JP2007285804A - Eddy-current film thickness meter - Google Patents

Eddy-current film thickness meter Download PDF

Info

Publication number
JP2007285804A
JP2007285804A JP2006111841A JP2006111841A JP2007285804A JP 2007285804 A JP2007285804 A JP 2007285804A JP 2006111841 A JP2006111841 A JP 2006111841A JP 2006111841 A JP2006111841 A JP 2006111841A JP 2007285804 A JP2007285804 A JP 2007285804A
Authority
JP
Japan
Prior art keywords
eddy current
heat
film thickness
coil
thickness meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006111841A
Other languages
Japanese (ja)
Other versions
JP5065614B2 (en
Inventor
Naoki Mizutani
直樹 水谷
Yoshi Chin
凱 陳
Ko Fuwa
耕 不破
Junpei Yuyama
純平 湯山
Kyuzo Nakamura
久三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006111841A priority Critical patent/JP5065614B2/en
Publication of JP2007285804A publication Critical patent/JP2007285804A/en
Application granted granted Critical
Publication of JP5065614B2 publication Critical patent/JP5065614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in cases where it is intended to inspect the formed state of a conductive thin film formed on a semiconductor substrate or a glass substrate for a liquid crystal display by using an eddy-current film thickness meter, that a measuring object generates heat, the temperature of a detection coil rises owing to the heat, which can cause a measurement error, the temperature rise of the detection coil increases the resistance value of the detection coil, the balance of a bridge is lost to cause an extra output voltage, and the film thickness of the measuring object fails to be correctly measured. <P>SOLUTION: Heat (radiant heat, heat convection of air) from the measuring object is prevented from reaching the detection coil by using a shield sheet, thereby keeping an impedance change due to a heat effect from occurring. Or else, an impedance change due to a heat effect is canceled out in a bridge at a subsequent stage by actively conducting heat (radiant heat, heat convection of air) from the measuring object to the detection coil and to a reference coil. By these means, the film thickness can be correctly measured even if the measuring object is at a high temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属薄膜等の導電性の被膜の厚さを非接触で測定する渦電流式膜厚計に関し、詳しくは検出コイルが被測定物から受ける熱の対策に関する。   The present invention relates to an eddy current film thickness meter that measures the thickness of a conductive film such as a metal thin film in a non-contact manner, and more particularly to measures against heat received by a detection coil from an object to be measured.

半導体基板上、又は液晶ディスプレイ用のガラス基板上に形成された導電性薄膜の成膜状態を非破壊で検査する導電膜検査装置として渦電流式膜厚計が用いられている。   An eddy current film thickness meter is used as a conductive film inspection apparatus for nondestructively inspecting a film formation state of a conductive thin film formed on a semiconductor substrate or a glass substrate for a liquid crystal display.

渦電流式膜厚計は、導体を交番磁界中に置くと、その導体内に磁界を打ち消す方向に渦電流が流れ、この渦電流の大きさや分布が、導体の形状、導電率、内部欠陥などにより変化することを利用して被膜の電気抵抗値を測定するという原理に基いた計測装置である。これは、渦電流により発生する磁界が相互誘導作用により検出コイルのインピ−ダンスを変化させるので、このインピ−ダンスの変化を電圧値や位相の変化として検出することにより、被検査物である導体の状態を知る方法である(例えば、特許文献1参照)。   In an eddy current film thickness meter, when a conductor is placed in an alternating magnetic field, eddy current flows in the direction to cancel the magnetic field in the conductor, and the size and distribution of this eddy current depends on the shape of the conductor, conductivity, internal defects, etc. It is a measuring device based on the principle of measuring the electrical resistance value of the film by utilizing the change due to the above. This is because the magnetic field generated by the eddy current changes the impedance of the detection coil due to the mutual inductive action. By detecting this change in impedance as a change in voltage value or phase, the conductor that is the object to be inspected is detected. It is a method of knowing the state of (see, for example, Patent Document 1).

ここで、膜厚測定装置について、図9〜11を使用して説明する。図9に膜厚測定装置91の概略全体構成を示す。図9に示すように、膜厚測定装置91は、例えば、駆動系(移動機構)3によって駆動される基板ステ−ジ93a上に支持されたシリコンウエハ等の基板50の上方に配置される測定部92を有している。   Here, the film thickness measuring device will be described with reference to FIGS. FIG. 9 shows a schematic overall configuration of the film thickness measuring device 91. As shown in FIG. 9, the film thickness measuring device 91 is, for example, a measurement disposed above a substrate 50 such as a silicon wafer supported on a substrate stage 93 a driven by a drive system (moving mechanism) 3. Part 92.

この駆動系93は、コンピュ−タ94からの命令によって動作するように構成され、基板ステ−ジ93aを上下及び水平方向に移動させることにより、測定部92と基板50との相対的な位置を変えるようになっている。   The drive system 93 is configured to operate in response to a command from the computer 94. By moving the substrate stage 93a in the vertical and horizontal directions, the relative positions of the measurement unit 92 and the substrate 50 are changed. It is supposed to change.

測定部92は、例えば、プラスチック等の絶縁材料からなる支持部92aが設けられ、この支持部92aに、渦電流コイルセンサ(以下「渦電流センサ」という)20と,レ−ザ変位センサ(以下「レ−ザセンサ」という)30が取り付けられている。   The measurement unit 92 is provided with a support portion 92a made of, for example, an insulating material such as plastic. The support portion 92a includes an eddy current coil sensor (hereinafter referred to as “eddy current sensor”) 20 and a laser displacement sensor (hereinafter referred to as “displacement sensor”). A "laser sensor") 30 is attached.

ここで、渦電流センサ20は、基板50の近傍に配置され、基板50上に形成された導電膜(測定対象膜)51に近接するようになっている。   Here, the eddy current sensor 20 is disposed in the vicinity of the substrate 50 and is close to a conductive film (measurement target film) 51 formed on the substrate 50.

この渦電流センサ20は絶縁材料からなる本体部2内に、後述する検出コイル3と参照コイル4が埋め込まれて構成されている(図11)。更に、検出コイル3と参照コイル4はインダクタンスメ−タ95に接続されている。   This eddy current sensor 20 is configured by embedding a detection coil 3 and a reference coil 4 described later in a main body 2 made of an insulating material (FIG. 11). Further, the detection coil 3 and the reference coil 4 are connected to an inductance meter 95.

また、レ−ザセンサ30は、渦電流センサの上方の所定の位置に取り付けられている。   The laser sensor 30 is attached to a predetermined position above the eddy current sensor.

このレ−ザセンサ30は、レ−ザセンサコントロ−ラ96によって制御されるもので、基板50上の導電膜51上の所定の位置を照射することにより導電膜51表面までの距離を高精度に測定するものである。   The laser sensor 30 is controlled by a laser sensor controller 96. By irradiating a predetermined position on the conductive film 51 on the substrate 50, the distance to the surface of the conductive film 51 can be set with high accuracy. Measure.

さらに、これらインダクタンスメ−タ5とレ−ザセンサコントロ−ラ6はコンピュ−タ94に接続され、コンピュ−タ94においてデ−タ解析を行なうようになっている。   Further, the inductance meter 5 and the laser sensor controller 6 are connected to a computer 94, and the computer 94 performs data analysis.

図10は、渦電流センサ20の構成を示す回路図、図11は、渦電流センサ20の検出コイル3と参照コイル4の相対的な位置関係を説明する図である。検出コイル3が基板50上の導電膜51に近接している。   FIG. 10 is a circuit diagram showing the configuration of the eddy current sensor 20, and FIG. 11 is a diagram for explaining the relative positional relationship between the detection coil 3 and the reference coil 4 of the eddy current sensor 20. The detection coil 3 is close to the conductive film 51 on the substrate 50.

図10に示すように、渦電流センサ20はMaxwellブリッジと呼ばれるブリッジ回路(以下、ブリッジとする)10を持っている。渦電流センサ20の検出コイル3と参照コイル4が直列に接続されている様子を示している。検出コイル3のみ、基板50と相互に影響することを太い矢印で示している。   As shown in FIG. 10, the eddy current sensor 20 has a bridge circuit (hereinafter referred to as a bridge) 10 called a Maxwell bridge. The state where the detection coil 3 and the reference coil 4 of the eddy current sensor 20 are connected in series is shown. A thick arrow indicates that only the detection coil 3 influences the substrate 50.

