JP2007285639A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2007285639A
JP2007285639A JP2006115201A JP2006115201A JP2007285639A JP 2007285639 A JP2007285639 A JP 2007285639A JP 2006115201 A JP2006115201 A JP 2006115201A JP 2006115201 A JP2006115201 A JP 2006115201A JP 2007285639 A JP2007285639 A JP 2007285639A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
water
heat
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115201A
Other languages
Japanese (ja)
Inventor
Yasuhiko Isayama
安彦 諌山
Kazuo Nakatani
和生 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006115201A priority Critical patent/JP2007285639A/en
Publication of JP2007285639A publication Critical patent/JP2007285639A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact heat exchanger improving a heat exchange amount. <P>SOLUTION: The heat exchanger is provided with a casing 11 passing a first fluid (water), and an inner tube 17 passing a second fluid (a coolant). It is characterized by that the inner tube 17 is arranged in the casing 11, and a heat sink 18 is provided adhered to the inner tube 17. Thereby, heat exchange between the first fluid (the water) and the second fluid (the coolant) can be carried out without making a dead space in a center part, and the heat exchange amount can be improved by the heat sink 18. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプ給湯装置の熱交換器に関するものである。   The present invention relates to a heat exchanger of a heat pump hot water supply apparatus.

従来、ヒートポンプ給湯装置は、冷媒回路と給湯回路から構成されている。   Conventionally, a heat pump hot water supply apparatus is composed of a refrigerant circuit and a hot water supply circuit.

図6は、従来のヒートポンプ給湯装置の構成図、図7は、従来のヒートポンプ給湯装置の水−冷媒熱交換器の構成図である。図6に示すように、水−冷媒熱交換器101、減圧手段102、蒸発器103、圧縮機104を順次冷媒配管で環状に接続してなる冷媒回路と、水−冷媒熱交換器101、水ポンプ105、貯湯タンク106を順次配管で環状に接続してなる給湯回路から構成される。また、水−冷媒熱交換器101は図7に示すように、水流路107、冷媒流路108を有し、水流路107および冷媒流路108の断面形状は扁平形状となっており、両流路が平行に並設され、熱接触すると共に、積み重ね巻かれている(例えば、特許文献1参照)。
特開2002−107069号公報
FIG. 6 is a block diagram of a conventional heat pump water heater, and FIG. 7 is a block diagram of a water-refrigerant heat exchanger of the conventional heat pump water heater. As shown in FIG. 6, a refrigerant circuit in which a water-refrigerant heat exchanger 101, a decompression means 102, an evaporator 103, and a compressor 104 are sequentially connected in an annular manner through a refrigerant pipe, a water-refrigerant heat exchanger 101, water It comprises a hot water supply circuit in which a pump 105 and a hot water storage tank 106 are sequentially connected in an annular shape by piping. In addition, as shown in FIG. 7, the water-refrigerant heat exchanger 101 has a water flow path 107 and a refrigerant flow path 108, and the cross-sectional shapes of the water flow path 107 and the refrigerant flow path 108 are flat. The roads are arranged in parallel, are in thermal contact with each other, and are stacked and wound (for example, see Patent Document 1).
JP 2002-107069 A

しかしながら、上記従来の構成では、図7に示すように、水流路107と冷媒流路108が接触面109を介して熱接触しているが、冷媒流路108の片側と水流路107の片側でしか接しておらず、伝熱面積が限定され、大きな熱交換量を得るのが困難であるという課題を有していた。   However, in the above-described conventional configuration, as shown in FIG. 7, the water channel 107 and the refrigerant channel 108 are in thermal contact via the contact surface 109, but on one side of the refrigerant channel 108 and one side of the water channel 107. However, the heat transfer area was limited, and it was difficult to obtain a large amount of heat exchange.

また、螺旋形状に巻かれた水−冷媒熱交換器101の中央部には、中空部110が形成され、デッドスペースとなっている。そのため、ヒートポンプユニットが大型化してしまうという課題も有していた。   Moreover, the hollow part 110 is formed in the center part of the water-refrigerant heat exchanger 101 wound by the spiral shape, and it is a dead space. Therefore, the heat pump unit has a problem that the size is increased.

本発明は、上記従来の課題を解決するもので、熱交換量を高めるとともに、コンパクトな熱交換器を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing a compact heat exchanger while raising the amount of heat exchange.

前記従来の課題を解決するために、本発明の熱交換器は、第1流体が流通する筐体と、第2流体が流通する内管とを備え、前記筐体内に前記内管を配設するとともに、前記内管に密着した放熱板を備えたことを特徴としたものである。   In order to solve the conventional problems, a heat exchanger according to the present invention includes a housing through which a first fluid flows and an inner tube through which a second fluid flows, and the inner tube is disposed in the housing. In addition, a heat radiating plate in close contact with the inner tube is provided.

これによって、熱交換器のデッドスペースが無くなるとともに、熱交換量を高めることができる。   This eliminates the dead space of the heat exchanger and increases the amount of heat exchange.

熱交換量を高めるとともに、コンパクトな熱交換器を提供することができる。   While increasing the amount of heat exchange, a compact heat exchanger can be provided.

第1の発明の熱交換器は、第1流体が流通する筐体と、第2流体が流通する内管とを備え、前記筐体内に前記内管を配設するとともに、前記内管に密着した放熱板を備えたことにより、第1流体が流通する筐体の内部に、第2流体が流通する内管を配設することで、中央部にデッドスペースを作ることなく、第1流体と第2流体の間で熱交換を行うことができ、さらに、放熱板により熱交換量を高めることができる。   A heat exchanger according to a first aspect of the present invention includes a housing through which a first fluid circulates and an inner tube through which a second fluid circulates, and the inner tube is disposed in the housing and is in close contact with the inner tube. By providing the heat radiating plate, the inner pipe through which the second fluid circulates is disposed inside the casing through which the first fluid circulates. Heat exchange can be performed between the second fluids, and the heat exchange amount can be increased by the heat radiating plate.

第2の発明の熱交換器は、特に第1の発明において、筐体内に流路を設けるとともに、内管を流路に沿って配設することにより、第1の流体と第2の流体間で効率のよい熱交換を実現できる。   In the heat exchanger of the second invention, in particular, in the first invention, the flow path is provided in the housing, and the inner pipe is disposed along the flow path, whereby the first fluid and the second fluid are disposed. Can realize efficient heat exchange.

第3の発明の熱交換器は、特に第1または第2の発明において、筐体を略箱型形状とするとともに、前記筐体の底部に放熱板を配設したことにより、比較的重量物の放熱板を底部に配するので重心が下方部になり、熱交換器を安定して配設することができるので、設置性が向上する。   A heat exchanger according to a third aspect of the present invention is a relatively heavy object, particularly in the first or second aspect of the present invention, because the casing has a substantially box shape and a heat sink is disposed at the bottom of the casing. Since the heat sink is arranged at the bottom, the center of gravity becomes the lower part, and the heat exchanger can be stably disposed, so that the installation property is improved.

第4の発明の熱交換器は、特に第1または第2の発明において、筐体を略円柱形状とするとともに、前記筐体の底部に放熱板を配設したことにより、円柱形上とすることで内部を流通する第1の流体の筐体に加わる圧力が均一となるので、耐圧性が向上するとともに、比較的重量物の放熱板を底部に配するので重心が下方部になり、熱交換器を安定して配設することができるので、設置性も向上する。   The heat exchanger according to the fourth aspect of the present invention is, in particular, in the first or second aspect of the invention, the casing is substantially cylindrical, and the heat sink is disposed at the bottom of the casing, so that the top is cylindrical. As a result, the pressure applied to the casing of the first fluid that circulates inside becomes uniform, so that the pressure resistance is improved and a relatively heavy heat sink is arranged at the bottom, so that the center of gravity becomes the lower part, and the heat Since the exchanger can be disposed stably, installation is also improved.

第5の発明の熱交換器は、特に第1〜第4のいずれかの発明において、筐体内で、内管が複数に分岐していることにより、第1流体と第2流体間での熱交換量が増加するため、より短時間で広範囲に熱交換を行うことができる。   The heat exchanger of the fifth invention is the heat exchanger between the first fluid and the second fluid, particularly in any of the first to fourth inventions, because the inner tube is branched into a plurality of parts in the housing. Since the exchange amount increases, heat exchange can be performed over a wide range in a shorter time.

第6の発明の熱交換器は、特に第2〜第5のいずれかの発明において、第1流体と第2流体が対交流であることにより、効率のよい熱交換を行うことができる。   In the heat exchanger according to the sixth aspect of the invention, in particular, in any of the second to fifth aspects of the invention, the first fluid and the second fluid are opposed to each other, so that efficient heat exchange can be performed.

第7の発明の熱交換器は、特に第1〜第6のいずれかの発明において、第1流体を水、第2流体を冷媒とし、冷媒入口が、水出口および水入口および冷媒出口よりも低い位置に配設されていることにより、筐体上方部より熱が逃げにくい構成となるので、熱交換効率を向上させることができる。   The heat exchanger according to a seventh aspect of the present invention is the heat exchanger of any one of the first to sixth aspects, wherein the first fluid is water and the second fluid is a refrigerant, and the refrigerant inlet is more than the water outlet, the water inlet, and the refrigerant outlet. Since the heat is not easily escaped from the upper part of the housing by being disposed at a low position, the heat exchange efficiency can be improved.

第8の発明の熱交換器は、特に第7の発明において、冷媒が二酸化炭素であることにより、冷媒は臨界圧力以上に加圧されるので、熱交換器の水により熱を奪われて温度が低下しても凝縮することがなく、熱交換器の全域で冷媒と水との間の温度差を形成しやすくなるので、高温の湯が得られ、かつ熱交換効率を高くできる。さらに、二酸化炭素は比較的安価であり、かつ安定であるので、製品コストを抑えるとともに、信頼性を向上させることができる。またオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。   In the heat exchanger of the eighth invention, in particular, in the seventh invention, since the refrigerant is carbon dioxide, the refrigerant is pressurized to a critical pressure or higher, so the heat is deprived by the water of the heat exchanger and the temperature is increased. Even if it falls, it will not condense and it will become easy to form the temperature difference between a refrigerant | coolant and water in the whole heat exchanger, Therefore Hot water is obtained and heat exchange efficiency can be made high. Furthermore, since carbon dioxide is relatively inexpensive and stable, it is possible to reduce product cost and improve reliability. In addition, since the ozone depletion coefficient is zero and the global warming coefficient is as low as about 1700 of the alternative refrigerant HFC-407C, a product that is friendly to the global environment can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯機の構成を示す図である。図1において、実施の形態1におけるヒートポンプ給湯機は、水−冷媒熱交換器1、減圧手段2、蒸発器3、圧縮機4を順次冷媒配管で環状に接続する冷媒回路9と、水−冷媒熱交換器1、水を搬送する手段である水ポンプ5、貯湯する貯湯槽6を順次配管で環状に接続する給湯回路10とで構成され、水−冷媒熱交換器1にて、冷媒と水との熱交換を行う。本実施の形態においては、冷媒として二酸化炭素を用いている。また貯湯槽6に蓄えられた湯は給湯端末7から蛇口やシャワーを介してユーザーに供給される。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a heat pump water heater in the first embodiment of the present invention. In FIG. 1, the heat pump water heater in Embodiment 1 includes a water-refrigerant heat exchanger 1, a decompression means 2, an evaporator 3, and a compressor 4 that are sequentially connected in an annular manner through a refrigerant pipe, and a water-refrigerant. The heat exchanger 1 is composed of a water pump 5 which is a means for conveying water, and a hot water supply circuit 10 in which a hot water storage tank 6 for storing hot water is sequentially connected in an annular shape by piping. In the water-refrigerant heat exchanger 1, refrigerant and water are used. Exchange heat with. In the present embodiment, carbon dioxide is used as the refrigerant. Hot water stored in the hot water storage tank 6 is supplied to the user from the hot water supply terminal 7 through a faucet or a shower.

