と、この対向基板部材10の表面10aに形成された対向電極11とから構成されている。なお、基板部材5および対向基板部材10は、アクリル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリオレフィン、ポリカーボネート(PC)などのプラスチックにより形成されている。   FIG. 1 schematically shows an embodiment of a dye-sensitized solar cell according to the present invention. As shown in FIG. 1, the dye-sensitized solar cell 1 of the present embodiment includes a photoelectrode substrate 2, a counter electrode substrate 3, and an electrolyte 4 enclosed between them. The photoelectrode substrate 2 includes a transparent plastic substrate member 5, a transparent electrode film 6 formed on the surface 5a of the substrate member 5, and a metal film 7 made of titanium formed on the transparent electrode film 6. The porous semiconductor electrode film 8 is formed on the metal film 7 and adsorbs and carries the sensitizing dye. On the other hand, the counter electrode substrate 3 includes a plastic counter substrate member 10 and a counter electrode 11 formed on the surface 10 a of the counter substrate member 10. The substrate member 5 and the counter substrate member 10 are made of plastic such as acrylic, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyolefin, polycarbonate (PC).

上述した構造の色素増感型太陽電池1は、以下のように製造することができる。   The dye-sensitized solar cell 1 having the above-described structure can be manufactured as follows.

まず、アルゴンガスと微量の酸素ガスを導入した(図示しない)真空装置内において、酸化インジウム錫(以下、「ITO」という)をターゲット材とし、高周波放電により生成したプラズマを使用してスパッタリング処理を施すことにより、図2Aに示すように、光電極基板2の透明のプラスチック製の基板部材5の表面5a上にITOからなる透明電極膜6を成膜する。   First, in a vacuum apparatus in which argon gas and a small amount of oxygen gas are introduced (not shown), sputtering treatment is performed using indium tin oxide (hereinafter referred to as “ITO”) as a target material and plasma generated by high frequency discharge. As a result, a transparent electrode film 6 made of ITO is formed on the surface 5a of the transparent plastic substrate member 5 of the photoelectrode substrate 2 as shown in FIG. 2A.

次に、透明電極膜6が形成された基板部材5を、ターゲット材としてのチタンとともに真空装置内に入れ、この真空装置内にアルゴンガスを導入し、高周波放電により生成したプラズマを使用してスパッタリング処理を施し、図2Bに示すように、透明電極膜6上にチタンからなる金属膜7を形成する。この真空装置内でチタンの成膜作業を連続して行うことにより、透明電極膜6と金属膜7との界面に不純物などのバリア層を生じることがなく、金属膜7を透明電極膜6上に積層して形成することができる。なお、金属膜7は、スパッタリング法の代わりに蒸着法やイオンプレーティング法などにより形成してもよい。   Next, the substrate member 5 on which the transparent electrode film 6 is formed is put in a vacuum apparatus together with titanium as a target material, argon gas is introduced into the vacuum apparatus, and sputtering is performed using plasma generated by high frequency discharge. A metal film 7 made of titanium is formed on the transparent electrode film 6 as shown in FIG. 2B. By continuously performing the titanium film forming operation in the vacuum apparatus, a barrier layer such as an impurity is not generated at the interface between the transparent electrode film 6 and the metal film 7, and the metal film 7 is placed on the transparent electrode film 6. It can be formed by laminating. The metal film 7 may be formed by vapor deposition or ion plating instead of sputtering.

次に、図2Cに示すように、金属膜7上に、二酸化チタン(TiO)からなる多孔性半導体電極膜8を焼成法により形成した後、この多孔性半導体電極膜8に、光電変換機能を有する増感色素(例えば、ルテニウム錯体)を吸着・担持させる。このように、光電極基板2は、基板部材5の表面5a上に、透明電極膜6と、金属膜7と、増感色素を吸着・担持する多孔性半導体電極膜8とを順次積層することにより形成される。なお、多孔性半導体電極膜8は、焼成法の代わりに電析法や水熱処理法などにより形成してもよい。 Next, as shown in FIG. 2C, after a porous semiconductor electrode film 8 made of titanium dioxide (TiO 2 ) is formed on the metal film 7 by a firing method, the photoelectric conversion function is applied to the porous semiconductor electrode film 8. A sensitizing dye (for example, a ruthenium complex) having benzene is adsorbed and supported. Thus, the photoelectrode substrate 2 is formed by sequentially laminating the transparent electrode film 6, the metal film 7, and the porous semiconductor electrode film 8 that adsorbs and carries the sensitizing dye on the surface 5 a of the substrate member 5. It is formed by. The porous semiconductor electrode film 8 may be formed by an electrodeposition method or a hydrothermal treatment method instead of the firing method.

