JP5025938B2 - Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode - Google Patents

Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode Download PDF

Info

Publication number
JP5025938B2
JP5025938B2 JP2005293137A JP2005293137A JP5025938B2 JP 5025938 B2 JP5025938 B2 JP 5025938B2 JP 2005293137 A JP2005293137 A JP 2005293137A JP 2005293137 A JP2005293137 A JP 2005293137A JP 5025938 B2 JP5025938 B2 JP 5025938B2
Authority
JP
Japan
Prior art keywords
material film
dye
counter electrode
sensitized solar
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005293137A
Other languages
Japanese (ja)
Other versions
JP2007103215A (en
Inventor
三好  幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2005293137A priority Critical patent/JP5025938B2/en
Publication of JP2007103215A publication Critical patent/JP2007103215A/en
Application granted granted Critical
Publication of JP5025938B2 publication Critical patent/JP5025938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、色素増感型太陽電池、その対向電極およびその対向電極の製造方法に関し、特に、光電極と対向電極との間に電解質が封入された色素増感型太陽電池、その対向電極およびその対向電極の製造方法に関する。   The present invention relates to a dye-sensitized solar cell, a counter electrode thereof, and a method of manufacturing the counter electrode, and more particularly, a dye-sensitized solar cell in which an electrolyte is sealed between a photoelectrode and a counter electrode, the counter electrode, and The present invention relates to a method for manufacturing the counter electrode.

近年、環境問題の観点から、光エネルギーを電気エネルギーに変換する太陽電池が注目を集めており、特に、製造コストを低減することができることから、色素増感型太陽電池が注目を集めている。従来の色素増感型太陽電池は、光電変換効率が低いために実用性に乏しかったが、最近、半導体電極を多孔質化して表面積を大きくすることにより、多量の色素を吸着させて、飛躍的に光電変換効率を向上させる技術が開発されている(例えば、特許文献1参照)。   In recent years, from the viewpoint of environmental problems, solar cells that convert light energy into electrical energy have attracted attention. In particular, dye-sensitized solar cells have attracted attention because they can reduce manufacturing costs. Conventional dye-sensitized solar cells were poor in practicality due to low photoelectric conversion efficiency, but recently, a large amount of dye is adsorbed by making the semiconductor electrode porous to increase the surface area. In addition, a technique for improving photoelectric conversion efficiency has been developed (for example, see Patent Document 1).

このような技術を用いた色素増感型太陽電池として、図7に模式的に示すように、光電極102と、対向電極103と、これらの間に封入された電解液104とから構成された色素増感型太陽電池101が知られている。   As schematically shown in FIG. 7, the dye-sensitized solar cell using such a technique is composed of a photoelectrode 102, a counter electrode 103, and an electrolytic solution 104 enclosed between them. A dye-sensitized solar cell 101 is known.

この色素増感型太陽電池101の光電極102は、基板部材105と、この基板部材105の表面に形成された透明電極膜106と、この透明電極膜106上に形成された酸化チタンなどからなる多孔性半導体電極膜107とから構成され、この多孔性半導体電極膜107に色素が吸着している。なお、多孔性半導体電極膜107は、透明電極膜106上に半導体粒子を含有する懸濁液を塗布し、乾燥した後に焼成することによって形成されている。   The photoelectrode 102 of the dye-sensitized solar cell 101 includes a substrate member 105, a transparent electrode film 106 formed on the surface of the substrate member 105, titanium oxide formed on the transparent electrode film 106, and the like. A porous semiconductor electrode film 107 is formed, and a dye is adsorbed to the porous semiconductor electrode film 107. The porous semiconductor electrode film 107 is formed by applying a suspension containing semiconductor particles on the transparent electrode film 106, drying it, and baking it.

一方、色素増感型太陽電池101の対向電極103は、対向基板部材108と、この対向基板部材108上に形成された導電性材料膜110と、この導電性材料膜110上にコーティングされた白金などの触媒からなる導電性触媒材料膜112とから構成されている(例えば、特許文献2参照)。   On the other hand, the counter electrode 103 of the dye-sensitized solar cell 101 includes a counter substrate member 108, a conductive material film 110 formed on the counter substrate member 108, and platinum coated on the conductive material film 110. It is comprised from the electroconductive catalyst material film | membrane 112 which consists of catalysts, such as (refer patent document 2).

この導電性触媒材料膜112と多孔性半導体電極膜107が所定の間隔で離間して対向するように基板部材105と対向基板部材108が配置され、導電性触媒材料膜112と多孔性半導体電極膜107の間に電解液104が封入されて、色素増感型太陽電池101が構成されている。   The substrate member 105 and the counter substrate member 108 are disposed so that the conductive catalyst material film 112 and the porous semiconductor electrode film 107 are opposed to each other with a predetermined interval therebetween. The conductive catalyst material film 112 and the porous semiconductor electrode film An electrolyte solution 104 is enclosed between 107 to form a dye-sensitized solar cell 101.

この色素増感型太陽電池101では、光電極102側から光が入射すると、多孔性半導体電極膜107の表面に吸着されている増感色素が可視領域の光を吸収して励起され、この増感色素の励起によって発生する電子が多孔性半導体電極膜107内を移動して透明電極膜106まで到達する。透明電極膜106まで移動した電子は、透明電極膜106と導電性材料膜110を導通する(図示しない)外部回路を経由して導電性材料膜110に移動する。導電性材料膜110まで移動した電子は、導電性触媒材料膜112を介して電解液104に移動し、電解液104中のイオンによって対向電極103側から光電極102側に運ばれて、多孔性半導体電極膜107の増感色素に戻る。このような作用を繰り返して電気エネルギーが取り出される。   In this dye-sensitized solar cell 101, when light enters from the photoelectrode 102 side, the sensitizing dye adsorbed on the surface of the porous semiconductor electrode film 107 is excited by absorbing light in the visible region. Electrons generated by the excitation of the dye are moved through the porous semiconductor electrode film 107 and reach the transparent electrode film 106. The electrons that have moved to the transparent electrode film 106 move to the conductive material film 110 via an external circuit that conducts the transparent electrode film 106 and the conductive material film 110 (not shown). Electrons that have moved to the conductive material film 110 move to the electrolytic solution 104 through the conductive catalyst material film 112, and are carried from the counter electrode 103 side to the photoelectrode 102 side by ions in the electrolytic solution 104, thereby being porous. Returning to the sensitizing dye of the semiconductor electrode film 107. Electric energy is extracted by repeating such an action.