渦電流センサ20は、ブリッジ10に交流電圧源26より印加した交流電圧(VD)によって発生するコイルの両端の電圧において、検出コイル3の両端には基板50と相互の影響により発生する電圧が含まれることから、検出コイル3と参照コイル4の端子間電圧の差分(VS)をブリッジ10によって得て、測定回路27を経てコンピュ−タ94ヘ送り、予め記憶しておいたデ−タと照合することにより、膜厚を得るというものである。 In the eddy current sensor 20, a voltage generated due to mutual influence between the detection coil 3 and the substrate 50 is generated at both ends of the detection coil 3 by the alternating voltage (V D ) applied to the bridge 10 from the alternating voltage source 26. Therefore, the difference (V s ) between the terminals of the detection coil 3 and the reference coil 4 is obtained by the bridge 10 and sent to the computer 94 via the measurement circuit 27 and stored in advance. The film thickness is obtained by collating

膜厚を得る為の具体的な方法を図12〜13を用いて詳細に説明する。   A specific method for obtaining the film thickness will be described in detail with reference to FIGS.

渦電流式膜厚計20の構成例を図12に示す。検出コイル(ピックアップコイル)3が測定対象の導電膜51に0.3mm程度に近接して配置され、参照コイル4は検出コイル3から数mm程度の所に配置され、図13のようなブリッジ型回路を形成し、交流電圧が印加されて発生する電圧から膜厚を知ることが出来る。   A configuration example of the eddy current film thickness meter 20 is shown in FIG. The detection coil (pickup coil) 3 is arranged in the vicinity of the conductive film 51 to be measured about 0.3 mm, the reference coil 4 is arranged about several mm from the detection coil 3, and a bridge type as shown in FIG. A film is formed, and the film thickness can be known from the voltage generated when an AC voltage is applied.

R1、L1が検出及び参照コイルの抵抗、自己インダクタンスで、導電膜51に誘起された渦電流による検出コイルのインピーダンスの変化を成分ごとに、Re、 Leとおくと下記となる。 R1, L1 is detected and the reference coil resistance, self-inductance, a change in impedance of the detection coil due to induced eddy currents in the conductive film 51 for each component, R e, L e farther To becomes as follows.

Figure 2007285804
Figure 2007285804

ここで、I1の経路のインピーダンスをZ1としてI1とdI1/dtは下記と書ける。 Here, assuming that the impedance of the path of I 1 is Z 1 , I 1 and dI 1 / dt can be written as follows.

Figure 2007285804
Figure 2007285804

これらを用いてVxを書き変えると、下記となる。 When these are used to rewrite V x , the following results.

Figure 2007285804
Figure 2007285804

これからVxの振幅│Vx│は下記と書ける。 Amplitude │V x │ of V x future is written as follows.

Figure 2007285804
Figure 2007285804

したがって、式(1)からは交流電圧信号Vxの測定において位相検波時の参照信号の位相設定によって、Re, Leが独立に測定できることが分かる。 Therefore, the phase setting of the reference signal at the phase detection in the measurement of the alternating voltage signal V x from the formula (1), R e, L e is seen to be able to independently measured.

導電膜51での渦電流による検出コイルのインピーダンスの変化は、図14のように導電膜51の薄膜を一つのループと見なしてRe, Leを考えると分かりやすい。相互インダクタンスをMCL、仮想ループの抵抗、自己インダクタンスをRL, LLとすると検出コイルのインピーダンスZCは下記となる。 Change in the impedance of the detection coil due to eddy currents in the conductive film 51 is easily understood considering the R e, L e considers thin film of the conductive film 51 as one of the loop, as in Figure 14. When the mutual inductance is M CL , the resistance of the virtual loop, and the self-inductance are R L and L L , the impedance Z C of the detection coil is as follows.

Figure 2007285804
Figure 2007285804

RLが導電膜51のシート抵抗に比例して変化すると、Re, Leが変化し、(1)式の出力電圧が変化する。よって、シート抵抗とVxの関係が存在し、導電膜51の材料に応じた「膜厚とシート抵抗の関係」を用いれば、Vxの測定結果から導電膜51の膜厚が求まる。 When R L changes in proportion to the sheet resistance of the conductive film 51, R e and L e change, and the output voltage of equation (1) changes. Therefore, there is a relationship between the sheet resistance and V x , and if the “relation between the film thickness and the sheet resistance” corresponding to the material of the conductive film 51 is used, the film thickness of the conductive film 51 can be obtained from the measurement result of V x .

なお、検出コイル3と参照コイル4は図11のように、絶縁体で出来た本体部2の下端と中にそれぞれ接着、固定されている。渦電流センサ20は上方から支持され導電膜51には接触しない。   As shown in FIG. 11, the detection coil 3 and the reference coil 4 are bonded and fixed to the lower end and the inside of the main body 2 made of an insulator, respectively. The eddy current sensor 20 is supported from above and does not contact the conductive film 51.

また、従来、前記検出コイルが周囲の温度変化等の影響を受け測定値にドリフトが発生することがあるが、CPUを用いて予めメモリ装置に記憶された設計上の膜厚値を参照して補正処理を行なう装置があった(例えば、特許文献2参照)。   Conventionally, the detection coil may be affected by the ambient temperature change and the measured value may drift. Refer to the design film thickness value stored in the memory device in advance using the CPU. There has been a device that performs correction processing (see, for example, Patent Document 2).

さらに、前記検出コイルと前記参照コイルを直列接続し前記ブリッジ回路でインダクタンス成分の変化量を測定する方法が開示されている。また、インダクタンス成分のドリフト現象に対して測定値を補正する方法が開発されている(例えば、特許文献3参照)。   Furthermore, a method is disclosed in which the detection coil and the reference coil are connected in series and the amount of change in inductance component is measured by the bridge circuit. In addition, a method for correcting a measured value against a drift phenomenon of an inductance component has been developed (for example, see Patent Document 3).

特開平5−149927号公報(第3頁、図1)JP-A-5-149927 (page 3, FIG. 1) 特開2001−343205号公報(第4頁、図1)JP 2001-343205 A (Page 4, FIG. 1) 特開2002−148010号公報(第3頁、図2)JP 2002-148010 A (page 3, FIG. 2)

半導体基板上、又は液晶ディスプレイ用のガラス基板上に形成された導電性薄膜の成膜状態を検査しようとした場合、被測定物が熱を持ち、その熱によって前記検出コイルの温度が上昇して測定誤差が生じることがあった。前記検出コイルの温度が上昇することによって、前記検出コイルの抵抗値が大きくなり、前記ブリッジ回路の出力のバランスが崩れて出力電圧を余分に発生し、前記被測定物の膜厚が正しく計れないというものであった。この場合、センサである前記検出コイル部分が前記被測定物と近接して、局所的に加熱されるため、特許文献2や特許文献3に開示されたような方法で周囲環境から予めメモリ装置に記憶された設計上の膜厚値を参照して補正処理を行なっても補正しきれなかった。   When an attempt is made to inspect the film formation state of a conductive thin film formed on a semiconductor substrate or a glass substrate for a liquid crystal display, the object to be measured has heat, and the heat raises the temperature of the detection coil. Measurement error sometimes occurred. When the temperature of the detection coil rises, the resistance value of the detection coil increases, the balance of the output of the bridge circuit is lost and an extra output voltage is generated, and the film thickness of the object to be measured cannot be measured correctly. It was that. In this case, since the detection coil portion which is a sensor is locally heated in proximity to the object to be measured, the memory device is preliminarily applied from the surrounding environment by a method as disclosed in Patent Document 2 or Patent Document 3. Even if correction processing was performed with reference to the stored design film thickness value, correction could not be performed.

本発明は、前記課題を解決するため、渦電流式膜厚計の前記本体部に熱をコイルに対し遮蔽、又は導く手段を設けることにより、前記ブリッジ回路が前記検出コイル及び前記参照コイルの両方で生じる熱の影響又はその対策より副次的に生じる影響を相殺し、誤差の少ない計測を可能とするものである。   In order to solve the above-mentioned problem, the present invention provides a means for shielding or guiding heat to the coil in the main body portion of the eddy current film thickness meter so that the bridge circuit has both the detection coil and the reference coil. This cancels out the effects of heat generated by the system or the effects that occur as a result of countermeasures, and enables measurement with less error.