一方、対向基板部材10の表面10aに、白金からなる対向電極11をコーティングすることにより、図1に示すように、対向基板部材10の表面10aに白金の対向電極11を備えた対向電極基板3を形成する。なお、対向電極11として、白金の代わりに黒鉛を使用してもよい。   On the other hand, by coating the counter electrode 11 made of platinum on the surface 10a of the counter substrate member 10, the counter electrode substrate 3 having the platinum counter electrode 11 on the surface 10a of the counter substrate member 10 as shown in FIG. Form. Note that graphite may be used as the counter electrode 11 instead of platinum.

このようにして形成された光電極基板2の多孔性半導体電極膜8と対向電極基板3の対向電極11が対向するように配置し、多孔性半導体電極膜8と対向電極11との間に電解質4を封入して、本実施の形態の色素増感型太陽電池1が完成する(図1参照)。なお、電解質4としては、通常、ヨウ素−ヨウ素化合物、臭素−臭素化合物などの酸化還元対を含有するレドックス電解液を使用することができる。   The porous semiconductor electrode film 8 of the photoelectrode substrate 2 thus formed and the counter electrode 11 of the counter electrode substrate 3 are arranged so as to face each other, and the electrolyte is interposed between the porous semiconductor electrode film 8 and the counter electrode 11. 4 is enclosed, and the dye-sensitized solar cell 1 of the present embodiment is completed (see FIG. 1). In addition, as the electrolyte 4, a redox electrolyte solution containing an oxidation-reduction pair such as an iodine-iodine compound or a bromine-bromine compound can be usually used.

このようにして形成された色素増感型太陽電池1では、外部から太陽光が光電極基板2に入射すると、多孔性半導体膜8に吸着・担持された増感色素が励起され、電子が基底状態から励起状態へ遷移する。励起された増感色素の電子は、多孔性半導体電極膜8を構成するTiOの伝導帯に注入され、チタンからなる金属膜7を経由して透明電極膜6に移動し、この透明電極膜6から(図示しない)外部回路を経由して対向電極11に移動する。この対向電極11に移動した電子は、(電解質4としてヨウ素−ヨウ素化合物を含有するレドックス電解液を使用した場合に)電解質4中の三ヨウ化物イオンを還元してヨウ化物イオンにする。この還元されたヨウ化物イオンは、再び増感色素によって酸化され、増感色素に電子を戻す。このような作用を繰り返して電気エネルギーが取り出される。 In the dye-sensitized solar cell 1 formed in this way, when sunlight is incident on the photoelectrode substrate 2 from the outside, the sensitizing dye adsorbed and supported on the porous semiconductor film 8 is excited, and the electrons are grounded. Transition from state to excited state. The excited electrons of the sensitizing dye are injected into the conduction band of TiO 2 constituting the porous semiconductor electrode film 8 and move to the transparent electrode film 6 via the metal film 7 made of titanium. This transparent electrode film 6 to the counter electrode 11 via an external circuit (not shown). The electrons that have moved to the counter electrode 11 reduce triiodide ions in the electrolyte 4 to iodide ions (when a redox electrolyte containing an iodine-iodine compound is used as the electrolyte 4). This reduced iodide ion is oxidized again by the sensitizing dye and returns electrons to the sensitizing dye. Electric energy is extracted by repeating such an action.

以上のような本実施の形態の色素増感型太陽電池1では、透明電極膜6上に形成されたチタンからなる金属膜7と多孔性半導体電極膜8との接触がショットキー接触になって整流特性を示す。すなわち、多孔性半導体電極膜8から透明電極膜6側に電子が移動し易いのに対して、その逆方向には電子が移動し難くなり、これによって、透明電極膜6から半導体層への逆電子移動を防止して電子と色素との再結合の確率を減少させることができる。   In the dye-sensitized solar cell 1 of the present embodiment as described above, the contact between the metal film 7 made of titanium and the porous semiconductor electrode film 8 formed on the transparent electrode film 6 is a Schottky contact. Shows rectification characteristics. That is, while electrons easily move from the porous semiconductor electrode film 8 to the transparent electrode film 6 side, electrons do not easily move in the opposite direction, and thus the reverse from the transparent electrode film 6 to the semiconductor layer. The probability of recombination of electrons and dyes can be reduced by preventing electron transfer.