特表平5−504023号公報(第1頁、図1)JP-T-5-504023 (first page, FIG. 1) 特開2002−298936号公報(段落番号0018)JP 2002-298936 A (paragraph number 0018)

このような従来の色素増感型太陽電池101では、対向電極103の導電性触媒材料膜112の高価な白金などの触媒の使用量を少なくしてコストを削減するために、対向基板部材108上に耐食性の導電性材料(例えば、導電性酸化物として知られている酸化錫や酸化インジウム錫(以下、「ITO」という)などの金属酸化物)からなる導電性材料膜110を形成し、この導電性材料膜110上に白金などの触媒からなる導電性触媒材料膜112を薄くコーティングしている。   In such a conventional dye-sensitized solar cell 101, in order to reduce the cost by reducing the amount of expensive catalyst such as platinum used in the conductive catalyst material film 112 of the counter electrode 103, A conductive material film 110 made of a corrosion-resistant conductive material (for example, a metal oxide such as tin oxide or indium tin oxide (hereinafter referred to as “ITO”) known as a conductive oxide) is formed. A conductive catalyst material film 112 made of a catalyst such as platinum is thinly coated on the conductive material film 110.

また、光電極102側だけでなく対向電極103側からも光を入射させることができるようにし、全体として略透明の所謂シースルータイプの太陽電池を作製することが望まれている。このような所謂シースルータイプの太陽電池を作製するために、対向電極103の対向基板部材108を透明な材料により形成するとともに導電性材料膜110を透明なITOにより形成しても、導電性材料膜110上にコーティングされる導電性触媒材料膜112が光をほとんど透過しない白金などの金属からなるので、導電性触媒材料膜112を薄くするなどの方法によって光を透過させる必要がある。   In addition, it is desired that light can be incident not only from the photoelectrode 102 side but also from the counter electrode 103 side to produce a so-called see-through type solar cell that is substantially transparent as a whole. Even if the counter substrate member 108 of the counter electrode 103 is formed of a transparent material and the conductive material film 110 is formed of transparent ITO in order to manufacture such a so-called see-through type solar cell, the conductive material film Since the conductive catalyst material film 112 coated on 110 is made of a metal such as platinum that hardly transmits light, it is necessary to transmit light by a method such as thinning the conductive catalyst material film 112.

しかし、導電性触媒材料膜112を薄くし過ぎると、対向電極103の触媒能力が低下して、光電変換効率が低下するという問題がある。すなわち、対向電極103の透過率を向上させるために導電性触媒材料膜112を薄くするほど、光電変換効率が低下するという問題がある。   However, if the conductive catalyst material film 112 is made too thin, there is a problem that the catalytic ability of the counter electrode 103 is lowered and the photoelectric conversion efficiency is lowered. That is, there is a problem that the photoelectric conversion efficiency decreases as the conductive catalyst material film 112 is made thinner in order to improve the transmittance of the counter electrode 103.

したがって、本発明は、このような従来の問題点に鑑み、色素増感型太陽電池の対向電極の透過率を向上させることができ且つ色素増感型太陽電池の光電変換効率の低下を防止することができる、色素増感型太陽電池、その対向電極およびその対向電極の製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention can improve the transmittance of the counter electrode of the dye-sensitized solar cell and prevent a decrease in photoelectric conversion efficiency of the dye-sensitized solar cell. An object of the present invention is to provide a dye-sensitized solar cell, a counter electrode thereof, and a method of manufacturing the counter electrode.

本発明者は、上記課題を解決するために鋭意研究した結果、光電極と対向電極との間に電解質が封入された色素増感型太陽電池において、基板部材上に形成された透明導電性材料膜の表面の一部に導電性触媒材料膜を形成することにより、色素増感型太陽電池の対向電極の透過率を向上させることができ且つ色素増感型太陽電池の光電変換効率の低下を防止することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has found that a transparent conductive material formed on a substrate member in a dye-sensitized solar cell in which an electrolyte is sealed between a photoelectrode and a counter electrode. By forming a conductive catalyst material film on a part of the surface of the film, the transmittance of the counter electrode of the dye-sensitized solar cell can be improved and the photoelectric conversion efficiency of the dye-sensitized solar cell can be reduced. The inventors have found that this can be prevented, and have completed the present invention.

すなわち、本発明による色素増感型太陽電池の対向電極は、対向基板部材と、この対向基板部材上に形成された透明導電性材料膜と、この透明導電性材料膜の表面の一部に形成された導電性触媒材料膜とを備え、透明導電性材料の表面の一部を除いた部分が導電性触媒材料膜で覆われていないことを特徴とする。この色素増感型太陽電池の対向電極において、導電性触媒材料膜が形成された透明導電性材料膜の表面の一部の面積が、透明導電性材料膜の表面の全体の面積の95%以下であるのが好ましい。また、導電性触媒材料膜を、所定の間隔で互いに離間した複数の島状部により形成してもよい。また、導電性触媒材料膜を、耐食性金属材料膜を介して透明導電性材料膜の表面の一部に形成してもよく、導電性触媒材料膜が、耐食性金属材料膜と略同一の平面形状を有するのが好ましい。さらに、耐食性金属材料膜がチタンからなる膜であるのが好ましく、導電性触媒材料膜が白金からなる膜であるのが好ましい。   That is, the counter electrode of the dye-sensitized solar cell according to the present invention is formed on the counter substrate member, the transparent conductive material film formed on the counter substrate member, and a part of the surface of the transparent conductive material film. And a portion of the surface of the transparent conductive material excluding a part thereof is not covered with the conductive catalyst material film. In the counter electrode of the dye-sensitized solar cell, the partial area of the surface of the transparent conductive material film on which the conductive catalyst material film is formed is 95% or less of the entire area of the surface of the transparent conductive material film. Is preferred. Further, the conductive catalyst material film may be formed by a plurality of island-like portions separated from each other at a predetermined interval. Further, the conductive catalyst material film may be formed on a part of the surface of the transparent conductive material film via the corrosion-resistant metal material film, and the conductive catalyst material film is substantially the same planar shape as the corrosion-resistant metal material film. It is preferable to have. Further, the corrosion-resistant metal material film is preferably a film made of titanium, and the conductive catalyst material film is preferably a film made of platinum.

また、本発明による色素増感型太陽電池は、上記の対向電極と、この対向電極に対向して配置され、増感色素を吸着または担持した多孔性半導体電極膜を備えた光電極と、これらの対向電極と光電極の間に封入された電解質とからなることを特徴とする。   Further, a dye-sensitized solar cell according to the present invention includes the above-described counter electrode, a photoelectrode provided with a porous semiconductor electrode film that is disposed opposite to the counter electrode and adsorbs or carries the sensitizing dye, and these And an electrolyte sealed between the counter electrode and the photoelectrode.