図2は、本発明の第1の実施の形態における水−冷媒熱交換器の斜視図、図3は本発明の第1の実施の形態における水−冷媒熱交換器のAA断面図である。図2、図3において
、水−冷媒熱交換器1は、略直方体形状の筐体11内に、通路壁12を用いて水が流通する流路を形成し、水の入口には給湯配管と接続できるように水入口部13、水の出口には給湯配管と接続できるように水出口部14、冷媒の入口には冷媒配管と接続できるように冷媒入口部15、冷媒の出口には冷媒配管と接続できるように冷媒出口部16が設けられている。
FIG. 2 is a perspective view of the water-refrigerant heat exchanger in the first embodiment of the present invention, and FIG. 3 is an AA cross-sectional view of the water-refrigerant heat exchanger in the first embodiment of the present invention. 2 and 3, the water-refrigerant heat exchanger 1 forms a flow path through which water flows using a passage wall 12 in a substantially rectangular parallelepiped housing 11, and a hot water supply pipe is provided at the water inlet. Water inlet part 13 so that it can be connected, water outlet part 14 so that it can be connected to a hot water supply pipe at the outlet of water, refrigerant inlet part 15 so that it can be connected to a refrigerant pipe at the inlet of the refrigerant, refrigerant pipe at the outlet of the refrigerant The refrigerant outlet 16 is provided so that it can be connected.

また、筐体11内には、冷媒が流通する内管17が、通路壁12によって形成された水流路に沿って配設されており、水と冷媒が対交流をなして熱交換している。また、筐体11の底部には、内管と密着して放熱板18が配設されている。   Further, an inner pipe 17 through which a refrigerant flows is disposed in the housing 11 along a water flow path formed by the passage wall 12, and water and the refrigerant exchange heat with each other. . A heat radiating plate 18 is disposed at the bottom of the housing 11 in close contact with the inner tube.

図4は、本発明の第1の実施の形態における水−冷媒熱交換器のBB断面図である。図4において、内管17は、分配器19によって冷媒入口部15から流入する冷媒を3つの流路に分かれるように分配されている。   FIG. 4 is a BB cross-sectional view of the water-refrigerant heat exchanger according to the first embodiment of the present invention. In FIG. 4, the inner pipe 17 is distributed by the distributor 19 so that the refrigerant flowing from the refrigerant inlet 15 is divided into three flow paths.

以上のように構成された水−冷媒熱交換器について、以下その動作・作用を説明する。   About the water-refrigerant heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、水−冷媒熱交換器に水入口部13から流入した水は、通路壁12によって形成された流路に沿って筐体11の内部を循環し、水出口部14から出て行く。一方、圧縮機4により高温に圧縮された二酸化炭素冷媒は、冷媒入口部15から流入し、分配器19によって分配された内管17内を流通し、筐体11内に流通している水と熱交換しながら冷媒出口部16から出て行く。このとき、冷媒および水の温度は、冷媒出口部>水入口部、冷媒入口部>水出口部となるので、水の出入口部を冷媒の出入口部よりも上部に配設することで、熱を効率的に伝達することができる。さらに、放熱板18が、内管17に密着して配設されているので、冷媒の保有する熱が水に効率よく伝達され、水−冷媒熱交換器の天井部から熱が逃げにくくなり、熱交換効率が高くなる。   First, the water flowing into the water-refrigerant heat exchanger from the water inlet portion 13 circulates inside the housing 11 along the flow path formed by the passage wall 12 and exits from the water outlet portion 14. On the other hand, the carbon dioxide refrigerant compressed to a high temperature by the compressor 4 flows from the refrigerant inlet 15, circulates in the inner pipe 17 distributed by the distributor 19, and the water circulated in the housing 11. It exits from the refrigerant outlet 16 while exchanging heat. At this time, since the refrigerant and water temperatures are refrigerant outlet portion> water inlet portion, refrigerant inlet portion> water outlet portion, the water inlet / outlet portion is disposed above the refrigerant inlet / outlet portion, so that heat is generated. It can be transmitted efficiently. Further, since the heat radiating plate 18 is disposed in close contact with the inner tube 17, the heat held by the refrigerant is efficiently transmitted to the water, and the heat hardly escapes from the ceiling of the water-refrigerant heat exchanger, Increases heat exchange efficiency.

また、本実施の形態においては、冷媒の流通方向と水の流通方向を対向流とすることで、水と冷媒との間での熱交換効率が高くなる。   Moreover, in this Embodiment, the heat exchange efficiency between water and a refrigerant | coolant becomes high by making the distribution direction of a refrigerant | coolant and the distribution direction of water into a counterflow.

また、本実施の形態においては、筐体11内部では内管17は3つの流路に分岐されているので、水を加熱する面積が増えるとともに、より広範囲な水を短時間で加熱することができる。さらに、放熱板18は筐体11の底部に、内管17と密着するように配設されているので、伝熱を促進すると共に、内管17を固定することで内管17は安定して配設され、なおかつ比較的重量物である放熱板18を底部に配設することで、熱交換器自体も安定して設置される。なお、本実施の形態においては、内管17を3つの流路に分岐したが、これは、3つに限定されるものではない。また、本実施の形態においては、筐体11の形状を、略直方体形状としたが、略円柱形状としてもよく、この場合には、内部を流通する水の圧力を均一に分散することができるので、耐圧性能が向上する。   Further, in the present embodiment, since the inner tube 17 is branched into three flow paths inside the housing 11, the area for heating water increases and a wider range of water can be heated in a short time. it can. Furthermore, since the heat radiating plate 18 is disposed at the bottom of the housing 11 so as to be in close contact with the inner tube 17, heat transfer is promoted and the inner tube 17 is stabilized by fixing the inner tube 17. By disposing the heat sink 18 which is disposed and is relatively heavy at the bottom, the heat exchanger itself is also stably installed. In the present embodiment, the inner pipe 17 is branched into three flow paths, but this is not limited to three. In the present embodiment, the shape of the casing 11 is a substantially rectangular parallelepiped shape, but may be a substantially cylindrical shape. In this case, the pressure of the water flowing through the inside can be uniformly dispersed. Therefore, the pressure resistance performance is improved.

また、図5は放熱板18の他の実施例である。図5に示すように、放熱板18に凹凸部20を設けることで、熱交換面積が増加するとともに、水が乱れ熱交換効率が高まる。   FIG. 5 shows another embodiment of the heat sink 18. As shown in FIG. 5, by providing the heat radiating plate 18 with the concavo-convex portion 20, the heat exchange area increases, water is disturbed, and the heat exchange efficiency increases.

以上のように、本実施の形態においては、熱交換効率を高めつつ、デッドスペースをなくしたコンパクトな熱交換器を提供することができる。   As described above, in the present embodiment, it is possible to provide a compact heat exchanger that eliminates dead space while improving heat exchange efficiency.

以上のように、本発明に係る熱交換器は、ヒートポンプサイクルと給湯サイクルが一体に構成された一体型ヒートポンプ式給湯機、別体に構成された分離型ヒートポンプ式給湯機、給湯用熱交換器で加熱したお湯をそのまま出湯できる直接出湯型ヒートポンプ式給湯機などの各種ヒートポンプ給湯機の水−冷媒熱交換器に適用でき、給湯機能の他に、浴槽
給湯、暖房機能、乾燥機能を有するヒートポンプ装置にも適用できる。
As described above, the heat exchanger according to the present invention includes an integrated heat pump water heater in which a heat pump cycle and a hot water supply cycle are integrally formed, a separate heat pump water heater configured separately, and a heat exchanger for hot water supply. It can be applied to water-refrigerant heat exchangers of various heat pump water heaters such as direct hot water heat pump type hot water heaters that can heat hot water heated in hot water as it is, and in addition to hot water supply function, heat pump device with bathtub hot water supply, heating function, and drying function It can also be applied to.

本発明の実施の形態1におけるヒートポンプ給湯機の構成図Configuration diagram of heat pump water heater in Embodiment 1 of the present invention 本発明の実施の形態1における熱交換器の斜視図The perspective view of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1における熱交換器のAA断面図Sectional view AA of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1における熱交換器のBB断面図BB sectional drawing of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1における熱交換器の他の実施例の断面図Sectional drawing of the other Example of the heat exchanger in Embodiment 1 of this invention 従来のヒートポンプ給湯機の構成図Configuration diagram of conventional heat pump water heater 従来の熱交換器の構成図Configuration diagram of conventional heat exchanger

符号の説明Explanation of symbols

1 水−冷媒熱交換器
2 減圧手段
3 蒸発器
4 圧縮機
5 水ポンプ
6 貯湯槽
7 給湯端末
9 冷媒回路
10 給湯回路
11 筐体
12 通路壁
13 水入口部
14 水出口部
15 冷媒入口部
16 冷媒出口部
17 内管
18 放熱板
19 分配器
20 凹凸部
DESCRIPTION OF SYMBOLS 1 Water-refrigerant heat exchanger 2 Pressure reducing means 3 Evaporator 4 Compressor 5 Water pump 6 Hot water storage tank 7 Hot water supply terminal 9 Refrigerant circuit 10 Hot water supply circuit 11 Housing 12 Passage wall 13 Water inlet part 14 Water outlet part 15 Refrigerant inlet part 16 Refrigerant outlet part 17 Inner pipe 18 Heat sink 19 Distributor 20 Uneven part

Claims (8)

第1流体が流通する筐体と、第2流体が流通する内管とを備え、前記筐体内に前記内管を配設するとともに、前記内管に密着した放熱板を備えたことを特徴とする熱交換器。 A housing in which the first fluid circulates and an inner tube in which the second fluid circulates, the inner tube being disposed in the housing, and a heat radiating plate in close contact with the inner tube. Heat exchanger. 筐体内に流路を設けるとともに、内管を流路に沿って配設することを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein a flow path is provided in the housing, and an inner pipe is disposed along the flow path. 筐体を略箱型形状とするとともに、前記筐体の底部に放熱板を配設したことを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the casing has a substantially box shape, and a heat radiating plate is disposed at a bottom portion of the casing. 筐体を略円柱形状とするとともに、前記筐体の底部に放熱板を配設したことを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the casing has a substantially cylindrical shape, and a heat radiating plate is disposed at the bottom of the casing. 筐体内で、内管が複数に分岐していることを特徴とする請求項1〜4のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the inner pipe is branched into a plurality of parts within the housing. 第1流体と第2流体が対交流であることを特徴とする請求項2〜5のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 2 to 5, wherein the first fluid and the second fluid are alternating current. 第1流体を水、第2流体を冷媒とし、冷媒入口が、水出口および水入口および冷媒出口よりも低い位置に配設されていることを特徴とする請求項1〜6のいずれか1項に記載の熱交換器。 The first fluid is water, the second fluid is refrigerant, and the refrigerant inlet is disposed at a position lower than the water outlet, the water inlet, and the refrigerant outlet. The heat exchanger as described in. 冷媒が二酸化炭素であることを特徴とする請求項7に記載の熱交換器。 The heat exchanger according to claim 7, wherein the refrigerant is carbon dioxide.
JP2006115201A 2006-04-19 2006-04-19 Heat exchanger Pending JP2007285639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115201A JP2007285639A (en) 2006-04-19 2006-04-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115201A JP2007285639A (en) 2006-04-19 2006-04-19 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2007285639A true JP2007285639A (en) 2007-11-01

Family

ID=38757585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115201A Pending JP2007285639A (en) 2006-04-19 2006-04-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2007285639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007919A (en) * 2008-06-25 2010-01-14 Denso Corp Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007919A (en) * 2008-06-25 2010-01-14 Denso Corp Heat exchanger

Similar Documents

Publication Publication Date Title
JP5506929B2 (en) Coil tube heat exchanger for tankless hot water system
US20110024080A1 (en) Heat Exchanger
TW201200821A (en) Hot and cold water dispenser
JP2008275302A (en) Heating hot water supply apparatus
JP5077338B2 (en) Heating and hot water supply equipment
JP2016217669A (en) Double-pipe heat exchanger and heat-pump type water heater
US9157655B2 (en) Endothermic base-mounted heat pump water heater
KR101668017B1 (en) Instant hot and cold water device of water purifier
JP2009270809A (en) Heat exchanger and hot-water supply device using the same
JP4251172B2 (en) Heat pump water heater
KR102238465B1 (en) Heat exchanger, heating device, heating system and method for heating water
KR101729238B1 (en) compact hybrid heat exchanger built in thermal storage tank
KR20120057007A (en) Heating apparatus for small size hot-water boiler
KR102354053B1 (en) Cold water manufacturing apparatus
JP2007285639A (en) Heat exchanger
DK2815196T3 (en) Heat exchange to heat or central heating system
KR20160117966A (en) Boiler
JP2008241177A (en) Heat pump type hot water supply device
JP2007292331A (en) Heat pump water heater
JP2007218461A (en) Double tube type heat exchanger
KR200466598Y1 (en) An electricity warm water boiler
JP2007271194A (en) Heat exchanger
JP2007333270A (en) Heat-pump heat source equipment
KR101415957B1 (en) A induction heating hot water boilers using waste heat from heating equipment
KR101814499B1 (en) Boiler for supplying cold and hot water