JP2007285791A - Concave x-ray spectral element, method for manufacturing the same and x-ray analyzer using the same - Google Patents

Concave x-ray spectral element, method for manufacturing the same and x-ray analyzer using the same Download PDF

Info

Publication number
JP2007285791A
JP2007285791A JP2006111656A JP2006111656A JP2007285791A JP 2007285791 A JP2007285791 A JP 2007285791A JP 2006111656 A JP2006111656 A JP 2006111656A JP 2006111656 A JP2006111656 A JP 2006111656A JP 2007285791 A JP2007285791 A JP 2007285791A
Authority
JP
Japan
Prior art keywords
laminate
ray
concave
curved
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006111656A
Other languages
Japanese (ja)
Inventor
Tomoya Arai
智也 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP2006111656A priority Critical patent/JP2007285791A/en
Publication of JP2007285791A publication Critical patent/JP2007285791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a concave X-ray spectral element for a Johansson-type spectrometer, the curvature X-ray spectral element, and to provide an X-ray analyzer that uses it. <P>SOLUTION: The method for manufacturing a concave X-ray spectral element by pressurizing, heating and shaping polymer films has a step for forming a first laminate 13 by stacking polymer films; a step for forming a second laminate 14 and a third laminate 15 which are step-wise on the top face of the first laminate 13; a step for carbonizing the first laminate 13, the second laminate 14 and the third laminate 15, by subjecting them to thermal treatment at a thermal decomposition temperature of macromolecules or lower; and a step for pressurizing and shaping the first laminate 13, the second laminate 14 and the third laminate 15 with a concave shaping jig 11 and a cylindrical convex face 12 of a convex shaping jig at the thermal decomposition temperature of macromolecules or higher. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、湾曲X線分光素子の製造方法ならびその湾曲X線分光素子およびそれを用いるX線分析装置に関する。   The present invention relates to a method for manufacturing a curved X-ray spectroscopic element, a curved X-ray spectroscopic element, and an X-ray analyzer using the same.

従来、X線分光素子としてグラファイト結晶が用いられ、この結晶を湾曲させて用いることによって集中光学系や平行光学系を構成している。そのためグラファイトを湾曲させるのに適したグラファイトの製造方法(特許文献1)や湾曲グラファイトX線分光素子の製造方法(特許文献2)やこれらの製造方法によって製造されるX線分光素子を用いたX線照射装置(特許文献3)の技術がある。これらの技術は高分子フィルムを高分子熱分解温度以下の温度域、例えば450〜1600℃で加熱しながら加圧成形し、炭素化フィルム(炭素質フィルム)としている。得られた炭素化フィルムを複数枚、例えば50枚を、湾曲面を有するグラファイトプレス冶具に沿って重ね入れ、高分子熱分解温度を超える温度域、例えば3000℃で加熱しながら加圧成形し図8に示すような湾曲X線分光素子を製造している。
特開平4−202056号公報 特開平2−83206号公報 特開平7−190962号公報
Conventionally, a graphite crystal is used as an X-ray spectroscopic element, and a concentrated optical system or a parallel optical system is configured by using the crystal in a curved shape. Therefore, a method for producing graphite (Patent Document 1) suitable for curving graphite, a method for producing a curved graphite X-ray spectrometer (Patent Document 2), and an X using an X-ray spectrometer produced by these production methods. There is a technique of a beam irradiation device (Patent Document 3). In these techniques, a polymer film is pressure-molded while being heated in a temperature range below the polymer pyrolysis temperature, for example, 450 to 1600 ° C., to obtain a carbonized film (carbonaceous film). A plurality of the carbonized films obtained, for example, 50 sheets are stacked along a graphite press jig having a curved surface, and pressure-molded while heating at a temperature range exceeding the polymer thermal decomposition temperature, for example, 3000 ° C. A curved X-ray spectroscopic element as shown in FIG.
JP-A-4-202056 JP-A-2-83206 Japanese Patent Application Laid-Open No. 7-190962

しかし、このような湾曲X線分光素子は平坦な炭素化フィルムを複数枚重ねた状態から湾曲されており、グラファイト湾曲X線分光素子の結晶格子面(網平面)と結晶反射表面とが一致(平行)しており、常に収差を伴うものである。また、平坦な炭素化フィルムを複数枚重ねた状態から湾曲させ、湾曲させた分光面の曲率半径を削り結晶格子面と結晶反射表面とが一致しない面に加工することは困難であり、そのようなグラファイトの湾曲X線分光素子は製造されていない。   However, such a curved X-ray spectroscopic element is curved from a state in which a plurality of flat carbonized films are stacked, and the crystal lattice plane (network plane) of the graphite curved X-ray spectroscopic element coincides with the crystal reflecting surface ( Parallel) and always accompanied by aberrations. Also, it is difficult to bend from a state in which a plurality of flat carbonized films are stacked, and to cut the curvature radius of the curved spectral surface into a surface in which the crystal lattice plane and the crystal reflection surface do not coincide with each other. No graphite curved X-ray spectroscopic element has been produced.