本発明の第1の手段は、直接原因である被測定物からの熱(輻射熱、空気の熱対流)を遮蔽板(以下、熱シ−ルドとする)を用いて前記検出コイルに到達するのを防止することにより熱の影響によるインピ−ダンスの変化が生じないようにするものである。   The first means of the present invention uses the shielding plate (hereinafter referred to as a heat shield) to reach the detection coil using the heat (radiant heat, air convection) from the object to be measured, which is the direct cause. This prevents the impedance from changing due to the influence of heat.

また、本発明の第2の手段は、直接原因である前記被測定物からの熱(輻射熱、空気の熱対流)を、積極的に前記検出コイル及び前記参照コイルに導いて熱の影響によるインピ−ダンスの変化を後段の前記ブリッジ回路にて相殺するものである。   In addition, the second means of the present invention is a method in which the heat (radiant heat, air convection) from the object to be measured, which is a direct cause, is actively guided to the detection coil and the reference coil, and the impedance due to the influence of the heat. -The change in dance is canceled by the bridge circuit in the subsequent stage.

本発明の第1の手段によれば、前記熱シ−ルドにより、前記被測定物からの熱による前記検出コイルの温度上昇が抑えられる。従って前記検出コイルの温度による抵抗値の変化も押さえられ、前記被測定物が高温でも正しい膜厚測定が可能になる。
また、前記熱シ−ルドにスリットを設けたので、前記熱シ−ルドでの渦電流の前記ブリッジ回路出力への影響は小さくなった。
また、前記参照コイル近くにも前記熱シ−ルドと同じ形状のダミ−を置くので、前記熱シ−ルドの前記ブリッジ回路出力への影響は相殺される。
According to the first means of the present invention, the temperature increase of the detection coil due to the heat from the object to be measured is suppressed by the heat shield. Accordingly, a change in resistance value due to the temperature of the detection coil is suppressed, and a correct film thickness can be measured even when the object to be measured is at a high temperature.
In addition, since the slit is provided in the thermal shield, the influence of the eddy current in the thermal shield on the output of the bridge circuit is reduced.
Further, since a dummy having the same shape as that of the thermal shield is placed near the reference coil, the influence of the thermal shield on the output of the bridge circuit is canceled out.

本発明の第2の手段によれば、前記被測定物からの熱による前記検出コイル及び前記参照コイルの温度上昇は、前記ブリッジ回路により相殺される。前記被測定物が高温でも正しい膜厚測定が可能になる。   According to the second means of the present invention, the temperature rise of the detection coil and the reference coil due to heat from the object to be measured is canceled by the bridge circuit. The film thickness can be measured correctly even when the object to be measured is at a high temperature.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

まず、本発明の第1の手段につき説明する。   First, the first means of the present invention will be described.

図1に本発明の実施の形態の渦電流式センサの斜視図を示す。また、図2に、縦断面図を示す。検出コイル3と参照コイル4が絶縁体で出来た本体部2の下端と中にそれぞれ接着、固定されている。   FIG. 1 shows a perspective view of an eddy current sensor according to an embodiment of the present invention. FIG. 2 shows a longitudinal sectional view. The detection coil 3 and the reference coil 4 are respectively bonded and fixed to the lower end and inside of the main body 2 made of an insulator.

さらに、検出コイル3の下方には、熱シ−ルド5が接着固定されている。熱シ−ルド5は、導電性材料(金属)からなる厚膜を有し、スリット5bによって分割された切片5aの集合体である。   Further, a heat shield 5 is bonded and fixed below the detection coil 3. The heat shield 5 has a thick film made of a conductive material (metal) and is an aggregate of pieces 5a divided by the slits 5b.

また、参照コイル4の下方には、ダミ−6が接着固定されている。ダミ−5は、導電性材料(金属)からなる厚膜を有し、スリット6bによって分割された切片6aの集合体である。   A dummy 6 is bonded and fixed below the reference coil 4. Dami-5 is an aggregate of pieces 6a having a thick film made of a conductive material (metal) and divided by slits 6b.

図1及び図2のように、検出コイル3と基板50の間に金属の膜(熱シールド)5を入れ、基板50からの熱流入を防ぐ。熱シールド5へ流入した熱は本体部20上方の図示しない熱浴に逃がすように熱伝達経路を設けておく。   As shown in FIGS. 1 and 2, a metal film (heat shield) 5 is inserted between the detection coil 3 and the substrate 50 to prevent heat inflow from the substrate 50. A heat transfer path is provided so that the heat flowing into the heat shield 5 is released to a heat bath (not shown) above the main body 20.

金属の膜(熱シールド)5があるとそこに渦電流が誘起されるため、本来の導電膜51の膜厚が正しく測れず、また検出感度が低下するので、そこでの渦電流の影響を小さくするために、渦電流の経路の径を小さくする。即ち、例えば図1及び図2のようなスリット5bを入れる。   If there is a metal film (heat shield) 5, an eddy current is induced there, so that the film thickness of the original conductive film 51 cannot be measured correctly and the detection sensitivity is lowered, so that the influence of the eddy current is reduced. Therefore, the diameter of the eddy current path is reduced. That is, for example, a slit 5b as shown in FIGS. 1 and 2 is inserted.

また、熱シールド5での渦電流の影響をなくすために、図1及び図2のように参照コイル4の下にも熱シールド5と同じ形状、厚さの金属膜(ダミー)6を置く。それにより、熱シールド5の影響が相殺されてブリッジ10出力に現れない。つまり、熱シールド5による検出コイル3のインピーダンス変化が、ダミー6による参照コイル4のインピーダンス変化と同じになり、両コイルのインピーダンスの差が起源のブリッジ10出力は0のままである。よって、ブリッジ10出力には、基板50の導電膜51のシート抵抗の情報のみが現れ、正しい測定が可能になる。   In order to eliminate the influence of eddy current on the heat shield 5, a metal film (dummy) 6 having the same shape and thickness as the heat shield 5 is also placed under the reference coil 4 as shown in FIGS. As a result, the influence of the heat shield 5 is offset and does not appear in the bridge 10 output. That is, the impedance change of the detection coil 3 due to the heat shield 5 becomes the same as the impedance change of the reference coil 4 due to the dummy 6, and the bridge 10 output originating from the difference in impedance between the two coils remains zero. Therefore, only information on the sheet resistance of the conductive film 51 of the substrate 50 appears in the output of the bridge 10, and correct measurement is possible.

熱シールド5により、基板50からの熱による検出コイル3の温度上昇が抑えられるので、検出コイル3の抵抗値の温度による変化が抑えられ、余分なブリッジ10出力がなくなり、高温の導電膜51でも正しい膜厚測定が可能になる。   Since the temperature of the detection coil 3 due to the heat from the substrate 50 is suppressed by the heat shield 5, the change in the resistance value of the detection coil 3 due to the temperature is suppressed, the output of the extra bridge 10 is eliminated, and even the high-temperature conductive film 51 is used. Correct film thickness measurement is possible.

また、熱シールド5にスリット5bがあるので、熱シールド5での渦電流のブリッジ10出力への影響が小さい。さらに、参照コイル4の近くにも熱シールド5と同じ形状のダミー6を置くので、熱シールド5のブリッジ10出力への影響は相殺される。   Further, since the heat shield 5 has the slit 5b, the influence of the eddy current in the heat shield 5 on the output of the bridge 10 is small. Furthermore, since the dummy 6 having the same shape as the heat shield 5 is also placed near the reference coil 4, the influence of the heat shield 5 on the output of the bridge 10 is offset.

以上の効果を具体的に示すため、計算モデルにより見積もりを行なった。
図1及び2の構成に関する例を述べる。熱シールド5による感度低下を簡略化したモデル(図14)で見積もった。
In order to show the above effect concretely, the calculation model was used for estimation.
An example relating to the configuration of FIGS. 1 and 2 will be described. The estimation was made with a simplified model (FIG. 14) in which the sensitivity drop due to the heat shield 5 was simplified.

まず、スリット5bがない熱シールド5による感度低下を見積もった。検出コイル3と参照コイル4のインピーダンス変化を計算しブリッジ10の出力を求めた。   First, a decrease in sensitivity due to the heat shield 5 without the slit 5b was estimated. The impedance change between the detection coil 3 and the reference coil 4 was calculated to obtain the output of the bridge 10.

