JP2007285627A - Solidification/fusion promotion method of thermal storage material and thermal storage device - Google Patents

Solidification/fusion promotion method of thermal storage material and thermal storage device Download PDF

Info

Publication number
JP2007285627A
JP2007285627A JP2006114816A JP2006114816A JP2007285627A JP 2007285627 A JP2007285627 A JP 2007285627A JP 2006114816 A JP2006114816 A JP 2006114816A JP 2006114816 A JP2006114816 A JP 2006114816A JP 2007285627 A JP2007285627 A JP 2007285627A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
floating
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006114816A
Other languages
Japanese (ja)
Other versions
JP4665820B2 (en
Inventor
Shingo Takao
信吾 高雄
Hitoshi Ishizuka
仁司 石塚
Takahiro Shimamura
隆弘 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2006114816A priority Critical patent/JP4665820B2/en
Publication of JP2007285627A publication Critical patent/JP2007285627A/en
Application granted granted Critical
Publication of JP4665820B2 publication Critical patent/JP4665820B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal storage capsule in a simple structure having high thermal transfer/storage performance and a thermal storage device having it. <P>SOLUTION: A thermal storage container 1 in which the thermal storage material 3 is enclosed is provided in a thermal storage tank 19 so as to enable heat exchange with a thermal medium flowing in and out from the thermal storage tank 19. The thermal storage material 3 solidifies to be a solid phase when its temperature is falling and fuses to be a liquid phase when its temperature is rising. A plurality of float bodies 5 floating on the thermal storage material 3 in the liquid phase in the thermal storage container 1 are provided and connected with each other by a connection body 4 having a high thermal conductivity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蓄熱材の相変化に伴う発生潜熱を有効に利用するための蓄熱材の凝固融解促進方法及び蓄熱装置に関するものである。   The present invention relates to a method for promoting solidification and melting of a heat storage material and a heat storage device for effectively using the latent heat generated with the phase change of the heat storage material.

近年、産業及び民間部門では冷房設備の普及により、電気エネルギーの消費が増加の一途をたどっており、昼間の電力消費量が増加する傾向にある。このように電力消費量が昼夜間で格差が生じると、電力設備を昼間の電力消費量にあわせて設備投資する必要があるが、これでは夜間において設備の稼働率が悪くなる。最近では夜間の電力を利用して蓄熱し、昼間に蓄熱装置から冷熱を取り出し、冷房用に供給するという蓄熱装置が普及しつつある。これらの装置は昼間の冷房ピーク負荷に対し、電力消費量を低減させることができる一方、夜間のオフピーク時の電力を活用し、電力の負荷平準化や冷房の省エネルギー、さらには経済的運用などを図れる。   In recent years, in the industrial and private sectors, the consumption of electric energy has been steadily increasing due to the widespread use of cooling equipment, and there is a tendency for daytime power consumption to increase. In this way, when there is a disparity in power consumption between daytime and nighttime, it is necessary to invest in the power equipment according to the power consumption during the daytime. Recently, heat storage devices that store electricity using electric power at night, take out cold heat from the heat storage device in the daytime, and supply it for cooling are becoming widespread. These devices can reduce power consumption against peak cooling loads during the daytime, while using off-peak power during nighttime to achieve power load leveling, cooling energy conservation, and economic operation. I can plan.

蓄熱空調システムの一例として、空調設備において、蓄熱槽内の袋体の容器内に潜熱蓄熱材(以下、「蓄熱材」という)を封入し、夜間に余剰電力を利用して冷凍機を駆動することにより、冷凍機から蓄熱槽に供給する熱媒体で容器内の蓄熱材を冷却して凝固させ、その冷熱を蓄熱材に蓄熱しておき、昼間、蓄熱材に蓄熱した冷熱を冷水で熱交換して取り出し、その冷水で冷暖房運転を行うという蓄熱容器式蓄熱システムがある。 As an example of a heat storage air conditioning system, in an air conditioning facility, a latent heat storage material (hereinafter referred to as “heat storage material”) is sealed in a bag container in a heat storage tank, and the refrigerator is driven using surplus power at night. Therefore, the heat storage material in the container is cooled and solidified by the heat medium supplied from the refrigerator to the heat storage tank, the cold heat is stored in the heat storage material, and the cold heat stored in the heat storage material is exchanged with cold water in the daytime. There is a heat storage container type heat storage system in which the air is cooled and heated with the cold water.

蓄熱材を封入した容器では、該容器の伝熱内面での熱交換によって蓄熱材が凝固あるいは融解する。容器周囲の伝熱流体としての熱媒体と容器との間の伝熱抵抗は比較的小さいが、容器内で固化する蓄熱材の伝熱抵抗が大きいため、蓄熱材の伝熱抵抗が蓄熱系全体の伝熱性能を低下させる支配的要因になっている。従って、蓄熱容器は、蓄熱材が固化して蓄熱するために長い蓄熱時間を要すると共に、蓄熱材の放熱時に、負荷側の急激な負荷変動に対して追従することが困難となっている。 In a container enclosing a heat storage material, the heat storage material is solidified or melted by heat exchange on the heat transfer inner surface of the container. Although the heat transfer resistance between the heat medium as the heat transfer fluid around the container and the container is relatively small, the heat transfer resistance of the heat storage material solidified in the container is large, so the heat transfer resistance of the heat storage material is the entire heat storage system It has become a dominant factor that lowers the heat transfer performance. Therefore, the heat storage container requires a long heat storage time for the heat storage material to solidify and store heat, and it is difficult to follow a sudden load fluctuation on the load side during heat dissipation of the heat storage material.

そこで、特許文献1には蓄熱容器において、蓄熱材としての水に加えて熱伝導率の高い金属製の金網または線材を装入することを特徴とする蓄熱容器が開示されている。熱伝導率の高い金属金網が、蓄熱材と共に容器内に封入されていることにより、熱媒体により容器に伝えられた熱は直ちに蓄熱材に伝熱して、容器内の蓄熱材の伝熱抵抗を下げることができ、これにより、蓄熱材を短時間に固化できる。 Therefore, Patent Document 1, in the thermal storage vessel, the heat storage vessel, characterized in that charged in addition to water a high thermal conductivity metal wire mesh or wire as the heat storage material is disclosed. Since the metal wire mesh with high thermal conductivity is enclosed in the container together with the heat storage material, the heat transferred to the container by the heat medium is immediately transferred to the heat storage material, and the heat transfer resistance of the heat storage material in the container is reduced. The heat storage material can be solidified in a short time.

また、特許文献2には、蓄熱容器の内部に、蓄熱材と共に、熱伝導促進用物質片として蓄熱材よりも熱伝導率の高い、例えばアルミニウム、銅、鉄などの箔状の金属とを封入したものが開示されている。蓄熱容器内に熱伝導促進用物質片を封入することにより、蓄熱材が固化しても蓄熱容器内の伝熱抵抗を小さくでき、効率の良い熱交換が可能となる。 Patent Document 2 encloses a heat storage material and a foil-like metal such as aluminum, copper, or iron having a higher thermal conductivity than the heat storage material as a heat conduction promoting substance piece together with the heat storage material. Has been disclosed. By enclosing the heat conduction promoting substance piece in the heat storage container, even if the heat storage material is solidified, the heat transfer resistance in the heat storage container can be reduced, and efficient heat exchange is possible.

