JP4888765B2 - Film thickness meter and film thickness measurement method - Google Patents

Film thickness meter and film thickness measurement method Download PDF

Info

Publication number
JP4888765B2
JP4888765B2 JP2006119091A JP2006119091A JP4888765B2 JP 4888765 B2 JP4888765 B2 JP 4888765B2 JP 2006119091 A JP2006119091 A JP 2006119091A JP 2006119091 A JP2006119091 A JP 2006119091A JP 4888765 B2 JP4888765 B2 JP 4888765B2
Authority
JP
Japan
Prior art keywords
conductive film
film thickness
eddy current
coil
detection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006119091A
Other languages
Japanese (ja)
Other versions
JP2007292543A (en
Inventor
直樹 水谷
純平 湯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2006119091A priority Critical patent/JP4888765B2/en
Publication of JP2007292543A publication Critical patent/JP2007292543A/en
Application granted granted Critical
Publication of JP4888765B2 publication Critical patent/JP4888765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、金属薄膜等の導電性の被膜の厚さを非接触で測定する渦電流式膜厚計に関し、詳しくは位相検波する膜厚計及びその膜厚の測定方法に関する。   The present invention relates to an eddy current film thickness meter that measures the thickness of a conductive film such as a metal thin film in a non-contact manner, and more particularly to a film thickness meter that performs phase detection and a method for measuring the film thickness.

半導体基板上、又は液晶ディスプレイ用のガラス基板上に形成された導電性薄膜の成膜状態を非破壊で検査する導電膜検査装置として渦電流式膜厚計が用いられている。   An eddy current film thickness meter is used as a conductive film inspection apparatus for nondestructively inspecting a film formation state of a conductive thin film formed on a semiconductor substrate or a glass substrate for a liquid crystal display.

渦電流式膜厚計は、導体を交番磁界中に置くと、その導体内に磁界を打ち消す方向に渦電流が流れ、この渦電流の大きさや分布が、導体の形状、導電率、内部欠陥などにより変化することを利用して被膜の電気抵抗値を測定するという原理に基いた計測装置である。これは、渦電流により発生する磁界が相互誘導作用により検出コイルのインピ−ダンスを変化させるので、このインピ−ダンスの変化を電圧値や位相の変化として検出することにより、被検査物である導体の状態を知る方法である(特許文献1参照)。   In an eddy current film thickness meter, when a conductor is placed in an alternating magnetic field, eddy current flows in the direction to cancel the magnetic field in the conductor, and the size and distribution of this eddy current depends on the shape of the conductor, conductivity, internal defects, etc. It is a measuring device based on the principle of measuring the electrical resistance value of the film by utilizing the change due to the above. This is because the magnetic field generated by the eddy current changes the impedance of the detection coil due to the mutual inductive action. By detecting this change in impedance as a change in voltage value or phase, the conductor that is the object to be inspected is detected. It is a method of knowing the state of (see Patent Document 1).

ここで、膜厚測定装置について、図10〜12を使用して説明する。図10に膜厚測定装置91の概略全体構成を示す。図10に示すように、膜厚測定装置91は、例えば、駆動系(移動機構)93によって駆動される基板ステ−ジ93a上に支持されたシリコンウエハ等の基板の上方に配置される測定部92を有している。   Here, the film thickness measuring device will be described with reference to FIGS. FIG. 10 shows a schematic overall configuration of the film thickness measuring device 91. As shown in FIG. 10, the film thickness measuring device 91 is, for example, a measuring unit disposed above a substrate such as a silicon wafer supported on a substrate stage 93 a driven by a driving system (moving mechanism) 93. 92.

この駆動系93は、コンピュ−タ94からの命令によって動作するように構成され、基板ステ−ジ93aを上下及び水平方向に移動させることにより、測定部92と基板50との相対的な位置を変えるようになっている。   The drive system 93 is configured to operate in response to a command from the computer 94. By moving the substrate stage 93a in the vertical and horizontal directions, the relative positions of the measurement unit 92 and the substrate 50 are changed. It is supposed to change.

測定部92は、例えば、プラスチック等の絶縁材料からなる支持部92aが設けられ、この支持部92aに、渦電流コイルセンサ(以下「渦電流センサ」という)20と,レ−ザ変位センサ(以下「レ−ザセンサ」という)30が取り付けられている。   The measurement unit 92 is provided with a support portion 92a made of, for example, an insulating material such as plastic. The support portion 92a includes an eddy current coil sensor (hereinafter referred to as “eddy current sensor”) 20 and a laser displacement sensor (hereinafter referred to as “displacement sensor”). A "laser sensor") 30 is attached.

ここで、渦電流センサ20は、基板50の近傍に配置され、基板50上に形成された導電膜(測定対象膜)51に近接するようになっている。   Here, the eddy current sensor 20 is disposed in the vicinity of the substrate 50 and is close to a conductive film (measurement target film) 51 formed on the substrate 50.

この渦電流センサ20は絶縁材料からなる本体2内に、後述する検出コイル3と基準コイル4が埋め込まれて構成されている(図12)。更に、検出コイル3と基準コイル4はインダクタンスメ−タ95に接続されている。   The eddy current sensor 20 is configured by embedding a detection coil 3 and a reference coil 4 described later in a main body 2 made of an insulating material (FIG. 12). Further, the detection coil 3 and the reference coil 4 are connected to an inductance meter 95.

また、レ−ザセンサ30は、渦電流センサの上方の所定の位置に取り付けられている。   The laser sensor 30 is attached to a predetermined position above the eddy current sensor.

このレ−ザセンサ30は、レ−ザセンサコントロ−ラ96によって制御されるもので、基板50上の導電膜51上の所定の位置を照射することにより導電膜51表面までの距離を高精度に測定するものである。   The laser sensor 30 is controlled by a laser sensor controller 96. By irradiating a predetermined position on the conductive film 51 on the substrate 50, the distance to the surface of the conductive film 51 can be set with high accuracy. Measure.