熱シールド5による感度低下の計算方法は、検出コイル3の下に同心円の5つの仮想ループを置き、ここでは導電膜51と熱シールド5に見立てた(図4参照)。簡単化して導電膜51と熱シールド5は同じ高さにあるとしている(0.3mm程度異なっても計算結果に大きい影響はない)。半径0.5, 1.0, 1.5, 2.0, 2.5 mmの5つのループ(幅0.5mm)を仮定し、導電膜51を3つ目のループ、熱シールド5をその他のループに対応させた。   The calculation method of the sensitivity decrease by the heat shield 5 is arranged as five concentric virtual loops under the detection coil 3, and here, the conductive film 51 and the heat shield 5 are considered (see FIG. 4). For simplification, the conductive film 51 and the heat shield 5 are assumed to be at the same height (even if they are different by about 0.3 mm, the calculation result is not greatly affected). Assuming 5 loops (width 0.5mm) with radii 0.5, 1.0, 1.5, 2.0, 2.5mm, conductive film 51 as third loop, heat shield 5 as other It was made to correspond to the loop of.

導電膜51はCu 厚さ1μm相当のシート抵抗とし、熱シールド5はCu 100μm相当とした。検出コイル3はソレノイドで長さ1.71 mm、外径2.4 mm、内径0.4 mm。1層につき10巻き、6層、合計60巻き、コイル下端から導電膜51までの距離h=0.3 mm、コイルの自己インダクタンスLC = 1.75 x10 -6 H、コイルの抵抗RC = 0.66Ωとした。導電膜51に見立てた3つ目のループがないときのインピーダンス変化も計算し、それをダミー6による参照コイル4のインピーダンス変化とし、それら値を用いて式(1)(表3参照)からブリッジ10の出力を計算した(両コイルのRの差をRe、Lの差をLeとして計算)。 The conductive film 51 has a sheet resistance equivalent to a Cu thickness of 1 μm, and the heat shield 5 has a Cu equivalent to 100 μm. The detection coil 3 is a solenoid having a length of 1.71 mm, an outer diameter of 2.4 mm, and an inner diameter of 0.4 mm. 10 turns per layer, 6 layers, 60 turns in total, distance h = 0.3 mm from coil bottom to conductive film 51, coil self-inductance L C = 1.75 × 10 −6 H, coil resistance R C = It was 0.66Ω. The impedance change when the conductive film 51 does not have the third loop is also calculated, and this is used as the impedance change of the reference coil 4 by the dummy 6 and the bridge is obtained from the equation (1) (see Table 3) using these values. 10 outputs were calculated (R difference of both coils was calculated as Re and L difference was calculated as Le).

熱シールド5とダミー6がある場合、ブリッジ10に5MHz、振幅1Vの交流電圧を印加したときのブリッジ10出力振幅は、2.40mVとなった(図4参照)。   When the heat shield 5 and the dummy 6 are present, the bridge 10 output amplitude when the AC voltage of 5 MHz and amplitude 1 V is applied to the bridge 10 is 2.40 mV (see FIG. 4).

一方、上記3つ目のループだけが存在するとき、即ち熱シールド5とダミー6がない場合には、出力振幅は5.16mVとなった(図3参照)。つまり、スリット5b、6bがない熱シールド5とダミー6があると、膜厚計の感度がおよそ半分になると言える。   On the other hand, when only the third loop exists, that is, when there is no heat shield 5 and dummy 6, the output amplitude is 5.16 mV (see FIG. 3). That is, it can be said that if there is the heat shield 5 and the dummy 6 without the slits 5b and 6b, the sensitivity of the film thickness meter is approximately halved.

次に熱シールド5にスリット5bを入れた場合を簡略化したモデル(図14)で考える。熱シールド5のループの寸法を変えて、検出コイル3のR、Lの変化を調べることにする。ループサイズを変えたときの、「検出コイル3のR、Lの変化量Re, Le」を図14のモデルを用いて比べた。大きいシ−ルドによる検出コイル3のRとLの変化量を図5に示す。小さいシ−ルドによる検出コイル3のRとLの変化量を図6に示す。 Next, consider a simplified model (FIG. 14) where the heat shield 5 has slits 5b. Changes in the R and L of the detection coil 3 will be examined by changing the dimensions of the loop of the heat shield 5. “Change amounts R e and L e of R and L of the detection coil 3” when the loop size was changed were compared using the model of FIG. The amount of change in R and L of the detection coil 3 due to the large shield is shown in FIG. The amount of change in R and L of the detection coil 3 due to the small shield is shown in FIG.

図5はループ半径1.5 mm、幅0.5 mmで、図6はル−プ半径0.15 mm、幅0.05 mmである。式(2)、(3)(表5参照)に値を入れプロットした結果である。1MHzと10MHzの場合を示した。RLはループの抵抗、コイルは前述のソレノイドで、ループの自己インダクタンスLL、コイルとの相互インダクタンスMCLは図中に示した。上記の半径が1/10のループでは幅も1/10なので、熱シールド5の厚さが同じなら(シート抵抗が同じなら)RLは同じである。熱シールド5が厚さ1μmの銅の場合のRLを図中に矢印で示した。ループ径を小さくするとRe, Leは大幅に小さくなることが分かる。 5 shows a loop radius of 1.5 mm and a width of 0.5 mm, and FIG. 6 shows a loop radius of 0.15 mm and a width of 0.05 mm. It is the result of putting values into the formulas (2) and (3) (see Table 5) and plotting them. The cases of 1 MHz and 10 MHz are shown. R L is the resistance of the loop, the coil is the solenoid described above, and the self-inductance L L of the loop and the mutual inductance M CL with the coil are shown in the figure. In the loop having the radius of 1/10, the width is also 1/10. Therefore, if the thickness of the heat shield 5 is the same (if the sheet resistance is the same), R L is the same. RL when the heat shield 5 is copper having a thickness of 1 μm is indicated by an arrow in the figure. It can be seen that Re and Le are greatly reduced when the loop diameter is reduced.

熱シールド5は熱を逃がすために厚いものを想定しており、例えばCuが100μmとすると、1/ RLは250程度である。また、各周波数でReとωLeの大きい方同士を比較すると(ブリッジ10出力への寄与が大きい方を比較)、1MHz、10MHzの何れにおいても3桁大きさが異なることが分かる。図中のReとωLeによるブリッジ10出力分を図5、6の右の縦軸にVxとして示した。1/ RLが250の領域で、大きさが一桁小さいコイルでは、このVxも3桁小さいことが分かる。熱シールド5全体の面積を一致させるには、ループ径1/10のものが100個必要なので上記から (1/1000)かける100=1/10で、ブリッジ10出力への寄与は大きいループに比べ1/10になる。よって、感度の低下分も1/10程度になると考えられる。 The heat shield 5 is assumed to be thick in order to release heat. For example, if Cu is 100 μm, 1 / RL is about 250. Further, comparing the larger Re and ωLe at each frequency (comparing the larger contribution to the output of the bridge 10), it can be seen that the magnitude is different by 3 digits at both 1 MHz and 10 MHz. The output of the bridge 10 by Re and ωLe in the figure is shown as Vx on the right vertical axis of FIGS. It can be seen that in the region where 1 / RL is 250 and the coil is one order of magnitude smaller, this Vx is also three orders of magnitude smaller. In order to make the entire area of the heat shield 5 equal, 100 pieces with a loop diameter of 1/10 are necessary, so from the above (1/1000) times 100 = 1/10, the contribution to the output of the bridge 10 is larger than that of a large loop. 1/10. Therefore, it is considered that the decrease in sensitivity is about 1/10.

大きいループの熱シールド5による感度低下分が約50%なので、小さいループではその1/10で、感度低下分は数%程度と見積もることができる。ループを小さくすれば(その分、数が増えても)コイルへの影響は小さくなる。低温実験で使用するコイルフォイルやCuの核断熱消磁冷却での銅線の束やバルク部品へのスリットと同様で渦電流の影響が小さくなる。   Since the sensitivity reduction due to the heat shield 5 of the large loop is about 50%, the sensitivity reduction can be estimated to be about several percent with 1/10 of the small loop. If the loop is made smaller (and the number is increased accordingly), the influence on the coil is reduced. The effect of eddy current is reduced in the same way as coil foils used in low-temperature experiments and copper wire bundles and slits in bulk parts in Cu adiabatic demagnetization cooling.