一方、蓄熱容器には過冷却を防止することが要求されている。各種蓄熱材の多くは、蓄冷熱時に融点より温度が下がっても固体が析出しない(=凝固しない)「過冷却」という現象が生じ易い。特に、蓄熱材を封入している容器の容積が小さいほど、「過冷却」は生じ易い。蓄熱材の固体の析出・成長によって蓄冷熱させるためには、実際に固体が生成し始める温度(=凝固開始温度)と融点との温度差である「過冷却度」が大きければ大きいほど、より低い温度の熱媒体で冷却を行なう必要があるため、熱媒体を冷却する冷凍機の効率が低下してしまう。 On the other hand, the heat storage container is required to prevent overcooling. Many of various heat storage materials are prone to the phenomenon of “supercooling” in which solid does not precipitate (= not solidify) even when the temperature falls below the melting point during cold storage heat. In particular, as the volume of the container enclosing the heat storage material is smaller, “supercooling” is more likely to occur. In order to store cold heat by precipitation and growth of solids in the heat storage material, the greater the “supercooling degree” that is the temperature difference between the temperature at which solids actually start to form (= solidification start temperature) and the melting point, the more Since it is necessary to perform cooling with a low-temperature heat medium, the efficiency of the refrigerator that cools the heat medium is lowered.

このような過冷却状態を回避する方策としては、蓄熱材の結晶生成の核になり易い核形成物質を添加することや、電磁場や超音波等で蓄熱材に衝撃力、振動、攪拌力等を付与すること等が知られている。   Measures to avoid such a supercooled state include adding a nucleation substance that is likely to be a nucleus of crystal formation of the heat storage material, and applying impact force, vibration, stirring force, etc. to the heat storage material with an electromagnetic field or ultrasonic wave. It is known to grant.

例えば、特許文献3には、容器内部に蓄熱材を封入し、容器外の周囲を流れる熱媒体との間で熱交換した熱を蓄える蓄熱容器において、容器の比重を熱媒体と等しくして熱媒体中に均一に分散しやすくしたり、熱媒体の流動によって流動・回転・振動する容器形状にしたりして、蓄熱容器を熱媒体の流動によって流動・回転等し得るようにすることが開示されている。このようにして、容器内側の蓄熱材に乱れを生じさせ、容器内の蓄熱材の過冷却度を低減しようとしている。   For example, Patent Document 3 discloses a heat storage container that encloses a heat storage material inside a container and stores heat exchanged with a heat medium that flows around the outside of the container. It is disclosed that the heat storage container can be made to flow, rotate, etc. by the flow of the heat medium by facilitating uniform dispersion in the medium, or by forming a container shape that flows, rotates, and vibrates by the flow of the heat medium. ing. In this way, the heat storage material inside the container is disturbed to reduce the degree of supercooling of the heat storage material in the container.

また、特許文献4には、容器内に蓄熱材としてフレオン等の包接化合物(クラスレート)を封入すると共に、この容器内に、攪拌装置を配設することが開示されている。攪拌装置によってクラスレートが攪拌混合されるので、容器周囲の熱媒体との伝熱が促進され、またクラスレートの生成、分解が迅速に行われるとしている。攪拌装置としてはプロペラ、櫂型翼、タービン翼、螺旋翼等の翼をモータにより回転駆動するものが例示されている。
特開平06−281371 特開平11−270975 特開2001−317887 実開平02−122982
Patent Document 4 discloses that an inclusion compound (clathrate) such as Freon is enclosed as a heat storage material in a container, and a stirring device is provided in the container. Since the clathrate is stirred and mixed by the stirring device, heat transfer with the heat medium around the container is promoted, and the generation and decomposition of the clathrate are performed quickly. Examples of the agitating device include a propeller, a saddle blade, a turbine blade, a spiral blade, and the like that rotate and drive a blade by a motor.
JP 06-281371 A JP-A-11-270975 JP 2001-317887 A ACT 02-122982

しかしながら、特許文献1では、蓄熱容器の中に蓄熱材と熱伝導促進用として金網あるいは金属性線材を、そして特許文献2では箔状の金属を封入することとしているが、金網、金属製線材、箔状の金属は比重が蓄熱材よりも大きいので沈澱してしまい、長期間、均一に蓄熱材の中に分散させておくのは困難であり、熱伝導が容器全体で均一に行われず、その結果、期待するほどの効果が得られない。   However, in Patent Document 1, a heat storage material and a wire mesh or a metallic wire are used for heat conduction promotion in the heat storage container, and in Patent Document 2, a foil-shaped metal is encapsulated, but a wire mesh, a metal wire, The foil-like metal is precipitated because the specific gravity is larger than that of the heat storage material, and it is difficult to uniformly disperse it in the heat storage material for a long period of time. As a result, the expected effect cannot be obtained.

次に、特許文献3では、蓄熱材を入れた容器を熱媒体の中に浮遊・分散させ熱媒体の流動によって容器を流動・回転・振動させて容器内の蓄熱材を攪拌して、過冷却を解除するようにしているが、熱媒体の流動による容器の運動が必ずしも容器中の蓄熱材に伝わらず、攪拌により過冷却を防止することが有効に行われない。また、電磁力や超音波により振動を与える方法は、余分にエネルギーや装置が必要で、コストが嵩むという問題がある。   Next, in Patent Document 3, a container containing a heat storage material is floated and dispersed in a heat medium, and the container is made to flow, rotate, and vibrate by the flow of the heat medium, and the heat storage material in the container is stirred to supercool. However, the movement of the container due to the flow of the heat medium is not necessarily transmitted to the heat storage material in the container, and it is not effectively performed to prevent overcooling by stirring. In addition, the method of applying vibration by electromagnetic force or ultrasonic waves has the problem that extra energy and apparatus are required and the cost increases.

また、特許文献4では、容器内に攪拌装置を設けることにより伝熱を促進するが、攪拌翼を回転駆動するための機構が必要であり、それが故に装置が複雑になり、コストが嵩むという問題がある。   In Patent Document 4, heat transfer is promoted by providing a stirrer in the container, but a mechanism for rotationally driving the stirrer blades is required, which complicates the apparatus and increases costs. There's a problem.

本発明は、かかる事情に鑑み、簡単な構造で安価に製造でき、伝熱・蓄熱性能が高く、蓄熱材の過冷却を早期に解除することができる蓄熱材の凝固融解促進方法及び蓄熱装置を提供することを目的とする。   In view of such circumstances, the present invention provides a heat storage material solidification and melting acceleration method and a heat storage device that can be manufactured at a low cost with a simple structure, have high heat transfer / heat storage performance, and can quickly release supercooling of the heat storage material. The purpose is to provide.

本発明の蓄熱材の凝固融解促進に関する第一の方法では、降温時に凝固して固相となり昇温時に融解して液相となる蓄熱材が封入されている蓄熱容器を、蓄熱槽に対して流出入する熱媒体と熱交換するように蓄熱槽内に配している。   In the first method relating to the acceleration of solidification and melting of the heat storage material of the present invention, the heat storage container in which the heat storage material that is solidified when the temperature is lowered and becomes a solid phase and melts and becomes a liquid phase when the temperature is increased is enclosed with respect to the heat storage tank. The heat storage tank is arranged to exchange heat with the heat medium flowing in and out.

かかる蓄熱材の凝固融解促進方法において、本発明では、上記蓄熱容器内で、液相時の蓄熱材に浮遊する複数の浮き体を配し、浮き体同士を良熱伝導性の連結体で連結したことを特徴としている。   In the method for promoting solidification and melting of the heat storage material, in the present invention, in the heat storage container, a plurality of floating bodies floating on the heat storage material in the liquid phase are arranged, and the floating bodies are connected by a highly heat conductive connection body. It is characterized by that.