本実施の形態の色素増感型太陽電池1では、チタンからなる金属膜7を薄膜領域の厚さにおいて厚くした方が上述した整流特性を向上させることができる。しかし、金属膜7を厚くすると、金属膜7が入射光を反射および吸収する割合が多くなって金属膜7を透過する光量が減少するので、光電変換用の光量が減少する。したがって、金属膜7を適度に薄くして光電変換用の光量の減少の効果よりも上述した逆電子移動防止の効果を大きくし、結果的に変換効率を増大させるように、金属膜7の厚さを調整するのが好ましい。このように光電変換用の光量の減少の効果よりも逆電子移動防止の効果を大きくするためには、金属膜7の厚さを1〜100nmにするのが好ましく、2〜20nmにするのがさらに好ましく、3〜10nmにするのが最も好ましい。また、金属膜7が可視光線に対して10%以上の透過率を有するのが好ましい。なお、光電変換用の光量の減少の効果が逆電子移動防止の効果より大きい場合でも、外観上金属色を有する太陽電池を実現し、太陽電池を鏡として使用することもできる。   In the dye-sensitized solar cell 1 of the present embodiment, the above-described rectification characteristics can be improved by increasing the thickness of the metal film 7 made of titanium in the thickness of the thin film region. However, if the metal film 7 is thickened, the ratio of the metal film 7 that reflects and absorbs incident light increases, and the amount of light transmitted through the metal film 7 decreases, so the amount of light for photoelectric conversion decreases. Therefore, the thickness of the metal film 7 is set so that the metal film 7 is appropriately thinned to increase the above-described effect of preventing reverse electron transfer than the effect of reducing the light amount for photoelectric conversion, and consequently increase the conversion efficiency. It is preferable to adjust the thickness. Thus, in order to increase the effect of preventing reverse electron transfer more than the effect of reducing the amount of light for photoelectric conversion, the thickness of the metal film 7 is preferably 1 to 100 nm, and preferably 2 to 20 nm. More preferably, it is most preferably 3 to 10 nm. Moreover, it is preferable that the metal film 7 has a transmittance of 10% or more with respect to visible light. Even when the effect of reducing the amount of light for photoelectric conversion is greater than the effect of preventing reverse electron movement, it is possible to realize a solar cell having a metallic color in appearance and use the solar cell as a mirror.

なお、本実施の形態の色素増感型太陽電池1では、基板部材5および対向基板部材10をプラスチック材料により形成しているが、ガラスにより形成してもよい。   In the dye-sensitized solar cell 1 of the present embodiment, the substrate member 5 and the counter substrate member 10 are formed of a plastic material, but may be formed of glass.

また、本実施の形態の色素増感型太陽電池1では、基板部材5側から太陽光を入射させるため、基板部材5を光透過性に優れた透明のプラスチック材料により形成しているので、対向基板部材10を必ずしも光透過性に優れたプラスチック材料により形成する必要はない。しかし、対向基板部材10側から太陽光を入射させる場合には、対向基板部材10を光透過性に優れたプラスチック材料により形成するとともに、対向電極11を透明にする必要がある。このように対向基板部材10側から太陽光を入射させる場合には、基板部材5および透明電極膜6に光透過性の悪い材料を使用してもよい。   Further, in the dye-sensitized solar cell 1 according to the present embodiment, since the sunlight is incident from the substrate member 5 side, the substrate member 5 is formed of a transparent plastic material excellent in light transmittance. The substrate member 10 is not necessarily formed of a plastic material having excellent light transmittance. However, when sunlight is incident from the counter substrate member 10 side, it is necessary to form the counter substrate member 10 from a plastic material having excellent light transmittance and to make the counter electrode 11 transparent. In this way, when sunlight is incident from the counter substrate member 10 side, a material having poor light transmittance may be used for the substrate member 5 and the transparent electrode film 6.