さらに、本発明による色素増感型太陽電池の対向電極の製造方法は、対向基板部材上に透明導電性材料膜を形成する工程と、この透明導電性材料膜の表面の一部に導電性触媒材料膜を形成する工程とを備えたことを特徴とする。この色素増感型太陽電池の対向電極の製造方法において、導電性触媒材料膜が形成された透明導電性材料膜の表面の一部の面積が、透明導電性材料膜の表面の全体の面積の95%以下であるのが好ましい。また、導電性触媒材料膜を形成する工程が、透明導電性材料膜上に所定の形状のマスクを配置して導電性触媒材料膜を形成する工程であるのが好ましい。また、導電性触媒材料膜を形成する工程が、透明導電性材料膜の表面の一部に耐食性金属材料膜を形成し、この耐食性金属材料膜上に導電性触媒材料膜を形成する工程でもよい。この場合、導電性触媒材料膜を形成する工程が、透明導電性材料膜上に所定の形状のマスクを配置して耐食性金属材料膜を形成した後、マスクを配置した状態で導電性触媒材料膜を形成する工程であるのが好ましい。また、マスクとして、所定の間隔で互いに離間した複数の開口部を有する板状体からなるマスクを使用してもよい。さらに、耐食性金属材料膜がチタンからなる膜であるのが好ましく、導電性触媒材料膜が白金からなる膜であるのが好ましい。   Furthermore, the manufacturing method of the counter electrode of the dye-sensitized solar cell according to the present invention includes a step of forming a transparent conductive material film on a counter substrate member, and a conductive catalyst on a part of the surface of the transparent conductive material film. And a step of forming a material film. In the method of manufacturing the counter electrode of the dye-sensitized solar cell, the partial area of the surface of the transparent conductive material film on which the conductive catalyst material film is formed is equal to the total area of the surface of the transparent conductive material film. It is preferably 95% or less. The step of forming the conductive catalyst material film is preferably a step of forming a conductive catalyst material film by disposing a mask having a predetermined shape on the transparent conductive material film. The step of forming the conductive catalyst material film may be a step of forming a corrosion-resistant metal material film on a part of the surface of the transparent conductive material film and forming the conductive catalyst material film on the corrosion-resistant metal material film. . In this case, after the step of forming the conductive catalyst material film forms a corrosion-resistant metal material film by disposing a mask having a predetermined shape on the transparent conductive material film, the conductive catalyst material film with the mask disposed It is preferable that it is a process of forming. Further, as a mask, a mask made of a plate-like body having a plurality of openings spaced from each other at a predetermined interval may be used. Further, the corrosion-resistant metal material film is preferably a film made of titanium, and the conductive catalyst material film is preferably a film made of platinum.

本発明によれば、色素増感型太陽電池の対向電極の透過率を向上させることができるとともに、色素増感型太陽電池の光電変換効率の低下を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, while the transmittance | permeability of the counter electrode of a dye-sensitized solar cell can be improved, the fall of the photoelectric conversion efficiency of a dye-sensitized solar cell can be prevented.

以下、添付図面を参照して、本発明による色素増感型太陽電池、その対向電極およびその対向電極の製造方法の実施の形態について詳細に説明する。   Hereinafter, embodiments of a dye-sensitized solar cell, a counter electrode thereof, and a method of manufacturing the counter electrode according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明による色素増感型太陽電池の実施の形態を模式的に示している。図1に示すように、本実施の形態の色素増感型太陽電池1は、光電極2と、対向電極3と、これらの間に封入された電解質4とから構成されている。   FIG. 1 schematically shows an embodiment of a dye-sensitized solar cell according to the present invention. As shown in FIG. 1, the dye-sensitized solar cell 1 of the present embodiment includes a photoelectrode 2, a counter electrode 3, and an electrolyte 4 enclosed between them.

光電極2は、透明(光透過性)の基板部材5と、この基板部材5の表面に形成された透明電極膜6と、この透明電極膜6上に形成され、増感色素を吸着・担持する多孔性半導体電極膜7とから構成されている。なお、基板部材5は、アクリル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタリン(PEN)、ポリオレフィン、ポリカーボネート(PC)などの透明樹脂材料、あるいは透明なガラス材料により形成されている。この基板部材5を透明樹脂材料により形成する場合には、射出成形、熱圧縮成形、押出し成形などによって形成することができる。   The photoelectrode 2 is formed on a transparent (light transmissive) substrate member 5, a transparent electrode film 6 formed on the surface of the substrate member 5, and the transparent electrode film 6 to adsorb and carry a sensitizing dye. And a porous semiconductor electrode film 7 to be formed. The substrate member 5 is made of a transparent resin material such as acrylic, polyethylene terephthalate (PET), polyethylene naphthalene (PEN), polyolefin, polycarbonate (PC), or a transparent glass material. When the substrate member 5 is formed of a transparent resin material, it can be formed by injection molding, heat compression molding, extrusion molding, or the like.

一方、対向電極3は、透明の対向基板部材8と、この対向基板部材8上に形成された透明導電性材料膜10と、この透明導電性材料膜10の表面の一部に形成された耐食性金属材料膜11と、この耐食性金属材料膜11上に形成された導電性触媒材料膜12とから構成されている。なお、対向基板部材8は、アクリル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタリン(PEN)、ポリオレフィン、ポリカーボネート(PC)などの透明樹脂材料、あるいは透明なガラス材料により形成されている。この対向基板部材8を透明樹脂材料により形成する場合には、射出成形、熱圧縮成形、押出し成形などによって形成することができる。   On the other hand, the counter electrode 3 includes a transparent counter substrate member 8, a transparent conductive material film 10 formed on the counter substrate member 8, and a corrosion resistance formed on a part of the surface of the transparent conductive material film 10. The metal material film 11 and a conductive catalyst material film 12 formed on the corrosion-resistant metal material film 11 are configured. The counter substrate member 8 is formed of a transparent resin material such as acrylic, polyethylene terephthalate (PET), polyethylene naphthalene (PEN), polyolefin, polycarbonate (PC), or a transparent glass material. When the counter substrate member 8 is formed of a transparent resin material, it can be formed by injection molding, heat compression molding, extrusion molding, or the like.