さらに、これらインダクタンスメ−タ95とレ−ザセンサコントロ−ラ96はコンピュ−タ94に接続され、コンピュ−タ94においてデ−タ解析を行なうようになっている。   Further, the inductance meter 95 and the laser sensor controller 96 are connected to a computer 94, and the computer 94 performs data analysis.

図11は、渦電流センサ20の構成を示す回路図、図12は、渦電流センサ20の検出コイル3と基準コイル4の相対的な位置関係を説明する図である。検出コイル3が基板50上の導電膜51に近接している。   FIG. 11 is a circuit diagram showing the configuration of the eddy current sensor 20, and FIG. 12 is a diagram for explaining the relative positional relationship between the detection coil 3 and the reference coil 4 of the eddy current sensor 20. The detection coil 3 is close to the conductive film 51 on the substrate 50.

図11に示すように、渦電流センサ20はMaxwellブリッジと呼ばれるブリッジ回路10を持っている。渦電流センサ20の検出コイル3と参照コイル4が直列に接続されている様子を示している。検出コイル3のみ、基板50と相互に影響することを太い矢印で示している。   As shown in FIG. 11, the eddy current sensor 20 has a bridge circuit 10 called a Maxwell bridge. The state where the detection coil 3 and the reference coil 4 of the eddy current sensor 20 are connected in series is shown. A thick arrow indicates that only the detection coil 3 influences the substrate 50.

渦電流センサ20は、ブリッジ回路10に印加した交流電圧によって発生するコイルの両端の電圧において、検出コイル3の両端には基板50と相互の影響により発生する電圧が含まれることから、検出コイル3と参照コイル4の端子間電圧の差分をブリッジ回路10によって得て、予め記憶しておいたデ−タと照合することにより、膜厚を得るというものである。   In the eddy current sensor 20, the voltage generated by the mutual influence of the substrate 50 is included at both ends of the detection coil 3 in the voltage at both ends of the coil generated by the AC voltage applied to the bridge circuit 10. The difference in voltage between the terminals of the reference coil 4 is obtained by the bridge circuit 10, and the film thickness is obtained by comparing with the data stored in advance.

膜厚を得る為の具体的な方法を図1〜3を用いて詳細に説明する。   A specific method for obtaining the film thickness will be described in detail with reference to FIGS.

渦電流式膜厚計20の構成例を図1に示す。検出コイル(ピックアップコイル)3が測定対象の薄膜導電膜51に0.3mm程度に近接して配置され、参照コイル4は検出コイル3から数mm程度の所に配置される。図2のような交流ブリッジ型回路を形成し、交流電圧が印加されて発生する電圧を測定し、予め求めておいた電圧と膜厚の関係から膜厚を知ることができる。   A configuration example of the eddy current film thickness meter 20 is shown in FIG. The detection coil (pickup coil) 3 is disposed in the vicinity of the thin film conductive film 51 to be measured in the vicinity of about 0.3 mm, and the reference coil 4 is disposed in the place about several mm from the detection coil 3. An AC bridge type circuit as shown in FIG. 2 is formed, a voltage generated when an AC voltage is applied is measured, and the film thickness can be known from the relationship between the voltage and the film thickness obtained in advance.

図3に計算モデルを示す。R1、L1が検出及び参照コイルの抵抗、自己インダクタンスで、導電膜51に誘起された渦電流による検出コイル3のインピーダンスの変化をRe、Leとおくと下記となる。 FIG. 3 shows a calculation model. R1, L1 is detected and the reference coil resistance, self-inductance, a change in impedance of the detection coil 3 by the induced eddy currents in the conductive film 51 R e, L e farther To becomes as follows.

Figure 0004888765
Figure 0004888765

これからVxの振幅│Vx│は下記となる。 Amplitude │V x │ of V x now becomes a following.

Figure 0004888765
Figure 0004888765

│Vx│は通常、導電膜51のシート抵抗に依存するので、│Vx│を測定すれば導電膜51の膜厚が求まる。
導電膜51での渦電流による検出コイル3のインピーダンスの変化は、図3のように導電膜51の薄膜を一つのループと見なして考えると分かりやすい。相互インダクタンスをMCL、仮想ループの抵抗、自己インダクタンスをRL, LLとすると検出コイル3のインピーダンスZCは下記となる。
Since | V x | usually depends on the sheet resistance of the conductive film 51, the film thickness of the conductive film 51 can be obtained by measuring | V x |.
The change in impedance of the detection coil 3 due to the eddy current in the conductive film 51 can be easily understood when the thin film of the conductive film 51 is considered as one loop as shown in FIG. When the mutual inductance is M CL , the resistance of the virtual loop, and the self-inductance are R L and L L , the impedance Z C of the detection coil 3 is as follows.

Figure 0004888765
Figure 0004888765

RLが導電膜51のシート抵抗に比例して変化すると、Re, Leが変化し、(1)式の出力電圧Vx及びその振幅│Vx│が変化する。よって、シート抵抗とVx或いは│Vx│との関係が存在し、導電膜51の材料に応じた「膜厚とシート抵抗の関係」を用いれば、Vx或いは│Vx│の測定結果から導電膜51の膜厚が求まる。 When R L changes in proportion to the sheet resistance of the conductive film 51, R e and L e change, and the output voltage V x and its amplitude | V x | in equation (1) change. Therefore, the relationship between the sheet resistance and V x or │V x │ exists, by using the "relation between the film thickness and the sheet resistance" in accordance with the material of the conductive film 51, the measurement results of V x or │V x │ Thus, the film thickness of the conductive film 51 is obtained.