また、本実施の形態の色素増感型太陽電池1では、チタンからなる金属膜7を使用しているが、タンタルからなる金属膜を使用しても同様の効果を得ることができる。これらの二つの金属は、多孔性半導体電極膜との接触がショットキー接触になるだけでなく、耐食性が高く、電解質中のヨウ素イオンなどによって腐食することもない。   Moreover, in the dye-sensitized solar cell 1 of the present embodiment, the metal film 7 made of titanium is used, but the same effect can be obtained even if a metal film made of tantalum is used. These two metals not only have a Schottky contact with the porous semiconductor electrode film, but also have high corrosion resistance and are not corroded by iodine ions in the electrolyte.

以下、本発明による色素増感型太陽電池、その光電極基板およびその光電極基板の製造方法の実施例について詳細に説明する。   Hereinafter, examples of the dye-sensitized solar cell, the photoelectrode substrate thereof, and the method for producing the photoelectrode substrate according to the present invention will be described in detail.

[実施例1]
まず、ポリエチレンナフタレート(PEN)からなる基板部材5の表面にITOからなる透明電極膜(ITO膜)6が形成されたITO付き基板部材(一辺の長さが5cmの矩形の平面形状を有し、厚さが125μm、電気抵抗値が10Ω/□の板状部材)を用意した(図2A参照)。このITO付き基板部材を、ターゲット材としてのチタンとともに真空装置内に入れ、この真空装置内にアルゴンガスを50sccmで導入し、高周波放電(13.56MHz、400W)によりターゲット材の表面に生成したプラズマを使用してスパッタリング処理を60秒間施し、ITO膜6上に膜厚10nmのチタンからなる金属膜(チタン膜)7を形成した(図2B参照)。
[Example 1]
First, a substrate member with ITO in which a transparent electrode film (ITO film) 6 made of ITO is formed on the surface of a substrate member 5 made of polyethylene naphthalate (PEN) (having a rectangular planar shape with a side length of 5 cm) A plate member having a thickness of 125 μm and an electric resistance value of 10Ω / □ was prepared (see FIG. 2A). This substrate member with ITO is put in a vacuum apparatus together with titanium as a target material, argon gas is introduced into the vacuum apparatus at 50 sccm, and plasma generated on the surface of the target material by high frequency discharge (13.56 MHz, 400 W). Was used for 60 seconds to form a metal film (titanium film) 7 of titanium having a thickness of 10 nm on the ITO film 6 (see FIG. 2B).

次に、このチタン膜7上に、低温成膜用チタニア塗布ペーストを厚さ50μmになるように塗布した後、150℃で5分間加熱してチタン膜7上に膜厚5μmの多孔性半導体電極膜8を形成し(図2C参照)、その後、多孔性半導体電極膜8にルテニウム錯体色素を吸着させた。このようにして、ITO膜6上にチタン膜7が形成され、このチタン膜7上に増感色素が吸着・担持された多孔性半導体電極膜8が積層して形成された光電極基板2を作製した。   Next, after applying a titania coating paste for low temperature film formation to a thickness of 50 μm on the titanium film 7, the porous semiconductor electrode having a film thickness of 5 μm is heated on the titanium film 7 by heating at 150 ° C. for 5 minutes. A film 8 was formed (see FIG. 2C), and then a ruthenium complex dye was adsorbed on the porous semiconductor electrode film 8. In this way, the titanium film 7 is formed on the ITO film 6, and the photoelectrode substrate 2 formed by laminating the porous semiconductor electrode film 8 on which the sensitizing dye is adsorbed and supported on the titanium film 7 is formed. Produced.