透明導電性材料膜10は、導電性酸化物として知られている酸化錫や酸化亜鉛などの金属酸化物などからなり、酸化インジウム錫(ITO)からなるのが好ましい。耐食性金属材料膜11は、チタン、タンタル、チタン合金またはタンタル合金からなり、チタンからなるのが好ましい。導電性触媒材料膜12は、白金、カーボンまたはパラジウムからなり、白金からなるのが好ましい。   The transparent conductive material film 10 is made of a metal oxide such as tin oxide or zinc oxide known as a conductive oxide, and is preferably made of indium tin oxide (ITO). The corrosion-resistant metal material film 11 is made of titanium, tantalum, a titanium alloy or a tantalum alloy, and is preferably made of titanium. The conductive catalyst material film 12 is made of platinum, carbon, or palladium, and is preferably made of platinum.

図2および図3に示すように、本実施の形態では、透明導電性材料膜10の表面に、所定の間隔(1〜5000μm程度、好ましくは300μm以下)で互いに離間した(厚さが0〜20nm程度、好ましくは10nm程度の)略正六角形の多数の耐食性金属材料膜11が形成され、これらの耐食性金属材料膜11上には、それぞれの耐食性金属材料膜11と同一形状の(厚さが1〜100nm程度、好ましくは50nm程度の)導電性触媒材料膜12が形成されている。なお、隣接する耐食性金属材料膜11および導電性触媒材料膜12の間の間隔(離間距離)は、光電変換効率を考慮して適宜設定することができ、耐食性金属材料膜11および導電性触媒材料膜12のそれぞれの互いに対向する平行な側面間の間隔(幅)は、上記の離間距離と、必要な透過率とから適宜設定することができる。例えば、離間距離を20μm、耐食性金属材料膜11の厚さを10nm、導電性触媒材料膜12の厚さを50nmとし、耐食性金属材料膜11および導電性触媒材料膜12が形成されている部分がほとんど光を透過せず、耐食性金属材料膜11および導電性触媒材料膜12が形成されていない部分の透過率が90%程度とすると、50%の透過率を得るためには、耐食性金属材料膜11および導電性触媒材料膜12の幅を約40μmにすればよい。   As shown in FIGS. 2 and 3, in this embodiment, the surface of the transparent conductive material film 10 is separated from each other at a predetermined interval (about 1 to 5000 μm, preferably 300 μm or less) (thickness is 0 to 0). A large number of substantially hexagonal corrosion-resistant metal material films 11 (about 20 nm, preferably about 10 nm) are formed, and on these corrosion-resistant metal material films 11, the same shape (thickness as the respective corrosion-resistant metal material films 11). A conductive catalyst material film 12 (about 1 to 100 nm, preferably about 50 nm) is formed. In addition, the space | interval (separation distance) between the adjacent corrosion-resistant metal material film 11 and the electroconductive catalyst material film | membrane 12 can be suitably set in consideration of photoelectric conversion efficiency, and the corrosion-resistant metal material film 11 and the electroconductive catalyst material The distance (width) between the parallel side surfaces of the film 12 facing each other can be set as appropriate based on the above-mentioned separation distance and the required transmittance. For example, a portion where the separation distance is 20 μm, the thickness of the corrosion-resistant metal material film 11 is 10 nm, the thickness of the conductive catalyst material film 12 is 50 nm, and the corrosion-resistant metal material film 11 and the conductive catalyst material film 12 are formed. In order to obtain a transmittance of 50% when the transmittance of the portion that hardly transmits light and where the corrosion-resistant metal material film 11 and the conductive catalyst material film 12 are not formed is about 90%, the corrosion-resistant metal material film 11 and the conductive catalyst material film 12 may have a width of about 40 μm.

なお、耐食性金属材料膜11および導電性触媒材料膜12の平面形状は、六角形に限らず、他の多角形でもよく、円形などの他の形状でもよい。また、耐食性金属材料膜11および導電性触媒材料膜12は、透明導電性材料膜10の表面の一部に形成されていればよく、互いに離間した多数の部分からなる必要はなく、例えば、格子状やハニカム状のように連続した形状を有してもよい。   Note that the planar shapes of the corrosion-resistant metal material film 11 and the conductive catalyst material film 12 are not limited to hexagons, and may be other polygonal shapes or other shapes such as circular shapes. Further, the corrosion-resistant metal material film 11 and the conductive catalyst material film 12 are only required to be formed on a part of the surface of the transparent conductive material film 10, and do not need to be composed of a large number of parts separated from each other. It may have a continuous shape such as a shape or a honeycomb shape.

上述した構造の色素増感型太陽電池1は、以下のように製造することができる。   The dye-sensitized solar cell 1 having the above-described structure can be manufactured as follows.

まず、アルゴンガスと微量の酸素ガスを導入した(図示しない)真空装置内において、ITOをターゲット材とし、高周波放電により生成したプラズマを使用してスパッタリング処理を施すことにより、光電極2の透明の基板部材5の表面にITOからなる透明電極膜6を成膜する。   First, in a vacuum apparatus in which argon gas and a small amount of oxygen gas are introduced (not shown), ITO is used as a target material, and sputtering treatment is performed using plasma generated by high frequency discharge. A transparent electrode film 6 made of ITO is formed on the surface of the substrate member 5.

次に、このようにして形成された透明電極膜6上に、二酸化チタン(TiO)などからなる多孔性半導体電極膜7を形成する。この多孔性半導体電極膜7は、半導体粒子を含有する懸濁液を透明電極膜6上に塗布し、その塗布した懸濁液を乾燥した後に焼成することによって形成することができる。このようにして形成された多孔性半導体電極膜7に、光電変換機能を有する増感色素(例えば、ルテニウム錯体)を吸着・担持させる。なお、多孔性半導体電極膜7は、二酸化チタンの代わりに酸化亜鉛などによって形成してもよく、焼成法の代わりに電析法や水熱処理法などによって形成してもよい。 Next, a porous semiconductor electrode film 7 made of titanium dioxide (TiO 2 ) or the like is formed on the transparent electrode film 6 thus formed. The porous semiconductor electrode film 7 can be formed by applying a suspension containing semiconductor particles on the transparent electrode film 6, drying the applied suspension, and firing the suspension. A sensitizing dye (for example, ruthenium complex) having a photoelectric conversion function is adsorbed and supported on the porous semiconductor electrode film 7 thus formed. The porous semiconductor electrode film 7 may be formed by zinc oxide or the like instead of titanium dioxide, or may be formed by an electrodeposition method or a hydrothermal treatment method instead of the firing method.