従来からX線分析装置用の湾曲X線分光素子として図6のヨハン型分光器と図7のヨハンソン型分光器が知られている。図6に示すようにヨハン型分光器6では、ローランド円64上にあるX線源61からのX線が分光素子63により焦点であるスリット62上に集光されるが収差を生じる。一方、図7に示すようにヨハンソン型分光器7では、理論的にローランド円74上にあるX線源71からのX線が分光素子73により焦点であるスリット72上に集光され、収差を生じない。ヨハンソン型分光器は収差がなく、反射強度も強く、分解能も優れていることは当該分野において従来から知られている技術である。   Conventionally, the Johann spectrometer shown in FIG. 6 and the Johanson spectrometer shown in FIG. 7 are known as curved X-ray spectrometers for X-ray analyzers. As shown in FIG. 6, in the Johann spectrometer 6, X-rays from the X-ray source 61 on the Roland circle 64 are condensed on the slit 62 which is a focal point by the spectroscopic element 63, but aberration occurs. On the other hand, in the Johansson type spectrometer 7 as shown in FIG. 7, the X-ray from the X-ray source 71 theoretically on the Roland circle 74 is condensed on the slit 72 which is the focal point by the spectroscopic element 73, and the aberration is reduced. Does not occur. It is a technique conventionally known in the art that a Johansson type spectrometer has no aberration, has a high reflection intensity, and has an excellent resolution.

ヨハンソン型分光器の湾曲X線分光素子の曲率半径はヨハン型分光器の湾曲X線分光素子の曲率半径の1/2であり、前記したようにグラファイトの湾曲X線分光素子では平坦な炭素化フィルムを複数枚重ねた状態から湾曲されており、ヨハン型の湾曲分光素子の曲率半径を削り結晶格子面と結晶反射表面とが一致しない面に加工することは困難であり、これまでヨハンソン型分光器用グラファイト湾曲X線分光素子は製造されていない。   The curvature radius of the curved X-ray spectroscopic element of the Johansson type spectroscope is ½ of the curvature radius of the curved X-ray spectroscopic element of the Johann type spectroscope. It is curved from a state where a plurality of films are stacked, and it is difficult to cut the radius of curvature of a Johann curved spectroscopic element into a surface where the crystal lattice plane and the crystal reflecting surface do not coincide with each other. A functional graphite curved X-ray spectroscopic element has not been manufactured.

本発明は前記従来の問題に鑑みてなされたもので、グラファイト湾曲X線分光素子の製造方法ならびその湾曲X線分光素子およびそれを用いるX線分析装置において、ヨハンソン型分光器用グラファイト湾曲X線分光素子の製造方法ならびその湾曲X線分光素子およびそれを用いるX線分析装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems. In a method for manufacturing a curved graphite X-ray spectroscopic element, a curved X-ray spectroscopic element, and an X-ray analyzer using the same, a graphite curved X-ray spectrometer for a Johansson spectrometer is used. An object of the present invention is to provide an element manufacturing method, a curved X-ray spectroscopic element, and an X-ray analyzer using the same.

前記目的を達成するために、本発明の第1構成にかかる湾曲X線分光素子の製造方法は、高分子フィルムを加圧加熱成形する湾曲X線分光素子の製造方法であって、所定の半径の円筒凹面を有する凹型成形冶具を準備するステップと、所定の半径の円筒凸面を有する凸型成形冶具を準備するステップと、前記凹型成形冶具の凹面上に複数枚の高分子フィルムを積重ね、第1積層体を形成するステップと、前記凸型成形冶具の円筒凸面を前記第1積層体の上面に接触させるとともに、前記第1積層体の上面の前記凹型成形冶具の円筒軸に平行な中心線を境にして両側のそれぞれに、複数枚の高分子フィルムを積重ね、前記複数枚の高分子フィルムの全ての前記中心線側の端面が前記円筒凸面に接する階段状である第2積層体と第3積層体とを形成するステップと、高分子熱分解温度以下の温度で熱処理し、前記第1積層体、前記第2積層体および前記第3積層体を炭素化するステップと、前記凹型成形冶具と前記凸型成形冶具とで前記第1積層体、前記第2積層体および前記第3積層体を高分子熱分解温度を超える温度で加圧成形するステップとを有する。   In order to achieve the above object, a method for manufacturing a curved X-ray spectroscopic element according to a first configuration of the present invention is a method for manufacturing a curved X-ray spectroscopic element in which a polymer film is pressure-heat-molded, and has a predetermined radius. A step of preparing a concave molding jig having a cylindrical concave surface, a step of preparing a convex molding jig having a cylindrical convex surface of a predetermined radius, a plurality of polymer films are stacked on the concave surface of the concave molding jig, A step of forming one laminate, and a cylindrical convex surface of the convex molding jig is brought into contact with an upper surface of the first laminate, and a center line parallel to a cylindrical axis of the concave molding jig on the upper surface of the first laminate A plurality of polymer films are stacked on both sides with respect to the boundary, and the second laminated body and the second laminated body are stepped so that all the end faces on the center line side of the plurality of polymer films are in contact with the cylindrical convex surface Form with 3 laminates Performing a heat treatment at a temperature equal to or lower than a polymer pyrolysis temperature to carbonize the first laminate, the second laminate, and the third laminate, and the concave molding jig and the convex molding jig. And press-molding the first laminated body, the second laminated body, and the third laminated body at a temperature exceeding a polymer thermal decomposition temperature.