このような構成の本発明では、連結体が良熱伝導性材であるので、蓄熱時や放熱時に蓄熱容器内の蓄熱材の熱伝導を促進して、伝熱速度を増大させて、蓄熱材の凝固や融解を促進でき効率良く蓄熱や放熱が行われる。連結体を形成する良熱伝導性材としては、金属、例えば、アルミニウム、銅等が挙げられる。   In the present invention having such a configuration, since the coupling body is a good heat conductive material, the heat storage material is promoted by increasing the heat transfer rate by promoting the heat conduction of the heat storage material in the heat storage container during heat storage or heat dissipation. Solidification and melting can be promoted, and heat storage and heat dissipation are performed efficiently. Examples of the good heat conductive material forming the coupling body include metals such as aluminum and copper.

蓄熱材が液相時には、蓄熱容器周囲の熱媒体の流動により蓄熱容器が振動したり揺動することに伴い、浮き体と連結体は蓄熱材中に浮遊しているので容器内の液相蓄熱材中で振動したり揺動して、液相蓄熱材を攪拌して過冷却を防止し、さらに蓄熱材が複数の組成からなる場合の組成分離を防止する。浮き体と連結体が熱媒体の流量変動周波数や熱媒体を冷却する冷凍機のコンプレッサの回転数等と同じ固有振動数をもち、共振により振幅が大きくなるようにすれば攪拌効果がさらに向上する。   When the heat storage material is in the liquid phase, the floating body and the connected body float in the heat storage material as the heat storage container vibrates or swings due to the flow of the heat medium around the heat storage container. It vibrates or swings in the material to stir the liquid phase heat storage material to prevent overcooling, and further prevents composition separation when the heat storage material consists of a plurality of compositions. If the floating body and the connected body have the same natural frequency as the flow rate fluctuation frequency of the heat medium and the rotation speed of the compressor of the refrigerator that cools the heat medium, and the amplitude is increased by resonance, the stirring effect is further improved. .

また、蓄熱材の固相時には、浮き体と連結体は固相の蓄熱材の内部に芯材として機能する。蓄熱材が融解する際には、この芯材があるため、凝固蓄熱体は蓄熱容器内で安定しており、融解途中に凝固蓄熱材が蓄熱容器内で片寄ってしまうことを防止し、一様に融解するようになる。   Further, when the heat storage material is in the solid phase, the floating body and the coupling body function as a core material inside the solid phase heat storage material. When the heat storage material melts, there is this core material, so the solidified heat storage body is stable in the heat storage container, preventing the solidified heat storage material from being offset in the heat storage container during the melting, uniform To melt.

本発明において、連結体は枝またはフィンを有しているようにしたり、あるいは螺旋体で形成することとしてもよい。こうすることにより、蓄熱材との伝熱面積が増えさらに熱伝導を促進する。螺旋体の場合は、弾性体とすることが好ましい。弾性力により浮き体が振動して動くので、攪拌が良好に行われる。   In the present invention, the connection body may have branches or fins, or may be formed of a spiral body. By doing so, the heat transfer area with the heat storage material increases and further heat conduction is promoted. In the case of a spiral body, an elastic body is preferable. Since the floating body vibrates and moves due to the elastic force, the stirring is performed well.

水和物蓄熱材を容器内に封入し、ゴム製の浮き体とアルミニウム製の細線に枝を設けた連結体を用いた蓄熱容器の蓄熱と放熱を計測した結果、浮き体と連結体を設けない場合に比べて蓄熱速度と放熱速度は10%程度上回り、伝熱促進効果が高いことを確認した。 As a result of measuring heat storage and heat dissipation of a heat storage container using a linking body with a hydrated heat storage material enclosed in a container and a rubber floating body and a thin aluminum wire with branches, a floating body and a coupling body are provided. Compared to the case without heat storage, the heat storage rate and the heat release rate exceeded about 10%, and it was confirmed that the heat transfer acceleration effect was high.

浮き体は蓄熱材の膨張そして収縮に追従する変形が可能であることが好ましく、その場合、浮き体は密閉中空空間を有する中空体であることとするのが良い。 It is preferable that the floating body can be deformed to follow the expansion and contraction of the heat storage material. In this case, the floating body is preferably a hollow body having a sealed hollow space.

浮き体が蓄熱材の膨張そして収縮に追従する変形が可能であると、蓄熱材が液相から固相に変化する時の体積膨張または収縮を、浮き体が収縮または膨張することにより吸収する。その場合、浮き体が中空であると、この対応がさらに良好である。このようにすることにより、蓄熱材の体積膨張または収縮による蓄熱容器内の圧力上昇または下降を抑制できるので、蓄熱容器の肉厚を厚くする必要がなく伝熱性能を高くすることができる。浮き体を中空としないときには、蓄熱材が相変化する時の膨張や収縮に追従して変形して体積変化を吸収させるようにゴム等の弾性を有する材料を用いるのがよい。浮き体の中は空気でよく、浮き体の体積は合計で蓄熱材の体積に対し数%〜10%程度とすると、蓄熱容器全体としての蓄熱性能が極めて良好となる。 When the floating body can be deformed to follow the expansion and contraction of the heat storage material, volume expansion or contraction when the heat storage material changes from the liquid phase to the solid phase is absorbed by the contraction or expansion of the floating body. In this case, if the floating body is hollow, this correspondence is even better. By doing in this way, since the pressure rise or fall in the heat storage container due to the volume expansion or contraction of the heat storage material can be suppressed, it is not necessary to increase the thickness of the heat storage container, and the heat transfer performance can be improved. When the floating body is not hollow, it is preferable to use a material having elasticity such as rubber so as to absorb the volume change by following the expansion and contraction when the heat storage material changes phase. The inside of the floating body may be air, and when the volume of the floating body is about several to 10% with respect to the volume of the heat storage material in total, the heat storage performance as the entire heat storage container becomes extremely good.

このような本発明の蓄熱材の凝固融解促進方法を実施するための蓄熱容器は、蓄熱装置に使用される場合には、熱媒体が流出入する蓄熱槽内の該熱媒体と熱交換するように該蓄熱槽内に配される。   When the heat storage container for implementing the method for promoting solidification and melting of the heat storage material of the present invention is used in a heat storage device, heat exchange is performed with the heat medium in the heat storage tank into which the heat medium flows in and out. In the heat storage tank.

本発明の蓄熱材の凝固融解促進方法に用いられる蓄熱容器が筒状をなしていて、その軸方向が上下方向になるように蓄熱槽内に配される場合には、浮き体と連結体が蓄熱材中で上下方向に揃って浮遊するように、浮き体は下方のものほど重くしたり、小さくして浮力を減らしたりするとよい。あるいは浮き体と連結体の最下部に重錘をつけてもよい。   When the heat storage container used in the method for promoting solidification and melting of the heat storage material of the present invention has a cylindrical shape and is arranged in the heat storage tank so that its axial direction is the vertical direction, the floating body and the connecting body are In order to float in the heat storage material in the vertical direction, it is better to make the floating body heavier as it is lower, or to be smaller and reduce buoyancy. Or you may attach a weight to the lowermost part of a floating body and a connection body.

本発明の蓄熱材の凝固融解促進方法に用いられる蓄熱容器が筒状であって、その軸方向が水平方向になるように蓄熱槽内に配される場合には、浮き体と連結体が蓄熱材中で水平方向に揃って位置して浮遊するようにする。また、連結体を螺旋形にすると、蓄熱容器周囲の熱媒体の流動により浮き体と連結体が揺動しやすく、蓄熱材を良好に攪拌する。   When the heat storage container used in the method for promoting solidification and melting of the heat storage material of the present invention is cylindrical and is arranged in the heat storage tank so that the axial direction thereof is the horizontal direction, the floating body and the coupling body are heat storage. Float in a horizontal position in the material. Further, when the connecting body is formed in a spiral shape, the floating body and the connecting body are likely to swing due to the flow of the heat medium around the heat storage container, and the heat storage material is well stirred.

このような蓄熱材の凝固融解促進のための第一の方法を実施する蓄熱装置は、降温時に凝固して固相となり昇温時に融解して液相となる蓄熱材が封入されている蓄熱容器を、蓄熱槽に対して流出入する熱媒体と熱交換するように該蓄熱槽内に配した蓄熱装置において、上記蓄熱容器内で液相時の蓄熱材に浮遊する複数の浮き体が良熱伝導性の連結体で連結されていることを特徴としている。   A heat storage device that implements the first method for promoting the solidification and melting of such a heat storage material is a heat storage container in which a heat storage material that is solidified when it cools down and becomes a solid phase and melts when it is heated and becomes a liquid phase is enclosed. In the heat storage device arranged in the heat storage tank so as to exchange heat with the heat medium flowing in and out of the heat storage tank, a plurality of floating bodies floating on the heat storage material in the liquid phase in the heat storage container have good heat. It is characterized by being connected by a conductive connector.

また、蓄熱材の凝固融解促進の第二の方法は、蓄熱容器を用いずに、蓄熱材を蓄熱槽に収容し、蓄熱槽内に配設された熱交換器に流通される熱媒体との熱交換により蓄熱槽内の蓄熱材を冷却して蓄熱する該蓄熱槽内に、液相時の蓄熱材に浮遊する複数の浮き体を配し、浮き体同士を良熱伝導性の連結体で連結したことを特徴とする。   Further, the second method of promoting the solidification and melting of the heat storage material is to store the heat storage material in the heat storage tank without using the heat storage container, and a heat medium distributed to the heat exchanger disposed in the heat storage tank. A plurality of floating bodies floating on the heat storage material in the liquid phase are arranged in the heat storage tank that cools and stores the heat storage material in the heat storage tank by heat exchange, and the floating bodies are connected with good heat conductivity. It is connected.

そして、この第二の方法を実施するための蓄熱装置は、熱媒体が流通される熱交換器と蓄熱材を収容し熱媒体との熱交換により蓄熱する蓄熱槽内に、液相時の蓄熱材に浮遊する複数の浮き体を配し、浮き体同士を良熱伝導性の連結体で連結したことを特徴としている。   And the heat storage apparatus for implementing this 2nd method is the heat storage in the liquid phase in the heat storage tank which stores the heat exchanger with which a heat medium distribute | circulates, and a heat storage material, and stores heat by heat exchange with a heat medium. It is characterized in that a plurality of floating bodies floating on the material are arranged and the floating bodies are connected to each other by a highly heat conductive connecting body.

以上のごとく、本発明では、蓄熱容器を用いた場合、降温時に凝固して固相となり昇温時に融解して液相となる蓄熱材が蓄熱容器内に封入されており、該蓄熱容器内には液相時の蓄熱材に浮遊する複数の浮き体を良熱伝導性の連結体で連結して配したこととしたので、良熱伝導性材である連結体が蓄熱時や放熱時に蓄熱容器内の蓄熱材の熱伝導を促進して、伝熱速度を増大させて、蓄熱材の凝固や融解を促進でき効率良く蓄熱や放熱が行われる、という効果を得る。   As described above, in the present invention, when a heat storage container is used, the heat storage material that solidifies when the temperature falls and becomes a solid phase and melts when the temperature rises to become a liquid phase is enclosed in the heat storage container. Has been arranged by connecting a plurality of floating bodies floating in the heat storage material in the liquid phase with a highly heat conductive connecting body, so the connecting body that is a heat conductive material is a heat storage container during heat storage and heat dissipation The heat conduction of the inner heat storage material is promoted, the heat transfer rate is increased, the solidification and melting of the heat storage material can be promoted, and heat storage and heat dissipation are efficiently performed.

さらには、蓄熱材が液相時には、浮き体と連結体は蓄熱材中に浮遊しており、蓄熱容器周囲の熱媒体の流動により蓄熱容器が振動したり揺動するとすることに伴い、容器内の液相蓄熱材中で振動したり揺動するため、液相蓄熱材を攪拌して過冷却を防止する。   Furthermore, when the heat storage material is in the liquid phase, the floating body and the coupling body are floating in the heat storage material, and the heat storage container vibrates or swings due to the flow of the heat medium around the heat storage container. Therefore, the liquid phase heat storage material is agitated to prevent overcooling.

また、蓄熱容器を用いずに、蓄熱材を蓄熱槽に収容した場合でも、連結体で連結された複数の浮き体の構成が、蓄熱材の熱伝導を促進して上述の場合と同様の効果をもたらす。また、液相蓄熱材を攪拌して過冷却を防止できる点でも同様である。   In addition, even when the heat storage material is accommodated in the heat storage tank without using the heat storage container, the structure of the plurality of floating bodies connected by the connection body promotes the heat conduction of the heat storage material and has the same effect as described above. Bring. The same is true in that the liquid phase heat storage material can be stirred to prevent overcooling.

以下、添付図面の図1ないし図5にもとづき、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5 of the accompanying drawings.

<第一実施形態>
図1において、本発明の蓄熱材の凝固融解促進方法に適用する蓄熱容器1は、例えば金属製の良熱伝導性材料で作られた容器本体2内に、蓄熱材3が封入されていると共に、連結体4で連結された複数の浮き体5が上記蓄熱材3中で浮遊して配設されている。
<First embodiment>
In FIG. 1, a heat storage container 1 applied to the method for promoting solidification and melting of a heat storage material of the present invention includes a heat storage material 3 enclosed in a container body 2 made of, for example, a metal heat-conductive material. A plurality of floating bodies 5 connected by the connecting body 4 are suspended in the heat storage material 3.

上記容器本体2は、図示のごとく、縦長な筒状体をなしており、内部空間に上記蓄熱材3を密封状態で収容している。   As shown in the drawing, the container body 2 has a vertically long cylindrical body, and the heat storage material 3 is accommodated in an internal space in a sealed state.

蓄熱材3は、公知の潜熱蓄熱材であり、降温時に凝固して固相となり、昇温時に融解して液相となる。   The heat storage material 3 is a known latent heat storage material, which solidifies to a solid phase when the temperature is lowered and melts to a liquid phase when the temperature is raised.

浮き体5は、本実施形態では、ゴム等の弾性材で中空に作られており、外形は、例えば球状、筒状等をなしている。浮き体5は、その材質に限定はないが、内部の蓄熱材3が相変化や温度変化により体積膨張・収縮する際に、これに対応できるように弾性材であることが好ましい。上記蓄熱材3の体積膨張・収縮を吸収して、容器本体2内の圧力上昇を抑制できるからである。   In this embodiment, the floating body 5 is made hollow with an elastic material such as rubber, and the outer shape is, for example, spherical or cylindrical. The material of the floating body 5 is not limited, but is preferably an elastic material so that the internal heat storage material 3 can cope with volume expansion / contraction due to phase change or temperature change. This is because the volume expansion / contraction of the heat storage material 3 can be absorbed to prevent an increase in pressure in the container body 2.

連結体4は、アルミニウム、銅等の金属製の線材や紐材等として作られており、本実施形態では、好ましい形態として、フィン4Aが複数設けられている。このフィン4Aは、連結体4と蓄熱材3との接触面積、すなわち伝熱面積を増大する。   The coupling body 4 is made as a metal wire or string material such as aluminum or copper, and in the present embodiment, a plurality of fins 4A are provided as a preferred form. The fins 4A increase the contact area between the connector 4 and the heat storage material 3, that is, the heat transfer area.