よって、図1の構成で感度低下が少ないまま基板50からの熱の影響を防ぎ、熱シールド5の導電性をキャンセルし、導電膜51の膜厚を正しく測定できる。   Accordingly, the influence of heat from the substrate 50 can be prevented with the configuration of FIG. 1 with little reduction in sensitivity, the conductivity of the heat shield 5 can be canceled, and the film thickness of the conductive film 51 can be measured correctly.

また、熱シールド5と、参照コイル4下のダミー6を熱的に接続し(小さい熱抵抗でつなぐ)、検出系上方の図示しない熱浴との間に熱抵抗を設けると、検出コイル3と参照コイル4の温度差がより小さくなり、基板50からの熱の影響をよりキャンセルすることができる。尚、前記熱抵抗は、取りつけ、取り外しが容易なジャンパ線状にして調整可能にしても良い。   In addition, when the heat shield 5 and the dummy 6 under the reference coil 4 are thermally connected (connected by a small thermal resistance) and a thermal resistance is provided between the heat bath (not shown) above the detection system, the detection coil 3 The temperature difference of the reference coil 4 becomes smaller, and the influence of heat from the substrate 50 can be canceled more. The thermal resistance may be adjustable by making it a jumper wire that is easy to attach and remove.

以上が、本発明の第1の手段についての解説である。   The above is the explanation of the first means of the present invention.

次に、本発明の第2の手段につき、説明する。   Next, the second means of the present invention will be described.

図7は本発明の実施の形態の渦電流センサ−71の斜視図を示す。また、図8は、縦断面図である。尚、使用するブリッジ回路は図10である。   FIG. 7 is a perspective view of an eddy current sensor 71 according to the embodiment of the present invention. FIG. 8 is a longitudinal sectional view. The bridge circuit to be used is shown in FIG.

本発明の第1の手段とは異なり、検出コイル73及び参照コイル74に基板50からの熱を積極的に取り込んで熱の影響をブリッジ回路10(図10)によってキャンセルするものである。   Unlike the first means of the present invention, heat from the substrate 50 is actively taken into the detection coil 73 and the reference coil 74, and the influence of the heat is canceled by the bridge circuit 10 (FIG. 10).

検出コイル73及び参照コイル74には平面コイルを用いる。平面コイルは、平面上に渦巻き状に巻いたコイルである。参照コイル74は、本体部72の窪んだ位置(凹部)72aに取り付け、基板50からの熱輻射、空気の対流による熱流入がある。平面コイルでは、導電膜51からの距離が大きくなると、導電膜51のコイルインピーダンスへの影響は急速に小さくなる。一方、基板50からの熱によるコイルの温度上昇はそれほど急速には小さくならない。   A planar coil is used for the detection coil 73 and the reference coil 74. A planar coil is a coil wound spirally on a plane. The reference coil 74 is attached to a depressed position (concave portion) 72a of the main body 72, and has heat inflow due to heat radiation from the substrate 50 and air convection. In a planar coil, as the distance from the conductive film 51 increases, the influence of the conductive film 51 on the coil impedance decreases rapidly. On the other hand, the temperature rise of the coil due to heat from the substrate 50 does not decrease so rapidly.

そのため、図7及び図8の配置により検出コイル73と参照コイル74は同程度の温度になって熱の影響をキャンセルし、導電膜51からの距離の違いによって各コイルのインピーダンス変化分が異なり、基板50の導電膜51の膜厚情報がブリッジ10(図10)に出力される。   Therefore, the arrangement of FIGS. 7 and 8 causes the detection coil 73 and the reference coil 74 to have the same temperature and cancel the influence of heat, and the impedance change amount of each coil varies depending on the distance from the conductive film 51. Information on the film thickness of the conductive film 51 of the substrate 50 is output to the bridge 10 (FIG. 10).

よって、ブリッジ出力10には、基板50の導電膜51のシート抵抗の情報のみが現れ、正しい測定が可能になる。   Therefore, only the information on the sheet resistance of the conductive film 51 of the substrate 50 appears in the bridge output 10, and correct measurement is possible.

以上が、本発明の第2の手段についての解説である。   The above is the description of the second means of the present invention.

以上、本発明の実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術思想に基づいて、種々の変形が可能である。   As mentioned above, although embodiment of this invention was described, of course, this invention is not limited to these, Based on the technical idea of this invention, a various deformation | transformation is possible.

例えば、第1の手段において、熱シ−ルド5とダミ−6を接続することにより、検出コイル3と参照コイル4との温度差を小さくする。これにより、基板50の導電膜51に発生した渦電流による「検出コイル3のインピ−ダンスの変化」のみを捉えるようにしても良い。   For example, in the first means, the temperature difference between the detection coil 3 and the reference coil 4 is reduced by connecting the heat shield 5 and the dummy 6. Thereby, only “a change in the impedance of the detection coil 3” due to the eddy current generated in the conductive film 51 of the substrate 50 may be captured.

また、第1の手段において、熱シ−ルド5とダミ−6をさらに図示しない熱浴(熱をそこに逃がすための熱容量の大きい物体)との間を接続し、各接続部において、熱抵抗を設定可能に形成しても良い。熱抵抗値を適宜設定することにより、検出コイル3と参照コイル4との温度差を小さくする。これにより、基板50の導電膜51に発生した渦電流による「検出コイル3のインピ−ダンスの変化」のみを捉えるようにしても良い。   Further, in the first means, the heat shield 5 and the dummy 6 are further connected between a heat bath (not shown) (an object having a large heat capacity for escaping heat), and in each connection portion, a thermal resistance is connected. May be configured to be settable. By appropriately setting the thermal resistance value, the temperature difference between the detection coil 3 and the reference coil 4 is reduced. Thereby, only “a change in the impedance of the detection coil 3” due to the eddy current generated in the conductive film 51 of the substrate 50 may be captured.

また、第2の手段において、参照コイル74は、本体部72の窪んだ位置(凹部)72aに取り付け、基板50からの熱輻射、空気の対流による熱流入があるようにしたが、本体部72に設けた貫通孔(穴)や段差に取り付けても良い。検出コイル73よりも導電膜51から離れ、且つ、基板50からの熱輻射、空気の対流による熱流入に曝されるように参照コイル74を取り付けられれば、本発明は適用可能である。   In the second means, the reference coil 74 is attached to the recessed position (recessed portion) 72a of the main body 72 so that there is heat radiation from the substrate 50 and heat inflow due to air convection. You may attach to the through-hole (hole) and level | step difference which were provided in. The present invention is applicable if the reference coil 74 is attached so as to be farther from the conductive film 51 than the detection coil 73 and exposed to heat radiation from the substrate 50 and heat inflow due to air convection.