また、アルゴンガスと微量の酸素ガスを導入した(図示しない)真空装置内において、ITOをターゲット材とし、高周波放電により生成したプラズマを使用してスパッタリング処理を施すことにより、対向電極3の透明の対向基板部材8の表面にITOからなる透明導電性材料膜10を成膜する。   In addition, in a vacuum apparatus (not shown) in which argon gas and a small amount of oxygen gas are introduced (not shown), ITO is used as a target material, and sputtering treatment is performed using plasma generated by high-frequency discharge. A transparent conductive material film 10 made of ITO is formed on the surface of the counter substrate member 8.

次に、図4に示すように所定の間隔で互いに離間した略同一の大きさの略正六角形の開口部が形成された板状体からなるマスク20を透明導電性材料膜10上に配置し、透明導電性材料膜10上に所定の間隔で互いに離間した略同一の大きさの略正六角形の多数の耐食性金属材料膜11を成膜する。チタンからなる耐食性金属材料膜11を成膜する場合には、ターゲット材としてチタンを使用し、高周波放電により生成したプラズマによりスパッタリング処理を施す。なお、マスク20の開口部の形状は、六角形である必要はなく、他の多角形または円形などの他の形状でもよい。また、耐食性金属材料膜11は、スパッタリング法の代わりに蒸着法やイオンプレーティング法などにより形成してもよい。   Next, as shown in FIG. 4, a mask 20 made of a plate-like body having substantially regular hexagonal openings having substantially the same size and spaced apart from each other at a predetermined interval is disposed on the transparent conductive material film 10. On the transparent conductive material film 10, a number of substantially regular hexagonal corrosion-resistant metal material films 11 having substantially the same size and spaced apart from each other at a predetermined interval are formed. When the corrosion-resistant metal material film 11 made of titanium is formed, titanium is used as a target material and a sputtering process is performed by plasma generated by high frequency discharge. The shape of the opening of the mask 20 does not need to be a hexagon, and may be another shape such as another polygon or a circle. Further, the corrosion-resistant metal material film 11 may be formed by vapor deposition or ion plating instead of sputtering.

次に、マスク20を透明導電性材料膜10上に配置したまま、それぞれの耐食性金属材料膜11上に導電性触媒材料膜12を成膜する。白金からなる導電性触媒材料膜12を成膜する場合には、ターゲット材として白金を使用し、直流放電により生成したプラズマによりスパッタリング処理を施す。   Next, the conductive catalyst material film 12 is formed on each corrosion-resistant metal material film 11 while the mask 20 is disposed on the transparent conductive material film 10. When the conductive catalyst material film 12 made of platinum is formed, platinum is used as a target material, and a sputtering process is performed using plasma generated by direct current discharge.

このようにして形成された光電極2の多孔性半導体電極膜7と対向電極3の導電性触媒材料膜12が対向するように配置し、多孔性半導体電極膜7と導電性触媒材料膜12との間に電解質4を封入して、本実施の形態の色素増感型太陽電池1が完成する(図1参照)。なお、電解質4としては、通常、ヨウ素−ヨウ素化合物、臭素−臭素化合物などの酸化還元対を含有するレドックス電解液を使用することができる。また、電解質4として、液体状の電解質の他、ゲル化剤やP型半導体(CuI)などにより固体化した電解質を使用してもよい。   The porous semiconductor electrode film 7 of the photoelectrode 2 thus formed and the conductive catalyst material film 12 of the counter electrode 3 are arranged so as to face each other, and the porous semiconductor electrode film 7 and the conductive catalyst material film 12 are The electrolyte 4 is encapsulated in between to complete the dye-sensitized solar cell 1 of the present embodiment (see FIG. 1). In addition, as the electrolyte 4, a redox electrolyte solution containing an oxidation-reduction pair such as an iodine-iodine compound or a bromine-bromine compound can be usually used. In addition to the liquid electrolyte, an electrolyte solidified with a gelling agent or a P-type semiconductor (CuI) may be used as the electrolyte 4.

このようにして形成された色素増感型太陽電池1では、外部から太陽光が光電極2に入射すると、多孔性半導体膜7に吸着・担持された増感色素が励起され、増感色素の電子が基底状態から励起状態へ遷移する。励起された増感色素の電子は、多孔性半導体電極膜7を構成するTiOの伝導帯に注入され、透明電極膜6に移動し、この透明電極膜6から(図示しない)外部回路を経由して対向電極3の耐食性金属材料膜11に移動する。この耐食性金属材料膜11に移動した電子は、導電性触媒材料膜12を介して電解質4側に移動し、電解質4中のイオンに運ばれて増感色素に戻る。このような作用を繰り返して電気エネルギーが取り出される。 In the dye-sensitized solar cell 1 formed in this manner, when sunlight enters the photoelectrode 2 from the outside, the sensitizing dye adsorbed and supported on the porous semiconductor film 7 is excited, and the sensitizing dye Electrons transition from the ground state to the excited state. The excited electrons of the sensitizing dye are injected into the conduction band of TiO 2 constituting the porous semiconductor electrode film 7, move to the transparent electrode film 6, and pass through an external circuit (not shown) from the transparent electrode film 6. Then, it moves to the corrosion-resistant metal material film 11 of the counter electrode 3. The electrons that have moved to the corrosion-resistant metal material film 11 move to the electrolyte 4 side through the conductive catalyst material film 12, and are carried by ions in the electrolyte 4 to return to the sensitizing dye. Electric energy is extracted by repeating such an action.

以下、本発明による色素増感型太陽電池、その対向電極およびその対向電極の製造方法の実施例について詳細に説明する。   Hereinafter, examples of the dye-sensitized solar cell, the counter electrode thereof, and the method of manufacturing the counter electrode according to the present invention will be described in detail.

[実施例1]
まず、ポリエチレンナフタレート(PEN)からなる基板部材5上にITOからなる透明電極膜(ITO膜)6が形成されたITO付き基板部材(一辺の長さが5cmの矩形の平面形状を有し、厚さが125μm、電気抵抗値が10Ω/□の板状部材)を用意した。このITO付き基板部材のITO膜6上に、低温成膜用チタニア塗布ペーストを厚さ50μmになるように塗布した後、150℃で5分間加熱してITO膜6上に膜厚5μmの多孔性半導体電極膜7を形成し、その後、多孔性半導体電極膜7にルテニウム錯体色素を吸着させた。このようにして、増感色素が吸着・担持された多孔性半導体電極膜7がITO膜6上に形成された光電極2を作製した。
[Example 1]
First, a substrate member with ITO in which a transparent electrode film (ITO film) 6 made of ITO is formed on a substrate member 5 made of polyethylene naphthalate (PEN) (having a rectangular planar shape with a side length of 5 cm, A plate member having a thickness of 125 μm and an electric resistance value of 10Ω / □ was prepared. After applying a titania coating paste for low-temperature film formation to a thickness of 50 μm on the ITO film 6 of the substrate member with ITO, the film is heated at 150 ° C. for 5 minutes to have a thickness of 5 μm on the ITO film 6. A semiconductor electrode film 7 was formed, and then a ruthenium complex dye was adsorbed on the porous semiconductor electrode film 7. Thus, the photoelectrode 2 in which the porous semiconductor electrode film 7 on which the sensitizing dye was adsorbed and supported was formed on the ITO film 6 was produced.