浮き体5と連結体4は、蓄熱材3が液相時には該蓄熱材3中で浮遊しており、後述の蓄熱槽内での蓄熱容器1の周囲の熱媒体の流動により蓄熱容器1が振動したり揺動するとすることに伴い、液相蓄熱材3中で振動したり揺動するため、液相蓄熱材3を攪拌して過冷却を防止すると共に、蓄熱材の組成分離を防止する。また、容器本体2内の蓄熱材3の温度分布を均一化する。   The floating body 5 and the connecting body 4 float in the heat storage material 3 when the heat storage material 3 is in a liquid phase, and the heat storage container 1 vibrates due to the flow of the heat medium around the heat storage container 1 in the heat storage tank described later. As the liquid phase heat storage material 3 vibrates or swings, the liquid phase heat storage material 3 is agitated to prevent overcooling and to prevent composition separation of the heat storage material. Further, the temperature distribution of the heat storage material 3 in the container body 2 is made uniform.

浮き体5と連結体4は蓄熱材3が凝固する際には凝固蓄熱材の内部に芯材として機能し、蓄熱材が融解する際には、この芯材の存在のため、凝固蓄熱材は蓄熱容器1内で安定して位置するようになり、融解途中の凝固蓄熱材が蓄熱容器1内で片寄ることを防止し、一様に融解するようになる。   The floating body 5 and the connecting body 4 function as a core material inside the solidified heat storage material when the heat storage material 3 is solidified, and when the heat storage material melts, the presence of this core material causes the solidified heat storage material to be It comes to be stably located in the heat storage container 1, and it prevents that the solidification heat storage material in the middle of melting | disconnects in the heat storage container 1, and melt | dissolves uniformly.

本発明において、蓄熱容器1が筒状であって、その軸方向が水平方向になるように蓄熱装置内に配置される場合には、図2に示すように浮き体5と連結体4が水平方向に揃って浮遊するようにすると良い。また、連結体4を螺旋形、特にコイルばね状の弾性螺旋体にすると、蓄熱容器1の周囲の熱媒体の流動時に、この連結体4の形状そして弾性伸縮変形に起因して浮き体5と連結体4が揺動し易くなる。   In the present invention, when the heat storage container 1 has a cylindrical shape and is disposed in the heat storage device so that its axial direction is horizontal, the floating body 5 and the connecting body 4 are horizontal as shown in FIG. It is better to float in the same direction. Further, when the connecting body 4 is formed in a spiral shape, particularly a coil spring-like elastic spiral body, when the heat medium around the heat storage container 1 flows, the connecting body 4 is connected to the floating body 5 due to the shape of the connecting body 4 and elastic elastic deformation. The body 4 is easy to swing.

既述してきた蓄熱容器は、例えば、図3に示される蓄熱式空調設備に用いられる。   The heat storage container described above is used, for example, in the heat storage type air conditioner shown in FIG.

図3の蓄熱式空調設備は、冷熱源装置としての冷凍機A、空調負荷装置Bそして蓄熱装置Cから構成されている。   The heat storage type air conditioning equipment of FIG. 3 is composed of a refrigerator A, an air conditioning load device B, and a heat storage device C as a cold heat source device.

上記冷凍機Aは、凝縮器11、膨張弁12、圧縮機13、二重管熱交換器やプレート型熱交換器に代表される熱交換器14、それらを結ぶ配管から構成されている。   The refrigerator A includes a condenser 11, an expansion valve 12, a compressor 13, a heat exchanger 14 typified by a double pipe heat exchanger or a plate heat exchanger, and a pipe connecting them.

上記空調負荷Bは、空調機15、該空調機15に冷熱を供給するために熱媒体の水または不凍液を循環するためのポンプ16、それらを結ぶ配管から構成されている。   The air conditioning load B includes an air conditioner 15, a pump 16 for circulating water or an antifreeze liquid for supplying cold air to the air conditioner 15, and a pipe connecting them.

上記蓄熱装置Cの熱媒体としては冷水または不凍液17が使用され、上記蓄熱装置Cは、冷水または不凍液を循環するポンプ18、内部に蓄熱材を封入するとともに浮き体と良熱伝導性の連結体とを設けた蓄熱容器1を内部に装填した蓄熱槽19、それらを結ぶ配管から構成されている。蓄熱槽19内は冷水または不凍液17の熱媒体で満たされている。   Cold water or antifreeze liquid 17 is used as the heat medium of the heat storage device C. The heat storage device C includes a pump 18 that circulates cold water or antifreeze liquid, a heat storage material enclosed therein, and a floating body and a well-conductive connection body. The heat storage tank 19 in which the heat storage container 1 provided with the above is loaded and the piping connecting them are configured. The heat storage tank 19 is filled with a heat medium of cold water or antifreeze liquid 17.

かかる本実施形態の蓄熱装置において、先ず、蓄熱に際しては、冷凍機Aおよび蓄熱装置Cの冷水または不凍液用ポンプ18を動作させ、冷凍機Aにより冷却された冷水または不凍液17を蓄熱槽19内に循環させて蓄熱容器1に蓄熱する。冷熱回収時には、冷水または不凍液の循環用ポンプ18を停止させ、水または不凍液の循環用ポンプ16を動作させ、蓄熱容器1に蓄熱された冷熱を取出し、冷熱を空調機15に供給する。   In the heat storage device of this embodiment, first, when storing heat, the cold water or antifreeze liquid pump 18 of the refrigerator A and the heat storage device C is operated, and the cold water or antifreeze liquid 17 cooled by the refrigerator A is placed in the heat storage tank 19. The heat is stored in the heat storage container 1 by circulation. At the time of cold heat recovery, the cold water or antifreeze liquid circulation pump 18 is stopped, the water or antifreeze liquid circulation pump 16 is operated, the cold heat stored in the heat storage container 1 is taken out, and the cold heat is supplied to the air conditioner 15.

蓄熱された冷熱を使い果たした場合には、冷凍機A、蓄熱装置Cの冷水または不凍液の循環ポンプ18を動作させることにより、冷凍機Aにより得られた冷熱を使用することができる。なお、空調負荷Bとしては、上記した構成の他に、蓄熱槽から取り出した冷熱を熱交換器により熱媒体に熱交換してもよいし、蓄熱槽から取り出した冷熱を低温の熱源としたヒートポンプ機構又はヒートパイプ機構を適用してもよい。   When the stored cold energy is exhausted, the cold energy obtained by the refrigerator A can be used by operating the cold water or antifreeze circulating pump 18 of the refrigerator A and the heat storage device C. As the air conditioning load B, in addition to the above-described configuration, the heat extracted from the heat storage tank may be exchanged with a heat medium by a heat exchanger, or the heat pump using the cold heat extracted from the heat storage tank as a low-temperature heat source. A mechanism or a heat pipe mechanism may be applied.

<第二実施形態>
本実施形態では、蓄熱容器を用いることなく、蓄熱材が蓄熱槽に収容され、蓄熱槽内の蓄熱材は流通されず、熱交換器に流通される冷媒が空調負荷(室内空調機)に送られる点に特徴がある。
<Second embodiment>
In this embodiment, the heat storage material is accommodated in the heat storage tank without using the heat storage container, the heat storage material in the heat storage tank is not distributed, and the refrigerant circulated through the heat exchanger is sent to the air conditioning load (indoor air conditioner). There is a feature in the point.

図4は本発明の第二実施の形態に係る蓄熱式空調設備の構成を説明する図である。本実施の形態の蓄熱式空調設備は、冷熱源装置A、空調負荷装置Bそして蓄熱装置Cのそれぞれを構成する各構成機器を冷媒配管で連結し、冷媒配管の途中に熱媒体としての冷媒の流路を切替える開閉弁21,22,23で連結して冷凍サイクル回路を構成する。   FIG. 4 is a diagram for explaining the configuration of the regenerative air conditioning equipment according to the second embodiment of the present invention. In the heat storage type air conditioner of the present embodiment, each component constituting each of the cold heat source device A, the air conditioning load device B, and the heat storage device C is connected by a refrigerant pipe, and a refrigerant as a heat medium is provided in the middle of the refrigerant pipe. The refrigeration cycle circuit is configured by connecting the switching valves 21, 22, and 23 for switching the flow paths.

冷熱源装置Aは、冷媒を加圧する圧縮機24、外気と冷凍サイクルの冷媒との熱交換を行う室外側熱交換器25を備えて構成される。   The cold heat source apparatus A includes a compressor 24 that pressurizes the refrigerant, and an outdoor heat exchanger 25 that performs heat exchange between the outside air and the refrigerant in the refrigeration cycle.

また、空調負荷装置Bは、室内に設置されて室内空気と冷凍サイクルの冷媒との熱交換を行う二つの室内側熱交換器26A,26B、該室内側熱交換器26A,26Bに流入する冷媒を減圧する減圧装置27A,27Bを備えて構成される。本実施形態では、空調負荷装置Bは、二つの室内側熱交換器を並列に配して構成しているが、これに限定されず、室内側熱交換器は一つでも、あるいは三つ以上であってもよい。   In addition, the air conditioning load device B is installed indoors and heat exchanges between the indoor air and the refrigerant in the refrigeration cycle, and the refrigerant flowing into the indoor heat exchangers 26A and 26B. Are provided with decompression devices 27A and 27B. In the present embodiment, the air conditioning load device B is configured by arranging two indoor heat exchangers in parallel. However, the present invention is not limited to this, and there may be one indoor heat exchanger or three or more indoor heat exchangers. It may be.

さらに、蓄熱装置Cは、蓄熱材を貯留する蓄熱槽28、該蓄熱槽28に貯留される蓄熱材29、該蓄熱剤29と冷凍サイクルの冷媒とを熱交換させる蓄熱用熱交換器30、該蓄熱用熱交換器30に送られる冷媒の圧力を減圧する減圧装置31を備えている。また、上記蓄熱槽28には、蓄熱材29を循環させるポンプ32が接続されている。蓄熱材29は、公知の潜熱蓄熱材であり、降温時に凝固して固相となり、昇温時に融解して液相となる。   Furthermore, the heat storage device C includes a heat storage tank 28 for storing the heat storage material, a heat storage material 29 stored in the heat storage tank 28, a heat storage heat exchanger 30 for exchanging heat between the heat storage agent 29 and the refrigerant of the refrigeration cycle, A pressure reducing device 31 is provided for reducing the pressure of the refrigerant sent to the heat storage heat exchanger 30. The heat storage tank 28 is connected to a pump 32 that circulates the heat storage material 29. The heat storage material 29 is a known latent heat storage material, and solidifies to become a solid phase when the temperature falls, and melts to a liquid phase when the temperature rises.

上記蓄熱装置Cは、別途図5に詳細に示されているように、蓄熱材29を収容せる蓄熱槽28内へ、伝熱管から成る熱交換器30が導入されている。この熱交換器30は伝熱管を図示のごとく蛇行して形成され、上記蓄熱材29内に配設されている。この熱交換器30に近接して、フィン4Aを有する連結体4にて連結された複数の浮き体5が浮遊配置されている。これは、図1の蓄熱容器1と類似しているが、浮き体と連結体が容器本体内に収容されずに、直接上記熱交換器30に近接して配設されている点で相違している。また、上記蓄熱槽28には、図4で示したポンプ32により、液相蓄熱材を流入せしめる流入管32Aを液面の上方位置に、排出する排出管32Bを槽内底部に設けている。この流入管32Aそして排出管32Bにより、蓄熱利用冷房運転時に凝固している固相蓄熱材を融解する際に、液相蓄熱材を底部より排出し、液相液面上方から流入させ循環させるようにしている。   In the heat storage device C, a heat exchanger 30 formed of a heat transfer tube is introduced into a heat storage tank 28 in which a heat storage material 29 is accommodated, as shown in detail in FIG. The heat exchanger 30 is formed by meandering a heat transfer tube as shown in the figure, and is disposed in the heat storage material 29. In the vicinity of the heat exchanger 30, a plurality of floating bodies 5 connected by a connecting body 4 having fins 4A are suspended. This is similar to the heat storage container 1 of FIG. 1, but differs in that the floating body and the connecting body are not accommodated in the container body and are disposed directly in the vicinity of the heat exchanger 30. ing. Further, the heat storage tank 28 is provided with an inflow pipe 32A through which the liquid phase heat storage material is introduced by the pump 32 shown in FIG. With this inflow pipe 32A and the discharge pipe 32B, when melting the solid-phase heat storage material solidified during the heat storage-use cooling operation, the liquid-phase heat storage material is discharged from the bottom, and is circulated by flowing from above the liquid-phase liquid surface. I have to.

以上のように構成された本発明の第二実施形態の蓄熱式空調設備の運転方法を、蓄熱を行う蓄熱運転方法と、蓄熱を利用する蓄熱利用冷房運転方法とに分けて説明する。
蓄熱運転方法
蓄熱運転時には、開閉弁21,22は閉の状態、開閉弁23は開の状態になっている。
The operation method of the regenerative air conditioning system according to the second embodiment of the present invention configured as described above will be described separately for a heat storage operation method for storing heat and a heat storage-based cooling operation method using heat storage.
-Thermal storage operation method During the thermal storage operation, the on-off valves 21 and 22 are closed and the on-off valve 23 is open.

圧縮機24で圧縮された冷媒は室外側熱交換器25で空気との熱交換により冷却されて凝縮される。冷却された冷媒は減圧装置31で減圧されて蓄熱用熱交換器30で蒸発し、このとき蓄熱材29を冷却して冷熱を蓄熱する。蒸発した冷媒は圧縮機24に戻りこのサイクルを繰り返す。   The refrigerant compressed by the compressor 24 is cooled and condensed by heat exchange with air in the outdoor heat exchanger 25. The cooled refrigerant is decompressed by the decompression device 31 and evaporated by the heat storage heat exchanger 30. At this time, the heat storage material 29 is cooled to store the cold energy. The evaporated refrigerant returns to the compressor 24 and repeats this cycle.

液相の蓄熱材は冷却されて蓄熱用熱交換器30の表面上に凝固して固相の蓄熱材が付着し、更には蓄熱用熱交換器30の表面から遠くに向けて固相蓄熱材29Aが塊状に成長する(図5参照)。浮き体5と連結体4は、固相蓄熱材29Aの塊状体が成長すると、塊状体の内部に内包される。   The liquid-phase heat storage material is cooled and solidified on the surface of the heat storage heat exchanger 30, and the solid-phase heat storage material adheres. Further, the solid-phase heat storage material faces away from the surface of the heat storage heat exchanger 30. 29A grows in a lump shape (see FIG. 5). The floating body 5 and the connection body 4 are included in the inside of the massive body when the massive body of the solid phase heat storage material 29A grows.

この蓄熱運転において、液相時の蓄熱材に浮遊する複数の浮き体5を良熱伝導性の連結体4で連結して配したこととしたので、良熱伝導性材である連結体4が蓄熱槽28内の蓄熱材29の熱伝導を促進して、伝熱速度を増大させて、蓄熱材29の凝固を促進でき効率良く蓄熱が行われる。
蓄熱利用冷房運転方法
蓄熱利用冷房運転時においては、開閉弁21,23は閉状態、開閉弁22は開状態、減圧装置31は全開状態とする。圧縮機24で圧縮された冷媒は室外側熱交換器25で空気との熱交換により冷却され凝縮される。減圧装置31は全開の状態であり、冷媒は減圧されずに蓄熱用熱交換器30に流通する。蓄熱用熱交換器30に流通した冷媒は蓄熱材29によりさらに冷却され、過冷却状態となる。過冷却された冷媒は空調負荷装置Bの減圧装置27A,27Bで減圧されて室内用熱交換器26A,26Bで蒸発し、このとき空気を冷却して冷房空調する。蒸発した冷媒は圧縮機24に戻り、このサイクルを繰り返す。固相蓄熱材29Aは冷媒との熱交換により冷熱を放熱し、蓄熱用熱交換器30の熱交換面から融解して液相になる。
In this heat storage operation, since the plurality of floating bodies 5 floating on the heat storage material in the liquid phase are arranged by being connected by the connection body 4 having good heat conductivity, the connection body 4 that is a good heat conductivity material is provided. The heat conduction of the heat storage material 29 in the heat storage tank 28 is promoted, the heat transfer rate is increased, the solidification of the heat storage material 29 can be promoted, and heat storage is performed efficiently.
-Heat storage cooling operation method During the heat storage cooling operation, the on-off valves 21 and 23 are closed, the on-off valve 22 is open, and the pressure reducing device 31 is fully open. The refrigerant compressed by the compressor 24 is cooled and condensed by heat exchange with air in the outdoor heat exchanger 25. The decompression device 31 is in a fully open state, and the refrigerant flows through the heat storage heat exchanger 30 without being decompressed. The refrigerant flowing through the heat storage heat exchanger 30 is further cooled by the heat storage material 29 and is in a supercooled state. The supercooled refrigerant is decompressed by the decompression devices 27A and 27B of the air conditioning load device B and evaporated by the indoor heat exchangers 26A and 26B. At this time, the air is cooled and air conditioning is performed. The evaporated refrigerant returns to the compressor 24 and repeats this cycle. The solid-phase heat storage material 29A dissipates cold by heat exchange with the refrigerant, and melts from the heat exchange surface of the heat storage heat exchanger 30 to become a liquid phase.

この蓄熱利用冷房運転において、固相蓄熱材29A内に浮き体5と良熱伝導性の連結体4が内包されるので、良熱伝導性材である連結体4が熱交換器30に付着している塊状体の固相蓄熱材29Aの熱伝導を促進して、伝熱速度を増大させて、蓄熱材の融解を促進でき効率良く放熱が行われる。   In this heat storage-based cooling operation, the floating body 5 and the well-conductive connecting body 4 are included in the solid-phase heat storage material 29A, so that the connecting body 4 that is a good heat-conductive material adheres to the heat exchanger 30. The heat conduction of the solid solid phase heat storage material 29A is increased, the heat transfer rate is increased, the melting of the heat storage material is promoted, and the heat is efficiently dissipated.

この蓄熱利用冷房運転は、蓄熱式空調設備が蓄熱槽28内に蓄熱残量が無いと判断したときに終了する。以降の冷房空調は、開閉弁21を開、減圧装置31を閉の状態にして冷媒が蓄熱槽28をバイパスするようにして行われる。   This regenerative cooling operation is completed when the regenerative air conditioning system determines that there is no remaining heat storage in the heat storage tank 28. Subsequent cooling air-conditioning is performed by opening the on-off valve 21 and closing the decompression device 31 so that the refrigerant bypasses the heat storage tank 28.

図5に示す液相蓄熱材循環を行って蓄熱材の融解を促進する場合には、蓄熱用熱交換器30の熱交換面と良熱伝導性の連結体4のフィン4Aの面での固相蓄熱材29Aが先ず融解してフィン4Aとの間に間隙ができ、液相蓄熱材29がその間隙を伝わって蓄熱槽28内を流通するので、蓄熱材29の融解を促進でき効率良く放熱が行われる。   When the circulation of the liquid phase heat storage material shown in FIG. 5 is performed to promote the melting of the heat storage material, the heat exchange surface of the heat exchanger 30 for heat storage and the fin 4A surface of the fin 4A of the well heat conductive connector 4 are solidified. The phase heat storage material 29A is first melted to form a gap with the fins 4A, and the liquid phase heat storage material 29 is transmitted through the gap and circulates in the heat storage tank 28, thereby facilitating the melting of the heat storage material 29 and efficiently radiating heat. Is done.

また、さらに融解が進み浮き体5と良熱伝導性の連結体4が液相蓄熱材中に浮遊するようになると、循環流の流動によって、浮き体と連結体が振動したり揺動するため、さらに蓄熱材の融解を促進でき効率良く放熱が行われる。   In addition, when the floating body 5 and the good heat conductive connecting body 4 float in the liquid-phase heat storage material as the melting progresses further, the floating body and the connecting body vibrate or swing due to the circulation flow. Furthermore, melting of the heat storage material can be promoted, and heat can be radiated efficiently.

本発明の第一実施形態装置に適用された蓄熱容器を示す断面図である。It is sectional drawing which shows the thermal storage container applied to the apparatus of 1st embodiment of this invention. 蓄熱容器の変形例を示す断面図である。It is sectional drawing which shows the modification of a thermal storage container. 本発明の第一実施形態としての蓄熱式空調設備の概要構成図である。1 is a schematic configuration diagram of a regenerative air conditioning facility as a first embodiment of the present invention. 本発明の第二実施形態としての蓄熱式空調設備の概要構成図である。It is a general | schematic block diagram of the thermal storage type air conditioner as 2nd embodiment of this invention. 図4装置の蓄熱槽についての詳細を示す図である。4 is a diagram showing the details of the heat storage tank of the apparatus.

符号の説明Explanation of symbols

1 蓄熱容器
3 蓄熱材
4 連結体
4A フィン
5 浮き体
19 蓄熱槽
28 蓄熱槽
29 蓄熱材
30 熱交換器
DESCRIPTION OF SYMBOLS 1 Thermal storage container 3 Thermal storage material 4 Connection body 4A Fin 5 Floating body 19 Thermal storage tank 28 Thermal storage tank 29 Thermal storage material 30 Heat exchanger

Claims (8)

降温時に凝固して固相となり昇温時に融解して液相となる蓄熱材が封入されている蓄熱容器を、蓄熱槽に対して流出入する熱媒体と熱交換するように該蓄熱槽内に配し、上記蓄熱容器内で液相時の蓄熱材に浮遊する複数の浮き体を配し、浮き体同士を良熱伝導性の連結体で連結したことを特徴とする蓄熱材の凝固融解促進方法。   In the heat storage tank, heat exchange is performed between the heat storage container in which the heat storage material that solidifies when the temperature falls and becomes a solid phase when melted and becomes a liquid phase is exchanged with the heat medium flowing into and out of the heat storage tank. Arrangement of a plurality of floating bodies floating on the heat storage material in the liquid phase in the heat storage container, and the floating bodies are connected to each other by a highly heat-conductive connection body. Method. 連結体は枝またはフィンを有していることとする請求項1に記載の蓄熱材の凝固融解促進方法。   The method for accelerating solidification and melting of a heat storage material according to claim 1, wherein the connector has branches or fins. 連結体は螺旋弾性体であることとする請求項1に記載の蓄熱材の凝固融解促進方法。   The method for promoting solidification and melting of a heat storage material according to claim 1, wherein the coupling body is a spiral elastic body. 浮き体は蓄熱材の膨張そして収縮に追従する変形が可能であることとする請求項1に記載の蓄熱材の凝固融解促進方法。   The method for promoting solidification and melting of a heat storage material according to claim 1, wherein the floating body can be deformed to follow expansion and contraction of the heat storage material. 浮き体は密閉中空空間を有する中空体であることとする請求項1又は請求項4に記載の蓄熱材の凝固融解促進方法。   The method for promoting solidification and melting of a heat storage material according to claim 1 or 4, wherein the floating body is a hollow body having a sealed hollow space. 蓄熱槽内に配設された熱交換器に流通される熱媒体との熱交換により蓄熱槽内の蓄熱材を冷却して蓄熱する該蓄熱槽内に、液相時の蓄熱材に浮遊する複数の浮き体を配し、浮き体同士を良熱伝導性の連結体で連結したことを特徴とする蓄熱材の凝固融解促進方法。   A plurality of floating in the heat storage material in the liquid phase in the heat storage tank for storing heat by cooling the heat storage material in the heat storage tank by heat exchange with the heat medium distributed in the heat exchanger disposed in the heat storage tank A method for accelerating solidification and melting of a heat storage material, characterized in that the floating bodies are arranged and the floating bodies are connected to each other with a good heat conductive connecting body. 降温時に凝固して固相となり昇温時に融解して液相となる蓄熱材が封入されている蓄熱容器を、蓄熱槽に対して流出入する熱媒体と熱交換するように該蓄熱槽内に配した蓄熱装置において、上記蓄熱容器内で液相時の蓄熱材に浮遊する複数の浮き体が良熱伝導性の連結体で連結されていることを特徴とする蓄熱装置。   In the heat storage tank, heat exchange is performed between the heat storage container in which the heat storage material that solidifies when the temperature falls and becomes a solid phase when melted and becomes a liquid phase is exchanged with the heat medium flowing into and out of the heat storage tank. In the heat storage device arranged, a plurality of floating bodies floating on the heat storage material in the liquid phase in the heat storage container are connected by a highly heat conductive connecting body. 熱媒体が流通される熱交換器と蓄熱材を収容し熱媒体との熱交換により蓄熱する蓄熱槽内に、液相時の蓄熱材に浮遊する複数の浮き体を配し、浮き体同士を良熱伝導性の連結体で連結したことを特徴とする蓄熱装置。   A plurality of floating bodies floating in the heat storage material in the liquid phase are arranged in the heat storage tank that stores the heat exchanger through which the heat medium is circulated and the heat storage material and stores heat by heat exchange with the heat medium. A heat storage device characterized by being connected by a good heat conductive connector.
JP2006114816A 2006-04-18 2006-04-18 Method for promoting solidification and melting of heat storage material and heat storage device Expired - Fee Related JP4665820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114816A JP4665820B2 (en) 2006-04-18 2006-04-18 Method for promoting solidification and melting of heat storage material and heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114816A JP4665820B2 (en) 2006-04-18 2006-04-18 Method for promoting solidification and melting of heat storage material and heat storage device

Publications (2)

Publication Number Publication Date
JP2007285627A true JP2007285627A (en) 2007-11-01
JP4665820B2 JP4665820B2 (en) 2011-04-06

Family

ID=38757576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114816A Expired - Fee Related JP4665820B2 (en) 2006-04-18 2006-04-18 Method for promoting solidification and melting of heat storage material and heat storage device

Country Status (1)

Country Link
JP (1) JP4665820B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2011076C2 (en) * 2013-07-01 2015-01-05 Njord Holding B V Refrigerated storage compartment or container, and truck, van, trailer or storage system having such refrigerated storage compartment/container as a part thereof.
WO2018010018A1 (en) * 2016-07-15 2018-01-18 Neothermal Energy Storage Inc. Thermal energy storage apparatus
CN113587698A (en) * 2021-07-16 2021-11-02 中国科学院电工研究所 Blade type phase change heat storage device based on magnetic excitation
US11435146B2 (en) 2019-03-07 2022-09-06 Neothermal Energy Storage Inc. Thermal energy storage apparatus
CN115265037A (en) * 2018-05-16 2022-11-01 泰克斯机电有限公司 Container-packed beverage temperature adjusting device and heat transfer member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668585U (en) * 1993-03-16 1994-09-27 実 坂口 Floating warmth
JPH11153392A (en) * 1997-09-22 1999-06-08 Toshiba Corp Latent heat thermal storage body, latent heat thermal storage plant and operation method for latent heat thermal storage plant
JP2002333166A (en) * 2001-05-09 2002-11-22 Nkk Corp Method for taking out hydrate slurry
JP2006038276A (en) * 2004-07-23 2006-02-09 Hitachi Air Conditioning System Co Ltd Ice thermal storage type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668585U (en) * 1993-03-16 1994-09-27 実 坂口 Floating warmth
JPH11153392A (en) * 1997-09-22 1999-06-08 Toshiba Corp Latent heat thermal storage body, latent heat thermal storage plant and operation method for latent heat thermal storage plant
JP2002333166A (en) * 2001-05-09 2002-11-22 Nkk Corp Method for taking out hydrate slurry
JP2006038276A (en) * 2004-07-23 2006-02-09 Hitachi Air Conditioning System Co Ltd Ice thermal storage type air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2011076C2 (en) * 2013-07-01 2015-01-05 Njord Holding B V Refrigerated storage compartment or container, and truck, van, trailer or storage system having such refrigerated storage compartment/container as a part thereof.
WO2018010018A1 (en) * 2016-07-15 2018-01-18 Neothermal Energy Storage Inc. Thermal energy storage apparatus
US11009298B2 (en) 2016-07-15 2021-05-18 Neothermal Energy Storage Inc. Thermal energy storage apparatus
CN115265037A (en) * 2018-05-16 2022-11-01 泰克斯机电有限公司 Container-packed beverage temperature adjusting device and heat transfer member
US11435146B2 (en) 2019-03-07 2022-09-06 Neothermal Energy Storage Inc. Thermal energy storage apparatus
CN113587698A (en) * 2021-07-16 2021-11-02 中国科学院电工研究所 Blade type phase change heat storage device based on magnetic excitation

Also Published As

Publication number Publication date
JP4665820B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
Sidik et al. Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: a review
CN102084206B (en) Device and method for cooling components by means of magnetizable phase change material
Al-Shannaq et al. Cold energy storage in a packed bed of novel graphite/PCM composite spheres
US7246506B2 (en) Thermal storage medium using a hydrate and apparatus thereof, and method for producing the thermal storage medium
JP3588630B2 (en) Heat storage type heating element
JP4665820B2 (en) Method for promoting solidification and melting of heat storage material and heat storage device
JP5234721B2 (en) Ice storage air conditioning system using microcapsules for cold storage
KR20150081090A (en) Thermal storage air-conditioning system using a different phase change materials.
CA1287045C (en) Water freezing enhancement for thermal storage brine tube
JP2850264B2 (en) Storage and heat dissipation method
JPH11153392A (en) Latent heat thermal storage body, latent heat thermal storage plant and operation method for latent heat thermal storage plant
JP2008215655A (en) Heat storage device and its operation method
JPH06185762A (en) Cooling or heating method
JP2002130746A (en) Heat-storing device and its renewal method
JPH05215369A (en) Cooling or heating method utilizing latent heat
KR20070020712A (en) DOUBLE COOLING and STORAGING DEVICE SYSTEM
JP4549518B2 (en) Thermal storage tank and thermal storage device provided with the same
JP4399309B2 (en) Ice heat storage device
KR20000031071A (en) Heat storage system using fine latent ash
JP2012242076A (en) Hot-water storage type water heater
JP4396355B2 (en) Supercooling release device in hydrate slurry air conditioning system
JP3440150B2 (en) Ice thermal storage system and device using magnetic fluid
JP2005241146A (en) Heat storage system and method
JP2008215654A (en) Clathrate compound forming method, heat energy storage and takeout method, heat storage device and its operation method
JP2002228377A (en) Heat storage apparatus and heat storage method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees