JPH07303619A - Method for compensating eddy current in mri apparatus and mri apparatus - Google Patents

Method for compensating eddy current in mri apparatus and mri apparatus

Info

Publication number
JPH07303619A
JPH07303619A JP6098404A JP9840494A JPH07303619A JP H07303619 A JPH07303619 A JP H07303619A JP 6098404 A JP6098404 A JP 6098404A JP 9840494 A JP9840494 A JP 9840494A JP H07303619 A JPH07303619 A JP H07303619A
Authority
JP
Japan
Prior art keywords
eddy current
temperature
magnetic field
heat shield
gradient magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6098404A
Other languages
Japanese (ja)
Inventor
Kazuya Hoshino
和哉 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
GE Yokogawa Medical System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Yokogawa Medical System Ltd filed Critical GE Yokogawa Medical System Ltd
Priority to JP6098404A priority Critical patent/JPH07303619A/en
Publication of JPH07303619A publication Critical patent/JPH07303619A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To provide constantly the proper eddy current compensation volume, irrespective of the temperature of the heat shield, etc. CONSTITUTION:The temperature sensor 30 measures the temperature T of the heat shield P just before the start of scan or once or at regular intervals during the scan and outputs it to the eddy current compensation volume setting section 14. The eddy current compensation volume setting section 14, which memorizes the correlative curve of the temperature T of the heat shield and the eddy current compensation volume S, picks up the eddy current compensation volume S corresponding to the temperature T of the heat shield given by the temperature sensor 30 based upon the correlative curve and outputs said volume to the gradient magnetic field driving circuit 3. The gradient magnetic field driving circuit 3 drives the gradient coil 57 and produces the ideal gradient magnetic field by adding the eddy current compensation volume S to the gradient magnetic field. Accordingly, even during the period when the temperature of the heat shield P, etc., shifts from the temperature of the open air to the steady state at the very low temperature, the deterioration of image quality due to eddy current can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、MRI(Magnetic R
esonance Imaging)装置における渦電流補正方法および
MRI装置に関し、さらに詳しくは、熱シールドの温度
変動にかかわらず画質の劣化を防止できるようにしたM
RI装置における渦電流補正方法およびその方法を実施
するMRI装置に関する。
BACKGROUND OF THE INVENTION This invention is applied to MRI (Magnetic R
The invention relates to an eddy current correction method in an esonance imaging apparatus and an MRI apparatus. More specifically, it is possible to prevent deterioration of image quality regardless of temperature fluctuation of a heat shield.
The present invention relates to an eddy current correction method in an RI apparatus and an MRI apparatus that implements the method.

【0002】[0002]

【従来の技術】図5は、従来のMRI装置のマグネット
アセンブリの一例を示す断面図である。このマグネット
アセンブリ51では、静磁場コイル53は、ヘリウム槽
54内に収容され、冷凍機52によって極低温(例えば
4・2K)に冷却されている。前記ヘリウム槽54は、
熱シールドP,Qによって外気(例えば23℃)から断
熱されている。ウォームボア真空容器56は、前記静磁
場コイル53と、ヘリウム槽54と、熱シールドP,Q
とを収容する。また、マグネットアセンブリ51のボア
内には、勾配磁場を発生する勾配磁場コイル57と、被
検体HへのRF(Radio Frequency)パルスの送信およ
び被検体HからのNMR(Nuclear Magnetic Resonanc
e)信号の受信を行うRFコイル58が設置されてい
る。59は、被検体Hを支持するブリッジである。
2. Description of the Related Art FIG. 5 is a sectional view showing an example of a magnet assembly of a conventional MRI apparatus. In this magnet assembly 51, the static magnetic field coil 53 is housed in the helium bath 54 and cooled to a cryogenic temperature (for example, 4.2K) by the refrigerator 52. The helium tank 54 is
The heat shields P and Q are insulated from the outside air (for example, 23 ° C.). The warm bore vacuum vessel 56 includes the static magnetic field coil 53, a helium bath 54, and heat shields P and Q.
And accommodate. In the bore of the magnet assembly 51, a gradient magnetic field coil 57 that generates a gradient magnetic field, an RF (Radio Frequency) pulse transmission to the subject H, and an NMR (Nuclear Magnetic Resonanc) from the subject H.
e) An RF coil 58 for receiving signals is installed. Reference numeral 59 is a bridge that supports the subject H.

【0003】上記マグネットアセンブリ51では、金属
製の熱シールドP,Qが極低温(例えば、それぞれ80
K,20K)に冷却されており、電気抵抗が非常に小さ
くなっている。このため、勾配磁場に起因する渦電流が
流れ、その渦電流が静磁場に歪を与え、画質を劣化させ
る。また、熱シールドP,Q以外の導体部分にも同様に
渦電流が生じ、その渦電流が静磁場に歪を与え、画質を
劣化させる(なお、表記を簡単にするため、渦電流が生
じる全ての部分を“熱シールド等”と表記する)。そこ
で、図6に示すように、理想の勾配磁場Kiに、渦電流
の影響を相殺するための渦電流補正量Scを加えた勾配
磁場Kcを印加している。この勾配磁場Kcを印加する
と、実質的に理想の勾配磁場Kiを印加したことにな
り、渦電流に起因する画質の劣化を防止できる。上記渦
電流補正量Scは、熱シールド等が極低温に冷却されて
定常状態になったときの渦電流量を測定して設定されて
いる。
In the magnet assembly 51, the metallic heat shields P and Q have extremely low temperatures (for example, 80 each).
(K, 20K), the electric resistance is very small. Therefore, an eddy current caused by the gradient magnetic field flows, and the eddy current distorts the static magnetic field, deteriorating the image quality. Similarly, eddy currents are also generated in the conductors other than the heat shields P and Q, and the eddy currents distort the static magnetic field and deteriorate the image quality. (For simplicity, all eddy currents are generated. Is referred to as "heat shield etc."). Therefore, as shown in FIG. 6, a gradient magnetic field Kc is applied to the ideal gradient magnetic field Ki to which an eddy current correction amount Sc for canceling the influence of the eddy current is added. When this gradient magnetic field Kc is applied, it means that the ideal gradient magnetic field Ki is applied, and the deterioration of the image quality due to the eddy current can be prevented. The eddy current correction amount Sc is set by measuring the eddy current amount when the heat shield or the like is cooled to an extremely low temperature and is in a steady state.

【0004】[0004]

【発明が解決しようとする課題】MRI装置の保守点検
や障害発生により、冷凍機の運転が停止された場合、熱
シールド等の温度が上昇する。次にMRI装置を稼動さ
せると、熱シールド等の温度tは、図7に示すように、
定常状態の極低温tcまで徐々に遷移する。定常状態に
なる時間Dcは、例えば1週間くらいである。ところ
で、図8に示すように、渦電流量は、熱シールド等の温
度tが高いとき(t1)は小さく(I1),熱シールド
等の温度tが低いとき(tc)は大きい(Ic)から、
熱シールド等の温度tが高いとき(t1)は、渦電流の
影響は小さくなる。
When the operation of the refrigerator is stopped due to the maintenance and inspection of the MRI apparatus or the occurrence of a failure, the temperature of the heat shield or the like rises. Next, when the MRI apparatus is operated, the temperature t of the heat shield or the like is as shown in FIG.
The temperature gradually changes to the cryogenic temperature tc in the steady state. The steady state time Dc is, for example, about one week. By the way, as shown in FIG. 8, the eddy current amount is small (I1) when the temperature t of the heat shield or the like is high (t1), and is large (Ic) when the temperature t of the heat shield or the like is low (tc). ,
When the temperature t of the heat shield or the like is high (t1), the influence of the eddy current is small.

【0005】しかし、従来のMRI装置では、熱シール
ド等が極低温(tc)に冷却されたときの渦電流量(I
c)を測定して渦電流補正量が設定されていたため、熱
シールド等の温度が高ければ図9に示すように補正過剰
となり、実質的に印加される勾配磁場Krは理想の勾配
磁場Kiとかけ離れたものとなる。このため、定常状態
になるまでの期間(例えば1週間位)は、渦電流補正を
行うと、かえって画質が劣化してしまう問題点がある。
そこで、この発明の目的は、熱シールド等の温度変動に
かかわらず画質の劣化を防止できるようにしたMRI装
置における渦電流補正方法およびその方法を実施するM
RI装置を提供することにある。
However, in the conventional MRI apparatus, the amount of eddy current (I) when the heat shield and the like are cooled to an extremely low temperature (tc)
Since c) was measured and the eddy current correction amount was set, if the temperature of the heat shield or the like is high, the correction is overcorrected as shown in FIG. 9, and the applied gradient magnetic field Kr is substantially equal to the ideal gradient magnetic field Ki. It will be far apart. Therefore, there is a problem that the image quality deteriorates if the eddy current correction is performed during the period until the steady state is reached (for example, about one week).
Therefore, an object of the present invention is to implement an eddy current correction method in an MRI apparatus capable of preventing deterioration of image quality regardless of temperature fluctuations of a heat shield and the like, and to implement the method.
It is to provide an RI device.

【0006】[0006]

【課題を解決するための手段】この発明のMRI装置に
おける渦電流補正方法は、静磁場コイルを低温に保持す
る熱シールド等に生じる渦電流の影響を相殺するため
に、渦電流補正量を加えた勾配磁場を印加するMRI装
置において、前記熱シールド等(渦電流が生じる全ての
部分)のうちの少なくとも一箇所の温度を測定し、その
測定した温度に基づいて前記渦電流補正量を変更するこ
とを構成上の特徴とするものである。
An eddy current correction method in an MRI apparatus of the present invention adds an eddy current correction amount in order to cancel the influence of an eddy current generated in a heat shield or the like which keeps a static magnetic field coil at a low temperature. In an MRI apparatus that applies a gradient magnetic field, the temperature of at least one of the heat shields (all parts where eddy currents are generated) is measured, and the eddy current correction amount is changed based on the measured temperature. This is a structural feature.

【0007】また、この発明のMRI装置は、静磁場コ
イルを低温に保持する熱シールド等に生じる渦電流の影
響を相殺するために、渦電流補正量を加えた勾配磁場を
印加するMRI装置において、前記熱シールド等(渦電
流が生じる全ての部分)のうちの少なくとも一箇所の温
度を測定する温度測定手段と、測定した温度に基づいて
前記渦電流補正量を変更する渦電流補正量設定手段とを
具備したことを構成上の特徴とするものである。
Further, the MRI apparatus of the present invention is an MRI apparatus for applying a gradient magnetic field to which an eddy current correction amount is added in order to cancel the influence of an eddy current generated in a heat shield or the like which keeps a static magnetic field coil at a low temperature. , Temperature measuring means for measuring the temperature of at least one of the heat shield and the like (all parts where eddy currents occur), and eddy current correction amount setting means for changing the eddy current correction amount based on the measured temperature It is characterized in that it is provided with.

【0008】[0008]

【作用】この発明のMRI装置における渦電流補正方法
およびMRI装置では、熱シールド等(渦電流が生じる
全ての部分)の少なくとも一箇所の温度を測定し、その
測定した温度に基づいて渦電流補正量を変更する。この
ため、熱シールド等の温度にかかわらず、常に適正な渦
電流補正量を与えることが出来るようになり、画質の劣
化を防止できるようになる。
With the eddy current correction method and the MRI device in the MRI apparatus of the present invention, the temperature of at least one portion of a heat shield or the like (all parts where the eddy current is generated) is measured, and the eddy current correction is performed based on the measured temperature. Change the amount. Therefore, regardless of the temperature of the heat shield or the like, it becomes possible to always provide an appropriate eddy current correction amount and prevent deterioration of image quality.

【0009】[0009]

【実施例】以下、図に示す実施例によりこの発明をさら
に詳しく説明する。なお、これによりこの発明が限定さ
れるものではない。図1は、この発明のMRI装置の一
実施例のブロック図である。このMR装置100におい
て、マグネットアセンブリ1は、内部に被検体を挿入す
るためのボア(空間部分)を有し、このボアを取りまく
ようにして、被検体内の原子核のスピンを励起するため
のRFパルスを送信すると共に被検体からのNMR信号
を受信するRFコイル58と、勾配磁場を発生するため
の勾配磁場コイル57(勾配コイルは、読み出し,位相
エンコード,スライス選択の各軸のコイルを備えてい
る)と、被検体に一定の静磁場を印加する静磁場コイル
53と、この静磁場コイル53を外気から断熱する熱シ
ールドP,Qと、前記熱シールドP,Qの温度T(以
下、熱シールドの温度Tと言う。)を測定する温度セン
サ30とが配置されている。図2に、その配置を示す。
なお、図2で、52は冷凍機であり、54はヘリウム槽
である。59は、被検体Hを支持するブリッジである。
前記勾配磁場コイル57,RFコイル58は、それぞれ
勾配磁場駆動回路3,RF電力増幅器4および前置増幅
器5に接続されている。また、前記温度センサ30は、
渦電流補正量設定部14に接続されており、スキャン開
始直前またはスキャン中に1回または定期的に測定した
熱シールド温度Tを渦電流補正量設定部14へ出力す
る。前記渦電流補正量設定部14は、熱シールド温度T
と渦電流補正量Sの関係曲線を記憶しており、前記温度
センサ30から与えられた熱シールド温度Tに対応する
渦電流補正量Sを前記関係曲線に基づいて取り出し、勾
配磁場駆動回路3へ出力する。図3に、関係曲線を模式
的に示す。この関係曲線は、実測,シミュレーションあ
るいは理論計算に基づいて予め求めておく。
The present invention will be described in more detail with reference to the embodiments shown in the drawings. The present invention is not limited to this. FIG. 1 is a block diagram of an embodiment of the MRI apparatus of the present invention. In this MR device 100, the magnet assembly 1 has a bore (space portion) for inserting a subject therein, and an RF for exciting spins of atomic nuclei in the subject by surrounding the bore. An RF coil 58 that transmits a pulse and receives an NMR signal from the subject, and a gradient magnetic field coil 57 that generates a gradient magnetic field (the gradient coil includes coils for reading, phase encoding, and slice selection axes). And a static magnetic field coil 53 that applies a constant static magnetic field to the subject, heat shields P and Q that insulate the static magnetic field coil 53 from the outside air, and a temperature T (hereinafter, heat) of the heat shields P and Q. A temperature sensor 30 for measuring the temperature T of the shield) is arranged. FIG. 2 shows the arrangement.
In FIG. 2, 52 is a refrigerator and 54 is a helium tank. Reference numeral 59 is a bridge that supports the subject H.
The gradient magnetic field coil 57 and the RF coil 58 are connected to the gradient magnetic field drive circuit 3, the RF power amplifier 4 and the preamplifier 5, respectively. Further, the temperature sensor 30 is
It is connected to the eddy current correction amount setting unit 14 and outputs the heat shield temperature T measured once or periodically before the start of scanning or during scanning to the eddy current correction amount setting unit 14. The eddy current correction amount setting unit 14 controls the heat shield temperature T
And the eddy current correction amount S are stored, and the eddy current correction amount S corresponding to the heat shield temperature T given from the temperature sensor 30 is extracted based on the relation curve and is sent to the gradient magnetic field drive circuit 3. Output. FIG. 3 schematically shows the relationship curve. This relational curve is obtained in advance based on actual measurement, simulation or theoretical calculation.

【0010】シーケンス記憶回路8は、計算機7からの
指令に従い、記憶されているデータ収集パルスシーケン
スに基づいて前記勾配磁場駆動回路3を操作すると共
に、ゲート変調回路9を操作する。前記勾配磁場駆動回
路3は、前記勾配磁場コイル57を駆動して勾配磁場を
発生する。この勾配磁場は、理想的な勾配磁場(図4の
Ki)に前記渦電流補正量Sを加えた勾配磁場である。
前記ゲート変調回路9は、RF発振回路10からの高周
波出力信号を所定タイミング・所定包絡線のパルス状信
号に変調し、それをRFパルスとしてRF電力増幅器4
に加え、RF電力増幅器4でパワー増幅した後、前記マ
グネットアセンブリ1のRFコイル58に印加し、目的
の領域を励起する。
The sequence storage circuit 8 operates the gradient magnetic field drive circuit 3 and the gate modulation circuit 9 based on the stored data acquisition pulse sequence in accordance with a command from the computer 7. The gradient magnetic field driving circuit 3 drives the gradient magnetic field coil 57 to generate a gradient magnetic field. This gradient magnetic field is a gradient magnetic field obtained by adding the eddy current correction amount S to the ideal gradient magnetic field (Ki in FIG. 4).
The gate modulation circuit 9 modulates the high frequency output signal from the RF oscillation circuit 10 into a pulsed signal having a predetermined timing and a predetermined envelope, and outputs the pulsed signal as an RF pulse.
In addition, after power amplification by the RF power amplifier 4, it is applied to the RF coil 58 of the magnet assembly 1 to excite a target region.

【0011】前置増幅器5は、マグネットアセンブリ1
のRFコイル58で検出された被検体からのNMR信号
を増幅し、位相検波器12に入力する。位相検波器12
は、RF発振回路10の出力を参照信号とし、前置増幅
器5からのNMR信号を位相検波して、A/D変換器1
1に与える。A/D変換器11は、位相検波後のアナロ
グ信号をディジタル信号に変換して、計算機7に入力す
る。計算機7は、A/D変換器11からのデジタル信号
に対する画像再構成演算を行い、目的の領域のイメージ
(プロトン密度像)を生成する。このイメージは、表示
装置6にて表示される。また、計算機7は、操作卓13
から入力された情報を受け取るなどの全体的な制御を受
け持つ。
The preamplifier 5 includes a magnet assembly 1
The NMR signal from the subject detected by the RF coil 58 is amplified and input to the phase detector 12. Phase detector 12
Uses the output of the RF oscillation circuit 10 as a reference signal, phase-detects the NMR signal from the preamplifier 5, and outputs the A / D converter 1
Give to one. The A / D converter 11 converts the analog signal after phase detection into a digital signal and inputs it to the computer 7. The computer 7 performs an image reconstruction operation on the digital signal from the A / D converter 11 to generate an image (proton density image) of a target area. This image is displayed on the display device 6. In addition, the computer 7 is a console 13
Responsible for overall control such as receiving information input from.

【0012】さて、図3および図4に示すように、渦電
流補正量Sは、熱シールド温度Tが高いとき(T1)は
小さく(S1),熱シールド温度Tが低いとき(Tc)
は大きく(Sc)なる。他方、先述のように、渦電流量
は、熱シールド温度Tが高いとき(T1)は小さく,熱
シールド温度Tが低いとき(Tc)は大きい。従って、
熱シールド温度Tが高いとき(T1)も低いとき(T
c)も適正な渦電流補正量となり、図4に示すように、
常に理想の勾配磁場Kiを実質的に印加できることとな
る。つまり、熱シールド温度Tにかかわらず、常に渦電
流に起因する画質の劣化を防止できるようになる。
As shown in FIGS. 3 and 4, when the heat shield temperature T is high (T1), the eddy current correction amount S is small (S1), and when the heat shield temperature T is low (Tc).
Becomes large (Sc). On the other hand, as described above, the eddy current amount is small when the heat shield temperature T is high (T1) and is large when the heat shield temperature T is low (Tc). Therefore,
When the heat shield temperature T is high (T1) and low (T1)
c) is also an appropriate eddy current correction amount, and as shown in FIG.
The ideal gradient magnetic field Ki can always be applied substantially. That is, regardless of the heat shield temperature T, it is possible to always prevent the deterioration of the image quality due to the eddy current.

【0013】そこで、上記MRI装置100によれば、
保守点検や障害発生後にMRI装置100を再稼動させ
たときに、熱シールド等の温度が外気温度から定常状態
の極低温まで徐々に遷移していく期間(例えば1週間く
らい)においても、常に渦電流に起因する画質の劣化を
防止できるようになる。
Therefore, according to the MRI apparatus 100,
When the MRI apparatus 100 is restarted after maintenance or a failure, the vortex is always swirled even during a period (for example, about one week) in which the temperature of the heat shield or the like gradually changes from the outside air temperature to the extremely low temperature of the steady state. It is possible to prevent the deterioration of the image quality due to the current.

【0014】なお、図3の関係曲線の代りに、渦電流補
正量Sのパラメータ(時定数や振幅など)をテーブル化
して渦電流補正量設定部14に記憶しておいてもよい。
Instead of the relational curve shown in FIG. 3, parameters (time constant, amplitude, etc.) of the eddy current correction amount S may be tabulated and stored in the eddy current correction amount setting unit 14.

【0015】[0015]

【発明の効果】この発明のMRI装置における渦電流補
正方法およびMRI装置によれば、熱シールド等の温度
にかかわらず、常に適正な渦電流補正量を与えることが
出来るようになり、画質の劣化を防止できるようにな
る。この結果、熱シールド等の温度が外気温度から定常
状態の極低温まで徐々に遷移していく期間中において
も、渦電流に起因する画質の劣化を防止できるようにな
る。
According to the eddy current correction method and the MRI apparatus in the MRI apparatus of the present invention, an appropriate eddy current correction amount can be always given regardless of the temperature of the heat shield and the like, and the image quality is deteriorated. Will be able to prevent. As a result, it is possible to prevent the deterioration of the image quality due to the eddy current even during the period when the temperature of the heat shield or the like gradually changes from the outside air temperature to the extremely low temperature in the steady state.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のMRI装置の一実施例のブロック図
である。
FIG. 1 is a block diagram of an embodiment of an MRI apparatus of the present invention.

【図2】図1のMRI装置のマグネットアセンブリの断
面図である。
2 is a cross-sectional view of a magnet assembly of the MRI apparatus of FIG.

【図3】熱シールド温度と渦電流補正量の関係曲線の模
式図である。
FIG. 3 is a schematic diagram of a relationship curve between a heat shield temperature and an eddy current correction amount.

【図4】理想勾配磁場と渦電流補正量と合成勾配磁場と
実質的勾配磁場を示す波形図である。
FIG. 4 is a waveform diagram showing an ideal gradient magnetic field, an eddy current correction amount, a synthetic gradient magnetic field, and a substantial gradient magnetic field.

【図5】従来のMRI装置のマグネットアセンブリの一
例の断面図である。
FIG. 5 is a sectional view of an example of a magnet assembly of a conventional MRI apparatus.

【図6】理想勾配磁場と渦電流補正量と合成勾配磁場と
実質的勾配磁場を示す波形図である。
FIG. 6 is a waveform diagram showing an ideal gradient magnetic field, an eddy current correction amount, a synthetic gradient magnetic field, and a substantial gradient magnetic field.

【図7】外気温度から定常状態の極低温まで熱シールド
等の温度が遷移する変化を表わすグラフである。
FIG. 7 is a graph showing a change in temperature of a heat shield or the like from the outside air temperature to a cryogenic temperature in a steady state.

【図8】熱シールド等の温度に対応する渦電流量を表わ
すグラフである。
FIG. 8 is a graph showing the amount of eddy current corresponding to the temperature of a heat shield or the like.

【図9】理想勾配磁場と渦電流補正量と合成勾配磁場と
実質的勾配磁場を示す波形図である。
FIG. 9 is a waveform diagram showing an ideal gradient magnetic field, an eddy current correction amount, a synthetic gradient magnetic field, and a substantial gradient magnetic field.

【符号の説明】 100 MRI装置 1 マグネットアセンブリ 3 勾配磁場駆動回路 7 計算機 8 シーケンス記憶回路 14 渦電流補正量設定部 30 温度センサ 53 静磁場コイル 54 ヘリウム槽 P,Q 熱シールド[Explanation of reference numerals] 100 MRI apparatus 1 Magnet assembly 3 Gradient magnetic field drive circuit 7 Computer 8 Sequence memory circuit 14 Eddy current correction amount setting unit 30 Temperature sensor 53 Static magnetic field coil 54 Helium tank P, Q heat shield

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 静磁場コイルを低温に保持する熱シール
ド等に生じる渦電流の影響を相殺するために、渦電流補
正量を加えた勾配磁場を印加するMRI装置において、 前記熱シールド等のうちの少なくとも一箇所の温度を測
定し、その測定した温度に基づいて前記渦電流補正量を
変更することを特徴とする渦電流補正方法。
1. An MRI apparatus for applying a gradient magnetic field to which an eddy current correction amount is added in order to cancel the influence of an eddy current generated in a heat shield or the like which keeps a static magnetic field coil at a low temperature. Is measured, and the eddy current correction amount is changed based on the measured temperature.
【請求項2】 静磁場コイルを低温に保持する熱シール
ド等に生じる渦電流の影響を相殺するために、渦電流補
正量を加えた勾配磁場を印加するMRI装置において、 前記熱シールド等の少なくとも一箇所の温度を測定する
温度測定手段と、測定した温度に基づいて前記渦電流補
正量を変更する渦電流補正量設定手段とを具備したこと
を特徴とするMRI装置。
2. An MRI apparatus for applying a gradient magnetic field to which an eddy current correction amount is added in order to cancel the influence of an eddy current generated in a heat shield or the like that keeps a static magnetic field coil at a low temperature. An MRI apparatus comprising: a temperature measuring unit that measures the temperature at one location; and an eddy current correction amount setting unit that changes the eddy current correction amount based on the measured temperature.
JP6098404A 1994-05-12 1994-05-12 Method for compensating eddy current in mri apparatus and mri apparatus Pending JPH07303619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098404A JPH07303619A (en) 1994-05-12 1994-05-12 Method for compensating eddy current in mri apparatus and mri apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098404A JPH07303619A (en) 1994-05-12 1994-05-12 Method for compensating eddy current in mri apparatus and mri apparatus

Publications (1)

Publication Number Publication Date
JPH07303619A true JPH07303619A (en) 1995-11-21

Family

ID=14218904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098404A Pending JPH07303619A (en) 1994-05-12 1994-05-12 Method for compensating eddy current in mri apparatus and mri apparatus

Country Status (1)

Country Link
JP (1) JPH07303619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054570A1 (en) * 2001-12-21 2003-07-03 Koninklijke Philips Electronics N.V. Method of producing an mri image with gradient delay compensation
JP2007285804A (en) * 2006-04-14 2007-11-01 Ulvac Japan Ltd Eddy-current film thickness meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054570A1 (en) * 2001-12-21 2003-07-03 Koninklijke Philips Electronics N.V. Method of producing an mri image with gradient delay compensation
US7123011B2 (en) 2001-12-21 2006-10-17 Koninklijke Philips Electronics N.V. Method of producing an MRI image with gradient delay compensation
JP2007285804A (en) * 2006-04-14 2007-11-01 Ulvac Japan Ltd Eddy-current film thickness meter

Similar Documents

Publication Publication Date Title
Boesch et al. Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems
JP3676853B2 (en) MR method for determining nuclear magnetization distribution by surface coil arrangement
US6731113B2 (en) Method of and device for the compensation of variations of the main magnetic field during magnetic resonance imaging
EP1207402A2 (en) Magnetic field variation measuring method and magnetic field varation compensating method for MRI apparatus, and MRI apparatus
US8593145B2 (en) Magnetic resonance system with cooling system and monitoring of helium pressure
US20030160616A1 (en) MRI apparatus
WO1988000453A1 (en) Method of correcting image distortion for nmr imaging apparatus
JP2016168265A (en) Magnetic resonance imaging apparatus and operation method thereof
JP2000157509A (en) Calibration method for mri system, mri system and reset gradient generation method
JP3440049B2 (en) MRI equipment
JP4718790B2 (en) Magnetic resonance imaging system
US20040032260A1 (en) Method for vibration compensation in a magnetic resonance tomography apparatus
JPH07303619A (en) Method for compensating eddy current in mri apparatus and mri apparatus
US5025217A (en) Method of and device for eddy current compensation in MR apparatus
JP3753505B2 (en) Disturbance magnetic field compensation method and magnetic resonance imaging apparatus
JPS6323785B2 (en)
JP3887082B2 (en) Magnetic resonance imaging system
JP3337712B2 (en) Magnetic resonance imaging equipment
JPS6267433A (en) Nmr imaging apparatus
WO2015072301A1 (en) Magnetic resonance imaging apparatus
JP2000333932A (en) Mri device
JP3447099B2 (en) MRI equipment
US20210132167A1 (en) Compensation of magnetic field components caused by a periodic motion of a cold head
JPH09117422A (en) Generating apparatus of driving wave form for oblique magnetic field, eddy current estimating apparatus, mr imaging method and mri apparatus
JPH0866380A (en) Magnetic resonance imaging device