また、ポリエチレンテレフタレート(PET)からなる対向基板部材8上にITOからなる透明導電性材料膜10が形成されたITO付き対向基板部材(一辺の長さが5cmの矩形の平面形状を有し、厚さが125μmの板状部材)を用意した。このITO付き対向基板部材の透明導電性材料膜10上に、互いに対向する平行な側面間の間隔が約50μmの略正六角形の多数の開口部が互いに一定の間隔(約20μm)で離間して形成された板状のステンレス製のマスク20を配置してスパッタリング処理を施すことにより、互いに対向する平行な側面間の間隔が約50μmの略正六角形の平面形状で厚さが約10nmのチタンからなる多数の耐食性金属材料膜11を成膜した。次に、マスク20を配置したまま、スパッタリング処理を施すことにより、それぞれの耐食性金属材料膜11上に厚さが約50nmの白金からなる導電性触媒材料膜12を成膜した。このようにして形成された対向電極3としての導電性フィルムのシート抵抗は10Ω/□であり、透過率は47%であった。   Further, the counter substrate member with ITO in which the transparent conductive material film 10 made of ITO is formed on the counter substrate member 8 made of polyethylene terephthalate (PET) (having a rectangular planar shape with a side length of 5 cm, A plate member having a thickness of 125 μm was prepared. On the transparent conductive material film 10 of the counter substrate member with ITO, a number of substantially regular hexagonal openings with a distance between parallel side surfaces facing each other of about 50 μm are spaced apart from each other at a constant distance (about 20 μm). The formed plate-like stainless steel mask 20 is disposed and subjected to sputtering treatment, so that a substantially regular hexagonal planar shape with a distance between parallel side surfaces facing each other of about 50 μm is formed from titanium having a thickness of about 10 nm. A number of corrosion-resistant metal material films 11 were formed. Next, the conductive catalyst material film 12 made of platinum having a thickness of about 50 nm was formed on each corrosion-resistant metal material film 11 by performing a sputtering process with the mask 20 placed. The sheet resistance of the conductive film as the counter electrode 3 formed in this way was 10Ω / □, and the transmittance was 47%.

このようにして形成された光電極2の多孔性半導体電極膜7と対向電極3の導電性触媒材料膜12が対向するように配置し、多孔性半導体電極膜7と導電性触媒材料膜12との間に電解質4としてレドックス電解液を封入して、本実施例の色素増感型太陽電池1を作製した。   The porous semiconductor electrode film 7 of the photoelectrode 2 thus formed and the conductive catalyst material film 12 of the counter electrode 3 are arranged so as to face each other, and the porous semiconductor electrode film 7 and the conductive catalyst material film 12 are In the meantime, a redox electrolyte solution was sealed as the electrolyte 4 to prepare the dye-sensitized solar cell 1 of this example.

このようにして作製した色素増感型太陽電池1に、ソーラーシミュレータを用いて光照射エネルギー10mW/cmの疑似太陽光を照射し、電池特性試験を行った。また、比較例として、対向電極3の代わりに対向電極103を使用した以外、すなわち、導電性触媒材料膜112を対向電極103の全面に形成した以外は同一の構成を有するように図7に示す従来の色素増感型太陽電池101を作製し、同様の電池特性試験を行った。その結果を図5、図6および表1に示す。なお、図5は、本実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101に表面側(光電極側)から光を照射した場合の電流−電圧特性についての実験結果を比較して示し、図5は、本実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101に裏面側(対向電極側)から光を照射した場合の電流−電圧特性についての実験結果を比較して示している。また、表1において、Iscは色素増感型太陽電池の出力端子を短絡させたときに両端子間に流れる電流(短絡電流)、Vocは色素増感型太陽電池の出力端子を開放したときの両端子間の電圧(開放電圧)、f.f.は最大出力Pmax(=Imax・Vmax)を開放電圧Vocと電流密度Jsc(1cm当たりの短絡電流Isc)の積で除した値(曲線因子(Fill Factor)f.f.=Pmax/Voc・Jsc)、ηは最大出力Pmaxを(1cm当たりの)照射光量(W)で除した値に100を乗じてパーセントで表示した値(変換効率)を示している。 The dye-sensitized solar cell 1 thus produced was irradiated with pseudo-sunlight having a light irradiation energy of 10 mW / cm 2 using a solar simulator, and a battery characteristic test was performed. Further, as a comparative example, FIG. 7 shows the same configuration except that the counter electrode 103 is used instead of the counter electrode 3, that is, the conductive catalyst material film 112 is formed on the entire surface of the counter electrode 103. A conventional dye-sensitized solar cell 101 was produced and subjected to the same battery characteristic test. The results are shown in FIGS. 5 and 6 and Table 1. FIG. 5 shows an experiment on current-voltage characteristics when the dye-sensitized solar cell 1 of this example and the dye-sensitized solar cell 101 of the comparative example are irradiated with light from the surface side (photoelectrode side). The results are shown in comparison, and FIG. 5 shows the current when the dye-sensitized solar cell 1 of this example and the dye-sensitized solar cell 101 of the comparative example are irradiated with light from the back surface side (opposite electrode side). The experimental result about a voltage characteristic is compared and shown. In Table 1, Isc is a current (short-circuit current) flowing between both terminals when the output terminal of the dye-sensitized solar cell is short-circuited, and Voc is when the output terminal of the dye-sensitized solar cell is opened. Voltage between both terminals (open voltage), f. f. Is a value obtained by dividing the maximum output Pmax (= Imax · Vmax) by the product of the open circuit voltage Voc and the current density Jsc (short circuit current Isc per 1 cm 2 ) (fill factor) ff = Pmax / Voc · Jsc ), Η represents a value (conversion efficiency) expressed as a percentage by multiplying 100 by a value obtained by dividing the maximum output Pmax by the irradiation light quantity (W) (per 1 cm 2 ).