本発明の第1の手段の渦電流式センサ1の斜視図である。 検出コイル3と参照コイル4が、本体部2の下端と中に固定されている。 検出コイル3の下方には、熱シ−ルド5が固定されている。また、参照コイル4の下方には、ダミ−6が固定されている。It is a perspective view of the eddy current type sensor 1 of the 1st means of this invention. The detection coil 3 and the reference coil 4 are fixed in the lower end and inside of the main body 2. A heat shield 5 is fixed below the detection coil 3. A dummy 6 is fixed below the reference coil 4. 本発明の第1の手段の渦電流式センサ1の断面図である。 検出コイル3と測定対象である導電膜51の間に熱シ−ルドが固定された状態になる。It is sectional drawing of the eddy current type sensor 1 of the 1st means of this invention. The heat shield is fixed between the detection coil 3 and the conductive film 51 to be measured. 本発明の第1の手段の計算モデル(熱シ−ルドのない場合)である。 検出コイル3には、実線で示される導電膜51に相当する3番のル−プの影響が出る。一方、参照コイル4には、何も影響がない。It is a calculation model (when there is no thermal shield) of the 1st means of this invention. The detection coil 3 is affected by the third loop corresponding to the conductive film 51 indicated by the solid line. On the other hand, the reference coil 4 has no effect. 本発明の第1の手段の計算モデル(熱シ−ルドのある場合)である。 検出コイルには、実線で示される導電膜51に相当する3番目のル−プの他に、熱シ−ルド5に相当する1、2、4、5番目のル−プの影響が出る。一方、参照コイルには、ダミ−6に相当する1、2、4、5番目のル−プの影響が出る。It is a calculation model (when there is a thermal shield) of the first means of the present invention. In addition to the third loop corresponding to the conductive film 51 indicated by the solid line, the detection coil is affected by the first, second, fourth, and fifth loops corresponding to the thermal shield 5. On the other hand, the reference coil is affected by the first, second, fourth, and fifth loops corresponding to Dami-6. 本発明の第1の手段による感度低下の計算結果のグラフ(熱シ−ルドにスリットのない場合)である。It is a graph (when there is no slit in a heat shield) of the calculation result of the sensitivity fall by the 1st means of the present invention. 本発明の第1の手段による感度低下の計算結果のグラフ(熱シ−ルドにスリットのある場合)である。図5に比べて大幅にRe、Leが大幅に小さくなっているのが分かる。これにより、スリットの有効性が確かめられた。It is a graph (when there is a slit in a heat shield) of the calculation result of the sensitivity fall by the 1st means of the present invention. It can be seen that Re and Le are greatly reduced compared to FIG. As a result, the effectiveness of the slit was confirmed. 本発明の第2の手段の実施の形態の渦電流式センサ71の斜視図である。 検出コイル73は、本体部72の下端に固定されている。一方、参照コイル74は、凹部72aに取り付けられている。これにより、基板50からの熱は、参照コイル74と検出コイル73の両方に届く。また、検出コイル73には導電膜51の影響が及ぶが、参照コイル74には導電膜51の影響は及ばないようになる。It is a perspective view of the eddy current type sensor 71 of embodiment of the 2nd means of this invention. The detection coil 73 is fixed to the lower end of the main body 72. On the other hand, the reference coil 74 is attached to the recess 72a. Thereby, the heat from the substrate 50 reaches both the reference coil 74 and the detection coil 73. Further, although the detection coil 73 is affected by the conductive film 51, the reference coil 74 is not affected by the conductive film 51. 本発明の第2の手段の実施の形態の渦電流式センサ71の断面図である。It is sectional drawing of the eddy current type sensor 71 of embodiment of the 2nd means of this invention. 渦電流式膜厚測定装置91の概略全体構成図である。 駆動系(移動機構)93によって駆動される基板ステ−ジ93a上に支持されたシリコンウエハ等の基板50の上方に配置される測定部92を有している。駆動系93は、コンピュ−タ94からの命令によって動作するように構成され、基板ステ−ジ93aを上下及び水平方向に移動させることにより、測定部92と基板50との相対的な位置を変えるようになっている。1 is a schematic overall configuration diagram of an eddy current film thickness measuring device 91. FIG. It has a measuring unit 92 disposed above a substrate 50 such as a silicon wafer supported on a substrate stage 93a driven by a drive system (moving mechanism) 93. The drive system 93 is configured to operate in accordance with a command from the computer 94, and changes the relative position between the measurement unit 92 and the substrate 50 by moving the substrate stage 93a in the vertical and horizontal directions. It is like that. 渦電流式膜厚計(渦電流センサ)20の回路図である。 ブリッジ10によって、参照コイル4と検出コイル3の出力の差分を得て測定回路27で受けるように構成されている。1 is a circuit diagram of an eddy current film thickness meter (eddy current sensor) 20. FIG. A difference between outputs of the reference coil 4 and the detection coil 3 is obtained by the bridge 10 and received by the measurement circuit 27. 渦電流センサ20の検出コイル3と参照コイル4の相対的な位置関係を説明する図である。検出コイル3は、基板50の導電膜51に近い本体部2の下端にある。一方、参照コイル、基板50の導電膜51から離れている。FIG. 4 is a diagram for explaining a relative positional relationship between a detection coil 3 and a reference coil 4 of the eddy current sensor 20. The detection coil 3 is at the lower end of the main body 2 near the conductive film 51 of the substrate 50. On the other hand, the reference coil is separated from the conductive film 51 of the substrate 50. 渦電流式センサ20の斜視図である。 計算モデルの基となる渦電流式センサ20の構成品の配置を示す図である。測定対象である導電膜51、検出コイル3、参照コイル4の配置の概略位置を示す。2 is a perspective view of an eddy current sensor 20. FIG. It is a figure which shows arrangement | positioning of the component of the eddy current type sensor 20 used as the basis of a calculation model. The schematic positions of the conductive film 51, the detection coil 3, and the reference coil 4 that are measurement targets are shown. 渦電流式センサの回路図である。 参照コイル4にL1、R1が対応する。検出コイル3に、L2、R2が対応する。It is a circuit diagram of an eddy current type sensor. L 1 and R 1 correspond to the reference coil 4. L 2 and R 2 correspond to the detection coil 3. 渦電流式センサ20の計算モデルである。 検出コイル3と導電膜51の関係を計算モデル化した。導電膜51に相当するのがル−プである。検出コイル3と導電膜51が互いに受ける影響が相互インダクタンスMCLである。3 is a calculation model of the eddy current sensor 20. The relationship between the detection coil 3 and the conductive film 51 was modeled as a calculation model. A loop corresponds to the conductive film 51. The mutual inductance M CL affects the detection coil 3 and the conductive film 51.

符号の説明Explanation of symbols

1・・・渦電流センサ−(渦電流式膜厚計)、2・・・本体部、3・・・検出コイル、4・・・参照コイル、5・・・熱シ−ルド、5a・・・切片、5b・・・スリット、6・・・ダミ−、6a・・・切片、6b・・・スリット、
10・・・インダクタンスブリッジ(ブリッジ)、14・・・基準抵抗、15・・・基準抵抗、
20・・・渦電流センサ−(渦電流式膜厚計)、21・・・並列接続点、22・・・並列接続点、23・・・接続中点、24・・・接続中点、26・・・交流電圧源、27・・・測定回路
30・・・レ−ザ変位センサ−、
50・・・基板、51・・・導電膜、
71・・・渦電流センサ−(渦電流式膜厚計)、72・・・本体部、72a・・・凹部、73・・・平面コイル(検出コイル)、74・・・平面コイル(参照コイル)
91・・・膜厚測定装置、92・・・測定部、92a・・・支持部、93・・・駆動系(移動機構)、93a・・・基板ステ−ジ、94・・・コンピュ−タ、95・・・インダクタンスメ−タ、96・・・レ−ザセンサコントロ−ラ、
DESCRIPTION OF SYMBOLS 1 ... Eddy current sensor (eddy current type film thickness meter), 2 ... Main-body part, 3 ... Detection coil, 4 ... Reference coil, 5 ... Thermal shield, 5a ...・ Section, 5b ... slit, 6 ... dummy, 6a ... section, 6b ... slit,
10 ... Inductance bridge (bridge), 14 ... reference resistance, 15 ... reference resistance,
20 ... Eddy current sensor (eddy current type film thickness meter), 21 ... Parallel connection point, 22 ... Parallel connection point, 23 ... Connection midpoint, 24 ... Connection midpoint, 26 ... AC voltage source, 27 ... Measurement circuit 30 ... Laser displacement sensor,
50 ... substrate, 51 ... conductive film,
71 ... Eddy current sensor (eddy current film thickness meter), 72 ... Main body, 72a ... Recess, 73 ... Planar coil (detection coil), 74 ... Planar coil (reference coil) )
DESCRIPTION OF SYMBOLS 91 ... Film thickness measuring apparatus, 92 ... Measuring part, 92a ... Supporting part, 93 ... Drive system (moving mechanism), 93a ... Substrate stage, 94 ... Computer 95 ... Inductance meter, 96 ... Laser sensor controller,

Claims (15)