前記第1構成によれば、ヨハンソン型分光器用グラファイト湾曲X線分光素子を製造することができる。   According to the first configuration, a graphite curved X-ray spectroscopic element for a Johansson type spectroscope can be manufactured.

前記第1構成においては、高分子フィルムは10〜50μm程度の厚さを有するポリイミド、ポリアミド、ポリオキサジアゾール、ポリアミドイミド、ポリベンゾイミダゾール、ポリベンゾビスチアゾール、ポリパラフェニレンビニレンの中から選ばれたものを用いるのが好ましい。凸型成形冶具の円筒凸面の半径は前記凹型成形冶具の円筒凹面の所定の半径の1/2であるのが好ましく、50〜200mm程度であるのが好ましい。凹型成形冶具の円筒凹面の所定の半径は100〜400mm程度であるのが好ましい。第1積層体は高分子フィルムを5〜30枚程度積重ねるのが好ましい。   In the first configuration, the polymer film is selected from polyimide, polyamide, polyoxadiazole, polyamideimide, polybenzimidazole, polybenzobisthiazole, and polyparaphenylene vinylene having a thickness of about 10 to 50 μm. Is preferably used. The radius of the cylindrical convex surface of the convex molding jig is preferably ½ of the predetermined radius of the cylindrical concave surface of the concave molding jig, and is preferably about 50 to 200 mm. The predetermined radius of the cylindrical concave surface of the concave forming jig is preferably about 100 to 400 mm. The first laminate is preferably stacked with about 5 to 30 polymer films.

第2積層体および第3積層体は高分子フィルムを凸型成形冶具の円筒凸面の両側に10〜100枚程度積重ねるのが好ましい。第2積層体および第3積層体の高分子フィルムの積層枚数は同一であっても、異なっていてもよい。第1積層体、第2積層体および第3積層体を炭素化する加熱温度は2000℃以下であることが好ましく、1000〜1600℃であることがより好ましい。第1積層体、第2積層体および第3積層体を加圧成形するときの加熱温度は2000℃を超える温度であることが好ましく、成形圧力は392kPa以上であることが好ましく、392〜4900kPaがより好ましい。   The second laminated body and the third laminated body preferably have about 10 to 100 polymer films stacked on both sides of the cylindrical convex surface of the convex molding jig. The number of polymer films of the second laminate and the third laminate may be the same or different. The heating temperature for carbonizing the first laminate, the second laminate, and the third laminate is preferably 2000 ° C. or less, and more preferably 1000 to 1600 ° C. The heating temperature when pressure-molding the first laminate, the second laminate, and the third laminate is preferably a temperature exceeding 2000 ° C., the molding pressure is preferably 392 kPa or more, and 392 to 4900 kPa. More preferred.

本発明の第2構成にかかるグラファイト湾曲X線分光素子は、前記第1構成の製造方法を用いて製造されるものである。   The graphite curved X-ray spectroscopic element according to the second configuration of the present invention is manufactured using the manufacturing method of the first configuration.

前記第2構成によれば、収差が少なく長波長で高い反射強度であり、かつ高分解能のX線分光器を提供することができる。   According to the second configuration, it is possible to provide a high-resolution X-ray spectrometer with less aberration and a high reflection intensity at a long wavelength.

本発明の第3構成にかかるX線分析装置は、前記第2構成の湾曲X線分光素子を有する。   The X-ray analyzer according to the third configuration of the present invention includes the curved X-ray spectroscopic element having the second configuration.

前記第3構成によれば、長波長で高感度、高分解能のX線分析装置を提供することができ、高感度、かつ高精度の分析を行うことができる。   According to the third configuration, it is possible to provide an X-ray analyzer with a long wavelength and high sensitivity and high resolution, and it is possible to perform analysis with high sensitivity and high accuracy.

以下、本発明の第1実施形態であるグラファイト湾曲X線分光素子の製造方法について説明する。この製造方法では、原材料とし使用する高分子フィルムは、例えば厚さ10μmのポリイミドを用い、図1に示す超高温加圧成形装置の成形部1を用いて加圧加熱成形する。   Hereinafter, a method for manufacturing a graphite curved X-ray spectroscopic element according to the first embodiment of the present invention will be described. In this manufacturing method, the polymer film used as the raw material is, for example, polyimide having a thickness of 10 μm, and is pressure-heat molded using the molding part 1 of the ultra-high temperature pressure molding apparatus shown in FIG.

図1に示すように、例えば半径200mmの円筒面を有する凹型成形冶具11の円筒凹面上に、例えば長辺40mm、短辺30mmの長方形で厚さ10μmのポリイミドフィルムの短辺が凹型成形冶具11の円筒軸に平行になるように30枚積重ね、第1積層体13を形成する。   As shown in FIG. 1, for example, on the concave surface of a concave molding tool 11 having a cylindrical surface with a radius of 200 mm, the short side of a polyimide film having a long side of 40 mm and a short side of 30 mm and a thickness of 10 μm is formed into the concave molding tool 11. 30 sheets are stacked so as to be parallel to the cylindrical axis of the first laminated body 13.

例えば半径100mmの円筒面を有する凸型成形冶具の円筒凸面12を前記凹型成形冶具11の円筒凹面18に沿わせるように下降させ、第1積層体13の上面中央部16に接触させ、凸型成形冶具の円筒凸面12の両側のそれぞれに、例えば、長辺30mm、短辺20mmの長方形で厚さ10μmのポリイミドフィルムの長辺が円筒凸面12の円筒軸に平行に円筒凸面12に接触するように前記第1積層体13の上面に載置し、第2積層体14と第3積層体15の第1層を形成し、短辺のみが第1層より0.14mm短い第2層を第1層と同様に第1層の上に積み重ね、順次短辺のみが前段より0.14mm短い層を積み重ね、各々100枚を前記第1積層体13の上面に積重ね、階段状の第2積層体14と第3積層体15を形成する。   For example, the cylindrical convex surface 12 of a convex molding jig having a cylindrical surface with a radius of 100 mm is lowered so as to be along the cylindrical concave surface 18 of the concave molding jig 11, and is brought into contact with the upper surface central portion 16 of the first laminate 13. For example, a long side of a polyimide film having a thickness of 30 μm and a short side of 20 mm and a thickness of 10 μm is in contact with the cylindrical convex surface 12 parallel to the cylindrical axis of the cylindrical convex surface 12 on both sides of the cylindrical convex surface 12 of the forming jig. Are placed on the upper surface of the first laminated body 13 to form the first layers of the second laminated body 14 and the third laminated body 15, and the second layer is shorter by 0.14 mm than the first layer only on the short side. Stacked on the first layer in the same manner as the one layer, sequentially stacked layers whose short sides are 0.14 mm shorter than the previous stage, and stacked 100 sheets on the upper surface of the first stacked body 13 to form a stepped second stacked body 14 and the third laminated body 15 are formed.

第2積層体14と第3積層体15の円筒凸面側と反対側の端面に、例えば20kHzの微振動を与え、100枚のポリイミドフィルムのそれぞれをスライドさせて、ポリイミドフィルムの円筒凸面側の端面を凸型成形冶具の円筒凸面12により確実に接触させる。   For example, a slight vibration of 20 kHz is applied to the end surfaces of the second laminated body 14 and the third laminated body 15 opposite to the cylindrical convex surface side, and each of the 100 polyimide films is slid to end the cylindrical convex surface side of the polyimide film. Is reliably brought into contact with the cylindrical convex surface 12 of the convex forming jig.

次に、超高温加圧成形装置の成形部1を高分子熱分解温度以下の温度で熱処理し、例えば1時間で常温より1000℃まで昇温させた後、1000℃で1時間保持して熱処理し、第1積層体13、第2積層体14および第3積層体15を炭素化する。さらに、超高温加圧成形装置の成形部1を高分子熱分解温度を超える温度、例えば3000℃に昇温させ、凹型成形冶具の円筒凹部11と凸型成形冶具の円筒凸面12とにそれぞれ、例えば1960kPaの圧力で第1積層体13、第2積層体14および第3積層体15を1時間加圧成形すると、例えば図3に示すグラファイト湾曲X線分光素子3を製造することができる。   Next, the molding part 1 of the ultra-high pressure molding apparatus is heat-treated at a temperature equal to or lower than the polymer pyrolysis temperature. For example, the temperature is raised from room temperature to 1000 ° C. over 1 hour, and then kept at 1000 ° C. for 1 hour Then, the first stacked body 13, the second stacked body 14, and the third stacked body 15 are carbonized. Furthermore, the temperature of the molding part 1 of the ultra-high pressure molding apparatus is raised to a temperature exceeding the polymer thermal decomposition temperature, for example, 3000 ° C., and the cylindrical concave part 11 of the concave molding jig and the cylindrical convex surface 12 of the convex molding jig are respectively For example, when the first laminated body 13, the second laminated body 14 and the third laminated body 15 are pressure-molded for 1 hour at a pressure of 1960 kPa, for example, the graphite curved X-ray spectroscopic element 3 shown in FIG. 3 can be manufactured.

前記第1実施形態においては、第1積層体を形成する高分子フィルムは長辺40mm、短辺30mmの長方形で厚さ10μmのポリイミドフィルムを用いたが、製造する湾曲X線分光素子の大きさに適合した形状のものを用いればよい。高分子フィルムは炭素化の容易性や湾曲形状にするのに適した厚みが必要であり、10〜50μm程度が好ましい。材質は、ポリアミド、ポリオキサジアゾール、ポリアミドイミド、ポリベンゾイミダゾール、ポリベンゾビスチアゾール、ポリパラフェニレンビニレンなどが好ましい。   In the first embodiment, the polymer film forming the first laminate is a rectangular film having a long side of 40 mm and a short side of 30 mm and a thickness of 10 μm, but the size of the curved X-ray spectroscopic element to be manufactured is large. It is sufficient to use a shape conforming to the above. The polymer film needs to have a thickness suitable for easy carbonization and a curved shape, and is preferably about 10 to 50 μm. The material is preferably polyamide, polyoxadiazole, polyamideimide, polybenzimidazole, polybenzobisthiazole, polyparaphenylene vinylene or the like.

前記第1実施形態では、凹型成形冶具の円筒面の半径が200mmのものを用いたが、製造する湾曲X線分光素子に適合した半径のものを用いればよく、100〜400mm程度であるのが好ましい。また、凸型成形冶具の円筒面の半径は100mmのものを用いたが、50〜200mm程度であるのが好ましい。凸型成形冶具の円筒凸面の半径と凹型成形冶具の円筒凹面の半径とは、1対2の比率、すなわち凸型成形冶具の円筒凸面の半径がRで凹型成形冶具の円筒凹面の半径が2Rであることが好ましい。   In the first embodiment, the concave molding jig has a cylindrical surface with a radius of 200 mm. However, a radius suitable for the curved X-ray spectroscopic element to be manufactured may be used, and is about 100 to 400 mm. preferable. The radius of the cylindrical surface of the convex forming jig is 100 mm, but it is preferably about 50 to 200 mm. The radius of the cylindrical convex surface of the convex molding jig and the radius of the cylindrical concave surface of the concave molding jig are in a ratio of 1: 2, that is, the radius of the cylindrical convex surface of the convex molding jig is R and the radius of the cylindrical concave surface of the concave molding jig is 2R. It is preferable that

前記第1実施形態では、第1積層体は10μmの高分子フィルム30枚を積重ねたが、本実施形態に限られるものではなく、第1積層体の厚みは300μm程度のものが好ましく、高分子フィルムの厚みに応じて5〜30枚程度を積重ねるのが好ましい。また、第2積層体および第3積層体は、各々10μmの高分子フィルム100枚を積重ねたが、本実施形態に限られるものではなく、図2に示すように、例えば第2積層体19を50枚、第3積層体20を100枚のように第2積層体19と第3積層体20の積層枚数が異なっていてもよい。このように第2積層体19と第3積層体20の積層枚数が異なる製造方法で製造したものは、図4に示すように、円筒軸線に対し非対称の反射面42を有する湾曲X線分光素子4になる。第2積層体および第3実施形態の厚みは500〜1000μm程度のものが好ましく、高分子フィルムの厚みに応じて10〜100枚程度を積重ねるのが好ましい。   In the first embodiment, the first laminate is formed by stacking 30 10 μm polymer films. However, the present invention is not limited to this embodiment, and the thickness of the first laminate is preferably about 300 μm. It is preferable to stack about 5 to 30 sheets depending on the thickness of the film. Further, the second laminated body and the third laminated body are each formed by stacking 100 polymer films each having a thickness of 10 μm. However, the present invention is not limited to this embodiment. For example, as shown in FIG. The number of stacked layers of the second stacked body 19 and the third stacked body 20 may be different, such as 50 sheets and 100 third stacked bodies 20. In this way, the second laminated body 19 and the third laminated body 20 manufactured by different manufacturing methods have a curved X-ray spectroscopic element having an asymmetric reflecting surface 42 with respect to the cylindrical axis as shown in FIG. 4 The thickness of the second laminate and the third embodiment is preferably about 500 to 1000 μm, and about 10 to 100 are preferably stacked depending on the thickness of the polymer film.

本実施形態では、積重ねた高分子フィルムであるポリイミドフィルムの一端面に20kHzの振動を与え、第2積層体14と第3積層体15のポリイミドフィルムの1枚1枚をスライドさせて、ポリイミドフィルムの他方の端面を凸型成形冶具の円筒凸面12により確実に接触させているが、振動させる振動周波数は20kHzに限られるものではなく、10〜100kHz程度が好ましい。高分子フィルムに振動を付与する代わりに、高分子フィルムの端面に風を吹きつけスライドさせて凸型成形冶具の円筒凸面により確実に接触させてもよい。   In the present embodiment, a 20 kHz vibration is applied to one end face of a polyimide film that is a stacked polymer film, and the polyimide films of the second laminate 14 and the third laminate 15 are slid one by one to obtain a polyimide film. The other end face is reliably brought into contact with the cylindrical convex surface 12 of the convex forming jig, but the vibration frequency to be vibrated is not limited to 20 kHz, and is preferably about 10 to 100 kHz. Instead of imparting vibration to the polymer film, wind may be blown and slid onto the end surface of the polymer film so as to be surely brought into contact with the cylindrical convex surface of the convex molding jig.

本実施形態では、第1積層体、第2積層体および第3積層体を炭素化する加熱温度は使用する高分子フィルムの材料により設定されるのが好ましく、前記した高分子フィルムの材料であれば、2000℃以下であることが好ましく、1000〜1600℃であることがより好ましい。また、加圧加熱成形する温度や成形圧力は3000℃や1960kPaに限られたものではなく、使用する高分子フィルムの材料、成形する曲率半径、積層膜厚などによって決められるものであり、加熱温度は2000℃を超える温度が好ましく、2500〜3000℃であることがより好ましく、成形圧力は392kPa以上であることが好ましく、392〜4900kPaがより好ましい。炭素化の時間や加圧加熱成形の時間なども使用する高分子フィルムの材料、成形する曲率半径、積層膜厚などによって適切な時間を決めればよい。   In this embodiment, the heating temperature for carbonizing the first laminate, the second laminate, and the third laminate is preferably set according to the material of the polymer film to be used. If it is, it is preferable that it is 2000 degrees C or less, and it is more preferable that it is 1000-1600 degreeC. Further, the temperature and pressure for pressure heating molding are not limited to 3000 ° C. or 1960 kPa, but are determined by the material of the polymer film to be used, the radius of curvature to be molded, the laminated film thickness, etc. Is preferably a temperature exceeding 2000 ° C., more preferably 2500 to 3000 ° C., and the molding pressure is preferably 392 kPa or more, more preferably 392 to 4900 kPa. An appropriate time may be determined depending on the material of the polymer film to be used, the time of carbonization, the time of pressure heating molding, and the like, the radius of curvature to be molded, and the laminated film thickness.

次に、本発明の第2実施形態のグラファイト湾曲X線分光素子について説明する。本実施形態の湾曲X線分光素子は前記第1実施形態の製造方法によって製造されたものであり、図3に示すように、グラファイト湾曲X線分光素子3は、反射面である曲率半径200mmの円筒凹面32、半径100mmの円筒凸面31、厚みは1mmで、30mmの長さを有している。反射面である円筒凹面32の曲率半径と円筒凸面31の曲率半径の比率が1対2であり、結晶格子面と結晶反射表面とが一致しておらず、分光素子基板に貼り付けてヨハンソン型分光器用湾曲X線分光素子として用いられる。   Next, a graphite curved X-ray spectroscopic element according to a second embodiment of the present invention will be described. The curved X-ray spectroscopic element of the present embodiment is manufactured by the manufacturing method of the first embodiment, and as shown in FIG. 3, the graphite curved X-ray spectroscopic element 3 has a curvature radius of 200 mm which is a reflective surface. The cylindrical concave surface 32, the cylindrical convex surface 31 with a radius of 100 mm, the thickness is 1 mm, and the length is 30 mm. The ratio of the radius of curvature of the cylindrical concave surface 32, which is the reflective surface, and the radius of curvature of the cylindrical convex surface 31 is 1: 2, and the crystal lattice plane and the crystal reflective surface do not coincide with each other. Used as a curved X-ray spectroscopic element for a spectroscope.

本実施形態の湾曲X線分光素子は前記第1実施形態の製造方法によって製造するものに限られたものではなく、前記第1実施形態で説明した好ましい製造方法によって製造される。製造される湾曲X線分光素子は、反射面である円筒凹面の曲率半径と円筒凸面の曲率半径の比率が1対2であるヨハンソン型分光器用湾曲X線分光素子であることが好ましい。   The curved X-ray spectroscopic element of the present embodiment is not limited to the one manufactured by the manufacturing method of the first embodiment, and is manufactured by the preferable manufacturing method described in the first embodiment. The manufactured curved X-ray spectroscopic element is preferably a Johanson-type spectroscopic curved X-ray spectroscopic element in which the ratio of the radius of curvature of the cylindrical concave surface, which is the reflecting surface, and the radius of curvature of the cylindrical convex surface is 1: 2.

次に、本発明の第3実施形態のX線分析装置である蛍光X線分析装置について説明する。この蛍光X線分析装置は前記第2実施形態のグラファイト湾曲X線分光素子を有するものである。図5に示すように、蛍光X線分析装置5は、試料53に1次X線52を照射するX線源51、試料53から発生した蛍光X線54を前記第2実施形態のグラファイト湾曲X線分光素子を有するヨハンソン型分光器55で分光し、分光された蛍光X線56を検出する計数管57を有し、その検出したX線強度やエネルギにより定量・定性分析を行う分析装置である。   Next, a fluorescent X-ray analyzer that is an X-ray analyzer according to a third embodiment of the present invention will be described. This fluorescent X-ray analyzer has the graphite curved X-ray spectroscopic element of the second embodiment. As shown in FIG. 5, the X-ray fluorescence analyzer 5 includes an X-ray source 51 that irradiates a sample 53 with primary X-rays 52, and fluorescent X-rays 54 generated from the sample 53 using the graphite curve X of the second embodiment. This analyzer has a counter 57 for detecting fluorescent X-rays 56 that are spectrally separated by a Johansson-type spectroscope 55 having a line spectroscopic element, and performs quantitative / qualitative analysis based on the detected X-ray intensity and energy. .

本実施形態の蛍光X線分析装置は、前記第2実施形態の湾曲X線分光素子を有するものに限らず、前記した好ましいグラファイト湾曲X線分光素子を有しているものであればよい。   The X-ray fluorescence analyzer of the present embodiment is not limited to the one having the curved X-ray spectroscopic element of the second embodiment, but may be any apparatus having the above-described preferable graphite curved X-ray spectroscopic element.

本実施形態の蛍光X線分析装置によれば、湾曲X線分光素子は結晶格子面と結晶反射表面とが一致しておらず、集中光学系であるヨハンソン型分光器用ものであり、収差を生じず、反射強度も強く、分解能も優れており、特に微小部分析や微量分析を高感度、高精度に行うことができる。また、本実施形態の蛍光X線分析装置の湾曲X線分光素子はグラファイト結晶であるので、S−Kα、P−Kα、Cl−Kαなどの蛍光X線を用いて硫黄、リン、塩素などの軽元素を高感度で分析することができる。   According to the fluorescent X-ray analysis apparatus of this embodiment, the curved X-ray spectroscopic element does not coincide with the crystal lattice plane and the crystal reflection surface, and is used for a Johansson type spectroscope that is a concentrated optical system, and produces aberrations. In addition, the reflection intensity is strong and the resolution is excellent. In particular, microanalysis and microanalysis can be performed with high sensitivity and high accuracy. In addition, since the curved X-ray spectroscopic element of the X-ray fluorescence analyzer of the present embodiment is a graphite crystal, sulfur, phosphorus, chlorine, etc. are used using fluorescent X-rays such as S-Kα, P-Kα, Cl-Kα. Light elements can be analyzed with high sensitivity.

本実施形態では、X線分析装置である蛍光X線分析装置について説明したが、X線分析装置は蛍光X線分析装置に限られたものではなく、X線回折装置などのその他のX線分析装置を含む。   In the present embodiment, the X-ray fluorescence analyzer is described as an X-ray analyzer. However, the X-ray analyzer is not limited to the X-ray fluorescence analyzer, and other X-ray analysis such as an X-ray diffractometer is possible. Including equipment.

本発明の第1実施形態である湾曲X線分光素子の製造方法における超高温加圧成形装置の成形部を示す図である。It is a figure which shows the shaping | molding part of the ultra-high temperature press-molding apparatus in the manufacturing method of the curved X-ray spectroscopic element which is 1st Embodiment of this invention. 同製造方法の変形例を示す図である。It is a figure which shows the modification of the manufacturing method. 本発明の第2実施形態である湾曲X線分光素子の斜視図である。It is a perspective view of the curved X-ray spectroscopic element which is 2nd Embodiment of this invention. 同実施形態の変形例である湾曲X線分光素子の斜視図である。It is a perspective view of the curved X-ray spectroscopic element which is a modification of the embodiment. 本発明の第3実施形態である蛍光X線分析装置を示す概略図である。It is the schematic which shows the fluorescent-X-ray-analysis apparatus which is 3rd Embodiment of this invention. ヨハン型分光器の光学配置図である。It is an optical arrangement | positioning figure of a Johann type | mold spectrometer. ヨハンソン型分光器の光学配置図である。It is an optical arrangement | positioning figure of a Johansson type | mold spectrometer. 従来のグラファイト結晶の斜視図である。It is a perspective view of the conventional graphite crystal.

符号の説明Explanation of symbols

1 :超高温加圧成形装置の成形部
3、4 :湾曲X線分光素子
5 :蛍光X線分析装置
11 :凹面成形冶具
12 :凸型成形冶具の円筒凸面
13 :第1積層体
14、19:第2積層体
15、20:第3積層体
18 :凹面成形冶具の円筒凹面
1: Molding part 3, 4 of ultra high temperature pressure molding apparatus 4: Curved X-ray spectroscopic element 5: X-ray fluorescence analyzer 11: Concave molding jig 12: Cylindrical convex surface 13 of convex molding jig 13: First laminates 14 and 19 : Second laminated body 15, 20: third laminated body 18: cylindrical concave surface of concave surface forming jig

Claims (4)

高分子フィルムを加圧加熱成形する湾曲X線分光素子の製造方法であって、
所定の半径の円筒凹面を有する凹型成形冶具を準備するステップと、
所定の半径の円筒凸面を有する凸型成形冶具を準備するステップと、
前記凹型成形冶具の凹面上に複数枚の高分子フィルムを積重ね、第1積層体を形成するステップと、
前記凸型成形冶具の円筒凸面を前記第1積層体の上面に接触させるとともに、前記第1積層体の上面の前記凹型成形冶具の円筒軸に平行な中心線を境にして両側のそれぞれに、複数枚の高分子フィルムを積重ね、前記複数枚の高分子フィルムの全ての前記中心線側の端面が前記円筒凸面に接する階段状である第2積層体と第3積層体とを形成するステップと、
高分子熱分解温度以下の温度で熱処理し、前記第1積層体、前記第2積層体および前記第3積層体を炭素化するステップと、
前記凹型成形冶具と前記凸型成形冶具とで前記第1積層体、前記第2積層体および前記第3積層体を高分子熱分解温度を超える温度で加圧成形するステップとを、
有する湾曲X線分光素子の製造方法。
A method for producing a curved X-ray spectroscopic device for pressure-heating a polymer film,
Providing a concave forming jig having a cylindrical concave surface of a predetermined radius;
Preparing a convex forming jig having a cylindrical convex surface of a predetermined radius;
Stacking a plurality of polymer films on the concave surface of the concave forming jig to form a first laminate;
The cylindrical convex surface of the convex molding jig is brought into contact with the upper surface of the first laminated body, and on each of both sides of the upper surface of the first laminated body with a center line parallel to the cylindrical axis of the concave molding jig as a boundary, Stacking a plurality of polymer films, and forming a second laminate and a third laminate in which all end faces on the center line side of the plurality of polymer films are stepped so as to contact the cylindrical convex surface; ,
Heat treating at a temperature equal to or lower than a polymer pyrolysis temperature, and carbonizing the first laminate, the second laminate, and the third laminate;
Pressure-molding the first laminated body, the second laminated body, and the third laminated body at a temperature exceeding a polymer pyrolysis temperature with the concave molding jig and the convex molding jig;
A method for manufacturing a curved X-ray spectroscopic element.
請求項1において、前記凸型成形冶具の円筒凸面の半径が前記凹型成形冶具の円筒凹面の所定の半径の1/2である湾曲X線分光素子の製造方法。   2. The method of manufacturing a curved X-ray spectroscopic element according to claim 1, wherein a radius of the cylindrical convex surface of the convex molding jig is ½ of a predetermined radius of the cylindrical concave surface of the concave molding jig. 請求項1または2に記載の製造方法によって製造される湾曲X線分光素子。   A curved X-ray spectroscopic element manufactured by the manufacturing method according to claim 1. 請求項3に記載の湾曲X線分光素子を有するX線分析装置。   An X-ray analyzer having the curved X-ray spectroscopic element according to claim 3.
JP2006111656A 2006-04-14 2006-04-14 Concave x-ray spectral element, method for manufacturing the same and x-ray analyzer using the same Pending JP2007285791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111656A JP2007285791A (en) 2006-04-14 2006-04-14 Concave x-ray spectral element, method for manufacturing the same and x-ray analyzer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111656A JP2007285791A (en) 2006-04-14 2006-04-14 Concave x-ray spectral element, method for manufacturing the same and x-ray analyzer using the same

Publications (1)

Publication Number Publication Date
JP2007285791A true JP2007285791A (en) 2007-11-01

Family

ID=38757715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111656A Pending JP2007285791A (en) 2006-04-14 2006-04-14 Concave x-ray spectral element, method for manufacturing the same and x-ray analyzer using the same

Country Status (1)

Country Link
JP (1) JP2007285791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152940A1 (en) * 2015-03-26 2016-09-29 株式会社リガク Doubly curved x-ray condenser element, doubly curved x-ray spectroscopic element and apparatus equipped with same, and method for manufacturing said elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152940A1 (en) * 2015-03-26 2016-09-29 株式会社リガク Doubly curved x-ray condenser element, doubly curved x-ray spectroscopic element and apparatus equipped with same, and method for manufacturing said elements
JP2016183888A (en) * 2015-03-26 2016-10-20 株式会社リガク Double-curved x-ray light-collecting element, double-curved x-ray spectroscopic element, device having the elements, and method for manufacturing the elements
US10175185B2 (en) 2015-03-26 2019-01-08 Rigaku Corporation Methods for manufacturing doubly bent X-ray focusing device, doubly bent X-ray focusing device assembly, doubly bent X-ray spectroscopic device and doubly bent X-ray spectroscopic device assembly

Similar Documents

Publication Publication Date Title
WO2014148118A1 (en) Curved diffraction grating, production method therefor, and optical device
Ko et al. Microstructural changes of phenolic resin during pyrolysis
US8792169B2 (en) Optical diffraction gratings and methods for manufacturing same
JP6510548B2 (en) Method of manufacturing mold of curved surface diffraction grating, method of manufacturing curved surface diffraction grating, curved surface diffraction grating, and optical device
US9234798B2 (en) System and method for detecting number of layers of a few-layer graphene
KR101985063B1 (en) Wavelength-selective thermal radiation material for selectively emitting thermal radiation corresponding to ir transmission wavelength region of resin member, and production method therefor
EP0331375A2 (en) Optical elements for radiation comprising graphite films
Sun et al. High‐quality translucent alumina ceramic through digital light processing stereolithography method
Charconnet et al. Mechanically Tunable Lattice‐Plasmon Resonances by Templated Self‐Assembled Superlattices for Multi‐Wavelength Surface‐Enhanced Raman Spectroscopy
JP2011215267A (en) Achromatic lens, method for manufacturing the same, and optical device equipped with achromatic lens
JP2007285791A (en) Concave x-ray spectral element, method for manufacturing the same and x-ray analyzer using the same
Nieto et al. Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques
US10175185B2 (en) Methods for manufacturing doubly bent X-ray focusing device, doubly bent X-ray focusing device assembly, doubly bent X-ray spectroscopic device and doubly bent X-ray spectroscopic device assembly
US5761256A (en) Curved pyrolytic graphite monochromator and its manufacturing method
US9761340B2 (en) Method of preparing strain released strip-bent x-ray crystal analyzers
Vaca et al. Photolithographically-patterned C-MEMS graphene by carbon diffusion through nickel
Long et al. Surface-enhanced Raman scattering from graphene covered gold nanocap arrays
Metten et al. Doping‐and interference‐free measurement of/in suspended monolayer graphene blisters
JP5697309B2 (en) Method for manufacturing localized plasmon resonance sensor
JP3236446B2 (en) Manufacturing method of curved graphite monochromator
JP4973960B2 (en) Curvature distribution crystal lens and X-ray reflectivity measuring apparatus
CN112313548B (en) Concave diffraction grating, method for manufacturing same, and optical device
JP6457766B2 (en) Apparatus and method for determining the number of layers in a two-dimensional thin film atomic structure using Raman scattering spectrum of an insulating material
JP2007181007A (en) Method of pinning step structure formed on surface of single crystal substrate and single crystal substrate having pinned step structure
JP2007212272A (en) Method for making double-curvature johansson x-ray spectrometer crystal