Figure 0005025938
Figure 0005025938

図5および表1に示すように、本実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101の表面側(光電極側)から光を照射した場合には、本実施例の色素増感型太陽電池1では、比較例の色素増感型太陽電池101と比べて、短絡電流がそれ程減少しておらず(比較例では0.640mAであるのに対して、本実施例では0.622mA)、曲線因子も変化していないため(いずれも0.589)、変換効率がそれ程低下していない(比較例では2.43%であるのに対して、本実施例では2.34%)。一方、図6および表1に示すように、本実施例の色素増感型太陽電池1と比較例の色素増感型太陽電池101の裏面側(対向電極側)から光を照射した場合には、比較例の色素増感型太陽電池101では、光をほとんど透過しないので発電しないが、本実施例の色素増感型太陽電池1では、透過率が47%であり、短絡電流も比較的高く(0.228mA)、曲線因子も非常に高いため(0.584)、変換効率も比較例(変換効率がほぼ0%)と比べて非常に高くなっている(0.77%)。   As shown in FIG. 5 and Table 1, when light was irradiated from the surface side (photoelectrode side) of the dye-sensitized solar cell 1 of this example and the dye-sensitized solar cell 101 of the comparative example, In the dye-sensitized solar cell 1 of the example, the short-circuit current is not so much reduced as compared to the dye-sensitized solar cell 101 of the comparative example (in contrast to 0.640 mA in the comparative example, this In the example, 0.622 mA) and the fill factor has not changed (both are 0.589), so the conversion efficiency has not decreased so much (2.43% in the comparative example, whereas this example) Then 2.34%). On the other hand, as shown in FIG. 6 and Table 1, when light is irradiated from the back side (counter electrode side) of the dye-sensitized solar cell 1 of this example and the dye-sensitized solar cell 101 of the comparative example, The dye-sensitized solar cell 101 of the comparative example does not generate power because it hardly transmits light. However, the dye-sensitized solar cell 1 of this example has a transmittance of 47% and a relatively short circuit current. (0.228 mA) and the fill factor is very high (0.584), so the conversion efficiency is also very high (0.77%) compared to the comparative example (conversion efficiency is almost 0%).

[実施例2および3]
マスク20の開口部の互いに対向する平行な側面間の間隔を約30μm(実施例2)と約10μm(実施例3)にした以外は実施例1と同様の方法により、透過率68%(実施例2)と透過率89%(実施例3)の対向電極3を作製し、実施例1と同様の電池特性試験を行った。その結果を図5、図6および表1に示す。
[Examples 2 and 3]
The transmittance is 68% (implemented) in the same manner as in Example 1 except that the interval between the parallel side surfaces of the opening of the mask 20 is about 30 μm (Example 2) and about 10 μm (Example 3). Example 2) and a counter electrode 3 having a transmittance of 89% (Example 3) were produced, and the same battery characteristic test as in Example 1 was performed. The results are shown in FIGS. 5 and 6 and Table 1.

図5、図6および表1に示すように、実施例2および3では、実施例1と同様に、色素増感型太陽電池1の表面側(光電極側)から光を照射した場合には、変換効率が比較例と比べてそれ程低下していないにもかかわらず、色素増感型太陽電池1の裏面側(対向電極側)から光を照射した場合には、変換効率が比較例(変換効率がほぼ0%)と比べて非常に高くなっているのがわかる。   As shown in FIGS. 5 and 6 and Table 1, in Examples 2 and 3, as in Example 1, when light was irradiated from the surface side (photoelectrode side) of the dye-sensitized solar cell 1 When the light is irradiated from the back side (opposite electrode side) of the dye-sensitized solar cell 1 even though the conversion efficiency is not so much lower than that of the comparative example, the conversion efficiency is comparative example (conversion It can be seen that the efficiency is very high as compared to (approximately 0%).

本発明による対向電極を備えた色素増感型太陽電池を複数直列に接続し、あるいは、このように複数直列に接続した太陽電池列を並列に接続して、色素増感型太陽電池組立体を構成すれば、所望の電気エネルギーを得ることができる。また、所謂シースルーの色素増感型太陽電池を作製することもできる。   A plurality of dye-sensitized solar cells each having a counter electrode according to the present invention are connected in series, or a plurality of solar cell arrays connected in series are connected in parallel to form a dye-sensitized solar cell assembly. If constituted, desired electrical energy can be obtained. In addition, so-called see-through dye-sensitized solar cells can also be produced.

本発明による色素増感型太陽電池の実施の形態を模式的に示す断面図である。It is sectional drawing which shows typically embodiment of the dye-sensitized solar cell by this invention. 図1に示す色素増感型太陽電池の対向電極を模式的に示す断面図である。It is sectional drawing which shows typically the counter electrode of the dye-sensitized solar cell shown in FIG. 図2に示す色素増感型太陽電池の対向電極の平面図である。It is a top view of the counter electrode of the dye-sensitized solar cell shown in FIG. 図2に示す色素増感型太陽電池の対向電極の製造に使用するマスクの平面図である。It is a top view of the mask used for manufacture of the counter electrode of the dye-sensitized solar cell shown in FIG. 実施例と比較例の色素増感型太陽電池の光電極側から光を入射された場合の電流−電圧特性についての実験結果を比較して示す図である。It is a figure which compares and shows the experimental result about the current-voltage characteristic when light injects from the photoelectrode side of the dye-sensitized solar cell of an Example and a comparative example. 実施例の色素増感型太陽電池の対向電極側から光を入射させた場合の電流−電圧特性についての実験結果を比較して示す図である。It is a figure which compares and shows the experimental result about the current-voltage characteristic at the time of making light enter from the counter electrode side of the dye-sensitized solar cell of an Example. 従来の色素増感型太陽電池を模式的に示す断面図である。It is sectional drawing which shows the conventional dye-sensitized solar cell typically.