このようにして作製した光電極基板2を使用した色素増感型太陽電池1に、ソーラーシミュレータを用いて光照射エネルギー10mW/cmの疑似太陽光を照射し、電池特性試験を行った。また、比較例として、光電極基板102の構成が光電極基板2の構成と異なる以外は同一の構成を有するように図6に示す従来の色素増感型太陽電池101を作製し、同様の電池特性試験を行った。その結果を図3、図4および表1に示す。なお、図3は、本実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101の電流−電圧特性についての実験結果を比較して示し、図4は、本実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101に光を照射しない状態で、光電極基板2、102と対向電極基板3、103間に電圧を印加した際に流れる電流を示している。また、表1において、Iscは色素増感型太陽電池の出力端子を短絡させたときに両端子間に流れる電流(短絡電流)、Vocは色素増感型太陽電池の出力端子を開放したときの両端子間の電圧(開放電圧)、f.f.は最大出力Pmax(=Imax・Vmax)を開放電圧Vocと電流密度Jsc(1cm当たりの短絡電流Isc)の積で除した値(曲線因子(Fill Factor)f.f.=Pmax/Voc・Jsc)、ηは最大出力Pmaxを(1cm当たりの)照射光量(W)で除した値に100を乗じてパーセントで表示した値(変換効率)を示している。 The dye-sensitized solar cell 1 using the photoelectrode substrate 2 thus produced was irradiated with pseudo-sunlight having a light irradiation energy of 10 mW / cm 2 using a solar simulator, and a battery characteristic test was performed. Further, as a comparative example, the conventional dye-sensitized solar cell 101 shown in FIG. 6 is manufactured so as to have the same configuration except that the configuration of the photoelectrode substrate 102 is different from the configuration of the photoelectrode substrate 2, and the same battery A characteristic test was conducted. The results are shown in FIGS. 3 and 4 and Table 1. FIG. 3 shows a comparison of the experimental results on the current-voltage characteristics of the dye-sensitized solar cell 1 of this example and the dye-sensitized solar cell 101 of the comparative example, and FIG. 4 shows this example. Current flowing when a voltage is applied between the photoelectrode substrates 2 and 102 and the counter electrode substrates 3 and 103 in a state where the dye-sensitized solar cell 1 and the dye-sensitized solar cell 101 of the comparative example are not irradiated with light. Is shown. In Table 1, Isc is a current (short-circuit current) flowing between both terminals when the output terminal of the dye-sensitized solar cell is short-circuited, and Voc is when the output terminal of the dye-sensitized solar cell is opened. Voltage between both terminals (open voltage), f. f. Is a value obtained by dividing the maximum output Pmax (= Imax · Vmax) by the product of the open-circuit voltage Voc and the current density Jsc (short-circuit current Isc per 1 cm 2 ) (fill factor) ff = Pmax / Voc · Jsc ), Η represents a value (conversion efficiency) expressed as a percentage by multiplying 100 by a value obtained by dividing the maximum output Pmax by the irradiation light quantity (W) (per 1 cm 2 ).

Figure 2007048590
Figure 2007048590

図3および表1に示すように、本実施例の色素増感型太陽電池1では、比較例の色素増感型太陽電池101と比べて、チタン膜7による入射光の反射および吸収の影響から短絡電流が10%程度減少しているものの、曲線因子が約1.4倍と著しく向上しているため、結果として変換効率が1.3倍以上になっている。このような本実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101との性能の差は、本実施例の光電極基板2のチタン膜7に起因する整流特性によるものと考えられる。また、図4から、本実施例の色素増感型太陽電池1では、逆方向の電圧に対して電流が流れていないのに対して、比較例の色素増感型太陽電池101では、逆方向の電圧に対して電流が流れていることがわかる。これは、多孔性半導体電極膜8である酸化チタン膜と透明電極膜6であるITO膜との間にチタン膜7が存在することにより、酸化チタン膜とチタン膜との接触がショットキー接触になって整流特性を示すためであると考えられる。これに対して、比較例の光電極基板102では、透明電極膜106から半導体層への逆電子移動を防止することができないので、逆方向にも電流が流れるためであると考えられる。   As shown in FIG. 3 and Table 1, in the dye-sensitized solar cell 1 of this example, compared to the dye-sensitized solar cell 101 of the comparative example, the influence of reflection and absorption of incident light by the titanium film 7 Although the short-circuit current is reduced by about 10%, the fill factor is remarkably improved to about 1.4 times. As a result, the conversion efficiency is 1.3 times or more. The difference in performance between the dye-sensitized solar cell 1 of this example and the dye-sensitized solar cell 101 of the comparative example is due to the rectification characteristics caused by the titanium film 7 of the photoelectrode substrate 2 of this example. It is considered a thing. Also, from FIG. 4, in the dye-sensitized solar cell 1 of this example, no current flows with respect to the reverse voltage, whereas in the dye-sensitized solar cell 101 of the comparative example, the reverse direction. It can be seen that current flows with respect to the voltage of. This is because the titanium film 7 exists between the titanium oxide film as the porous semiconductor electrode film 8 and the ITO film as the transparent electrode film 6 so that the contact between the titanium oxide film and the titanium film becomes Schottky contact. It is thought that this is to show the rectification characteristics. On the other hand, in the photoelectrode substrate 102 of the comparative example, it is considered that the reverse electron transfer from the transparent electrode film 106 to the semiconductor layer cannot be prevented, so that current flows in the reverse direction.

[実施例2]
チタン膜7の膜厚を5nmとした以外は実施例1と同様に色素増感型太陽電池を作製し、実施例1と同様の電池特性試験を行った。その結果を図3および表1に示す。図3および表1に示すように、本実施例の色素増感型太陽電池1では、実施例1よりもチタン膜7が薄くなっているので、実施例1と比べてチタン膜7による入射光の反射および吸収の影響が小さくなって短絡電流が増大し、また、曲線因子も比較例の約1.3倍と向上しているため、変換効率が比較例の約1.7倍になっている。
[Example 2]
A dye-sensitized solar cell was prepared in the same manner as in Example 1 except that the thickness of the titanium film 7 was changed to 5 nm, and the same battery characteristic test as in Example 1 was performed. The results are shown in FIG. As shown in FIG. 3 and Table 1, in the dye-sensitized solar cell 1 of this example, the titanium film 7 is thinner than that of Example 1, so that the incident light from the titanium film 7 is smaller than that of Example 1. The effect of reflection and absorption is reduced, the short circuit current is increased, and the fill factor is improved to about 1.3 times that of the comparative example, so that the conversion efficiency is about 1.7 times that of the comparative example. Yes.

[実施例3]
金属膜7として膜厚5nmのタンタル膜を形成した以外は実施例1と同様に色素増感型太陽電池1を作製し、実施例1と同様の電池特性試験を行った。その結果を図5および表1に示す。なお、図5は、本実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101の電流−電圧特性についての実験結果を比較して示している。
[Example 3]
A dye-sensitized solar cell 1 was produced in the same manner as in Example 1 except that a tantalum film having a thickness of 5 nm was formed as the metal film 7, and the same battery characteristic test as in Example 1 was performed. The results are shown in FIG. In addition, FIG. 5 has shown and compared the experimental result about the current-voltage characteristic of the dye-sensitized solar cell 1 of a present Example, and the dye-sensitized solar cell 101 of a comparative example.

図5および表1に示すように、本実施例の色素増感型太陽電池1では、比較例の色素増感型太陽電池101と比べて、タンタル膜の入射光の反射および吸収の影響から短絡電流が30%程度減少しているものの、曲線因子が1.4倍以上と著しく向上しているため、結果として変換効率が向上している。   As shown in FIG. 5 and Table 1, in the dye-sensitized solar cell 1 of this example, compared to the dye-sensitized solar cell 101 of the comparative example, a short circuit occurred due to the influence of reflection and absorption of incident light of the tantalum film. Although the current is reduced by about 30%, the fill factor is remarkably improved to 1.4 times or more, and as a result, the conversion efficiency is improved.

本発明による光電極基板を備えた色素増感型太陽電池を複数直列に接続し、あるいは、このように複数直列に接続した太陽電池列を並列に接続して、色素増感型太陽電池組立体を構成すれば、所望の電気エネルギーを得ることができる。また、ミラータイプの色素増感型太陽電池を作製することもできる。   A plurality of dye-sensitized solar cells each having a photoelectrode substrate according to the present invention are connected in series, or a plurality of solar cell arrays connected in series are connected in parallel to form a dye-sensitized solar cell assembly. If desired, the desired electrical energy can be obtained. In addition, a mirror type dye-sensitized solar cell can be produced.

本発明による色素増感型太陽電池の実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically embodiment of the dye-sensitized solar cell by this invention. 図1に示す色素増感型太陽電池の光電極基板の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of the photoelectrode substrate of the dye-sensitized solar cell shown in FIG. 図1に示す色素増感型太陽電池の光電極基板の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of the photoelectrode substrate of the dye-sensitized solar cell shown in FIG. 図1に示す色素増感型太陽電池の光電極基板の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of the photoelectrode substrate of the dye-sensitized solar cell shown in FIG. 実施例1および2の色素増感型太陽電池と比較例の色素増感型太陽電池の電流−電圧特性についての実験結果を比較して示す図である。It is a figure which compares and shows the experimental result about the current-voltage characteristic of the dye-sensitized solar cell of Example 1 and 2 and the dye-sensitized solar cell of a comparative example. 実施例1の色素増感型太陽電池と比較例の色素増感型太陽電池の性能を比較して示す図であり、光電極基板と対向電極基板との間に電圧を印加した際に流れる電流を示す図である。It is a figure which compares and shows the performance of the dye-sensitized solar cell of Example 1, and the dye-sensitized solar cell of a comparative example, and is the electric current which flows when a voltage is applied between a photoelectrode substrate and a counter electrode substrate FIG. 実施例2の色素増感型太陽電池と比較例の色素増感型太陽電池の電流−電圧特性についての実験結果を比較して示す図である。It is a figure which compares and shows the experimental result about the current-voltage characteristic of the dye-sensitized solar cell of Example 2, and the dye-sensitized solar cell of a comparative example. 従来の色素増感型太陽電池を模式的に示す断面図である。It is sectional drawing which shows the conventional dye-sensitized solar cell typically.

符号の説明Explanation of symbols

1…色素増感型太陽電池、2…光電極基板、3…対向電極基板、4…電解質、5…基板部材、6…透明電極膜(ITO膜)、7…金属膜、8…多孔性半導体電極膜、10…対向基板部材、11…対向電極
DESCRIPTION OF SYMBOLS 1 ... Dye-sensitized solar cell, 2 ... Photoelectrode substrate, 3 ... Counter electrode substrate, 4 ... Electrolyte, 5 ... Substrate member, 6 ... Transparent electrode film (ITO film), 7 ... Metal film, 8 ... Porous semiconductor Electrode film, 10 ... counter substrate member, 11 ... counter electrode

Claims (11)

基板部材と、この基板部材上に形成された透明電極膜と、この透明電極膜上に形成された金属膜と、この金属膜上に形成された多孔性半導体電極膜と、この多孔性半導体電極膜に吸着または担持された増感色素とを備えたことを特徴とする、色素増感型太陽電池の光電極基板。 A substrate member, a transparent electrode film formed on the substrate member, a metal film formed on the transparent electrode film, a porous semiconductor electrode film formed on the metal film, and the porous semiconductor electrode A photoelectrode substrate for a dye-sensitized solar cell, comprising a sensitizing dye adsorbed or supported on a film. 前記金属膜がチタンからなる膜であることを特徴とする、請求項1に記載の色素増感型太陽電池の光電極基板。 The photoelectrode substrate for a dye-sensitized solar cell according to claim 1, wherein the metal film is a film made of titanium. 前記金属膜がタンタルからなる膜であることを特徴とする、請求項1に記載の色素増感型太陽電池の光電極基板。 The photoelectrode substrate for a dye-sensitized solar cell according to claim 1, wherein the metal film is a film made of tantalum. 前記金属膜の厚さが1〜100nmであることを特徴とする、請求項1乃至3のいずれかに記載の色素増感型太陽電池の光電極基板。 The photoelectrode substrate for a dye-sensitized solar cell according to any one of claims 1 to 3, wherein the metal film has a thickness of 1 to 100 nm. 前記金属膜が可視光線に対して10%以上の透過率を有することを特徴とする、請求項1乃至4のいずれかに記載の色素増感型太陽電池の光電極基板。 5. The photoelectrode substrate for a dye-sensitized solar cell according to claim 1, wherein the metal film has a transmittance of 10% or more with respect to visible light. 請求項1乃至5のいずれかに記載の光電極基板と、この光電極基板の多孔性半導体電極膜に対向して配置された対向電極を備えた対向電極基板と、この対向電極基板と前記光電極基板の間に封入された電解質とからなることを特徴とする、色素増感型太陽電池。 A photoelectrode substrate according to any one of claims 1 to 5, a counter electrode substrate comprising a counter electrode disposed to face the porous semiconductor electrode film of the photoelectrode substrate, the counter electrode substrate and the light A dye-sensitized solar cell comprising an electrolyte sealed between electrode substrates. 基板部材上に透明電極膜を形成する工程と、この透明電極膜上に金属膜を形成する工程と、この金属膜上に多孔性半導体電極膜を形成する工程と、この多孔性半導体電極膜に増感色素を吸着または担持させる工程とを備えたことを特徴とする、色素増感型太陽電池の光電極基板の製造方法。 A step of forming a transparent electrode film on the substrate member; a step of forming a metal film on the transparent electrode film; a step of forming a porous semiconductor electrode film on the metal film; and A method for producing a photoelectrode substrate of a dye-sensitized solar cell, comprising a step of adsorbing or carrying a sensitizing dye. 前記金属膜がチタンからなる膜であることを特徴とする、請求項7に記載の色素増感型太陽電池の光電極基板の製造方法。 The method for producing a photoelectrode substrate of a dye-sensitized solar cell according to claim 7, wherein the metal film is a film made of titanium. 前記金属膜がタンタルからなる膜であることを特徴とする、請求項7に記載の色素増感型太陽電池の光電極基板の製造方法。 The method for producing a photoelectrode substrate of a dye-sensitized solar cell according to claim 7, wherein the metal film is a film made of tantalum. 前記金属膜の厚さが1〜100nmであることを特徴とする、請求項7乃至9のいずれかに記載の色素増感型太陽電池の光電極基板の製造方法。 The method for producing a photoelectrode substrate of a dye-sensitized solar cell according to any one of claims 7 to 9, wherein the metal film has a thickness of 1 to 100 nm. 前記金属膜が可視光線に対して10%以上の透過率を有することを特徴とする、請求項7乃至10のいずれかに記載の色素増感型太陽電池の光電極基板の製造方法。
The method for producing a photoelectrode substrate for a dye-sensitized solar cell according to any one of claims 7 to 10, wherein the metal film has a transmittance of 10% or more with respect to visible light.
JP2005231763A 2005-08-10 2005-08-10 Dye-sensitized solar cell, its photoelectrode substrate, and manufacturing method of photoelectrode substrate Pending JP2007048590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231763A JP2007048590A (en) 2005-08-10 2005-08-10 Dye-sensitized solar cell, its photoelectrode substrate, and manufacturing method of photoelectrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231763A JP2007048590A (en) 2005-08-10 2005-08-10 Dye-sensitized solar cell, its photoelectrode substrate, and manufacturing method of photoelectrode substrate

Publications (1)

Publication Number Publication Date
JP2007048590A true JP2007048590A (en) 2007-02-22

Family

ID=37851252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231763A Pending JP2007048590A (en) 2005-08-10 2005-08-10 Dye-sensitized solar cell, its photoelectrode substrate, and manufacturing method of photoelectrode substrate

Country Status (1)

Country Link
JP (1) JP2007048590A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340710A (en) * 2004-05-31 2005-12-08 Toppan Printing Co Ltd Dye-sensitized solar cell and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340710A (en) * 2004-05-31 2005-12-08 Toppan Printing Co Ltd Dye-sensitized solar cell and its manufacturing method

Similar Documents

Publication Publication Date Title
Raj et al. Surface reinforced platinum counter electrode for quantum dots sensitized solar cells
KR100554179B1 (en) Flexible dye-sensitized solar cell using conducting metal substrate
JP5150818B2 (en) Dye-sensitized solar cell and method for producing the same
Yang et al. Enhanced energy conversion efficiency of the Sr2+-modified nanoporous TiO2 electrode sensitized with a ruthenium complex
JP5531300B2 (en) Dye-sensitized solar cell
US20080115824A1 (en) Dye-sensitized solar cell module having vertically stacked cells and method of manufacturing the same
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
Punnoose et al. Highly catalytic nickel sulfide counter electrode for dye-sensitized solar cells
TWI622178B (en) Pigment-sensitized solar cell with light collecting device
TWI453924B (en) Electrode plate and dye-sensitized photovoltaic cell having the same
US20120024369A1 (en) Photo-chemical solar cell with nanoneedle electrode and method manufacturing the same
Prabakar et al. Visible light enhanced TiO2 thin film bilayer dye sensitized solar cells
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
JP5148835B2 (en) Dye-sensitized solar cell and its photoelectrode substrate
Muliani et al. Transparent dye-sensitized module for solar windows
Mahesh et al. TiO2 microstructure, fabrication of thin film solar cells and introduction to dye sensitized solar cells
JP2008287893A (en) Dye sensitized solar battery and its manufacturing method
JP5025938B2 (en) Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building
Anggraini et al. Modifications of Liquid Electrolyte for Monolithic Dye-sensitized Solar Cells
JP2007048590A (en) Dye-sensitized solar cell, its photoelectrode substrate, and manufacturing method of photoelectrode substrate
TWI449190B (en) Dye-sensitized solar cell
JP2009218152A (en) Photoelectric conversion element and its manufacturing method
JP2008287894A (en) Manufacturing method of pigment-sensitized solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515