参照コイルと検出コイルが直列に接続された回路と、2個の基準抵抗が直列に接続されたインダクタンスブリッジを用い、測定対象物の表面に形成された導電膜の近傍の所定の位置に配置可能に構成され、前記参照コイルよりも前記基準コイルを前記導電膜に近接した位置に配置可能であり、前記導電膜に対して所定の渦電流を発生させ且つ当該渦電流による磁界を検出する渦電流コイルセンサであって、前記測定対象物からの熱をコイルに対し遮蔽するか、又は前記熱を前記コイルに対し導くかのいずれかの手段を有することを特徴とする渦電流式膜厚計。 Using a circuit in which a reference coil and a detection coil are connected in series and an inductance bridge in which two reference resistors are connected in series, it can be placed at a predetermined position near the conductive film formed on the surface of the measurement object An eddy current that can be arranged at a position closer to the conductive film than the reference coil and that generates a predetermined eddy current to the conductive film and detects a magnetic field due to the eddy current An eddy-current film thickness meter, which is a coil sensor, and includes means for shielding heat from the measurement object to the coil or guiding the heat to the coil. 前記手段として、前記測定対象物から前記熱を遮蔽するために前記検出コイルと前記測定対象物の間に熱シ−ルドを有することを特徴とする請求項1に記載の渦電流式膜厚計。 2. The eddy current film thickness meter according to claim 1, wherein as the means, a thermal shield is provided between the detection coil and the measurement object in order to shield the heat from the measurement object. . 前記熱シ−ルドが、前記導電膜に発生する前記渦電流による磁界の検出ができるように、前記熱シ−ルドに発生する渦電流の径を小さくするためのスリットを有することを特徴とする請求項2に記載の渦電流式膜厚計。 The thermal shield has a slit for reducing the diameter of the eddy current generated in the thermal shield so that the magnetic field due to the eddy current generated in the conductive film can be detected. The eddy current film thickness meter according to claim 2. 前記参照コイルの近傍に前記熱シ−ルドに対応するダミ−を有することを特徴とする請求項2または3に記載の渦電流式膜厚計。 4. The eddy current film thickness meter according to claim 2, further comprising a dummy corresponding to the thermal shield in the vicinity of the reference coil. 前記熱シ−ルドに接続して前記熱シ−ルドの熱を逃がす熱浴を有することを特徴とする請求項2乃至4のいずれかに記載の渦電流式膜厚計。 5. The eddy current film thickness meter according to claim 2, further comprising a heat bath connected to the heat shield to release heat of the heat shield. 前記熱シ−ルドと前記ダミ−が導電性の材料からなる厚膜を有することを特徴とする請求項2乃至5のいずれかに記載の渦電流式膜厚計。 6. The eddy current film thickness meter according to claim 2, wherein the heat shield and the dummy have a thick film made of a conductive material. 前記熱シ−ルドと前記ダミ−の厚膜の導電性の材料が、銅、アルミニウム、ニッケル、亜鉛、錫、鉛、金、銀のいずれかであることを特徴とする請求項2乃至6のいずれかに記載の渦電流式膜厚計。 7. The conductive material of the heat shield and the thick thick film is any one of copper, aluminum, nickel, zinc, tin, lead, gold, and silver. The eddy current film thickness meter according to any one of the above. 前記熱シ−ルドと前記ダミ−の厚膜の導電性の材料が同じ材料であることを特徴とする請求項7に記載の渦電流式膜厚計。 8. The eddy current film thickness meter according to claim 7, wherein the conductive material of the heat shield and the thick film of the dummy is the same material. 前記熱シ−ルドと前記ダミ−の厚膜の導電性の材料が異なる材料であることを特徴とする請求項7に記載の渦電流式膜厚計。 8. The eddy current film thickness meter according to claim 7, wherein conductive materials of the heat shield and the thick film are different from each other. 前記熱シ−ルドと前記ダミ−を接続し、前記参照コイルと前記検出コイルの温度差を小さくすることを特徴とする請求項2乃至9のいずれかに記載の渦電流式膜厚計。 10. The eddy current film thickness meter according to claim 2, wherein the thermal shield and the dummy are connected to reduce a temperature difference between the reference coil and the detection coil. 前記熱シ−ルド及び前記ダミ−を接続し、さらに熱浴に接続するのに、前記熱シ−ルド及び前記ダミ−と熱浴の間に熱抵抗を挿入したことを特徴とする請求項2乃至10のいずれかに記載の渦電流式膜厚計。 3. A thermal resistor is inserted between the heat shield and the dummy and the heat bath for connecting the heat shield and the dummy and further connecting to the heat bath. The eddy current film thickness meter according to any one of 1 to 10. 前記熱シ−ルド及び前記ダミ−を接続し、さらに熱浴に接続するのに、前記熱シ−ルド及び前記ダミ−と前記熱浴の間に前記熱抵抗を挿入し、前記熱抵抗の値が設定可能であることを特徴とする請求項11に記載の渦電流式膜厚計。 The thermal shield and the dummy are connected, and further connected to a thermal bath, the thermal resistance is inserted between the thermal shield and the dummy and the thermal bath, and the value of the thermal resistance The eddy current film thickness meter according to claim 11, wherein the eddy current film thickness meter can be set. 前記手段として、前記測定対象物からの前記熱を前記参照コイルに導く構造を有することを特徴とする請求項1に記載の渦電流式膜厚計。 2. The eddy current film thickness meter according to claim 1, wherein the means has a structure for guiding the heat from the measurement object to the reference coil. 前記構造が、前記渦電流コイルセンサの本体部に形成されていることを特徴とする請求項13に記載の渦電流式膜厚計。 The eddy current film thickness meter according to claim 13, wherein the structure is formed in a main body of the eddy current coil sensor. 前記構造が、前記本体部に形成された凹部、貫通孔、段差のいずれかであることを特徴とする請求項14に記載の渦電流式膜厚計。 The eddy current film thickness meter according to claim 14, wherein the structure is any one of a recess, a through hole, and a step formed in the main body.
JP2006111841A 2006-04-14 2006-04-14 Eddy current film thickness meter Active JP5065614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111841A JP5065614B2 (en) 2006-04-14 2006-04-14 Eddy current film thickness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111841A JP5065614B2 (en) 2006-04-14 2006-04-14 Eddy current film thickness meter

Publications (2)

Publication Number Publication Date
JP2007285804A true JP2007285804A (en) 2007-11-01
JP5065614B2 JP5065614B2 (en) 2012-11-07

Family

ID=38757722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111841A Active JP5065614B2 (en) 2006-04-14 2006-04-14 Eddy current film thickness meter

Country Status (1)

Country Link
JP (1) JP5065614B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064590A (en) * 2009-09-17 2011-03-31 Ebara Corp Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
JP2011247631A (en) * 2010-05-24 2011-12-08 Jtekt Corp Eddy current detection method and eddy current detection sensor
JP2012235007A (en) * 2011-05-06 2012-11-29 Lasertec Corp Warpage measurement apparatus and warpage measurement method
JP2013053984A (en) * 2011-09-06 2013-03-21 Jtekt Corp Eddy current detection method and eddy current detection apparatus
JP2015175608A (en) * 2014-03-13 2015-10-05 株式会社荏原製作所 eddy current sensor
CN106441068A (en) * 2016-10-31 2017-02-22 天津因科新创科技有限公司 Pulsed eddy-current sensor for wall thickness detection
CN109668504A (en) * 2018-10-25 2019-04-23 合肥工业大学 A kind of current vortex displacement sensing probe and bridge circuit suitable for strong-electromagnetic field interference
CN110133318A (en) * 2019-06-06 2019-08-16 哈尔滨工程大学 Superhigh temperature current vortex sensor
CN114152184A (en) * 2021-11-27 2022-03-08 北京工业大学 Double-layer magnetic shielding type pulse eddy current sensor
WO2022268039A1 (en) * 2021-06-23 2022-12-29 东南大学 Online thickness measurement structure for semiconductor conductive thin film and measurement method thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214758A (en) * 1983-05-20 1984-12-04 Daido Steel Co Ltd Eddy current flaw detecting probe for hot-drawn material
JPS61102504A (en) * 1984-10-24 1986-05-21 シユタイン ウールテー Method and device for measuring thickness of metallic thin layer depositing on conductive foundation
JPS62225903A (en) * 1986-03-27 1987-10-03 Kobe Steel Ltd Apparatus for measuring thickness of liner coated pipe
JPS62225947A (en) * 1986-03-26 1987-10-03 Kobe Steel Ltd Probe for measuring vortex
JPS63157411A (en) * 1986-12-22 1988-06-30 Toshiba Corp Magnetic resonance image apparatus
JPS6441855A (en) * 1987-08-07 1989-02-14 Hitachi Ltd Eddy current flaw detector
JPS6454347A (en) * 1987-08-26 1989-03-01 Honda Motor Co Ltd Method for inspecting fiber reinforced composite layer by electromagnetic induction
JPH02218902A (en) * 1989-02-18 1990-08-31 Furukawa Electric Co Ltd:The Eddy current type displacement sensor
JPH03145104A (en) * 1989-10-30 1991-06-20 Shimadzu Corp Container for superconducting magnet in neuclear magnetic resonance tomography device
JPH07181002A (en) * 1991-08-14 1995-07-18 Elmeg Elektro Mechanik Gmbh Dielectric measuring method of position of metallic strip and device thereof
JPH07225105A (en) * 1994-01-28 1995-08-22 Amepa Eng Gmbh Device for discontinuously detecting thickness of layer on metal fused body
JPH07303619A (en) * 1994-05-12 1995-11-21 Ge Yokogawa Medical Syst Ltd Method for compensating eddy current in mri apparatus and mri apparatus
JP2000046509A (en) * 1998-07-27 2000-02-18 Nisshin Steel Co Ltd Slug thickness measuring instrument
JP2000088814A (en) * 1998-09-03 2000-03-31 Georgsmarienhuette Gmbh Device for conducting nondestructive inspection for rolled material of high temperature in particular
JP2001343205A (en) * 2000-03-28 2001-12-14 Toshiba Corp Eddy current loss measuring sensor, apparatus and method for measurement of film thickness as well as recording medium
JP2002075827A (en) * 2000-08-29 2002-03-15 Nikon Corp X-ray projection exposure system, method therefor and semiconductor device
JP2002148010A (en) * 2000-11-07 2002-05-22 Ulvac Japan Ltd Film-thickness measuring method
JP2002365007A (en) * 2001-06-07 2002-12-18 Nippon Soken Inc Magnetic sensor
JP2005121616A (en) * 2003-10-20 2005-05-12 Ebara Corp Eddy current sensor
JP2005300352A (en) * 2004-04-12 2005-10-27 Toyota Gakuen Thermal constant measuring device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214758A (en) * 1983-05-20 1984-12-04 Daido Steel Co Ltd Eddy current flaw detecting probe for hot-drawn material
JPS61102504A (en) * 1984-10-24 1986-05-21 シユタイン ウールテー Method and device for measuring thickness of metallic thin layer depositing on conductive foundation
JPS62225947A (en) * 1986-03-26 1987-10-03 Kobe Steel Ltd Probe for measuring vortex
JPS62225903A (en) * 1986-03-27 1987-10-03 Kobe Steel Ltd Apparatus for measuring thickness of liner coated pipe
JPS63157411A (en) * 1986-12-22 1988-06-30 Toshiba Corp Magnetic resonance image apparatus
JPS6441855A (en) * 1987-08-07 1989-02-14 Hitachi Ltd Eddy current flaw detector
JPS6454347A (en) * 1987-08-26 1989-03-01 Honda Motor Co Ltd Method for inspecting fiber reinforced composite layer by electromagnetic induction
JPH02218902A (en) * 1989-02-18 1990-08-31 Furukawa Electric Co Ltd:The Eddy current type displacement sensor
JPH03145104A (en) * 1989-10-30 1991-06-20 Shimadzu Corp Container for superconducting magnet in neuclear magnetic resonance tomography device
JPH07181002A (en) * 1991-08-14 1995-07-18 Elmeg Elektro Mechanik Gmbh Dielectric measuring method of position of metallic strip and device thereof
JPH07225105A (en) * 1994-01-28 1995-08-22 Amepa Eng Gmbh Device for discontinuously detecting thickness of layer on metal fused body
JPH07303619A (en) * 1994-05-12 1995-11-21 Ge Yokogawa Medical Syst Ltd Method for compensating eddy current in mri apparatus and mri apparatus
JP2000046509A (en) * 1998-07-27 2000-02-18 Nisshin Steel Co Ltd Slug thickness measuring instrument
JP2000088814A (en) * 1998-09-03 2000-03-31 Georgsmarienhuette Gmbh Device for conducting nondestructive inspection for rolled material of high temperature in particular
JP2001343205A (en) * 2000-03-28 2001-12-14 Toshiba Corp Eddy current loss measuring sensor, apparatus and method for measurement of film thickness as well as recording medium
JP2002075827A (en) * 2000-08-29 2002-03-15 Nikon Corp X-ray projection exposure system, method therefor and semiconductor device
JP2002148010A (en) * 2000-11-07 2002-05-22 Ulvac Japan Ltd Film-thickness measuring method
JP2002365007A (en) * 2001-06-07 2002-12-18 Nippon Soken Inc Magnetic sensor
JP2005121616A (en) * 2003-10-20 2005-05-12 Ebara Corp Eddy current sensor
JP2005300352A (en) * 2004-04-12 2005-10-27 Toyota Gakuen Thermal constant measuring device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064590A (en) * 2009-09-17 2011-03-31 Ebara Corp Eddy current sensor, polishing apparatus, plating apparatus, polishing method, plating method
JP2011247631A (en) * 2010-05-24 2011-12-08 Jtekt Corp Eddy current detection method and eddy current detection sensor
JP2012235007A (en) * 2011-05-06 2012-11-29 Lasertec Corp Warpage measurement apparatus and warpage measurement method
JP2013053984A (en) * 2011-09-06 2013-03-21 Jtekt Corp Eddy current detection method and eddy current detection apparatus
JP2015175608A (en) * 2014-03-13 2015-10-05 株式会社荏原製作所 eddy current sensor
CN106441068A (en) * 2016-10-31 2017-02-22 天津因科新创科技有限公司 Pulsed eddy-current sensor for wall thickness detection
CN109668504A (en) * 2018-10-25 2019-04-23 合肥工业大学 A kind of current vortex displacement sensing probe and bridge circuit suitable for strong-electromagnetic field interference
CN109668504B (en) * 2018-10-25 2020-11-17 合肥工业大学 Eddy current displacement sensing probe and bridge circuit suitable for strong electromagnetic field interference
CN110133318A (en) * 2019-06-06 2019-08-16 哈尔滨工程大学 Superhigh temperature current vortex sensor
WO2022268039A1 (en) * 2021-06-23 2022-12-29 东南大学 Online thickness measurement structure for semiconductor conductive thin film and measurement method thereof
CN114152184A (en) * 2021-11-27 2022-03-08 北京工业大学 Double-layer magnetic shielding type pulse eddy current sensor

Also Published As

Publication number Publication date
JP5065614B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5065614B2 (en) Eddy current film thickness meter
JP2952156B2 (en) Eddy current test method and apparatus
JP5108757B2 (en) Method and apparatus for optimizing the electrical response of a conductive layer
JP4641420B2 (en) Method and apparatus for measuring the thickness of a test object between two eddy current sensor heads
US10495671B2 (en) Current detection device
JP2011520114A (en) Structure for a magnetic field gradient sensor and its manufacturing method with integration technology
EP3194953B1 (en) Apparatus for magnetic sensor based surface shape analysis
Wang et al. A compact and high-performance eddy-current sensor based on meander-spiral coil
KR102586622B1 (en) Substrate processing apparatus, substrate processing method and storage medium
JP2014528087A (en) Equipment for detecting cracks in metallic materials in metal manufacturing processes
Krishnapriya et al. Modeling and simulation of non-spiral coil for magnetic sensing applications
US9116197B2 (en) Integrated interconnect and magnetic-field detector for current sensing
TWI453783B (en) Scanning electron microscopy, system and method for electromagnetic interference shielding for a secondary electron detector of scanning electron microscopy
JP2010512921A (en) Apparatus and method for influencing and / or detecting magnetic particles in a working region
CN108022602B (en) The method of pseudo- flexible element and test for the electronic circuit of disc driver for disc driver
US9410930B2 (en) Method for manufacturing a testing head of a non-destructive testing sensor based on eddy currents
JP4888765B2 (en) Film thickness meter and film thickness measurement method
US9880233B2 (en) Methods and apparatus to determine parameters in metal-containing films
Sylvia et al. Development of mutual inductance type sodium level detectors for PFBR
Vogel et al. Modelling the inductance of a novel eddy-current position sensor for high-precision applications
EP1137907B1 (en) Use of an electric measurement component
Vogel et al. Probe design for high-precision eddy-current displacement sensors
JP2007333439A (en) Eddy-current sensor
Weststrate et al. Comsol multiphysics modeling for design optimization of eddy current crack detectors
JP2013029437A (en) Surface current probe

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5065614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250