符号の説明Explanation of symbols

1…色素増感型太陽電池、2…光電極、3…対向電極、4…電解質、5…基板部材、6…透明電極膜(ITO膜)、7…多孔性半導体電極膜、8…対向基板部材、10…透明導電性材料膜、11…耐食性金属材料膜、12…導電性触媒材料膜、20…マスク   DESCRIPTION OF SYMBOLS 1 ... Dye-sensitized solar cell, 2 ... Photoelectrode, 3 ... Counter electrode, 4 ... Electrolyte, 5 ... Substrate member, 6 ... Transparent electrode film (ITO film), 7 ... Porous semiconductor electrode film, 8 ... Counter substrate Member: 10 ... Transparent conductive material film, 11 ... Corrosion-resistant metal material film, 12 ... Conductive catalyst material film, 20 ... Mask

Claims (7)

対向基板部材と、この対向基板部材上に形成された透明導電性材料膜と、この透明導電性材料膜の表面の一部に所定の間隔で互いに離間するように形成された複数の島状部からなる導電性触媒材料膜とを備え、前記透明導電性材料の表面の一部を除いた部分が前記導電性触媒材料膜で覆われていないことを特徴とする、色素増感型太陽電池の対向電極。 A counter substrate member, a transparent conductive material film formed on the counter substrate member, and a plurality of islands formed on a part of the surface of the transparent conductive material film so as to be separated from each other at a predetermined interval And a portion of the surface of the transparent conductive material excluding a part of the surface of the transparent conductive material is not covered with the conductive catalyst material film. Counter electrode. 前記導電性触媒材料膜が形成された前記透明導電性材料膜の表面の一部の面積が、前記透明導電性材料膜の表面の全体の面積の95%以下であることを特徴とする、請求項1に記載の色素増感型太陽電池の対向電極。 The partial area of the surface of the transparent conductive material film on which the conductive catalyst material film is formed is 95% or less of the entire area of the surface of the transparent conductive material film, Item 2. The counter electrode of the dye-sensitized solar cell according to Item 1. 前記導電性触媒材料膜が、耐食性金属材料膜を介して前記透明導電性材料膜の表面の一部に形成されていることを特徴とする、請求項1または2に記載の色素増感型太陽電池の対向電極。 3. The dye-sensitized solar according to claim 1, wherein the conductive catalyst material film is formed on a part of the surface of the transparent conductive material film via a corrosion-resistant metal material film. The counter electrode of the battery. 前記導電性触媒材料膜が、前記耐食性金属材料膜と略同一の平面形状を有することを特徴とする、請求項3に記載の色素増感型太陽電池の対向電極。 The counter electrode of the dye-sensitized solar cell according to claim 3, wherein the conductive catalyst material film has substantially the same planar shape as the corrosion-resistant metal material film. 前記耐食性金属材料膜がチタンからなる膜であることを特徴とする、請求項3または4に記載の色素増感型太陽電池の対向電極。 The counter electrode of the dye-sensitized solar cell according to claim 3 or 4, wherein the corrosion-resistant metal material film is a film made of titanium. 前記導電性触媒材料膜が白金からなる膜であることを特徴とする、請求項1乃至5のいずれかに記載の色素増感型太陽電池の対向電極。 The counter electrode of the dye-sensitized solar cell according to any one of claims 1 to 5, wherein the conductive catalyst material film is a film made of platinum. 請求項1乃至6のいずれかに記載の対向電極と、この対向電極に対向して配置され、増感色素を吸着または担持した多孔性半導体電極膜を備えた光電極と、これらの対向電極と光電極の間に封入された電解質とからなることを特徴とする、色素増感型太陽電池。 A counter electrode according to any one of claims 1 to 6, a photoelectrode including a porous semiconductor electrode film disposed opposite to the counter electrode and adsorbing or carrying a sensitizing dye, and the counter electrode A dye-sensitized solar cell comprising an electrolyte encapsulated between photoelectrodes.
JP2005293137A 2005-10-06 2005-10-06 Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode Expired - Fee Related JP5025938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293137A JP5025938B2 (en) 2005-10-06 2005-10-06 Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293137A JP5025938B2 (en) 2005-10-06 2005-10-06 Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode

Publications (2)

Publication Number Publication Date
JP2007103215A JP2007103215A (en) 2007-04-19
JP5025938B2 true JP5025938B2 (en) 2012-09-12

Family

ID=38029952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293137A Expired - Fee Related JP5025938B2 (en) 2005-10-06 2005-10-06 Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode

Country Status (1)

Country Link
JP (1) JP5025938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137378B1 (en) * 2010-07-16 2012-04-20 삼성에스디아이 주식회사 Dye-sensitized solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100548030B1 (en) * 2003-12-26 2006-02-02 한국전자통신연구원 Transparent solar module and method for manufacturing the same
JP4892186B2 (en) * 2004-12-06 2012-03-07 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006210102A (en) * 2005-01-27 2006-08-10 Kyocera Corp Photoelectric conversion device and photovoltaic generator using it
JP4789480B2 (en) * 2005-02-14 2011-10-12 住友大阪セメント株式会社 Method for producing dye-sensitized photoelectric conversion element and paint for dye-sensitized photoelectric conversion element

Also Published As

Publication number Publication date
JP2007103215A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
Fu et al. Electrodeposition of platinum on plastic substrates as counter electrodes for flexible dye-sensitized solar cells
JP5388209B2 (en) Method for producing dye-sensitized solar cell
EP1659599A2 (en) Counter electrode for dye sensitizing solar cell, and dye sensitzing solar cell having same
KR101729888B1 (en) Photoelectrochemical Water Splitting System Using Porous Transition Metal Oxide Semiconductor
JPWO2008001488A1 (en) Dye-sensitized solar cell and method for producing the same
JP2009245750A (en) Dye-sensitized solar battery and method of manufacturing the same
KR20110124239A (en) Dye-sensitized solar cell
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
Punnoose et al. Highly catalytic nickel sulfide counter electrode for dye-sensitized solar cells
Keothongkham et al. Electrochemically deposited polypyrrole for dye-sensitized solar cell counter electrodes
TWI622178B (en) Pigment-sensitized solar cell with light collecting device
JP5489621B2 (en) Photoelectric conversion element and photovoltaic device using the photoelectric conversion element
Hongsith et al. Efficiency enhancement of ZnO dye-sensitized solar cells by modifying photoelectrode and counterelectrode
KR101140784B1 (en) Preparation method of dye-sensitized solar cell module including scattering layers
JP5699828B2 (en) Method for producing anode for dye-sensitized solar cell
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
JP5148835B2 (en) Dye-sensitized solar cell and its photoelectrode substrate
JP5025938B2 (en) Dye-sensitized solar cell, counter electrode thereof, and method of manufacturing the counter electrode
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell
Effendi et al. Studies on graphene zinc-oxide nanocomposites photoanodes for high-efficient dye-sensitized solar cells
KR100993847B1 (en) Dye-sensitized solar cell molule and manufacturing method thereof
RU2552597C1 (en) Flexible solar element
Orebiyi et al. Dye-sensitized solar cells
JP4841574B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5685708B2 (en) Method for producing dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees