JP2008207967A - Method for producing graphite sheet - Google Patents

Method for producing graphite sheet Download PDF

Info

Publication number
JP2008207967A
JP2008207967A JP2007043229A JP2007043229A JP2008207967A JP 2008207967 A JP2008207967 A JP 2008207967A JP 2007043229 A JP2007043229 A JP 2007043229A JP 2007043229 A JP2007043229 A JP 2007043229A JP 2008207967 A JP2008207967 A JP 2008207967A
Authority
JP
Japan
Prior art keywords
cylinder
graphite sheet
organic film
heated
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007043229A
Other languages
Japanese (ja)
Inventor
Mitsuru Tamaoki
充 玉置
Norihiro Kawamura
典裕 河村
Kazuhiko Kubo
和彦 久保
Masashi Senba
正志 船場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007043229A priority Critical patent/JP2008207967A/en
Publication of JP2008207967A publication Critical patent/JP2008207967A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve yield of a graphite sheet that is produced by pyrolysis of an organic film. <P>SOLUTION: In a method for producing a graphite sheet, the method which can improve the yield of the graphite sheet comprises obtaining a flat and uniform graphite sheet by reducing the undulation of the sheet near both ends in its widthwise direction, because the reduction of the undulation is ascribable to the mitigation of the distortion caused by contraction and expansion of an organic film 12, in a process for pyrolyzing the organic film 12 wherein the wound body 17 obtained by winding the organic film 12 around the surface of a first cylinder 11 of a carbonaceous material is housed within a second cylinder 13 of a carbonaceous material, firstly the first cylinder 11 is heated to pyrolyze the organic film, and then the second cylinder 13 is heated to pyrolyze the organic film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はグラファイトシートの製造方法に関するものであり、特にグラファイト化するための焼成に関するものである。   The present invention relates to a method for producing a graphite sheet, and more particularly to firing for graphitization.

小型、高性能化する電子機器において、LSIやパワーアンプなどから発する熱を効率よく拡散、放熱するために種々の放熱部品が用いられている。   2. Description of the Related Art Various electronic parts are used to efficiently diffuse and dissipate heat generated from LSIs, power amplifiers, and the like in electronic devices that are smaller and have higher performance.

特に携帯電話機などのような薄型の電子機器においては、厚みが薄くても面方向の熱伝導率が100〜1000W/(m・K)と大きく、熱の拡散や放熱に最適な、黒鉛を主成分とするグラファイトシートが用いられている。   Especially for thin electronic devices such as mobile phones, the main thermal conductivity is 100 to 1000 W / (m · K) in the surface direction even when the thickness is small, and graphite is the most suitable for heat diffusion and heat dissipation. A graphite sheet as a component is used.

このようなグラファイトシートとしては、ポリイミドフィルムのような有機フィルムを高温の中性または還元性雰囲気中で熱分解して得られる熱分解グラファイトシートと、天然の黒鉛を酸処理した後、加熱膨張させた黒鉛粉末を加圧してシート状にした、膨張黒鉛シートと呼ばれるものがある。   As such a graphite sheet, a pyrolytic graphite sheet obtained by thermally decomposing an organic film such as a polyimide film in a high-temperature neutral or reducing atmosphere, and natural graphite are acid-treated and then heated and expanded. There is a so-called expanded graphite sheet in which a graphite powder is pressed into a sheet shape.

このうち、有機フィルムを熱分解して得られる熱分解グラファイトシートは、膨張黒鉛シートよりも熱伝導率が高く、柔軟なシートであるため放熱部品として広く用いられている。   Among these, a pyrolytic graphite sheet obtained by pyrolyzing an organic film has a higher thermal conductivity than an expanded graphite sheet and is a flexible sheet, and thus is widely used as a heat dissipation component.

なお、本出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開昭63−256508号公報
For example, Patent Document 1 is known as prior art document information relating to the invention of the present application.
JP 63-256508 A

しかし、上記特許文献1に記載されたような方法で有機フィルムを熱分解してグラファイトシートを得ると、グラファイトシート全体にわたる皺の発生を防止することはできるが、得られたグラファイトシートを平面状に広げたとき、図2の斜視図に示すように、グラファイトシート21の幅方向の両端部付近が昆布のように波打ち、変形して波打ち部22が形成される。   However, when a graphite sheet is obtained by thermally decomposing an organic film by the method described in Patent Document 1, it is possible to prevent generation of soot throughout the graphite sheet, but the obtained graphite sheet is planar. 2, as shown in the perspective view of FIG. 2, the vicinity of both ends in the width direction of the graphite sheet 21 undulates like kelp and deforms to form the undulating portion 22.

グラファイトシート21の両端部付近に波打ち部22が形成された場合、熱分解後のグラファイトシート21は所定の間隔を有する一対の回転するローラー間を通すことなどにより柔軟化処理を行うが、その柔軟化工程でグラファイトシートが破れたり、皺が寄り歩留まりが低下することになる。   When the wavy portions 22 are formed in the vicinity of both ends of the graphite sheet 21, the graphite sheet 21 after pyrolysis is subjected to a softening process by passing between a pair of rotating rollers having a predetermined interval. In the chemical conversion process, the graphite sheet is torn or the wrinkles shift and the yield decreases.

また、両端部付近の波打ち部22を除去すれば比較的平坦なシートが得られるが、この場合も両端部付近のかなり広い領域を捨てなければ平坦にならないため、得られたグラファイトシート21の寸法が小さくなるとともに、歩留まりが低下することになる。   In addition, a relatively flat sheet can be obtained by removing the wavy portions 22 near both ends. However, in this case as well, the dimensions of the obtained graphite sheet 21 are not flat because a considerably wide area near both ends is not discarded. As the value decreases, the yield decreases.

そこで本発明は歩留まりを向上させることができるグラファイトシートの製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the graphite sheet which can improve a yield.

そしてこの目的を達成するために、本発明のグラファイトシートの製造方法は、有機フィルムを熱分解する工程は、前記有機フィルムを第1の円筒表面の周囲に巻き付けた巻回体を、第2の円筒内部に収納し、最初は前記第1の円筒を加熱して前記有機フィルムの熱分解を行い、その後第2の円筒を加熱することにより熱分解を行うものである。   And in order to achieve this object, in the method for producing a graphite sheet of the present invention, in the step of thermally decomposing the organic film, the wound body in which the organic film is wound around the first cylindrical surface, The organic film is housed inside a cylinder, and the first cylinder is first heated to thermally decompose the organic film, and then the second cylinder is heated to perform thermal decomposition.

有機フィルムを熱分解する工程において、前記有機フィルムを第1の円筒表面の周囲に巻き付けた巻回体を、第2の円筒内部に収納し、最初は前記第1の円筒を加熱して前記有機フィルムの熱分解を行い、その後第2の円筒を加熱して熱分解を行うことにより、有機フィルムの収縮、膨張による歪を軽減することができるため、シートの幅方向両端部付近の波打ちを低減し、平坦で均一なグラファイトシートが得られ、歩留まりが向上する。   In the step of thermally decomposing the organic film, a wound body in which the organic film is wound around the surface of the first cylinder is accommodated in the second cylinder, and the first cylinder is initially heated to produce the organic film. By performing thermal decomposition of the film and then performing thermal decomposition by heating the second cylinder, distortion due to shrinkage and expansion of the organic film can be reduced, thus reducing the waviness near both ends in the width direction of the sheet. As a result, a flat and uniform graphite sheet is obtained, and the yield is improved.

本発明のグラファイトシートの製造方法について一実施の形態および図面を用いて説明する。   The manufacturing method of the graphite sheet of this invention is demonstrated using one Embodiment and drawing.

図1は本発明の一実施の形態におけるグラファイトシートの製造方法を模式的に示す断面図であり、炭素質の第1の円筒11の表面に複数枚の有機フィルム12を巻き付けた巻回体17を、炭素質の底面を有する第2の円筒13の内部に載置している。   FIG. 1 is a cross-sectional view schematically showing a method for producing a graphite sheet in one embodiment of the present invention, in which a wound body 17 in which a plurality of organic films 12 are wound around the surface of a carbonaceous first cylinder 11. Is placed inside a second cylinder 13 having a carbonaceous bottom surface.

第1の円筒11と第2の円筒13には、その両端部におのおの電極板14,15と、共通の電極板16が取付けられており、この電極板14,15を通じて電源19,20から電流を流すことにより、第1の円筒11、第2の円筒13が発熱する。   Electrode plates 14 and 15 and a common electrode plate 16 are attached to both ends of the first cylinder 11 and the second cylinder 13, and current is supplied from power sources 19 and 20 through the electrode plates 14 and 15. As a result, the first cylinder 11 and the second cylinder 13 generate heat.

まず、有機フィルム12として長さ600mm、幅250mm、厚みが75μmのポリイミドフィルム50〜100枚を外径が150mm、内径が140mmで高さ550mmの両端が開口した炭素質の第1の円筒11の外周表面に巻き付けて巻回体17を作製する。   First, as the organic film 12, a carbonaceous first cylinder 11 having both ends having an outer diameter of 150 mm, an inner diameter of 140 mm, and a height of 550 mm is formed of 50 to 100 polyimide films having a length of 600 mm, a width of 250 mm, and a thickness of 75 μm. The wound body 17 is produced by winding around the outer peripheral surface.

その後、第1の円筒11に有機フィルム12を巻き付けた巻回体17を、外径が200mm、内径が190mm、高さ520mmの大きさの一端が開口した有底の第2の円筒13の内部に縦置きに載置する。   Thereafter, the wound body 17 in which the organic film 12 is wound around the first cylinder 11 is placed inside the bottomed second cylinder 13 whose one end has an outer diameter of 200 mm, an inner diameter of 190 mm, and a height of 520 mm. Place it vertically.

そして巻回体17を載置した第2の円筒13を、密閉チャンバー18に収納し、密閉チャンバー18内部を減圧する。   Then, the second cylinder 13 on which the wound body 17 is placed is housed in the sealed chamber 18 and the inside of the sealed chamber 18 is decompressed.

その後、第1の円筒11の両端部に取付けられた電極板15と共通の電極板16間に電源20から電流を流して第1の円筒11を1200℃に加熱して2時間保持し有機フィルム12の熱分解を行う。   Thereafter, an electric current is passed from the power source 20 between the electrode plate 15 attached to both ends of the first cylinder 11 and the common electrode plate 16 to heat the first cylinder 11 to 1200 ° C. and hold it for 2 hours. 12 pyrolysis.

この時、巻回体17の有機フィルム12は、まず第1の円筒11の表面に近い内側の方から熱分解とともに収縮が始まり、収縮は第1の円筒11表面に近い内側の方から外側に向かって順次収縮する。   At this time, the organic film 12 of the wound body 17 starts to shrink with thermal decomposition from the inner side near the surface of the first cylinder 11, and the shrinkage starts from the inner side near the surface of the first cylinder 11 to the outer side. Shrink sequentially.

このように、有機フィルム12の収縮は、第1の円筒11に近い有機フィルム12から巻回体17の表面に近い有機フィルム12に向かって順次進むため、収縮応力によって有機フィルム12にかかる歪を軽減することができる。   Thus, the shrinkage of the organic film 12 proceeds sequentially from the organic film 12 close to the first cylinder 11 toward the organic film 12 close to the surface of the wound body 17, so that the strain applied to the organic film 12 due to the shrinkage stress is reduced. Can be reduced.

もし、この段階で、第1の円筒11ではなく、第2の円筒13を発熱させた場合は、巻回体17の表面側から加熱されるため、巻回体17の表面近くの有機フィルム12がまず収縮してしまう。   If the second cylinder 13 rather than the first cylinder 11 is heated at this stage, the organic film 12 near the surface of the wound body 17 is heated from the surface side of the wound body 17. First contracts.

そして巻回体17の表面付近の有機フィルム12が収縮する結果、表面付近より内部に近い部分の有機フィルム12は、表面付近の有機フィルム12の収縮応力により、大きな歪を受け、図2に模式的に示したように、有機フィルム12を熱分解して得られたグラファイトシート21の両端部に波打ち部22が生じる原因となる。   As a result of the shrinkage of the organic film 12 near the surface of the wound body 17, the portion of the organic film 12 that is closer to the inside than the vicinity of the surface receives a large strain due to the shrinkage stress of the organic film 12 near the surface. As indicated, the wavy portions 22 are caused at both ends of the graphite sheet 21 obtained by thermally decomposing the organic film 12.

次に密閉チャンバー18内の雰囲気をArガスやN2ガスによる中性雰囲気、または還元性雰囲気にした後、第1の円筒11に流す電流を増加させ、第1の円筒11を2500℃まで昇温する。 Next, the atmosphere in the sealed chamber 18 is changed to a neutral atmosphere or a reducing atmosphere using Ar gas or N 2 gas, and then the current flowing through the first cylinder 11 is increased to raise the first cylinder 11 to 2500 ° C. Warm up.

第1の円筒11の温度が2500℃になった段階で、第1の円筒11の温度を2000℃〜2300℃に低下させた後、電極板14と共通の電極板16間により電源19から第2の円筒13に同様に電流を流し、2500℃に加熱する。   After the temperature of the first cylinder 11 reaches 2500 ° C., the temperature of the first cylinder 11 is reduced to 2000 ° C. to 2300 ° C., and then the power supply 19 is connected between the electrode plate 14 and the common electrode plate 16. Similarly, current is passed through the second cylinder 13 and heated to 2500 ° C.

この状態で、熱分解した有機フィルム12をさらに熱分解してグラファイトに転化させる。   In this state, the pyrolyzed organic film 12 is further pyrolyzed and converted into graphite.

ここで、グラファイトへの転化が起こる時に、有機フィルム12は膨張するが、第1の円筒11の温度を第2の円筒13の温度よりも低く保っているため、有機フィルム12の膨張は巻回体17の最表面付近から始まり、その後第1の円筒11の表面に近い方、すなわち内側へ向かって膨張が進むことになり、その結果グラファイトへの転化時の膨張に伴う歪を緩和することができる。   Here, when the conversion to graphite occurs, the organic film 12 expands. However, since the temperature of the first cylinder 11 is kept lower than the temperature of the second cylinder 13, the expansion of the organic film 12 is wound. The expansion starts from the vicinity of the outermost surface of the body 17 and then proceeds closer to the surface of the first cylinder 11, that is, toward the inside. As a result, the strain associated with the expansion at the time of conversion to graphite can be alleviated. it can.

第2の円筒13に電流を流して加熱する時に、必ずしも第1の円筒11に通電して加熱しなくてもよいが、第1の円筒11が全く発熱しない場合には全体の加熱効率が低下するため、上記のように第2の円筒13の温度よりも200〜500℃程度低い温度に第1の円筒11を加熱しておくことが好ましい。   When the current is supplied to the second cylinder 13 for heating, the first cylinder 11 does not necessarily have to be energized for heating. However, if the first cylinder 11 does not generate heat at all, the overall heating efficiency decreases. Therefore, it is preferable to heat the first cylinder 11 to a temperature lower by about 200 to 500 ° C. than the temperature of the second cylinder 13 as described above.

第1の円筒11及び第2の円筒13を加熱する方法としては、炭素質の円筒の抵抗を利用し、円筒両端に接続した電極板14と16または15と16から電流を流すことにより抵抗加熱を行うことが好ましい。   As a method of heating the first cylinder 11 and the second cylinder 13, resistance heating is performed by using the resistance of a carbonaceous cylinder and flowing current from the electrode plates 14 and 16 or 15 and 16 connected to both ends of the cylinder. It is preferable to carry out.

これは、抵抗加熱による加熱においては、円筒の肉厚や材質により、円筒の抵抗値が比較的容易に変更できることと、流す電流により精密な温度制御が可能であるためである。   This is because in the heating by resistance heating, the resistance value of the cylinder can be changed relatively easily depending on the thickness and material of the cylinder, and precise temperature control is possible by the flowing current.

抵抗加熱以外の加熱方法としては、高周波誘導加熱のような加熱方法を用いてもよい。   As a heating method other than resistance heating, a heating method such as high-frequency induction heating may be used.

このようにして作製したグラファイトシートを第1の円筒11ごと第2の円筒13から取り出し、第1の円筒11から外して平面状に広げて外観検査を行ったところ、図2に示したグラファイトシート両端部の波打ち部22は殆ど見られず、平坦で亀裂などがないグラファイトシートが得られた。   The graphite sheet produced in this manner was taken out from the second cylinder 13 together with the first cylinder 11, and removed from the first cylinder 11 and spread in a flat shape to perform an appearance inspection. The graphite sheet shown in FIG. The wavy portions 22 at both ends were hardly seen, and a graphite sheet that was flat and free from cracks was obtained.

次にこのグラファイトシートに柔軟化処理を行った後、光交流法熱定数測定装置(アルバック理工製レーザーピット)を用いて光交流法により熱伝導率を測定した。   Next, after softening the graphite sheet, the thermal conductivity was measured by an optical alternating current method using an optical alternating current method thermal constant measuring apparatus (Lacer Pit manufactured by ULVAC-RIKO).

熱伝導率の測定結果としては、800〜1000W/(m・K)と、熱分解グラファイトシートとして満足する結果が得られた。   As a measurement result of thermal conductivity, 800 to 1000 W / (m · K), a satisfactory result as a pyrolytic graphite sheet was obtained.

柔軟化処理としては、所定の間隔を設けた互いに逆回転する一対のローラー間にグラファイトシートを通すことにより行った。   The softening process was performed by passing a graphite sheet between a pair of rollers that rotate in reverse directions with a predetermined interval.

また、一対のローラー間を通す代わりに、台板上に熱分解後のグラファイトシートを置き、この台板上に所定の間隔を設けて設置された、表面に螺旋状の溝を有する1本のローラーを回転させることにより柔軟化処理を行ってもよい。   Also, instead of passing between a pair of rollers, a pyrolytic graphite sheet is placed on a base plate, and a single groove having a spiral groove on the surface is installed on the base plate with a predetermined interval. You may perform a softening process by rotating a roller.

ここで、ローラー表面に設けた螺旋状の溝により、グラファイトシートを押さえつつ適度な加圧力を加えて柔軟化を効率よく行うことができる。   Here, with the spiral groove provided on the roller surface, an appropriate pressurizing force can be applied while pressing the graphite sheet to efficiently perform the softening.

柔軟化後のグラファイトシートの柔軟性も高く、繰り返し曲げ試験機(例えば株式会社東洋精機製のMIT耐揉疲労試験機)を用いて、曲げ半径Rが5mmで、静止状態から左右に90度(合計180度)の曲げ角度で試験を行った結果、50000回の繰り返し曲げ試験でもグラファイトシートに破損や亀裂などの欠陥は見られなかった。   The flexibility of the graphite sheet after softening is high. Using a repeated bending tester (for example, an MIT fatigue resistance tester manufactured by Toyo Seiki Co., Ltd.), the bending radius R is 5 mm, and 90 degrees from the stationary state to the left and right ( As a result of testing at a bending angle of 180 degrees in total, no defects such as breakage and cracks were found in the graphite sheet even in the repeated bending test of 50000 times.

以上詳述したように、本一実施の形態のグラファイトシートの製造方法によれば、有機フィルム12を熱分解してグラファイトシートを作製する工程において、有機フィルム12を炭素質の第1の円筒11表面の周囲に巻き付けた巻回体17を、炭素質の第2の円筒13内部に収納し、最初は有機フィルム12が加熱により収縮するため、有機フィルム12を巻き付けた第1の円筒11を加熱して有機フィルム12にかかる歪を低減しつつ有機フィルム12の熱分解を行い、その後の熱分解で有機フィルム12がグラファイトに転化するときに膨張するため、第2の円筒13を加熱して熱分解を行うことにより、有機フィルム12の膨張による歪を軽減することができる。   As described above in detail, according to the method for producing a graphite sheet of the present embodiment, in the step of pyrolyzing the organic film 12 to produce the graphite sheet, the organic film 12 is made of the carbonaceous first cylinder 11. The wound body 17 wound around the surface is accommodated in the carbonaceous second cylinder 13, and the organic film 12 is initially contracted by heating, so the first cylinder 11 wound with the organic film 12 is heated. Then, the organic film 12 is thermally decomposed while reducing the strain applied to the organic film 12, and then expands when the organic film 12 is converted into graphite by the subsequent thermal decomposition. By performing the decomposition, distortion due to expansion of the organic film 12 can be reduced.

これにより、有機フィルム12の熱分解に伴う膨張、収縮を緩和し、有機フィルム12を熱分解してグラファイトシートを作製する時のグラファイトシートの幅方向両端部付近の波打ち部22を低減し、平坦で均一なグラファイトシートを得ることができるため、歩留まりが向上する。   As a result, the expansion and contraction associated with the thermal decomposition of the organic film 12 are alleviated, and the wavy portions 22 near both ends in the width direction of the graphite sheet when the organic film 12 is thermally decomposed to produce a graphite sheet are reduced and flattened. Thus, a uniform graphite sheet can be obtained, so that the yield is improved.

また、本一実施の形態では長さ600mmで幅250mmの寸法に裁断した有機フィルム12を用いたが、本一実施の形態によれば有機フィルム12の熱分解時に生じる収縮、膨張による歪を低減できるため、さらに長さの長い、例えば1000mmの長さの有機フィルム12を熱分解して平坦なグラファイトシートを得ることもできる。   Further, in the present embodiment, the organic film 12 cut to a length of 600 mm and a width of 250 mm is used. However, according to the present embodiment, distortion due to shrinkage and expansion generated during the thermal decomposition of the organic film 12 is reduced. Therefore, a flat graphite sheet can be obtained by pyrolyzing the organic film 12 having a longer length, for example, 1000 mm.

さらに第1の円筒11と第2の円筒13の加熱条件をより詳細に制御することにより、長さが数mから数十mの連続した長尺のグラファイトシートを得ることも可能である。   Further, by controlling the heating conditions of the first cylinder 11 and the second cylinder 13 in more detail, it is possible to obtain a continuous long graphite sheet having a length of several meters to several tens of meters.

このため従来にない長尺の連続した熱分解グラファイトシートが得られ、グラファイトシートの生産性を向上することができるとともにグラファイトシートを所望の形状に打ち抜き加工するときなどの加工効率を向上することができる。   Therefore, an unprecedented long continuous pyrolytic graphite sheet can be obtained, which can improve the productivity of the graphite sheet and improve the processing efficiency when punching the graphite sheet into a desired shape. it can.

なお、本一実施の形態では第1の円筒11と第2の円筒13として炭素質の円筒を用いたが、これに限定されるものではなく、グラファイト質の円筒でもよい。   In the present embodiment, carbonaceous cylinders are used as the first cylinder 11 and the second cylinder 13, but the present invention is not limited to this, and a graphite cylinder may be used.

また、有機フィルム12の熱分解で、1200℃で2時間保持した後、さらに温度を上げて2500℃に加熱したが、昇温の途中段階で加熱保持する温度としては1200℃に限定されるものではなく、600〜1800℃の温度領域のいずれかの温度であってもよい。   Moreover, after hold | maintaining at 1200 degreeC for 2 hours by thermal decomposition of the organic film 12, temperature was raised further and it heated to 2500 degreeC, but it is limited to 1200 degreeC as temperature to heat-and-hold in the middle stage of temperature rising Instead, it may be any temperature in the temperature range of 600 to 1800 ° C.

さらに、この1200℃2時間の加熱は必ずしも必要ではなく、直接2500℃まで昇温しても同様の効果が得られる。   Further, the heating at 1200 ° C. for 2 hours is not necessarily required, and the same effect can be obtained even if the temperature is directly raised to 2500 ° C.

有機フィルムを第1の円筒表面の周囲に巻き付けた巻回体を、第2の円筒内部に収納し、最初は前記第1の円筒を加熱して前記有機フィルムの熱分解を行い、その後第2の円筒を加熱することにより熱分解を行うことにより、有機フィルムの収縮、膨張による歪を軽減することができるため、シートの幅方向両端部付近の波打ちを低減し、平坦で均一なグラファイトシートを得ることができ、熱分解グラファイトシートの製造方法等に有用である。   The wound body in which the organic film is wound around the surface of the first cylinder is accommodated in the second cylinder, and the organic film is first pyrolyzed by heating the first cylinder, and then the second cylinder. By performing thermal decomposition by heating the cylinder, it is possible to reduce distortion due to shrinkage and expansion of the organic film, so that the waviness near both ends in the width direction of the sheet is reduced, and a flat and uniform graphite sheet is formed. It can be obtained and is useful in a method for producing a pyrolytic graphite sheet.

一実施の形態におけるグラファイトシートの製造方法を模式的に示す断面図Sectional drawing which shows typically the manufacturing method of the graphite sheet in one embodiment 従来のグラファイトシートの斜視図Perspective view of conventional graphite sheet

符号の説明Explanation of symbols

11 第1の円筒
12 有機フィルム
13 第2の円筒
14,15,16 電極板
17 巻回体
18 密閉チャンバー
19,20 電源
DESCRIPTION OF SYMBOLS 11 1st cylinder 12 Organic film 13 2nd cylinder 14,15,16 Electrode plate 17 Winding body 18 Sealed chamber 19,20 Power supply

Claims (4)

有機フィルムを熱分解してグラファイトシートを作成する工程と、前記グラファイトシートを柔軟化する工程とを有するグラファイトシートの製造方法であって、前記有機フィルムを熱分解する工程は、前記有機フィルムを第1の円筒表面の周囲に巻き付けた巻回体を、第2の円筒内部に収納し、最初は前記第1の円筒を加熱して前記有機フィルムの熱分解を行い、その後第2の円筒を加熱することにより熱分解を行うことを特徴とするグラファイトシートの製造方法。 A method for producing a graphite sheet, comprising: pyrolyzing an organic film to produce a graphite sheet; and softening the graphite sheet, wherein the step of pyrolyzing the organic film comprises The wound body wound around the surface of the cylinder 1 is accommodated in the second cylinder, the first cylinder is first heated to thermally decompose the organic film, and then the second cylinder is heated. A method for producing a graphite sheet, wherein the thermal decomposition is performed. 前記柔軟化工程は、熱分解後のグラファイトシートを、回転するローラーにより柔軟化するものである請求項1に記載のグラファイトシートの製造方法。 The method for producing a graphite sheet according to claim 1, wherein the softening step comprises softening the pyrolytic graphite sheet with a rotating roller. 前記第1の円筒の加熱後、この第1の円筒の温度を低下させた後に、前記第2の円筒の加熱を行う請求項1に記載のグラファイトシートの製造方法。 The method for producing a graphite sheet according to claim 1, wherein after the first cylinder is heated, the temperature of the first cylinder is lowered, and then the second cylinder is heated. 第1の円筒および第2の円筒は炭素質の円筒であり、この第1、第2の円筒を加熱する方法は抵抗加熱である請求項1に記載のグラファイトシートの製造方法。 The method for producing a graphite sheet according to claim 1, wherein the first cylinder and the second cylinder are carbonaceous cylinders, and the method of heating the first and second cylinders is resistance heating.
JP2007043229A 2007-02-23 2007-02-23 Method for producing graphite sheet Pending JP2008207967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043229A JP2008207967A (en) 2007-02-23 2007-02-23 Method for producing graphite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043229A JP2008207967A (en) 2007-02-23 2007-02-23 Method for producing graphite sheet

Publications (1)

Publication Number Publication Date
JP2008207967A true JP2008207967A (en) 2008-09-11

Family

ID=39784609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043229A Pending JP2008207967A (en) 2007-02-23 2007-02-23 Method for producing graphite sheet

Country Status (1)

Country Link
JP (1) JP2008207967A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029761A1 (en) * 2008-09-11 2010-03-18 株式会社カネカ Method for manufacturing carbonaceous film and graphite film obtained thereby
WO2011111380A1 (en) * 2010-03-10 2011-09-15 株式会社カネカ Method for producing carbonized film and method for producing graphite film
WO2013035237A1 (en) * 2011-09-08 2013-03-14 株式会社カネカ Process for producing carbonaceous film and process for producing graphite film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029761A1 (en) * 2008-09-11 2010-03-18 株式会社カネカ Method for manufacturing carbonaceous film and graphite film obtained thereby
US8858847B2 (en) 2008-09-11 2014-10-14 Kaneka Corporation Method for producing carbonaceous film, and graphite film obtained by the same
US9512005B2 (en) 2008-09-11 2016-12-06 Kaneka Corporation Method for manufacturing carbonaceous film and graphite film obtained thereby
US8920691B2 (en) * 2010-03-10 2014-12-30 Kaneka Corporation Method for producing carbonized film and method for producing graphite film
WO2011111380A1 (en) * 2010-03-10 2011-09-15 株式会社カネカ Method for producing carbonized film and method for producing graphite film
JP5079164B2 (en) * 2010-03-10 2012-11-21 株式会社カネカ Method for producing carbonized film and method for producing graphite film
US20130240128A1 (en) * 2010-03-10 2013-09-19 Makoto Mishiro Method for producing carbonized film and method for producing graphite film
KR101832810B1 (en) * 2010-03-10 2018-02-28 가부시키가이샤 가네카 Method for producing carbonized film and method for producing graphite film
WO2013035237A1 (en) * 2011-09-08 2013-03-14 株式会社カネカ Process for producing carbonaceous film and process for producing graphite film
CN103764555B (en) * 2011-09-08 2015-08-19 株式会社钟化 The manufacture method of carbonaceous film and the manufacture method of graphite film
US9249025B2 (en) 2011-09-08 2016-02-02 Kaneka Corporation Method for producing carbonaceous film and method for producing graphite film
JP5624679B2 (en) * 2011-09-08 2014-11-12 株式会社カネカ Method for producing carbonaceous film and method for producing graphite film
CN103764555A (en) * 2011-09-08 2014-04-30 株式会社钟化 Process for producing carbonaceous film and process for producing graphite film

Similar Documents

Publication Publication Date Title
Le et al. Recent advances in laser‐induced graphene: mechanism, fabrication, properties, and applications in flexible electronics
Pan et al. 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors
Jang et al. Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates
JP5586469B2 (en) Method for producing carbonaceous film and method for producing graphite film
KR20180109937A (en) Graphite membrane and graphite tape
TW201245039A (en) Method of producing graphite film and method of producing carbonized film
JP2008207967A (en) Method for producing graphite sheet
Agostinetti et al. Investigation of the thermo-mechanical properties of electro-deposited copper for ITER
JP2014148458A (en) Graphite film and method for producing graphite film
Zion et al. Effect of annealing on Raman spectra of monolayer graphene samples gradually disordered by ion irradiation
Hsiao et al. Lightweight flexible polyimide-derived laser-induced graphenes for high-performance thermal management applications
JP2007177024A (en) Aromatic polyimide film and method for producing the same, and graphite sheet
Luo et al. A laser-fabricated nanometer-thick carbon film and its strain-engineering for achieving ultrahigh piezoresistive sensitivity
JP2016190767A (en) Carbon nanotube assembly and production method for the same
US8414861B2 (en) Carbonized cellulose material having graphite nanolayer and synthesis method thereof
Tran et al. Controllable self‐propagating reduction of graphene oxide films for energy‐efficient fabrication
KR102610471B1 (en) Firing apparatus for solid oxide fuel cell and method for manufacturing the same
KR20170009729A (en) Graphite plate and method for manufacturing thereof
JP2015153479A (en) Ceramic heater and gas sensor element using the same
KR101550282B1 (en) Method for producing graphite film by using single continuous furnace
Jiang et al. Direct laser writing carbonization based on internal-reflection setup for fabricating shape-tailorable and sealed in-situ carbon features
Pratik et al. APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics
US20210403327A1 (en) Heating furnace and production method for graphite
JP2016141608A (en) Method for producing graphite film and graphite film
JP2018006044A (en) Transparent conductive film containing graphene