図3にRe, Le,│Vx│の計算例を示す。検出コイル3はソレノイドで長さ1.71 mm、外径2.4 mm、内径0.4 mm、1層につき10巻き、6層、合計60巻き、コイル下端から導電膜51までの距離h=0.3 mm、コイルの自己インダクタンスLC = 1.75 x10 -6 H、コイルの抵抗RC = 0.66Ωとし、仮想ループの半径1.5mm、幅0.5mmとした例で、ループの自己インダクタンスLLとコイルとの相互インダクタンスMCLは図中に示した。(2), (3)式及び│Vx│をループの抵抗RLの逆数に対してプロットしたものである。 3 shows R e, L e, a calculation example of │V x │. The detection coil 3 is a solenoid having a length of 1.71 mm, an outer diameter of 2.4 mm, an inner diameter of 0.4 mm, 10 windings per layer, 6 layers, a total of 60 windings, a distance h from the lower end of the coil to the conductive film 51 = In this example, the coil self-inductance L C = 1.75 x 10 -6 H, the coil resistance R C = 0.66Ω, the radius of the virtual loop is 1.5 mm, and the width is 0.5 mm. The self-inductance L L and the mutual inductance M CL of the coil are shown in the figure. (2), (3) and | V x | are plotted against the reciprocal of the resistance R L of the loop.

励起周波数1MHzと10MHzでの結果を示した。│Vx│の計算ではブリッジへの印加電圧振幅E0を1Vとした。RLはシート抵抗に比例する。これから、シート抵抗が大きい領域では、│Vx│への寄与はReが支配的で、│Vx│は「シート抵抗の逆数」に比例することが分かる。 The results at excitation frequencies of 1 MHz and 10 MHz are shown. In the calculation of │V x │, the voltage amplitude E 0 applied to the bridge was set to 1V. R L is proportional to the sheet resistance. Now, in the region sheet resistance is large, contribution to │V x │ is a R e is dominant, │V x │ is proportional to the "inverse of sheet resistance".

また、位相検波を用いて膜厚の測定を行なうセンサがあった(特許文献2参照)。しかしながら、研磨装置での膜を除去する場合の研磨終了を検知する装置への応用を考慮して、膜厚がオングストロ−ムオ−ダの極めてシ−ト抵抗が高い場合のものであった。   In addition, there is a sensor that measures the film thickness using phase detection (see Patent Document 2). However, in consideration of application to an apparatus for detecting the end of polishing when the film is removed by the polishing apparatus, the film thickness is that when the sheet resistance is very high in the angstrom order.

さらに、検出コイル3と参照コイル4に平面コイルを用いるセンサが開発された(特許文献3参照)。検出コイル3と参照コイル4の巻き方を互いに逆相にして渦電流膜厚計の感度を落とすことなく、空間分解能を向上させる。また、薄膜を半径の異なる5つのル−プとみなして、インピ−ダンスの変化分を求める方法を開示した。
しかしながら、インダクタンス成分の変化量より、膜厚を求めるものであった。
Furthermore, a sensor using planar coils for the detection coil 3 and the reference coil 4 has been developed (see Patent Document 3). Spatial resolution is improved without degrading the sensitivity of the eddy current film thickness meter with the detection coil 3 and the reference coil 4 wound in opposite phases. Further, a method for obtaining a change in impedance by regarding the thin film as five loops having different radii has been disclosed.
However, the film thickness is obtained from the amount of change in the inductance component.

特開平5−149927号公報(第3頁、図1)JP-A-5-149927 (page 3, FIG. 1) 特開2005−121616号公報(第12頁、図9)Japanese Patent Laying-Open No. 2005-121616 (page 12, FIG. 9) 特開2005−227256号公報(第6頁、図10)JP-A-2005-227256 (page 6, FIG. 10)

上記の理想的な計算ではシート抵抗が大きくなると│Vx│はシート抵抗の逆数に比例して小さくなるはずだが、実際に測定すると、あるシート抵抗値以上ではほとんど変化しなくなる。そのために、│Vx│の測定値からシート抵抗及び膜厚を算出することができなくなる。 In the above ideal calculation, when the sheet resistance increases, | V x | should decrease in proportion to the reciprocal of the sheet resistance. However, when actually measured, it hardly changes at a certain sheet resistance value or more. Therefore, the sheet resistance and film thickness cannot be calculated from the measured value of | V x |.

また、成膜した膜の特性の利用を考慮した場合、良く利用されるマイクロメ−トルオ−ダの膜の膜厚測定により適したものが望ましい。   In consideration of the use of the characteristics of the formed film, it is desirable that the film thickness is more suitable for measuring the film thickness of a frequently used micrometer order film.

上記課題は「参照コイルと検出コイルが直列に接続された回路と、2個の基準抵抗が直列に接続されたインダクタンスブリッジを用い、測定対象物の表面に形成された導電膜の近傍の所定の位置に配置可能に構成され、前記参照コイルよりも前記検出コイルを前記導電膜に近接した位置に配置可能であり、前記導電膜に対して所定の渦電流を発生させ且つ当該渦電流による磁界を検出する渦電流コイルセンサであって、前記前記導電膜からの前記磁界を検出するとき前記所定の渦電流を発生させるための前記直列回路に印加された印加電圧に対して参照信号の位相合わせをする手段を有し、前記導電膜のシ−ト抵抗値がマイクロメ−トルオ−ダの膜厚に対応する高抵抗値であるものを測定できるように、前記インダクタンスブリッジの出力の抵抗成分のみを測定するようにしたことを特徴とする渦電流式膜厚計」によって解決される。   The above-mentioned problem is that “a circuit in which a reference coil and a detection coil are connected in series and an inductance bridge in which two reference resistors are connected in series, and a predetermined area near the conductive film formed on the surface of the object to be measured are used. The detection coil can be disposed closer to the conductive film than the reference coil, and a predetermined eddy current is generated in the conductive film and a magnetic field generated by the eddy current is generated. An eddy current coil sensor for detecting a phase of a reference signal with respect to an applied voltage applied to the series circuit for generating the predetermined eddy current when detecting the magnetic field from the conductive film. The output of the inductance bridge so that the sheet resistance value of the conductive film is a high resistance value corresponding to the film thickness of the micrometer order. It is solved by an eddy current film thickness meter, "which is characterized in that so as to measure only the anti component.

また、以上の課題は「参照コイルと検出コイルが直列に接続された回路と、2個の基準抵抗が直列に接続されたインダクタンスブリッジを用い、測定対象物の表面に形成された導電膜の近傍の所定の位置に配置可能に構成され、前記参照コイルよりも前記検出コイルを前記導電膜に近接した位置に配置可能であり、前記導電膜に対して所定の渦電流を発生させ且つ当該渦電流による磁界を検出する渦電流コイルセンサであって、前記前記導電膜からの前記磁界を検出するとき前記所定の渦電流を発生させるための前記直列回路に印加された印加電圧に対して参照信号の位相合わせをする手段を有し、前記導電膜のシ−ト抵抗値がマイクロメ−トルオ−ダの膜厚に対応する高抵抗値であるものを測定できるように、前記インダクタンスブリッジの出力の抵抗成分のみを測定するようにしたことを特徴とする膜厚の測定方法」によって解決される。   In addition, the above problem is that "a circuit in which a reference coil and a detection coil are connected in series and an inductance bridge in which two reference resistors are connected in series, and the vicinity of a conductive film formed on the surface of an object to be measured. The detection coil can be disposed at a position closer to the conductive film than the reference coil, and a predetermined eddy current is generated in the conductive film and the eddy current is generated. An eddy current coil sensor for detecting a magnetic field by a reference signal with respect to an applied voltage applied to the series circuit for generating the predetermined eddy current when detecting the magnetic field from the conductive film. Means for phase matching, and the inductance bridge so that the sheet resistance value of the conductive film is a high resistance value corresponding to the film thickness of the micrometer order. It is solved by the measurement method "in thickness, characterized in that so as to measure only the resistance component of the output.

具体的には、検出コイル3の抵抗成分の変化Reを測定する。Reは導電膜51の「シート抵抗の逆数」に比例する、即ち、シート抵抗に対して変化するので、Reを測定すれば導電膜51の膜厚を求められる。   Specifically, the change Re of the resistance component of the detection coil 3 is measured. Since Re is proportional to the “reciprocal of sheet resistance” of the conductive film 51, that is, changes with respect to the sheet resistance, the film thickness of the conductive film 51 can be obtained by measuring Re.

上記のReとシート抵抗の関係は実験で確かめた。シート抵抗が大きくなると、検出コイル3の自己インダクタンス成分の変化分Leが大きいままの一定値となり、│Vx│の主要部分をなすために│Vx│が一定になることを実験的に確かめた。 The relationship between Re and sheet resistance was confirmed by experiments. When the sheet resistance increases, becomes constant value remains large variation Le in self-inductance component of the detection coil 3, experimentally confirmed that │V x │ becomes constant in order to make the main part of │V x │ It was.

具体的には、交流ブリッジ10出力信号の測定において、位相検波時の参照信号と励起信号の位相差を、下記(4)式とすることで、抵抗成分の変化Reのみを測定する。ここでL1、R1は検出コイル3の自己インダクタンスと抵抗である。 Specifically, in the measurement of the output signal of the AC bridge 10, only the resistance component change Re is measured by setting the phase difference between the reference signal and the excitation signal at the time of phase detection to the following equation (4). Here, L 1 and R 1 are the self-inductance and resistance of the detection coil 3.


φ= tan-1(ω L1/R1) (4)

φ = tan -1 (ω L 1 / R 1 ) (4)

導電膜51の「シート抵抗の逆数」に比例する「検出コイルの抵抗成分の変化分Re」を出力信号として測定することにより、従来の「シート抵抗の増大につれて信号が一定値になること」がなくなるので、シート抵抗が大きい導電膜51でも信号測定結果から膜厚を求めることが可能になる。   By measuring, as an output signal, “the change Re of the resistance component of the detection coil” proportional to the “reciprocal of the sheet resistance” of the conductive film 51, the conventional “the signal becomes a constant value as the sheet resistance increases”. Therefore, even in the conductive film 51 having a large sheet resistance, the film thickness can be obtained from the signal measurement result.

上記「検出コイルの抵抗成分の変化分Re」は、位相検波時の参照信号と励起信号の位相差を式(4) とすることで得られることが分かったので、既知のL1、R1から設定すべき位相差・・を算出でき、面倒な位相調整は不要で所望の信号が得られる。ここでL1、R1は検出コイルの自己インダクタンスと抵抗である。 Since it has been found that the above-mentioned “change amount Re of the resistance component of the detection coil Re” can be obtained by using the phase difference between the reference signal and the excitation signal at the time of phase detection as Equation (4), known L 1 , R 1 The phase difference to be set can be calculated from the above, and a desired signal can be obtained without complicated phase adjustment. Here, L 1 and R 1 are the self-inductance and resistance of the detection coil.

以下、本発明を適用した実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments to which the present invention is applied will be described in detail with reference to the drawings.

本発明の実施の形態で使用する渦電流式センサは、先に詳述した図1〜3と同じ構成である。   The eddy current sensor used in the embodiment of the present invention has the same configuration as that shown in FIGS.

本発明の実施の形態の交流ブリッジ10出力信号の測定においては、位相検波時の参照信号と励起信号の位相差を式(4) とすることで、抵抗成分の変化Reのみを測定する。   In the measurement of the output signal of the AC bridge 10 according to the embodiment of the present invention, only the change Re of the resistance component is measured by using the phase difference between the reference signal and the excitation signal at the time of phase detection as Equation (4).

以上の効果を具体的に示すため、図4にしめす計算モデルにより見積もりを行なった。
導電膜51は、5つの同心円のループ(半径1.5、3, 4.5、6、7.5mm)と見なし計算している。
In order to specifically show the above effects, the calculation model shown in FIG. 4 was used for estimation.
The conductive film 51 is calculated assuming that it is a loop of five concentric circles (radius 1.5, 3, 4.5, 6, 7.5 mm).

Re, Le, │Vx│の計算結果と測定結果の比較を以下に示す。コイルは、空間分解能よりも感度を優先させた平面コイルで、0.23mmピッチ、19巻き、外径9mmである。図7のRe, Leは計算値で、導電膜51を5つの同心円のループ(半径1.5、3, 4.5、6、7.5mm)と見なしてコイルのインピーダンスの変化を計算して求めた。   A comparison between the calculation results of Re, Le, │Vx│ and the measurement results is shown below. The coil is a planar coil that prioritizes sensitivity over spatial resolution and has a pitch of 0.23 mm, 19 turns, and an outer diameter of 9 mm. Re and Le in FIG. 7 are calculated values, and the change in coil impedance was calculated by regarding the conductive film 51 as five concentric loops (radius 1.5, 3, 4.5, 6, and 7.5 mm).

導電膜51とコイル間の距離は0.3mm、コイルの自己インダクタンスは1.4e−6H、抵抗は2Ωとした。図6にはブリッジ出力電圧への寄与に相当するI0 Re /2、I0・ Le/2と│Vx│{(5)式}をプロットした。 The distance between the conductive film 51 and the coil was 0.3 mm, the self-inductance of the coil was 1.4e-6H, and the resistance was 2Ω. In FIG. 6, I 0 R e / 2, I 0 · L e / 2, and | V x | {Equation (5)} corresponding to the contribution to the bridge output voltage are plotted.


│Vx│ = [(I0 Re /2)2 +( I0ωLe/2)2] 0.5 (5)

ブリッジへの印加電圧振幅は1Vで、周波数は10MHzである。シート抵抗Rsが大きくなるとReの寄与分は1/Rsに比例し、Leの寄与分は(1/Rs) 2に比例する。従って、図6から分かるようにRsが大きい領域ではReの寄与が支配的で│Vx│も1/Rsに比例することが計算からは予想される。

│V x │ = [(I 0 R e / 2) 2 + (I 0 ωL e / 2) 2 ] 0.5 (5)

The voltage amplitude applied to the bridge is 1V and the frequency is 10MHz. As the sheet resistance Rs increases, the contribution of Re is proportional to 1 / Rs, and the contribution of Le is proportional to (1 / Rs) 2 . Therefore, as can be seen from FIG. 6, it is predicted from the calculation that the contribution of Re is dominant and | V x | is also proportional to 1 / Rs in the region where Rs is large.

しかしながら、良く利用されるマイクロメ−トルオ−ダの領域で、実際にReとLeを測ってみると図7に示す結果となった(ブリッジに1V印加時のI0を掛けてプロットしている)。導電膜51にはCu、Ta、TiNを用いた。図7中の直線は、図6に示した計算結果である。│Vx│はRe、Leの測定値を用いての計算値は(5)式である。 However, when we actually measured Re and Le in the area of the micrometer order often used, the result shown in FIG. 7 was obtained (plotted by multiplying the bridge by I 0 when 1 V was applied). . Cu, Ta, and TiN were used for the conductive film 51. The straight line in FIG. 7 is the calculation result shown in FIG. │V x │ is calculated by using the measured values of Re and Le.

図7から分かるように、Reの成分は計算結果とよく合うのに対し、Leの成分は計算値よりはるかに大きく、シート抵抗Rsに対して一定である。そして、Rsが50Ω以上では│Vx│においてLeの成分が支配的になり、│Vx│もRsに対して変化しなくなる。 As can be seen from FIG. 7, the Re component matches the calculation result well, while the Le component is much larger than the calculated value and is constant with respect to the sheet resistance Rs. Then, Rs ingredients of Le is dominant in │V x │ is 50Ω or more, does not change with respect to │V x │ also Rs.

(5)式に従い、Reの寄与分だけは│Vx│も変化するが、「大きい値における小さい変化」を読むことになり、測定精度の問題からも計測器としてはよくない。 According to the formula (5), only the contribution of Re changes | V x |, but it reads “small change in large value”, which is not good as a measuring instrument from the viewpoint of measurement accuracy.

以上から、Leの上記振舞いの理由は現時点では不明であるが、従来の│Vx│を測定していては膜厚の測定精度が低いのに対し、Reの成分を測定すれば、それがシート抵抗Rsに対して敏感に変化するので、高精度の膜厚測定が可能な渦電流膜厚計になると言える。 From the above, the reason for the above behavior of Le is unknown at present, but the measurement accuracy of film thickness is low when measuring conventional │V x │. Since it changes sensitively to the sheet resistance Rs, it can be said that it becomes an eddy current film thickness meter capable of highly accurate film thickness measurement.

次に、Reを選択的に測定する方法を述べる。式(1)からは、Re成分とLe成分が直交しており、ブリッジ出力の交流電圧信号Vxの測定において位相検波時の参照信号の位相設定によって、Re, Leが独立に測定できることが分かる。 Next, a method for selectively measuring Re will be described. From equation (1), are orthogonal is Re component and Le component, the phase setting of the reference signal at the phase detection in the measurement of the alternating voltage signal V x of the bridge output, the R e, L e can be measured independently I understand.

図6は前述のソレノイド、1MHzでの下記(6)式の計算例である。   FIG. 6 is a calculation example of the following equation (6) at the above-described solenoid, 1 MHz.


Vx = I0 [ Re cos(ωt−φ) + ωLe sin(ωt−φ) ] / 2 (6)

印加電圧振幅は1Vとし、図8では1/1000倍にしてプロットした。印加電圧、Re、Leの成分、Vxの位相の関係を示している。位相差φ、αは(1)式の下に示したとおりである。Re成分は印加電圧に対してφだけ位相が遅れており、参照信号の位相もφだけ遅らせればRe成分のみが検出される。

V x = I 0 [R e cos (ωt−φ) + ωL e sin (ωt−φ)] / 2 (6)

The applied voltage amplitude was set to 1V, and plotted in FIG. Applied voltage, Re, components of Le, shows the phase relationship of V x. The phase differences φ and α are as shown below (1). The Re component is delayed in phase by φ with respect to the applied voltage. If the phase of the reference signal is also delayed by φ, only the Re component is detected.

導電膜51のシート抵抗が大きい場合、Re, LeはR1, L1に比べ十分小さいので、表1のφは(4)式で近似でき、既知の検出コイルのR1, L1の値からφを設定できる。   When the sheet resistance of the conductive film 51 is large, Re and Le are sufficiently smaller than R1 and L1, so φ in Table 1 can be approximated by equation (4), and φ is set from the values of R1 and L1 of known detection coils. it can.

従って、図9に示すように、ブリッジ出力の交流電圧信号の測定において、位相検波時の参照信号の位相を励起信号より、このφだけ遅らせれば、「シート抵抗の逆数」に比例して変化する「Reの成分」のみが検出されて、シート抵抗が大きい導電膜51の膜厚が高精度に測定できる測定方法となる。   Therefore, as shown in FIG. 9, in the measurement of the AC voltage signal at the bridge output, if the phase of the reference signal at the time of phase detection is delayed by this φ from the excitation signal, it changes in proportion to the “reciprocal of sheet resistance”. Thus, only the “Re component” is detected, and the film thickness of the conductive film 51 having a large sheet resistance can be measured with high accuracy.

尚、前記参照信号は、インダクタンスメ−タ95内の特に図示しない発振回路により、交流電圧源26の出力に同期して発生し、特に図示しない位相シフト回路によって前記Re成分との位相合わせが可能になっている。   The reference signal is generated in synchronization with the output of the AC voltage source 26 by an oscillation circuit (not shown) in the inductance meter 95 and can be phase-matched with the Re component by a phase shift circuit (not shown). It has become.

前記位相シフト回路は、デジタル回路によるシフトレジスタ、アナログ回路の遅延線、抵抗やコンデンサなどの組合わせによる時定数回路が使用できる。   As the phase shift circuit, a time constant circuit using a combination of a shift register using a digital circuit, a delay line of an analog circuit, a resistor, a capacitor, and the like can be used.

また、本発明は、一般に良く利用されるマイクロメ−トルオ−ダの領域での膜厚測定において特に好適である。すなわち、図7に示すように、望ましくはRsが20〜110Ωの範囲、ついで1Ω〜1KΩの範囲で良好な測定が可能である。LeがRsに対して一定になる範囲であり、Reのみ測定すれば膜厚が高精度に測定できる範囲である。   In addition, the present invention is particularly suitable for film thickness measurement in the area of the micrometer order which is generally used well. That is, as shown in FIG. 7, it is desirable that good measurement is possible in the range of Rs of 20 to 110Ω, and then in the range of 1Ω to 1KΩ. Le is a range in which Rs is constant, and if only Re is measured, the film thickness can be measured with high accuracy.

以上、発明の実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術思想に基づいて、種々の変形が可能である。   As mentioned above, although embodiment of invention was described, of course, this invention is not limited to these, Based on the technical idea of this invention, a various deformation | transformation is possible.

渦電流式センサ20の斜視図である。 計算モデルの基となる渦電流式センサ20の構成品の配置を示す図である。測定対象である導電膜51、検出コイル3、参照コイル4の配置の概略位置を示す。2 is a perspective view of an eddy current sensor 20. FIG. It is a figure which shows arrangement | positioning of the component of the eddy current type sensor 20 used as the basis of a calculation model. The schematic positions of the conductive film 51, the detection coil 3, and the reference coil 4 that are measurement targets are shown. 渦電流式センサの回路図である。 参照コイル4にL1、R1が対応する。検出コイル3に、L2、R2が対応する。It is a circuit diagram of an eddy current type sensor. L 1 and R 1 correspond to the reference coil 4. L 2 and R 2 correspond to the detection coil 3. 渦電流式センサ1の計算モデルである。 検出コイル3と導電膜51の関係を計算モデル化した。導電膜51に相当するのがル−プである。検出コイル3と導電膜51が互いに受ける影響が相互インダクタンスMCLである。3 is a calculation model of the eddy current sensor 1. The relationship between the detection coil 3 and the conductive film 51 was modeled as a calculation model. A loop corresponds to the conductive film 51. The mutual inductance M CL affects the detection coil 3 and the conductive film 51. 導電膜51を5つのル−プとみなした計算モデルである。This is a calculation model in which the conductive film 51 is regarded as five loops. │Vx│とRe, Leの関係を示すグラフである。It is a graph which shows the relationship between │V x │ and Re, Le. Re, Leの計算結果のグラフである。It is a graph of the calculation result of Re and Le. Re, Leの実測値を示すグラフである。 実測値Le成分が、変化していないのが分る。その一方、Re成分は変化している。It is a graph which shows the measured value of Re and Le. It can be seen that the measured value Le component has not changed. On the other hand, the Re component is changing. ブリッジ出力成分の位相の例を示す。 Re成分が印加電圧より、φ遅れていることが分る。An example of the phase of the bridge output component is shown. It can be seen that the Re component is delayed by φ from the applied voltage. 本発明の実施の形態の位相である。 参照信号をφ遅らせてRe成分のみ取り出せるようにした。It is a phase of embodiment of this invention. The reference signal is delayed by φ so that only the Re component can be extracted. 渦電流式膜厚測定装置91の概略全体構成図である。 駆動系(移動機構)93によって駆動される基板ステ−ジ93a上に支持されたシリコンウエハ等の基板50の上方に配置される測定部92を有している。駆動系93は、コンピュ−タ94からの命令によって動作するように構成され、基板ステ−ジ93aを上下及び水平方向に移動させることにより、測定部92と基板50との相対的な位置を変えるようになっている。1 is a schematic overall configuration diagram of an eddy current film thickness measuring device 91. FIG. It has a measuring unit 92 disposed above a substrate 50 such as a silicon wafer supported on a substrate stage 93a driven by a drive system (moving mechanism) 93. The drive system 93 is configured to operate in accordance with a command from the computer 94, and changes the relative position between the measurement unit 92 and the substrate 50 by moving the substrate stage 93a in the vertical and horizontal directions. It is like that. 渦電流式膜厚計(渦電流センサ)20の回路図である。 ブリッジ10によって、参照コイル4と検出コイル3の出力の差分を得て測定回路27で受けるように構成されている。1 is a circuit diagram of an eddy current film thickness meter (eddy current sensor) 20. FIG. A difference between outputs of the reference coil 4 and the detection coil 3 is obtained by the bridge 10 and received by the measurement circuit 27. 渦電流センサ20の検出コイル3と参照コイル4の相対的な位置関係を説明する図である。検出コイル3は、基板50の導電膜51に近い本体部2の下端にある。一方、参照コイル、基板50の導電膜51から離れている。FIG. 4 is a diagram for explaining a relative positional relationship between a detection coil 3 and a reference coil 4 of the eddy current sensor 20. The detection coil 3 is at the lower end of the main body 2 near the conductive film 51 of the substrate 50. On the other hand, the reference coil is separated from the conductive film 51 of the substrate 50.

符号の説明Explanation of symbols

2・・・本体部、3・・・検出コイル、4・・・参照コイル、5・・・熱シ−ルド、
10・・・インダクタンスブリッジ、14・・・基準抵抗、15・・・基準抵抗、
20・・・渦電流センサ−(渦電流式膜厚計)、21・・・並列接続点、22・・・並列接続点、23・・・接続中点、24・・・接続中点、
30・・・レ−ザ変位センサ−、
50・・・基板、51・・・導電膜、
91・・・膜厚測定装置、92・・・測定部、92a・・・支持部、93・・・駆動系(移動機構)、93a・・・基板ステ−ジ、94・・・コンピュ−タ、95・・・インダクタンスメ−タ、96・・・レ−ザセンサコントロ−ラ、
2 ... main body, 3 ... detection coil, 4 ... reference coil, 5 ... heat shield,
10 ... Inductance bridge, 14 ... Reference resistance, 15 ... Reference resistance,
20 ... Eddy current sensor (eddy current type film thickness meter), 21 ... Parallel connection point, 22 ... Parallel connection point, 23 ... Connection midpoint, 24 ... Connection midpoint,
30 ... Laser displacement sensor,
50 ... substrate, 51 ... conductive film,
DESCRIPTION OF SYMBOLS 91 ... Film thickness measuring apparatus, 92 ... Measuring part, 92a ... Supporting part, 93 ... Drive system (moving mechanism), 93a ... Substrate stage, 94 ... Computer 95 ... Inductance meter, 96 ... Laser sensor controller,

Claims (6)

参照コイルと検出コイルが直列に接続された回路と、2個の基準抵抗が直列に接続されたインダクタンスブリッジを用い、測定対象物の表面に形成された導電膜の近傍の所定の位置に配置可能に構成され、前記参照コイルよりも前記検出コイルを前記導電膜に近接した位置に配置可能であり、前記導電膜に対して所定の渦電流を発生させ且つ当該渦電流による磁界を検出する渦電流式膜厚計であって、
前記導電膜からの前記磁界を検出するとき前記所定の渦電流を発生させるための前記直列回路に印加された印加電圧に対して参照信号の位相合わせをする手段を有し、
前記位相合わせをする手段が、前記検出コイルの自己インダクタンス値及び抵抗値から近似演算することにより前記印加電圧と前記参照信号との位相差を求める演算手段と、参照信号を該位相差分だけ進め又は遅らせる位相合わせ手段とにより構成され、
前記インダクタンスブリッジの出力の抵抗成分のみを測定するようにしたことを特徴とする渦電流式膜厚計。
Using a circuit in which a reference coil and a detection coil are connected in series and an inductance bridge in which two reference resistors are connected in series, it can be placed at a predetermined position near the conductive film formed on the surface of the measurement object An eddy current that can be arranged at a position closer to the conductive film than the reference coil and that generates a predetermined eddy current to the conductive film and detects a magnetic field due to the eddy current A film thickness meter ,
And means for phase alignment of the reference signal to the applied voltage applied to the series circuit for generating the predetermined eddy currents when detecting the magnetic field from the conductive film,
The means for performing phase adjustment is an arithmetic means for obtaining a phase difference between the applied voltage and the reference signal by approximating the self-inductance value and resistance value of the detection coil, and advancing the reference signal by the phase difference or And a phase adjusting means for delaying,
An eddy current film thickness meter characterized in that only the resistance component of the output of the inductance bridge is measured.
前記導電膜の前記シ−ト抵抗値が、1Ω〜1KΩであることを特徴とする請求項1に記載の渦電流式膜厚計。   2. The eddy current film thickness meter according to claim 1, wherein the sheet resistance value of the conductive film is 1Ω to 1 KΩ. 前記導電膜の前記シ−ト抵抗値が、20〜110Ωであることを特徴とする請求項2に記載の渦電流式膜厚計。   The eddy current film thickness meter according to claim 2, wherein the sheet resistance value of the conductive film is 20 to 110Ω. 参照コイルと検出コイルが直列に接続された回路と、2個の基準抵抗が直列に接続されたインダクタンスブリッジを用い、測定対象物の表面に形成された導電膜の近傍の所定の位置に配置可能に構成され、前記参照コイルよりも前記検出コイルを前記導電膜に近接した位置に配置可能であり、前記導電膜に対して所定の渦電流を発生させ且つ当該渦電流による磁界を検出する膜厚の測定方法であって、
前記導電膜からの前記磁界を検出するとき前記所定の渦電流を発生させるための前記直列回路に印加された印加電圧に対して参照信号の位相合わせをする手段を有し、
前記位相合わせをするのに、前記印加電圧と前記参照信号の位相差を前記検出コイルの自己インダクタンス値及び抵抗値から近似して求め、
前記インダクタンスブリッジの出力の抵抗成分のみを測定するようにしたことを特徴とする膜厚の測定方法。
Using a circuit in which a reference coil and a detection coil are connected in series and an inductance bridge in which two reference resistors are connected in series, it can be placed at a predetermined position near the conductive film formed on the surface of the measurement object The detection coil can be arranged at a position closer to the conductive film than the reference coil, and a film thickness that generates a predetermined eddy current to the conductive film and detects a magnetic field due to the eddy current. Measuring method ,
And means for phase alignment of the reference signal to the applied voltage applied to the series circuit for generating the predetermined eddy currents when detecting the magnetic field from the conductive film,
In order to perform the phase alignment, the phase difference between the applied voltage and the reference signal is approximated from the self-inductance value and the resistance value of the detection coil,
Only the resistance component of the output of the inductance bridge is measured.
前記導電膜の前記シ−ト抵抗値が、1Ω〜1KΩであることを特徴とする請求項に記載の膜厚の測定方法。 The film thickness measuring method according to claim 4 , wherein the sheet resistance value of the conductive film is 1Ω to 1 KΩ. 前記導電膜の前記シ−ト抵抗値が、20〜110Ωであることを特徴とする請求項に記載の膜厚の測定方法。 6. The film thickness measuring method according to claim 5 , wherein the sheet resistance value of the conductive film is 20 to 110 [Omega].
JP2006119091A 2006-04-24 2006-04-24 Film thickness meter and film thickness measurement method Active JP4888765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119091A JP4888765B2 (en) 2006-04-24 2006-04-24 Film thickness meter and film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119091A JP4888765B2 (en) 2006-04-24 2006-04-24 Film thickness meter and film thickness measurement method

Publications (2)

Publication Number Publication Date
JP2007292543A JP2007292543A (en) 2007-11-08
JP4888765B2 true JP4888765B2 (en) 2012-02-29

Family

ID=38763296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119091A Active JP4888765B2 (en) 2006-04-24 2006-04-24 Film thickness meter and film thickness measurement method

Country Status (1)

Country Link
JP (1) JP4888765B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221128A1 (en) * 2022-05-20 2023-11-23 华为技术有限公司 Apparatus for measuring thickness of conductive film, and sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225947A (en) * 1986-03-26 1987-10-03 Kobe Steel Ltd Probe for measuring vortex
JP2589420B2 (en) * 1991-07-19 1997-03-12 古河電気工業株式会社 Method and apparatus for inspecting conductive film
JP4467760B2 (en) * 2000-11-07 2010-05-26 株式会社アルバック Film thickness measurement method
JP3902064B2 (en) * 2000-11-24 2007-04-04 株式会社荏原製作所 Eddy current sensor
JP3587822B2 (en) * 2001-07-23 2004-11-10 株式会社荏原製作所 Eddy current sensor
JP4451111B2 (en) * 2003-10-20 2010-04-14 株式会社荏原製作所 Eddy current sensor
JP4390614B2 (en) * 2004-01-16 2009-12-24 株式会社アルバック Film thickness measuring device

Also Published As

Publication number Publication date
JP2007292543A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5065614B2 (en) Eddy current film thickness meter
JP2952156B2 (en) Eddy current test method and apparatus
TWI289195B (en) Method and apparatus for measuring object thickness
US6549006B2 (en) Eddy current measurements of thin-film metal coatings using a selectable calibration standard
US20090251137A1 (en) Method for determining the layer thickness of an electrically conductive coating on an electrically conductive substrate
JP2002148012A (en) Apparatus and method for measurement of film thickness
JP2004502156A (en) In particular, a non-contact distance measuring device for detecting position and movement amount
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
TWI404966B (en) Methods and apparatus for determining the thickness of a conductive layer on a substrate
KR100389277B1 (en) Sheet resistance meter
CN111637831A (en) Method for improving position measurement accuracy using inductive position sensor
JP2008530541A (en) Use of magneto-impedance in non-contact position sensors and related sensors
US7576532B2 (en) Motion transducer for motion related to the direction of the axis of an eddy-current displacement sensor
JP4888765B2 (en) Film thickness meter and film thickness measurement method
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
TWI597475B (en) Method, device, and computer program product for film measurement
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
US20140002069A1 (en) Eddy current probe
JP5341028B2 (en) Eddy current flaw detection method
US7242185B1 (en) Method and apparatus for measuring a conductive film at the edge of a substrate
Röper A high-frequency eddy current method for the thickness measurement of thin metallic foils using ferrite-core transmission systems
JP2015078942A (en) Leakage magnetic flux flaw detector
US20040080326A1 (en) Device and method for determining the sheet resistance of samples
JP2011247631A (en) Eddy current detection method and eddy current detection sensor
JP2005300510A (en) Detection sensor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4888765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250