JP2008215654A - Clathrate compound forming method, heat energy storage and takeout method, heat storage device and its operation method - Google Patents

Clathrate compound forming method, heat energy storage and takeout method, heat storage device and its operation method Download PDF

Info

Publication number
JP2008215654A
JP2008215654A JP2007050397A JP2007050397A JP2008215654A JP 2008215654 A JP2008215654 A JP 2008215654A JP 2007050397 A JP2007050397 A JP 2007050397A JP 2007050397 A JP2007050397 A JP 2007050397A JP 2008215654 A JP2008215654 A JP 2008215654A
Authority
JP
Japan
Prior art keywords
heat
heat storage
heat exchanger
raw material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007050397A
Other languages
Japanese (ja)
Inventor
Shigenori Matsumoto
繁則 松本
Kanetoshi Hayashi
謙年 林
Shingo Takao
信吾 高雄
Toshiyuki Hamada
利幸 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2007050397A priority Critical patent/JP2008215654A/en
Publication of JP2008215654A publication Critical patent/JP2008215654A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clathrate compound forming method for efficiently forming a clathrate compound, a heat energy storage and takeout method, heat storage device and its operation method. <P>SOLUTION: The heat storage device comprises: a heat exchanger 2 arranged in a solution L containing a host molecule of the clathrate compound as a solvent, and a guest molecule as a solute; and a heat storage tank 1 holding the heat exchanger 2. The device performs heat storing operation of storing heat energy in the heat storage tank 1 by forming the clathrate compound L1 on a heat transfer surface of the heat exchanger 2, and a heat radiating operation of taking out the heat energy to the outside of the heat storage tank 1 by melting the clathrate compound formed on the heat transfer surface of the heat exchanger from the heat transfer surface side. The heat storage device is provided with agitating devices 3, 4 agitating the solution in a time zone of a predetermined time before the termination of the heat storage operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液(以下「原料溶液」という)を、原料溶液中に配置された熱交換器を介して熱媒体と熱交換させることにより、その熱交換器の伝熱面に包接化合物を生成させる技術及びこれを熱利用分野に適用する技術に関する。   In the present invention, a solution containing a host molecule of an inclusion compound as a solvent and a guest molecule as a solute (hereinafter referred to as “raw material solution”) is heat exchanged with a heat medium via a heat exchanger disposed in the raw material solution. Thus, the present invention relates to a technique for generating an inclusion compound on the heat transfer surface of the heat exchanger and a technique for applying this to the heat utilization field.

熱を蓄積する性質を有する物質(以下、「潜熱蓄積物質」という場合がある)の原料物質を、熱交換器を介して熱媒体と熱交換させて、その熱交換器の伝熱面に潜熱蓄積物質を生成させることにより熱エネルギーを蓄積し、その潜熱蓄積物質を融解させることにより当該熱エネルギーを取り出す蓄熱技術が知られている。その典型例は、水を凍らせてできる氷を潜熱蓄積物質とする内融式氷蓄熱技術(特許文献1)や外融式氷蓄熱技術(特許文献2)、プロピレングリコール、寒剤及び添加剤を加えた水を凍らせてできるシャーベット状の氷を潜熱蓄積物質とする蓄熱技術(特許文献3)である。   The material of the material that accumulates heat (hereinafter sometimes referred to as “latent heat storage material”) is subjected to heat exchange with the heat medium via the heat exchanger, and latent heat is transferred to the heat transfer surface of the heat exchanger. A heat storage technique is known in which heat energy is stored by generating a stored material and the heat energy is extracted by melting the latent heat storage material. Typical examples include inner-melting ice storage technology (Patent Document 1) and outer-melting ice storage technology (Patent Document 2) using ice produced by freezing water as a latent heat storage material, propylene glycol, cryogen and additives. This is a heat storage technique (Patent Document 3) using sherbet-like ice formed by freezing added water as a latent heat storage material.

他方、包接水和物(特許文献4)及びその他の包接化合物(特許文献5)も潜熱蓄積物質として知られており、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液(原料溶液)を、熱交換器を介して熱媒体と熱交換させ、その熱交換器の伝熱面に包接化合物を生成させることにより熱エネルギーを蓄積し、その包接化合物を融解させることにより当該熱エネルギーを取り出す蓄熱技術への適用も検討されている(特許文献6)。
特開平6−11158号公報 実開昭62−117435号公報 特開昭63−70095号公報 特公昭57−35224号公報 特開2005−41908号公報 特開2000−111283号公報
On the other hand, clathrate hydrate (Patent Document 4) and other clathrate compounds (Patent Document 5) are also known as latent heat accumulating substances, and are solutions containing a host molecule of a clathrate compound as a solvent and a guest molecule as a solute ( The raw material solution) is heat exchanged with the heat medium via the heat exchanger, and the clathrate compound is generated on the heat transfer surface of the heat exchanger to accumulate heat energy and melt the clathrate compound. Application to a heat storage technique for extracting the thermal energy has also been studied (Patent Document 6).
JP-A-6-11158 Japanese Utility Model Publication No. 62-117435 JP-A-63-70095 Japanese Patent Publication No.57-35224 JP 2005-41908 A JP 2000-111123 A

しかし、包接化合物の伝熱性は、熱伝導率が氷などと比べて低い。それ故、蓄熱時において、熱交換器を介して熱媒体と熱交換させ、その熱交換器の伝熱面に包接化合物を付着させ堆積させて、さらにより多くの包接化合物を生成させようとしても、包接化合物の生成量が増しその厚みが増すほど包接化合物の熱抵抗が大きくなり、熱媒体からの熱エネルギーが原料溶液の側に伝達され難くなり、延いては新たな包接化合物を生成させること、即ちより多くの熱エネルギーを蓄積させることができなくなる。それにも拘らず、包接化合物の凝固点未満に冷却された熱媒体を熱交換器に供給し続けるのは明らかに不経済である。   However, the heat conductivity of the clathrate compound is lower than that of ice or the like. Therefore, at the time of heat storage, let's exchange heat with the heat medium through the heat exchanger, and attach and deposit the clathrate compound on the heat transfer surface of the heat exchanger, so that more clathrate compounds are generated. However, as the amount of clathrate compound increases and its thickness increases, the thermal resistance of the clathrate compound increases, making it difficult for the heat energy from the heat medium to be transferred to the raw material solution side, which leads to a new clathrate. It becomes impossible to produce a compound, that is, to accumulate more heat energy. Nevertheless, it is clearly uneconomical to continue supplying the heat exchanger with the heat medium cooled below the freezing point of the clathrate compound.

前記の問題を解消する一つの手法は、熱交換器の伝熱面の近傍にある原料溶液を攪拌することである。原料溶液を攪拌すれば、熱交換器の伝熱面に付着堆積している包接化合物の近傍の原料溶液が攪拌され、熱交換器による熱交換の効果が及ぶ領域における伝熱性が改善され、包接化合物の生成速度を高めること、即ち単位量の包接化合物をより短時間で生成させることができる。しかし、包接化合物がある程度の厚さにまで成長した後は、攪拌による伝熱性の改善は顕著といえるほど奏効的ではなくなり、むしろ攪拌し続けること自体エネルギーを無駄使いともいえる状況になる。   One method for solving the above problem is to stir the raw material solution in the vicinity of the heat transfer surface of the heat exchanger. If the raw material solution is stirred, the raw material solution in the vicinity of the clathrate compound deposited and deposited on the heat transfer surface of the heat exchanger is stirred, and the heat transfer in the region where the effect of heat exchange by the heat exchanger is improved, The production rate of the clathrate compound can be increased, that is, a unit amount of the clathrate compound can be produced in a shorter time. However, after the clathrate compound has grown to a certain thickness, the improvement in heat transfer by stirring is not so effective that it can be said that the stirring is continued.

本発明は以上の問題点を解決するためになされたものであり、熱交換器からその伝熱面に生成した包接化合物を経て原料溶液に達するまでの伝熱性を改善するとともに、包接化合物を効率的に生成させることが可能な技術及びそれを熱利用分野に適用する技術を提供することを課題とする。   The present invention has been made to solve the above-described problems, and improves the heat transfer property from the heat exchanger to the raw material solution through the inclusion compound generated on the heat transfer surface, and the inclusion compound It is an object of the present invention to provide a technology that can efficiently generate the heat and a technology that applies the technology to the heat utilization field.

前記の目的を解決するための、本発明の第1の形態に係る包接化合物の生成方法は、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液を、該溶液中に配置された熱交換器を介して熱媒体と熱交換させることにより、該熱交換器の伝熱面に包接化合物を生成させる工程を有する包接化合物の生成方法において、熱交換の終了前の所定時間の時間帯に、前記溶液を攪拌することを特徴とする。   In order to solve the above-described object, a method for producing an inclusion compound according to the first aspect of the present invention includes a solution containing a host molecule of an inclusion compound as a solvent and a guest molecule as a solute. In the clathrate compound producing method, the method includes the step of producing a clathrate compound on the heat transfer surface of the heat exchanger by exchanging heat with the heat medium via the heat exchanger, and a predetermined time before the end of the heat exchange. The solution is agitated during the period of time.

ここで、本発明において用いられる、次に掲げる用語又は表現の意味は、以下のとおりとする。   Here, the meanings of the following terms or expressions used in the present invention are as follows.

(1)「包接化合物」とは、複数の分子が適当な条件下で組み合わさって結晶ができるとき、一方の分子(ホスト分子)が籠状、トンネル形、層状または網状構造をつくり、その隙間に他の分子(ゲスト分子)が入りこんだ構造の化合物の意味であり、包接水和物を除くこととする狭義の包接化合物(特許文献5参照)のみならず、この包接水和物(特許文献4,6参照)を含む、言わば広義の包接化合物も「包接化合物」を意味する。言うまでもなく、水が凝固してできる氷はこれに該当しない。   (1) An “inclusion compound” means that when a plurality of molecules are combined under appropriate conditions to form a crystal, one molecule (host molecule) forms a cage, tunnel, layer or network structure. This means a compound having a structure in which another molecule (guest molecule) enters the gap, and includes not only the clathrate compound in a narrow sense (see Patent Document 5) excluding clathrate hydrate, but also this clathrate hydration. In other words, inclusion compounds in a broad sense, including products (see Patent Documents 4 and 6) also mean “inclusion compounds”. Needless to say, this is not the case with ice formed by water solidification.

(2)「熱交換器」とは、熱源又は熱媒体との熱交換を可能にする伝熱面を備える伝熱物体を意味し、該伝熱物体が中実であるか否か、断面形状、寸法、材質等は問わない。プレート式や多管式といった型式も問わない。ヒートパイプも「熱交換器」の一種である。本発明の具体的な説明を行う際に、熱媒体が流通する空洞を有する伝熱管を「熱交換器」として本発明の具体的な説明を行う場合があるとしても、それは「熱交換器」をかかる伝熱管に限定する意図ではない。   (2) “Heat exchanger” means a heat transfer object having a heat transfer surface that enables heat exchange with a heat source or a heat medium, and whether or not the heat transfer object is solid, Any size, material, etc. may be used. A plate type or a multi-tube type may be used. A heat pipe is also a kind of “heat exchanger”. In the specific description of the present invention, even if the specific description of the present invention is sometimes made using a heat transfer tube having a cavity through which a heat medium flows as a "heat exchanger", it is a "heat exchanger". It is not intended to limit the heat transfer tube.

(3)熱交換器の「伝熱面」とは、熱交換器による熱交換が行われる、当該熱交換器が備える外表面及びその熱交換の効果が及ぶ前記外表面の近傍領域をいう。   (3) The “heat transfer surface” of the heat exchanger refers to an outer surface of the heat exchanger where heat is exchanged by the heat exchanger and a region near the outer surface where the heat exchange effect is exerted.

(4)「下方」及び「上方」とは、それぞれ、重力が働く方向及びその反対の方向をいう。   (4) “Lower” and “upper” refer to the direction in which gravity works and the opposite direction, respectively.

(5)「塊状体」とは、一つの集合体としての外形を有する物体をいい、周囲のものと視覚的に区別できる外形であれば、その形状に限定はなく、特に明記する場合を除き、内部の構造、強度、硬度、粘性、密度、組成等は問わない。なお、「包接化合物の塊状体」とは、包接化合物が生成を重ねて塊状をなし、塊状体と肉眼で認定できる状態になるに至ったものをいう。   (5) “Block” refers to an object having an outer shape as one aggregate, and there is no limitation on the shape as long as it is visually distinguishable from surrounding objects, unless otherwise specified. The internal structure, strength, hardness, viscosity, density, composition, etc. are not limited. The “clumps of clathrate compound” refers to those in which the clathrate compound is repeatedly formed to form a clump and can be recognized as a lump and the naked eye.

(6)「スラリー」とは、液体中に固体粒子が分散又は懸濁した状態又はその状態にある物質をいう。沈降しがちな固体粒子を浮遊状態とするために界面活性剤を添加したり、機械的に攪拌することもあるが、その場合にも「スラリー」という。特に包接化合物又はその塊状体について「スラリー」という場合には、界面活性剤の添加や機械的攪拌の有無に拘らず、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液の中に当該包接化合物が分散又は懸濁した状態又はその状態にある物質をいうが、分散や懸濁が均質であることまで必要とされない。例えば、包接化合物の塊状体の一部(特に溶液に接している部分)が前記溶液中に分散又は懸濁しているが残部は前記溶液中で塊状体のままである場合には、その分散又は懸濁しているものは「スラリー」であり、包接化合物の塊状体と前記溶液中で並存している状態にあるといえる。   (6) “Slurry” refers to a substance in which solid particles are dispersed or suspended in a liquid or in that state. In order to make solid particles that tend to settle into a suspended state, a surfactant may be added or mechanically stirred. In particular, the term “slurry” for an inclusion compound or a mass thereof includes a solution containing a host molecule of the inclusion compound as a solvent and a guest molecule as a solute, regardless of whether a surfactant is added or mechanically stirred. The clathrate is dispersed or suspended, or a substance in that state, but is not required until the dispersion or suspension is homogeneous. For example, when a part of the clathrate of the clathrate compound (particularly the part in contact with the solution) is dispersed or suspended in the solution but the rest remains agglomerate in the solution, the dispersion Or what is suspended is a "slurry", and it can be said that it exists in the state coexisting in the said lump of inclusion compound and the said solution.

(7)「攪拌」とは、対象物(本発明では主として原料溶液、包接化合物、包接化合物スラリー等)を掻き混ぜることを意味する。対象物の循環(特許文献3参照)や機械振動も、これを掻き混ぜたのと同等の結果が生じるので、「攪拌」に該当する。また、本発明においては、「攪拌」には、対象物を掻き混ぜることに加えて、溶液の濃度または温度を均一化させることを目的とするその他の動作(例えば濃度または温度の異なる溶液を混合すること、濃度または温度の異なる溶液を拡散させることなど)が含まれるものとする。   (7) “Stirring” means stirring an object (in the present invention, mainly a raw material solution, an inclusion compound, an inclusion compound slurry, etc.). Circulation of an object (refer to Patent Document 3) and mechanical vibration also correspond to “stirring” because results equivalent to those obtained by stirring the same occur. In the present invention, the “stirring” includes not only the stirring of the object but also other operations aimed at making the concentration or temperature of the solution uniform (for example, mixing solutions having different concentrations or temperatures). And diffusing solutions of different concentrations or temperatures).

(8)「調和融点」とは、原料溶液の液相から包接化合物が生成する際、原料溶液中のゲスト分子の濃度と包接化合物中のゲスト分子の濃度とが等しく、包接化合物の生成の前後において当該液相の組成が変わらない場合の温度をいう。なお、縦軸を包接化合物生成温度、横軸を原料溶液中のゲスト分子の濃度とした状態図では極大点が「調和融点」となる。また、調和融点を与える原料溶液中のゲスト分子の濃度を「調和融点濃度」という。調和融点濃度未満の濃度の原料溶液から包接化合物を生成する場合には、包接化合物の生成につれて原料溶液のゲスト分子の濃度が低下し、その濃度に対する包接化合物生成温度が低下する。   (8) “Harmonic melting point” means that when the clathrate compound is produced from the liquid phase of the raw material solution, the concentration of the guest molecule in the raw material solution is equal to the concentration of the guest molecule in the clathrate compound. The temperature when the composition of the liquid phase does not change before and after the generation. In the phase diagram in which the vertical axis represents the clathrate generation temperature and the horizontal axis represents the concentration of guest molecules in the raw material solution, the maximum point is the “harmonic melting point”. The concentration of guest molecules in the raw material solution that gives a harmonic melting point is called “harmonic melting point concentration”. When the clathrate compound is generated from a raw material solution having a concentration lower than the harmonic melting point concentration, the concentration of the guest molecule in the raw material solution decreases as the clathrate compound is generated, and the clathrate compound generation temperature with respect to the concentration decreases.

本発明の第1の形態において、「熱交換の終了前の所定時間の時間帯」とは、当該所定時間の終了時が熱交換の終了前であることをいう。この時間帯において、「溶液(包接化合物のホスト分子を溶媒とし、そのゲスト分子を溶質として含む)を攪拌すること」とは、前記時間帯で少なくとも1回原料溶液を攪拌することを意味し、一時的に、継続して、連続して又は断続的に若しくは間欠的に原料溶液を攪拌することを含む。   In the first embodiment of the present invention, the “time period of a predetermined time before the end of heat exchange” means that the end of the predetermined time is before the end of heat exchange. In this time zone, “stirring the solution (including the inclusion compound host molecule as a solvent and the guest molecule as a solute)” means stirring the raw material solution at least once in the time zone. , Including stirring the raw material solution temporarily, continuously, continuously, intermittently or intermittently.

かくして、伝熱性を高めるのに有効な所定時間の時間帯で原料溶液を攪拌するので、熱交換器の伝熱面に付着堆積している包接化合物の近傍の原料溶液が十分に攪拌され、熱交換器による熱交換の効果が及ぶ領域における伝熱性が改善され、包接化合物の生成速度を高め、即ち単位量の包接化合物をより短時間で生成させる。   Thus, since the raw material solution is agitated for a predetermined time period effective for improving heat transfer, the raw material solution in the vicinity of the clathrate compound adhering to the heat transfer surface of the heat exchanger is sufficiently stirred, The heat transfer in the region where the heat exchange effect by the heat exchanger is extended is improved, and the production rate of the clathrate compound is increased, that is, the unit amount of the clathrate compound is produced in a shorter time.

本発明の第2の形態に係る熱エネルギーの蓄積と取り出しを行う方法は、包接化合物の生成と融解によって熱エネルギーの蓄積と取り出しを行う方法において、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液を、該溶液中に配置された熱交換器を介して熱媒体と熱交換させることにより、該熱交換器の伝熱面に包接化合物を生成させ、熱エネルギーを蓄積する第1工程と、前記熱交換器の伝熱面に生成している包接化合物を前記伝熱面の側から融解させ、前記熱エネルギーを取り出す第2工程とを有し、前記第1工程の終了前で所定時間の時間帯において、前記溶液を攪拌することを特徴とする。   The method for accumulating and extracting thermal energy according to the second aspect of the present invention is a method for accumulating and extracting thermal energy by generation and melting of an inclusion compound, wherein the host molecule of the inclusion compound is used as a solvent and the guest molecule The solution containing the solute as a solute is subjected to heat exchange with a heat medium via a heat exchanger disposed in the solution, thereby generating an inclusion compound on the heat transfer surface of the heat exchanger and accumulating heat energy. A first step and a second step of melting the clathrate compound formed on the heat transfer surface of the heat exchanger from the side of the heat transfer surface and taking out the heat energy. The solution is stirred in a predetermined time period before the end.

かかる第2の形態は、第1の形態での包接化合物の生成のための熱交換を第1工程とし、この第1工程に加え、包接化合物を融解して熱エネルギーを取り出す工程を第2工程として備えることとしたものである。したがって、この第2の形態においては、第1の形態での「熱交換」を「第1工程」として表現しただけなので、「所定時間の時間帯」、「溶液を攪拌」は、第1の形態におけるそれぞれの対応語句と同義である。   In the second embodiment, the heat exchange for the generation of the clathrate compound in the first mode is the first step, and in addition to the first step, the step of melting the clathrate compound and extracting the thermal energy is the first step. The two steps are provided. Therefore, in this second embodiment, since “heat exchange” in the first embodiment is simply expressed as “first step”, “predetermined time period” and “stirring the solution” It is synonymous with each corresponding phrase in the form.

本発明の第3の形態に係る熱エネルギーの蓄積と取り出しを行う方法は、第2の形態に係る方法における前記第1工程と前記第2工程とを繰り返すとともに、前記第2工程の終了から前記第1工程の開始までの時間帯で、前記溶液を攪拌することを特徴とする。すなわち、溶液の攪拌は、第1工程における所定時間の時間帯で行われると共に、第2工程後第1工程前においても行われる。   The method for accumulating and extracting thermal energy according to the third aspect of the present invention repeats the first step and the second step in the method according to the second aspect, and from the end of the second step, The solution is agitated in a time zone until the start of the first step. That is, the stirring of the solution is performed during a predetermined time period in the first step and also after the second step and before the first step.

本発明の第4の形態に係る蓄熱装置は、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液の中に配置される熱交換器と該熱交換器を収容する蓄熱槽とを備え、該熱交換器の伝熱面に包接化合物を生成させることにより熱エネルギーを前記蓄熱槽内に蓄積する蓄熱動作と、前記熱交換器の伝熱面に生成している包接化合物を前記伝熱面の側から融解させることにより前記熱エネルギーを前記蓄熱槽外に取り出す放熱動作を行う蓄熱装置において、蓄熱動作の終了前の所定時間の時間帯で、前記溶液を攪拌する攪拌装置を備えることを特徴とする。この第4の形態においては、第1の形態での「熱交換」を「蓄熱動作」と表現しただけなので、「所定時間の時間帯」、「溶液の攪拌」は、第1の形態におけるそれぞれの対応語句と同義である。   A heat storage device according to a fourth embodiment of the present invention includes a heat exchanger disposed in a solution containing a host molecule of a clathrate compound as a solvent and a guest molecule as a solute, and a heat storage tank containing the heat exchanger. A heat storage operation for storing heat energy in the heat storage tank by generating a clathrate compound on the heat transfer surface of the heat exchanger, and a clathrate compound generated on the heat transfer surface of the heat exchanger. In a heat storage device that performs a heat radiating operation of extracting the thermal energy out of the heat storage tank by melting from the heat transfer surface side, a stirring device that stirs the solution in a predetermined time period before the end of the heat storage operation. It is characterized by providing. In the fourth embodiment, since “heat exchange” in the first embodiment is simply expressed as “heat storage operation”, the “predetermined time period” and “solution agitation” are respectively in the first embodiment. Is synonymous with the corresponding phrase.

本発明の第5の形態に係る蓄熱装置の運転方法は、包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液の中に配置される熱交換器と該熱交換器とを収容する蓄熱槽と、前記溶液を攪拌する攪拌装置とを備える蓄熱装置の運転方法において、前記熱交換器の伝熱面に包接化合物を生成させることにより熱エネルギーを前記蓄熱槽内に蓄積する蓄熱工程と、前記熱交換器の伝熱面に生成している包接化合物を前記伝熱面の側から融解させることにより前記熱エネルギーを前記蓄熱槽外に放出する放熱工程を有し、前記蓄熱工程の終了前の所定時間の時間帯で、前記攪拌装置を駆動させる工程を有することを特徴とする。この第5の形態においては、第1の形態での「熱交換」を「蓄熱工程」と表現しただけなので、「所定時間の時間帯」、「溶液の攪拌」は、第1の形態におけるそれぞれの対応語句と同義である。   The operating method of the heat storage device according to the fifth embodiment of the present invention includes a heat exchanger disposed in a solution containing a host molecule of a clathrate compound as a solvent and a guest molecule as a solute, and the heat exchanger. In a method of operating a heat storage device comprising a heat storage tank and a stirring device for stirring the solution, a heat storage step of storing thermal energy in the heat storage tank by generating an inclusion compound on a heat transfer surface of the heat exchanger And a heat dissipation step of releasing the thermal energy to the outside of the heat storage tank by melting the clathrate compound generated on the heat transfer surface of the heat exchanger from the heat transfer surface side, and the heat storage step And a step of driving the stirring device in a predetermined time period before the end of the step. In the fifth embodiment, since “heat exchange” in the first embodiment is simply expressed as “heat storage step”, “time zone for a predetermined time” and “solution agitation” are respectively in the first embodiment. Is synonymous with the corresponding phrase.

本発明の第6の形態に係る蓄熱装置の運転方法は、第5の形態に係る運転方法における前記蓄熱工程と前記放熱工程とを繰り返すとともに、放熱工程の終了から次の蓄熱動作の開始までの時間帯においても、前記攪拌装置を駆動させることを特徴とする。   The operation method of the heat storage device according to the sixth embodiment of the present invention repeats the heat storage step and the heat dissipation step in the operation method according to the fifth embodiment, and from the end of the heat dissipation step to the start of the next heat storage operation. The stirrer is driven even in a time zone.

本発明によれば、熱交換器を介して原料溶液と熱媒体とを熱交換させることにより、その熱交換器の伝熱面に包接化合物を生成させる際、熱交換の終了前の所定時間の時間帯において、原料溶液を攪拌するので、熱交換器の伝熱面から原料溶液へ及び熱交換器の伝熱面に生成した包接水和物から原料溶液への効果的な熱伝達が可能になり、熱交換器の伝熱面に包接化合物を速やかに生成させ、成長させることができる。その結果、効率的に蓄熱することができ、さらに蓄熱時に必要な熱媒体を冷却する装置の負荷をより少なくすることができると同時に、所定時間を超えた後は原料溶液の攪拌を行わないので、奏効的な範囲で攪拌を行うことが可能になり、省エネルギーにも資する。   According to the present invention, when the clathrate compound is generated on the heat transfer surface of the heat exchanger by exchanging heat between the raw material solution and the heat medium via the heat exchanger, the predetermined time before the end of the heat exchange. In this time zone, the raw material solution is stirred, so that effective heat transfer from the heat transfer surface of the heat exchanger to the raw material solution and from the clathrate hydrate generated on the heat transfer surface of the heat exchanger to the raw material solution is achieved. It becomes possible, and the inclusion compound can be rapidly generated and grown on the heat transfer surface of the heat exchanger. As a result, heat can be stored efficiently, and the load on the device that cools the heat medium required for heat storage can be reduced. At the same time, the raw material solution is not stirred after a predetermined time. It is possible to perform stirring in an effective range, which contributes to energy saving.

なお、熱交換器を介して原料溶液と熱媒体とを熱交換させることにより包接化合物の生成と融解を行うと(特にこれらを少なくとも1回繰り返して行うと)、原料溶液に温度勾配が生じる傾向がある。また、原料溶液中でのゲスト分子の濃化に起因して濃度勾配が生じる傾向があり、この濃度勾配は通常、包接化合物の生成と融解の繰返し数の増加に伴い顕著になる。しかし、本発明によれば、蓄熱時に所定時間の時間帯において原料溶液が攪拌されるので、原料溶液の温度勾配やゲスト分子の濃度勾配を解消し、原料溶液をより均質化でき、かかる原料溶液から生成される包接化合物の物性のばらつきを従前よりも小さくすることができるという作用効果も奏する。   When the clathrate is generated and melted by heat exchange between the raw material solution and the heat medium via a heat exchanger (especially when these are repeated at least once), a temperature gradient is generated in the raw material solution. Tend. Further, there is a tendency that a concentration gradient is generated due to the concentration of guest molecules in the raw material solution, and this concentration gradient is usually noticeable with an increase in the number of clathrate formation and melting. However, according to the present invention, since the raw material solution is stirred in a predetermined time period during heat storage, the temperature gradient of the raw material solution and the concentration gradient of the guest molecule can be eliminated, and the raw material solution can be more homogenized. There is also an effect that the variation in physical properties of the clathrate compound produced from the above can be made smaller than before.

本発明によると、以上のごとくの効果を得られるが、本発明の各形態についての効果を個別的に述べると、次のとおりである。   According to the present invention, the effects as described above can be obtained. The effects of the embodiments of the present invention are individually described as follows.

(i)本発明の第1の形態によれば、熱交換器を介して原料溶液と熱媒体とを熱交換させることにより、その熱交換器の伝熱面に包接化合物を生成させる際、熱交換の終了前の所定時間の時間帯において、原料溶液を攪拌するので、熱交換器から原料溶液への効果的な熱伝達が可能になり、熱交換器の伝熱面に包接化合物を速やかに生成させ、成長させることができる生成方法を実現することができる。この生成方法によれば、蓄熱時に必要な熱媒体を冷却する装置の負荷をより少なくすることができるとともに、前記所定時間以降は攪拌しない結果、非効率なエネルギーを費やさないので、奏効的な範囲で攪拌を行うことができ、省エネルギーにも資する。   (I) According to the first aspect of the present invention, when the clathrate compound is generated on the heat transfer surface of the heat exchanger by exchanging heat between the raw material solution and the heat medium via the heat exchanger, Since the raw material solution is agitated in a predetermined time period before the end of heat exchange, effective heat transfer from the heat exchanger to the raw material solution is possible, and the inclusion compound is placed on the heat transfer surface of the heat exchanger. It is possible to realize a generation method that can be quickly generated and grown. According to this generation method, it is possible to reduce the load on the apparatus for cooling the heat medium necessary for heat storage, and as a result of not stirring after the predetermined time, inefficient energy is not consumed, so an effective range. Can be agitated and contributes to energy saving.

(ii)本発明の第2の形態によれば、熱交換器を介して原料溶液と熱媒体とを熱交換させ、包接化合物を生成させる工程の終了前の所定時間の時間帯において、原料溶液を攪拌するので、熱交換器から原料溶液への効果的な熱伝達が可能になり、熱交換器の伝熱面に包接化合物を速やかに生成させ、成長させることができる熱エネルギーの蓄積と取り出しを行う方法を実現することができる。また、蓄熱を行う際に必要な熱媒体を冷却する装置の負荷をより少なくすることができるとともに、前記所定時間以降は攪拌しない結果、非効率なエネルギーを費やさないので、奏効的な範囲で攪拌を行うことができ、省エネルギーにも資する。   (Ii) According to the second aspect of the present invention, in the time zone of a predetermined time before the end of the step of heat-exchanging the raw material solution and the heat medium via the heat exchanger and generating the clathrate compound, Since the solution is agitated, effective heat transfer from the heat exchanger to the raw material solution is possible, and the accumulation of heat energy that can quickly generate and grow inclusion compounds on the heat transfer surface of the heat exchanger It is possible to realize a method of taking out. In addition, it is possible to reduce the load on the apparatus for cooling the heat medium necessary for storing heat, and since stirring is not performed after the predetermined time, inefficient energy is not consumed. Can contribute to energy conservation.

原料溶液中に配置された熱交換器を介して熱媒体と熱交換させることにより包接化合物を融解させて熱エネルギーを取り出す場合、原料溶液の温度は、包接化合物の凝固点よりも高い温度になる。その結果、自ずと原料溶液の上方が相対的に高温で、下方は相対的に低温という温度勾配が生じる。また、熱エネルギーの蓄積と取り出しを繰り返すと、包接化合物が融解した場所にゲスト分子が滞留することでゲスト分子の濃化が起こり、濃度勾配が生じる傾向がある。更に、熱エネルギーの取り出しを行っても、包接化合物が未融解のまま残存する傾向がある。例えば、包接化合物の比重が原料溶液のそれよりも大きい場合、当該原料溶液が収容されている容器の上部にある原料溶液の温度は包接化合物の凝固」点よりも高いものの、下部にある原料溶液は包接化合物の凝固点以下の温度となる場合があり、当該下部に包接化合物が未融解のまま残存し得ることになる。これは温度勾配と同時に濃度勾配が生じているのと実質的に同じ状態でもある。   When the clathrate compound is melted by heat exchange with a heat medium through a heat exchanger arranged in the raw material solution and the heat energy is taken out, the temperature of the raw material solution is set to a temperature higher than the freezing point of the clathrate compound. Become. As a result, a temperature gradient is naturally generated in which the upper part of the raw material solution is relatively hot and the lower part is relatively cold. Further, when the accumulation and extraction of thermal energy are repeated, the guest molecules stay in the place where the clathrate compound is melted, so that the guest molecules are concentrated and a concentration gradient tends to occur. Furthermore, even when the thermal energy is extracted, the clathrate compound tends to remain unmelted. For example, when the specific gravity of the clathrate compound is larger than that of the raw material solution, the temperature of the raw material solution in the upper part of the container in which the raw material solution is stored is higher than the “clotting of clathrate compound” point, but in the lower part The raw material solution may be at a temperature below the freezing point of the clathrate compound, and the clathrate compound can remain unmelted in the lower part. This is also substantially the same state as the concentration gradient is generated simultaneously with the temperature gradient.

これに対し、本発明の第2の形態によれば、包接化合物の生成時に所定時間の時間帯において原料溶液を攪拌するので、相対的に高温の原料溶液と相対的に低温の原料溶液とを混合させることにより、ゲスト分子の濃度が相対的に高い原料溶液と相対的に低い原料溶液とを混合させることにより、又は包接化合物の凝固点以上の原料溶液との混合による未融解の包接化合物の融解させることにより、原料溶液の温度勾配やゲスト分子の濃度勾配を解消し、原料溶液をより均質化することができ、かかる原料溶液から生成される包接化合物の物性のばらつきを従前よりも小さくすることもできる。   On the other hand, according to the second embodiment of the present invention, since the raw material solution is stirred in a predetermined time period when the clathrate compound is generated, the relatively high temperature raw material solution and the relatively low temperature raw material solution By mixing a raw material solution having a relatively high concentration of guest molecules and a raw material solution having a relatively low concentration of guest molecules, or by mixing with a raw material solution at or above the freezing point of the inclusion compound. By melting the compound, the temperature gradient of the raw material solution and the concentration gradient of the guest molecule can be eliminated, the raw material solution can be made more homogeneous, and the variation in physical properties of the clathrate compound produced from such raw material solution has been Can also be reduced.

(iii)尤も、本発明の第2の形態では、包接化合物が生成し始めているときに原料溶液の攪拌を行うので、温度勾配や濃度勾配の解消が徹底されない場合もあり得る。これに対し、本発明の第3の形態によれば、熱エネルギーを取り出した後に再度熱エネルギーを蓄積する前に原料溶液を攪拌して、温度勾配や濃度勾配の解消を徹底することができるので第2の形態の場合よりも効果があり、均質な熱エネルギーを蓄積でき、熱エネルギーの蓄積と取り出しを無駄なく、効率的に行うことができる。   (Iii) However, in the second embodiment of the present invention, since the raw material solution is stirred when the clathrate compound is starting to be generated, there is a case where the temperature gradient and the concentration gradient are not completely eliminated. On the other hand, according to the third embodiment of the present invention, the raw material solution can be stirred before the thermal energy is accumulated again after the thermal energy is taken out, so that the temperature gradient and the concentration gradient can be thoroughly eliminated. It is more effective than the case of the second embodiment, can store homogeneous heat energy, and can efficiently store and extract heat energy without waste.

(iv)本発明の第4の形態によれば、熱交換器を介して原料溶液と熱媒体とを熱交換させ、包接化合物を生成させる蓄熱動作の終了前の所定時間の時間帯において、原料溶液が攪拌装置により攪拌されるので、熱交換器から原料溶液へ効果的に熱伝達させることができ、熱交換器の伝熱面に包接化合物を速やかに生成させ、成長させることができる蓄熱装置を実現することができる。このような蓄熱装置では、前記所定時間以降は攪拌しない結果、非効率なエネルギーを費やさないので、蓄熱動作時に必要な熱媒体を冷却する装置の負荷がより少なくなり、奏効的な範囲で攪拌が行われ、エネルギーが節減される。なお、攪拌に必要な電力は低廉な夜間電力により賄うことができる。また、蓄熱装置では熱エネルギーの蓄積動作と放出動作を繰り返されるのが普通であり、その繰返しの際、蓄熱動作の開始から所定時間の時間帯において原料溶液が攪拌されれば、ゲスト分子の濃度勾配が解消され、原料溶液がより均質化され、かかる原料溶液から生成される包接化合物の物性のばらつきが従前よりも小さくなる。この結果、蓄熱装置の性能が安定化する。   (Iv) According to the fourth aspect of the present invention, in the time zone of the predetermined time before the end of the heat storage operation for exchanging the raw material solution and the heat medium via the heat exchanger and generating the clathrate compound, Since the raw material solution is stirred by the stirrer, heat can be effectively transferred from the heat exchanger to the raw material solution, and the inclusion compound can be quickly generated and grown on the heat transfer surface of the heat exchanger. A heat storage device can be realized. In such a heat storage device, the inefficient energy is not consumed as a result of not stirring after the predetermined time, so that the load on the device for cooling the heat medium required during the heat storage operation is reduced, and stirring is performed in an effective range. Done and energy is saved. In addition, the electric power required for stirring can be covered by cheap night electric power. In addition, in a heat storage device, it is common to repeat the operation of storing and releasing heat energy, and if the raw material solution is stirred during a predetermined time period from the start of the heat storage operation, the concentration of the guest molecule is repeated. The gradient is eliminated, the raw material solution is more homogenized, and the variation in the physical properties of the clathrate compound produced from the raw material solution becomes smaller than before. As a result, the performance of the heat storage device is stabilized.

また、放熱動作を行うと、原料溶液の温度が包接化合物の凝固点よりも高い温度になる。その結果、原料溶液の上方が相対的に高温で、下方は相対的に低温という温度勾配が蓄熱槽内に生じる。また、蓄熱動作と放熱動作を繰り返すと、包接化合物が融解した場所にゲスト分子が滞留することでゲスト分子の濃化が起こり、濃度勾配が生じる傾向がある。更に、熱エネルギーの取り出しを行っても、包接化合物が未融解のまま残存することがあり得る。例えば、包接化合物の比重が原料溶液のそれよりも大きい場合において、当該原料溶液が収容されている容器の上部にある原料溶液の温度は包接化合物の凝固点よりも高いものの、下部にある原料溶液は包接化合物の凝固点以下の温度となるときは、当該下部に包接化合物が未融解のまま残存する。特に、本発明の第4の形態に係る蓄熱装置は、熱交換器の伝熱面に包接化合物を生成させることにより熱エネルギーを蓄熱槽内に蓄積する蓄熱動作と、熱交換器の伝熱面に生成している包接化合物を前記伝熱面の側から融解させることにより熱エネルギーを蓄熱槽外に取り出す放熱動作を行うもの、即ち、内融式の蓄熱装置である。内融式の蓄熱装置では、包接化合物と原料溶液との比重が異なると、放熱動作の際、その比重の差に応じて未融解の包接化合物が浮揚又は沈降し、蓄熱槽内に偏在する傾向がある。このような未融解の包接化合物の存在は原料溶液の濃度勾配や温度勾配の原因になり、蓄熱装置の性能の低下を招来しかねない。   Further, when the heat radiation operation is performed, the temperature of the raw material solution becomes higher than the freezing point of the clathrate compound. As a result, a temperature gradient is generated in the heat storage tank in which the upper part of the raw material solution is relatively high temperature and the lower part is relatively low temperature. Further, when the heat storage operation and the heat release operation are repeated, the guest molecules stay in a place where the clathrate compound is melted, so that the guest molecules are concentrated and a concentration gradient tends to occur. Furthermore, even when the thermal energy is extracted, the clathrate compound may remain unmelted. For example, when the specific gravity of the clathrate compound is larger than that of the raw material solution, the temperature of the raw material solution in the upper part of the container in which the raw material solution is stored is higher than the freezing point of the clathrate compound, but the raw material in the lower part When the solution reaches a temperature below the freezing point of the clathrate compound, the clathrate compound remains unmelted in the lower part. In particular, the heat storage device according to the fourth embodiment of the present invention includes a heat storage operation for storing thermal energy in the heat storage tank by generating an inclusion compound on the heat transfer surface of the heat exchanger, and heat transfer of the heat exchanger. The clathrate compound generated on the surface is melted from the side of the heat transfer surface to perform a heat radiating operation to extract heat energy out of the heat storage tank, that is, an internal fusion type heat storage device. In the internal fusion type heat storage device, if the specific gravity of the clathrate compound and the raw material solution is different, the unmelted clathrate compound floats or settles depending on the difference in specific gravity during the heat radiation operation, and is unevenly distributed in the heat storage tank Tend to. The presence of such an unmelted clathrate compound causes a concentration gradient and a temperature gradient of the raw material solution, and may cause a decrease in performance of the heat storage device.

これに対し、本発明の第4の形態によれば、蓄熱動作時に所定時間の時間帯において、原料溶液が攪拌されるので、相対的に高温の原料溶液と相対的に低温の原料溶液との混合により又はゲスト分子の濃度が相対的に高い原料溶液と相対的に低い原料溶液との混合により、そして特に包接化合物の凝固点以上の原料溶液との混合による未融解の包接化合物が融解することにより、原料溶液の温度勾配やゲスト分子の濃度勾配が解消され、原料溶液がより均質になり、かかる原料溶液から生成する包接化合物の物性のばらつきが従前よりも小さくなる。それ故、本発明の第4の形態によれば、均質な熱エネルギーの蓄積が可能で、安定な性能を有する蓄熱装置を実現することができる。   On the other hand, according to the fourth embodiment of the present invention, since the raw material solution is agitated in a predetermined time period during the heat storage operation, the relatively high temperature raw material solution and the relatively low temperature raw material solution Unmelted inclusion compound melts by mixing or by mixing a raw material solution having a relatively high concentration of guest molecules with a raw material solution having a relatively low concentration, and particularly by mixing with a raw material solution above the freezing point of the inclusion compound. As a result, the temperature gradient of the raw material solution and the concentration gradient of the guest molecules are eliminated, the raw material solution becomes more homogeneous, and the variation in physical properties of the clathrate compound produced from the raw material solution becomes smaller than before. Therefore, according to the fourth aspect of the present invention, it is possible to realize a heat storage device capable of storing homogeneous heat energy and having stable performance.

なお、放熱動作終了後蓄熱動作開始前までに攪拌装置により原料溶液を攪拌する方が、温度勾配や濃度勾配の解消が徹底されるので、均質な熱エネルギーが蓄積され、蓄熱動作と放熱動作が無駄なく効率的に行われる蓄熱装置の実現という意味では、より好ましい。   In addition, it is more thorough to eliminate the temperature gradient and concentration gradient by stirring the raw material solution with the stirrer after the heat dissipation operation and before the start of the heat storage operation, so that homogeneous heat energy is accumulated, and the heat storage operation and the heat dissipation operation are performed. This is more preferable in terms of realizing a heat storage device that is efficiently performed without waste.

(v)本発明の第5の形態によれば、本発明の第4の形態に係る蓄熱装置、特に内融式の蓄熱装置に適した運転方法を実現することができる。即ち、熱交換器を介して原料溶液と熱媒体とを熱交換させ、包接化合物を生成させる蓄熱工程時に所定時間の時間帯において、原料溶液を攪拌するので、熱交換器から原料溶液への熱伝達を効果的に行うことができ、熱交換器の伝熱面に包接化合物を速やかに生成させ、成長させることができる。かかる運転により、蓄熱工程の際に、前記所定時間以降は攪拌しない結果、非効率なエネルギーを費やさないので、必要な熱媒体を冷却する装置の負荷をより少なく抑えることができ、奏効的な範囲で攪拌を行うことでエネルギーを節減することができる。なお、攪拌に必要な電力は低廉な夜間電力により賄えばよい。また、蓄熱装置の運転では蓄熱工程と放熱工程が繰返し実行されるのが普通であり、その繰返しの際、蓄熱動作の開始から所定時間が経過するまでの時間帯において原料溶液を攪拌することにより、原料溶液の濃度勾配とゲスト分子の濃度勾配を解消することができ、原料溶液をより均質にでき、かかる原料溶液から生成される包接化合物の物性のばらつきを従前よりも小さくすることができる。これにより、蓄熱装置の性能を安定化させることができる。   (V) According to the fifth aspect of the present invention, it is possible to realize an operation method suitable for the heat storage device according to the fourth aspect of the present invention, in particular, the inner fusion heat storage device. That is, since the raw material solution is agitated in a predetermined time period during the heat storage process in which the raw material solution and the heat medium are heat-exchanged through the heat exchanger and the clathrate compound is generated, the heat exchanger is changed to the raw material solution. Heat transfer can be performed effectively, and an inclusion compound can be rapidly generated and grown on the heat transfer surface of the heat exchanger. As a result of this operation, in the heat storage step, the inefficient energy is not consumed as a result of not stirring after the predetermined time, so that the load on the apparatus for cooling the necessary heat medium can be reduced, and the effective range The energy can be saved by stirring with. Note that the power required for stirring may be provided by inexpensive nighttime power. Further, in the operation of the heat storage device, it is normal that the heat storage process and the heat dissipation process are repeatedly executed, and at the time of the repetition, by stirring the raw material solution in the time zone from the start of the heat storage operation until a predetermined time elapses. The concentration gradient of the raw material solution and the concentration gradient of the guest molecule can be eliminated, the raw material solution can be made more homogeneous, and the variation in physical properties of the clathrate compound produced from the raw material solution can be made smaller than before. . Thereby, the performance of the heat storage device can be stabilized.

また、放熱工程を実行すると、原料溶液の温度が包接化合物の凝固点よりも高い温度になるので、蓄熱槽内に温度勾配が生じる。また、蓄熱工程と放熱工程を繰り返し実行すると、包接化合物が融解した場所にゲスト分子が滞留することでゲスト分子の濃化が起こり、濃度勾配が生じる傾向がある。更に、熱エネルギーの取り出しを行っても、包接化合物が未融解のまま残存することがあり得る。特に、本発明の第4の形態に係る蓄熱装置のような内融式の蓄熱装置の運転時においては、包接化合物と原料溶液との比重が異なると、放熱工程の際、その比重の差に応じて未融解の包接化合物が浮揚又は沈降し、蓄熱槽内に偏在することがあり、かかる未融解の包接化合物の存在が原料溶液の濃度勾配や温度勾配の原因になる。これに対し、本発明の第5の形態によれば、蓄熱工程時に所定時間の時間帯において、原料溶液を攪拌するので、相対的に高温の原料溶液と相対的に低温の原料溶液との混合により又はゲスト分子の濃度が相対的に高い原料溶液と相対的に低い原料溶液との混合により、そして特に包接化合物の凝固点以上の原料溶液との混合による未融解の包接化合物が融解することにより、原料溶液の温度勾配やゲスト分子の濃度勾配を解消することができ、原料溶液をより均質化でき、かかる原料溶液から生成する包接化合物の物性のばらつきを従前よりも小さくすることができる。それ故、本発明の第5の形態によれば、均質な熱エネルギーの蓄積が可能で、安定な性能を有する蓄熱装置の運転を実現することができる。   In addition, when the heat dissipation step is executed, the temperature of the raw material solution becomes higher than the freezing point of the clathrate compound, so that a temperature gradient is generated in the heat storage tank. Further, when the heat storage step and the heat release step are repeatedly executed, the guest molecules stay in a place where the clathrate compound is melted, so that the guest molecules are concentrated and a concentration gradient tends to occur. Furthermore, even when the thermal energy is extracted, the clathrate compound may remain unmelted. In particular, during operation of an internal fusion type heat storage device such as the heat storage device according to the fourth embodiment of the present invention, if the specific gravity of the clathrate compound and the raw material solution is different, the difference in specific gravity during the heat dissipation process Accordingly, the unmelted clathrate compound floats or settles and is unevenly distributed in the heat storage tank, and the presence of the unmelted clathrate compound causes the concentration gradient and temperature gradient of the raw material solution. On the other hand, according to the fifth embodiment of the present invention, since the raw material solution is agitated in a predetermined time period during the heat storage step, the mixing of the relatively high temperature raw material solution and the relatively low temperature raw material solution is performed. Unmelted clathrate compound melts by mixing raw material solution with relatively high concentration of guest molecule and raw material solution with relatively low guest molecule, and especially by mixing with raw material solution above the freezing point of the clathrate compound The temperature gradient of the raw material solution and the concentration gradient of the guest molecule can be eliminated, the raw material solution can be made more homogeneous, and the variation in the physical properties of the clathrate compound produced from the raw material solution can be made smaller than before. . Therefore, according to the fifth embodiment of the present invention, it is possible to accumulate homogeneous heat energy and to realize the operation of the heat storage device having stable performance.

(vi)尤も、本発明の第5の形態では、包接化合物が生成し始めているときに原料溶液の攪拌を行うので、温度勾配や濃度勾配の解消が徹底されない傾向もある。これに対し、本発明の第6の形態によれば、放熱工程終了後蓄熱工程開始前に原料溶液を攪拌するので、温度勾配や濃度勾配の解消を徹底できることから第5の形態の場合よりも効果があり、均質な熱エネルギーを蓄積でき、熱エネルギーの蓄積と取り出しを無駄なく、効率的に行うことができる。   (Vi) However, in the fifth embodiment of the present invention, since the raw material solution is stirred when the clathrate compound is starting to be produced, there is a tendency that the temperature gradient and the concentration gradient are not thoroughly eliminated. On the other hand, according to the sixth embodiment of the present invention, since the raw material solution is agitated after the heat dissipation process and before the heat storage process is started, it is possible to thoroughly eliminate the temperature gradient and the concentration gradient, so that the case of the fifth embodiment is achieved. It is effective, can store homogeneous heat energy, and can efficiently store and extract heat energy without waste.

(vii)なお、第5の形態に係る蓄熱装置及び第6の形態における蓄熱装置は内融式であるが、本発明は内融式以外の方式の蓄熱装置も射程内としている。例えば、特許文献6に記載の蓄熱装置は、原料溶液を熱交換器を介して熱媒体と熱交換させ、その熱交換器の伝熱面に包接化合物を生成させることにより熱エネルギーを蓄積するとともに、当該包接化合物を剥離させて原料溶液に分散又は懸濁させることでスラリーにし、このスラリーを外部に取り出した後に融解させることにより当該熱エネルギーを取り出すという方式の蓄熱装置である。例えば、この特許文献6の蓄熱装置における包接化合物の生成方法は、本発明の第1の形態が予定する技術的範疇に入る。   (Vii) Although the heat storage device according to the fifth embodiment and the heat storage device according to the sixth embodiment are internally fused, the present invention also includes other types of heat storage devices within the range. For example, the heat storage device described in Patent Document 6 stores heat energy by causing a raw material solution to exchange heat with a heat medium via a heat exchanger and generating an inclusion compound on the heat transfer surface of the heat exchanger. At the same time, the clathrate is peeled off and dispersed or suspended in a raw material solution to form a slurry, and the slurry is taken out and then melted, and then the thermal energy is taken out. For example, the clathrate generation method in the heat storage device of Patent Document 6 falls within the technical category planned by the first embodiment of the present invention.

また、本発明の各形態における原料溶液の攪拌は、包接化合物の生成と融解(第2及び第3の各形態においては第1工程と第2工程、第4の形態においては蓄熱動作と放熱動作、第5及び第6の各形態においては蓄熱工程と放熱工程にそれぞれ対応する)を少なくとも1回以上繰り返した後に行う。従って、包接化合物の生成と融解を例えば5回繰り返した後に原料溶液を1回攪拌するようにしてもよい。   In addition, the stirring of the raw material solution in each embodiment of the present invention involves the formation and melting of the clathrate compound (the first and second steps in the second and third embodiments, the heat storage operation and the heat dissipation in the fourth embodiment). The operation and the fifth and sixth embodiments correspond to the heat storage step and the heat release step), respectively, and are performed at least once. Therefore, the raw material solution may be stirred once after the clathrate is formed and melted, for example, five times.

以下において本発明の実施形態として、第一実施形態で蓄熱装置、第二実施形態でこの蓄熱装置を用いた蓄熱式空調装置について説明する。これらの実施形態では、包接化合物の具体例を包接水和物としているが、当該具体例が包接水和物であるからといって、本発明からその他の包接化合物が除外するものではない。   Hereinafter, as an embodiment of the present invention, a heat storage air conditioner using the heat storage device in the first embodiment and this heat storage device in the second embodiment will be described. In these embodiments, specific examples of clathrate compounds are clathrate hydrates. However, other clathrate compounds are excluded from the present invention just because the specific examples are clathrate hydrates. is not.

また、本発明では原料溶液におけるゲスト分子の濃度は、調和融点を与える濃度(調和融点濃度)であっても、それ未満又はそれより大きな濃度であっても構わない。   In the present invention, the concentration of the guest molecule in the raw material solution may be a concentration that gives a harmonic melting point (harmonic melting point concentration), or a concentration lower than or higher than that.

<第一実施形態>
本実施形態の蓄熱装置は、図1に見られるごとく、蓄熱槽1に水和物生成物質を含む水溶液からなる原料溶液Lが貯留されており、この蓄熱槽1内には、原料溶液と冷凍サイクルの熱媒体(冷媒)とを熱交換させる熱交換器2(ここでは伝熱管)が収容されている。この熱交換器2としての伝熱管は管内に熱媒体を流通して前記熱交換を行う際に、その伝熱面積を大きくするために、図示の例では、上下に蛇行して形成されその管長を長くしている。前記蓄熱槽1には、その底部から上部に向け原料溶液を送るべく、循環経路3が取り付けられ、その循環経路3にはポンプ4が設けられている。この循環経路3を経て蓄熱槽1底部の原料溶液Lを槽内上部へ送ることにより、槽内では原料溶液の攪拌が行われる。
<First embodiment>
As shown in FIG. 1, the heat storage device of the present embodiment stores a raw material solution L made of an aqueous solution containing a hydrate-generating substance in a heat storage tank 1. A heat exchanger 2 (here, a heat transfer tube) that exchanges heat with the heat medium (refrigerant) of the cycle is accommodated. The heat transfer tube as the heat exchanger 2 is formed by meandering up and down in the illustrated example in order to increase the heat transfer area when a heat medium is passed through the tube to perform the heat exchange. To make it longer. A circulation path 3 is attached to the heat storage tank 1 in order to send the raw material solution from the bottom to the top, and a pump 4 is provided in the circulation path 3. By sending the raw material solution L at the bottom of the heat storage tank 1 through the circulation path 3 to the upper part of the tank, the raw material solution is stirred in the tank.

この攪拌は、本実施形態では、熱交換の開始から、その終了前の所定時間が経過するまでの時間帯において行われる。   In this embodiment, this stirring is performed in a time zone from the start of heat exchange until a predetermined time elapses before the end.

このような図1の本実施形態装置では、熱交換器2としての伝熱管に低温の熱媒体が流通されると、熱媒体が伝熱管表面で原料溶液Lと熱交換して、該原料溶液Lが冷却され包接水和物L1が生成される。包接水和物L1は熱交換器2の表面に付着し堆積するものや、包接水和物L1が熱交換器2の表面から剥離し原料溶液中に粒子状で分散または懸濁してスラリーを生成するものがある。図1には熱交換器2たる伝熱管の周囲に包接水和物の塊状体が付着形成されている状態を示している。包接水和物の水溶液を冷却して生成した塊状の包接水和物L1は、伝熱管の周りに略同軸鞘状、略円筒形状に形成されている。熱交換器としての伝熱管の配置例として、上下方向に蛇行したものを示したが、これに限定されるものではなく、例えば、水平方向に蛇行するように配置したものでもよい。   In the apparatus of this embodiment shown in FIG. 1, when a low-temperature heat medium is circulated through the heat transfer tube as the heat exchanger 2, the heat medium exchanges heat with the raw material solution L on the surface of the heat transfer tube. L is cooled and clathrate hydrate L1 is produced. The clathrate hydrate L1 adheres to and accumulates on the surface of the heat exchanger 2, or the clathrate hydrate L1 peels off from the surface of the heat exchanger 2 and is dispersed or suspended in the form of particles in the raw material solution. There is something that generates FIG. 1 shows a state in which a clathrate hydrate lump is adhered and formed around the heat transfer tube as the heat exchanger 2. The massive clathrate hydrate L1 produced by cooling the clathrate hydrate aqueous solution is formed in a substantially coaxial sheath shape and a substantially cylindrical shape around the heat transfer tube. As an example of the arrangement of the heat transfer tubes as the heat exchanger, the one meandering in the up-and-down direction is shown, but the present invention is not limited to this, and for example, it may be arranged so as to meander in the horizontal direction.

図1に示す本実施形態の蓄熱装置について、攪拌の時期と蓄熱効率について検討すべく、ポンプ4により蓄熱槽1の底部から原料溶液Lを抜出し蓄熱槽1の上部へ戻す循環経路3を設けて蓄熱槽1の原料溶液Lを攪拌するようにして攪拌を行う場合と、このポンプ4を運転しないで攪拌を行わない場合について、蓄熱経過時間と蓄熱速度の関係を調べる実験を行って図2のような結果を得た。   With respect to the heat storage device of this embodiment shown in FIG. 1, a circulation path 3 is provided for extracting the raw material solution L from the bottom of the heat storage tank 1 by the pump 4 and returning it to the top of the heat storage tank 1 in order to examine the timing of stirring and the heat storage efficiency. FIG. 2 shows an experiment for investigating the relationship between the heat storage elapsed time and the heat storage speed in the case of stirring the raw material solution L in the heat storage tank 1 and in the case of not performing stirring without operating the pump 4. The result was obtained.

この実験では、原料溶液として包接水和物生成物質の臭化テトラnブチルアンモニウム(TBAB)の調和融点を与える濃度(調和融点濃度)未満の水溶液を用いた。しかし、本発明では原料溶液におけるゲスト分子の濃度は、調和融点を与える濃度(調和融点濃度)であっても、それ未満又はそれより大きな濃度であっても構わない。   In this experiment, an aqueous solution having a concentration (harmonic melting point concentration) less than the concentration giving the harmonic melting point of the clathrate hydrate forming substance tetra-n-butylammonium bromide (TBAB) was used as the raw material solution. However, in the present invention, the concentration of the guest molecule in the raw material solution may be a concentration that gives a harmonic melting point (harmonic melting point concentration), or a concentration lower than or higher than that.

図2において、横軸は、熱交換開始からの経過時間を蓄熱終了までの時間に対する比であり、「蓄熱経過時間比」として表記している。また、縦軸は、熱交換器で熱媒体との熱交換により冷却され蓄熱された熱エネルギーの単位時間当たりの蓄熱量であり、「蓄熱速度」として表記している。この図によると、蓄熱速度が大きいほど効率的に蓄熱が行われていることを示している。   In FIG. 2, the horizontal axis is the ratio of the elapsed time from the start of heat exchange to the time until the end of heat storage, and is expressed as “heat storage elapsed time ratio”. The vertical axis represents the heat storage amount per unit time of the heat energy cooled and stored by heat exchange with the heat medium in the heat exchanger, and is expressed as “heat storage speed”. According to this figure, it has shown that heat storage is performed efficiently, so that the heat storage speed is large.

(所定時間の特定)
次に、攪拌を行う所定時間を固相率の範囲により特定すべく、図2を検討する。図2によると、熱交換を開始してから当初は原料溶液の温度が低下し、やがて熱交換器2の表面近傍の原料溶液Lの温度が包接水和物生成開始温度に到達すると包接水和物L1が生成し始め、包接水和物粒子が原料溶液中に分散または懸濁して水和物スラリーが生成される。熱交換が継続されるにつれて包接水和物粒子が増加し固相率(包接水和物L1の水和物スラリーに対する重量比率)が増加し、さらに熱交換器2の表面に包接水和物の塊状体が形成される。
(Specify the specified time)
Next, FIG. 2 is examined in order to specify the predetermined time for stirring by the range of the solid phase ratio. According to FIG. 2, the temperature of the raw material solution is initially lowered after the heat exchange is started, and when the temperature of the raw material solution L near the surface of the heat exchanger 2 reaches the clathrate hydrate generation start temperature, the clathrate is included. Hydrate L1 begins to be produced, and clathrate hydrate particles are dispersed or suspended in the raw material solution to produce a hydrate slurry. As the heat exchange is continued, the clathrate hydrate particles increase, the solid phase ratio (weight ratio of clathrate hydrate L1 to the hydrate slurry) increases, and the clathrate water is further added to the surface of the heat exchanger 2. A lump of Japanese product is formed.

包接水和物が生成されていない段階(原料溶液の段階)と、固相率が小さい段階(蓄熱密度が小さいことに相当)では、原料溶液の攪拌を行うことにより、熱交換器を介した熱交換が効率よく行われ蓄熱速度が高くなることがわかる。   At the stage where the clathrate hydrate is not formed (raw material solution stage) and at the stage where the solid phase ratio is low (corresponding to low heat storage density), the raw material solution is stirred to pass through the heat exchanger. It can be seen that the heat exchange is efficiently performed and the heat storage speed is increased.

蓄熱経過時間比が0.5となり、固相率が大きくなる(蓄熱密度が大きいことに相当)と、原料溶液の攪拌の有無による蓄熱速度の差は無くなった。   When the heat storage elapsed time ratio was 0.5 and the solid phase ratio was large (corresponding to a large heat storage density), there was no difference in the heat storage speed due to the presence or absence of stirring of the raw material solution.

すなわち、前記蓄熱経過時間比が0.5以下では、原料溶液の攪拌を行うことにより、熱交換器2の表面への水和物の付着堆積による伝熱性の低下を防ぎ、熱交換が効率よく行われていることを示している。しかし、固相率が大きくなり蓄熱経過時間比が0.5を超えると、原料溶液もしくは水和物スラリー中の水和物量が多くなり、熱交換面に付着した水和物量が多くなる結果、熱伝導率の低い水和物量が多くなって、これらの伝熱性が低下するため、攪拌による熱交換効率を高める効果が認められなくなった。   That is, when the heat storage elapsed time ratio is 0.5 or less, stirring of the raw material solution prevents a decrease in heat transfer due to hydrate deposition on the surface of the heat exchanger 2, and heat exchange is efficient. Indicates what is being done. However, if the solid phase ratio increases and the heat storage elapsed time ratio exceeds 0.5, the amount of hydrate in the raw material solution or hydrate slurry increases, and the amount of hydrate adhering to the heat exchange surface increases. Since the amount of hydrate having a low thermal conductivity increases and the heat conductivity decreases, the effect of increasing the heat exchange efficiency by stirring is not recognized.

原料溶液の攪拌を行うことにより熱交換効率が高くなる効果がある固相率の適正範囲は、TBAB濃度、熱交換器に流通させる熱媒体の種類・温度・流量、熱交換器と蓄熱槽の構造、攪拌の方法、攪拌の強度(時間当たりに入れ替わる原料溶液の全体に対する割合)、蓄熱速度等により異なるが、概ね固相率が10〜15wt%より小さい範囲で原料溶液の攪拌による効果が認められた(表1参照)。また、TBAB以外の包接水和物生成物質についても同様の結果であった。   The appropriate range of the solid phase ratio that has the effect of increasing the heat exchange efficiency by stirring the raw material solution is the TBAB concentration, the type / temperature / flow rate of the heat medium circulated in the heat exchanger, the heat exchanger and the heat storage tank Depending on the structure, stirring method, stirring strength (ratio to the total amount of the raw material solution replaced per hour), heat storage speed, etc., the effect of stirring the raw material solution is generally recognized in the range where the solid phase ratio is less than 10 to 15 wt%. (See Table 1). Similar results were obtained for clathrate hydrate-generating substances other than TBAB.

したがって、蓄熱運転の熱交換の開始から生成された水和物スラリーの固相率が約10〜15wt%に達するまでの時間帯において、蓄熱槽内の原料溶液もしくは水和物スラリーを攪拌させることにより伝熱性を改善でき、熱交換効率を高め包接化合物を効率的に生成させることが可能となる。水和物スラリーの固相率が約10〜15wt%に達してからは、攪拌を行う必要がないので、奏効な範囲で攪拌を行うこととなり、省エネルギーとすることができる。   Therefore, the raw material solution or hydrate slurry in the heat storage tank is agitated in the time zone from the start of heat exchange in the heat storage operation until the solid phase ratio of the hydrate slurry generated reaches about 10 to 15 wt%. Thus, the heat transfer can be improved, the heat exchange efficiency can be increased, and the inclusion compound can be efficiently generated. After the solid phase ratio of the hydrate slurry reaches about 10 to 15 wt%, it is not necessary to perform stirring, so stirring is performed in an effective range, and energy can be saved.

かくして、本実施形態では、攪拌を行う「所定時間」を固相率が約10〜15wt%に達するまでの時間と設定することがよい。   Thus, in this embodiment, the “predetermined time” during which stirring is performed is preferably set as the time until the solid phase ratio reaches about 10 to 15 wt%.

固相率により特定する他に、熱交換器で熱媒体との熱交換により冷却され蓄熱された熱エネルギーの累積値(熱交換された累積熱エネルギー)すなわち累積蓄熱量により攪拌を行う時間により「所定時間」を特定してもよい。   In addition to specifying by the solid phase ratio, the cumulative value of the heat energy that is cooled and stored by heat exchange with the heat medium in the heat exchanger (accumulated heat energy), that is, the time for stirring by the accumulated heat storage amount, The “predetermined time” may be specified.

Figure 2008215654
Figure 2008215654

(固相率の計測方法)
本実施形態において、「所定時間」は既述のごとく固相率が好適な値となる時間で特定されるが、その特定のためには、攪拌を停止すべき時点であるかを判定するのに固相率を計測せねばならない。
(Measurement method of solid fraction)
In the present embodiment, the “predetermined time” is specified as the time when the solid phase ratio becomes a suitable value as described above. For this specification, it is determined whether it is time to stop stirring. The solid phase ratio must be measured.

次に、攪拌の停止時期を判定するために、水和物スラリーの固相率を計測する方法について説明する。   Next, a method for measuring the solid phase ratio of the hydrate slurry in order to determine the stirring stop timing will be described.

固相率は固相の水和物と液相の原料溶液の物性の相違に基づく計測によって求められる。例えば、導電性の相違に基づき蓄熱槽内に設けた電極間の水和物スラリー電気抵抗の変化の計測、あるいは、密度の相違に基づき蓄熱槽内の液位の変化の計測が挙げられる。さらには、予め包接水和物の生成温度と溶液中の水和物生成物質濃度の関係、初期水和物生成物質溶液濃度のデータを記憶させておき、これら記憶されたデータと蓄熱槽内の水和物スラリー温度の計測値から、固相率を算出することもできる。   The solid phase ratio is obtained by measurement based on the difference in physical properties between the solid phase hydrate and the liquid phase raw material solution. For example, the measurement of the change of the hydrate slurry electrical resistance between the electrodes provided in the heat storage tank based on the difference in conductivity, or the measurement of the change in the liquid level in the heat storage tank based on the difference in density can be mentioned. Furthermore, the relationship between the temperature of clathrate hydrate formation and the concentration of the hydrate-generating substance in the solution and the initial hydrate-generating substance solution concentration data are stored in advance, and the stored data and the heat storage tank The solid phase ratio can also be calculated from the measured value of the hydrate slurry temperature.

水和物を生成する水和物生成物質の水溶液を冷却すると、水和物生成温度以下になると水和物粒子が生成し、水和物粒子は水溶液中に分散もしくは懸濁して水和物スラリーが生成される。冷却を続けると水和物粒子は増加し、固相率(水和物粒子の水和物スラリーに対する重量比率をいう)が増加する。水和物を生成する水和物生成物質の水溶液の初期濃度によって定まるが、水和物スラリーの温度と固相率との間に一定の関係がある。   When an aqueous solution of a hydrate-forming substance that forms a hydrate is cooled, hydrate particles are formed when the temperature falls below the hydrate formation temperature, and the hydrate particles are dispersed or suspended in the aqueous solution to form a hydrate slurry. Is generated. When cooling is continued, hydrate particles increase, and the solid phase ratio (referred to the weight ratio of hydrate particles to hydrate slurry) increases. There is a certain relationship between the temperature of the hydrate slurry and the solid fraction, as determined by the initial concentration of the aqueous solution of the hydrate-forming substance that forms the hydrate.

例えば、初期濃度が14wt%の臭化テトラnブチルアンモニウム(TBAB)水溶液の水和物スラリーの温度と固相率の関係を図3のグラフに示す。予め判っている水和物生成物質の水溶液の初期濃度と、計測した水和物スラリー温度に基づき固相率を求められる。したがって、蓄熱槽内に設けた計測計による計測値から固相率を求め、求めた固相率が所定範囲内のときは、原料溶液もしくは水和物スラリーの攪拌を行い、また、固相率が所定範囲より大きくなれば攪拌を停止する。   For example, the graph of FIG. 3 shows the relationship between the temperature of the hydrate slurry of an aqueous solution of tetra n-butylammonium bromide (TBAB) having an initial concentration of 14 wt% and the solid fraction. The solid phase ratio can be determined based on the known initial concentration of the aqueous solution of the hydrate-generating substance and the measured hydrate slurry temperature. Therefore, the solid phase ratio is obtained from the measurement value provided by the measuring instrument provided in the heat storage tank, and when the obtained solid phase ratio is within the predetermined range, the raw material solution or the hydrate slurry is stirred, and the solid phase ratio When the value exceeds a predetermined range, stirring is stopped.

(所定時間設定の他の方法)
熱交換の開始から、溶液を攪拌することにより溶液または水和物スラリーの熱伝達を促進できる効果を奏することができる時間を攪拌する「所定時間」として特定する他の方法として、蓄熱速度を計測して定めることが可能である。蓄熱速度を計測して、溶液を攪拌することにより、攪拌しない場合の蓄熱速度を上回っているかどうかを判断し、上回っている間には攪拌を行うこととする。
(Other methods for setting the specified time)
The heat storage rate is measured as another method to specify the time that can be effective to promote the heat transfer of the solution or hydrate slurry by stirring the solution from the start of heat exchange. Can be determined. By measuring the heat storage speed and stirring the solution, it is determined whether or not the heat storage speed is higher than that when not stirring, and stirring is performed while the heat storage speed is exceeded.

蓄熱速度は熱媒体の流量や蓄熱槽入口・出口での熱媒体の温度などから算出される。熱媒体の流量や温度を計測する代わりに蓄熱速度を概算するには次の方法がある。蓄熱運転中の圧縮機の運転は蓄熱状況に応じて制御され、詳しくは運転周波数が制御される。あらかじめ蓄熱速度と圧縮機の運転周波数との関係を求めておき、圧縮機の運転周波数を計測することによって蓄熱速度を換算できる。   The heat storage rate is calculated from the flow rate of the heat medium, the temperature of the heat medium at the inlet / outlet of the heat storage tank, and the like. There are the following methods for estimating the heat storage rate instead of measuring the flow rate and temperature of the heat medium. The operation of the compressor during the heat storage operation is controlled according to the heat storage state, and in detail, the operation frequency is controlled. The relationship between the heat storage speed and the operating frequency of the compressor is obtained in advance, and the heat storage speed can be converted by measuring the operating frequency of the compressor.

圧縮機の運転周波数を計測して運転状況を監視することにより蓄熱速度を求め、攪拌を行う所定時間を定めることができる。   By measuring the operating frequency of the compressor and monitoring the operating status, the heat storage speed can be obtained and a predetermined time for stirring can be determined.

<第二実施形態>
以下、本発明の第二実施形態として、蓄熱装置を用いた蓄熱式空調システムを図4に基づき説明する。
<Second embodiment>
Hereinafter, as a second embodiment of the present invention, a heat storage type air conditioning system using a heat storage device will be described with reference to FIG.

図4は本実施形態の蓄熱式空調システムであって、蓄熱式空調のための構成機器およびその制御装置を示している。   FIG. 4 shows a regenerative air conditioning system according to this embodiment, which shows components for regenerative air conditioning and a control device therefor.

図4において、蓄熱装置は図1の装置と同じ構成であり、蓄熱槽1内に蓄熱材としての原料溶液Lを貯留し、ここに熱交換器(伝熱管)2が貫通して設けられ、前記蓄熱槽1には、循環経路3が取り付けられ、この循環経路3にポンプ4が設けられている。前記熱交換器2には熱媒体(冷媒)が流出入する。   In FIG. 4, the heat storage device has the same configuration as the device of FIG. 1, stores the raw material solution L as a heat storage material in the heat storage tank 1, and a heat exchanger (heat transfer tube) 2 is provided therethrough, A circulation path 3 is attached to the heat storage tank 1, and a pump 4 is provided in the circulation path 3. A heat medium (refrigerant) flows into and out of the heat exchanger 2.

前記蓄熱槽1には、さらに固相率センサ5と蓄熱量センサ6が設けられている。   The heat storage tank 1 is further provided with a solid phase rate sensor 5 and a heat storage amount sensor 6.

固相率センサ5は、蓄熱材の固相率を算定するためのデータとして、蓄熱材温度等を計測する。後述する固相率を演算する例では、固相率センサとして蓄熱材の水和物スラリーの温度を計測するが、他の演算方法、例えば、水和物スラリーの電気抵抗から演算する方法、蓄熱材の液位の変化から演算する方法の場合は、それぞれ、電気抵抗または液位の変化を計測する。蓄熱量センサ6は、蓄熱量を算定するためのデータとして、蓄熱材温度、蓄熱材液位等を計測する。   The solid phase rate sensor 5 measures the temperature of the heat storage material as data for calculating the solid phase rate of the heat storage material. In the example of calculating the solid phase ratio described later, the temperature of the hydrate slurry of the heat storage material is measured as a solid phase ratio sensor, but other calculation methods, for example, a method of calculating from the electrical resistance of the hydrate slurry, heat storage In the case of the method of calculating from the change in the liquid level of the material, the change in the electric resistance or the liquid level is measured. The heat storage amount sensor 6 measures the heat storage material temperature, the heat storage material liquid level, and the like as data for calculating the heat storage amount.

循環経路3とポンプ4は、攪拌装置として機能し、蓄熱槽1の底部から蓄熱材としての水溶液Lを抜き出し蓄熱槽1の上部の液面近傍に戻すように循環させる。液面近傍に水溶液を戻す際に分散して戻すように分配配管を設けると攪拌効果を高めることができる。   The circulation path 3 and the pump 4 function as a stirrer, extract the aqueous solution L as a heat storage material from the bottom of the heat storage tank 1 and circulate it so as to return to the vicinity of the liquid surface at the top of the heat storage tank 1. When a distribution pipe is provided so as to disperse and return the aqueous solution in the vicinity of the liquid surface, the stirring effect can be enhanced.

本蓄熱式空調システムの蓄熱材は、包接水和物を生成する包接水和物生成物質の水溶液であって、包接水和物の凝固点が0℃より高く20℃より低い蓄熱材が用いられる。例えば、臭化テトラn−ブチルアンモニウム(TBAB)の水溶液がある。   The heat storage material of this heat storage type air conditioning system is an aqueous solution of clathrate hydrate generating substance that generates clathrate hydrate, and the heat storage material having a freezing point of clathrate hydrate higher than 0 ° C. and lower than 20 ° C. Used. For example, there is an aqueous solution of tetra n-butylammonium bromide (TBAB).

このような蓄熱装置の前記熱交換器2の一端側に、熱交換器2へ流入する熱媒体を減圧する減圧弁7が、そして他端側には開閉弁8がそれぞれ蓄熱槽1外で設けられており、前記減圧弁7と開閉弁8からそれぞれ管路が室外側と室内側へ分岐されていて、室外では室外側熱交換器10そして室内では室内側熱交換器20に至っている。   A pressure reducing valve 7 for reducing the pressure of the heat medium flowing into the heat exchanger 2 is provided at one end of the heat exchanger 2 of such a heat storage device, and an opening / closing valve 8 is provided outside the heat storage tank 1 at the other end. The pipes are branched from the pressure reducing valve 7 and the on-off valve 8 to the outdoor side and the indoor side, respectively, and reach the outdoor heat exchanger 10 outside and the indoor heat exchanger 20 indoors.

室外に設置されている室外側熱交換器10は、蓄熱式空調システムを構成する冷凍サイクルの熱媒体(冷媒)が外気と熱交換を行うようになっており、該室外側熱交換器10には圧縮機11が直列に接続されている。かくして、前記蓄熱装置と室外側熱交換器10とは、閉ループをなす管路で接続される。   The outdoor heat exchanger 10 installed outdoors is configured such that the heat medium (refrigerant) of the refrigeration cycle that constitutes the regenerative air conditioning system exchanges heat with the outside air. The compressor 11 is connected in series. Thus, the heat storage device and the outdoor heat exchanger 10 are connected by a closed pipe.

一方、減圧弁7から分岐した室内側の管路に開閉弁9が設けられており、室内に設置された複数の室内側熱交換器20が並列をなして、前記開閉弁9側と前記開閉弁8側との間に接続されている。図示の例では、二つの室内側熱交換器20が設置されており、それぞれ減圧装置21を介して前記開閉弁9側に接続されている。この減圧装置21は、室内側熱交換器に流入する熱媒体を減圧する。   On the other hand, an open / close valve 9 is provided in the indoor line branched from the pressure reducing valve 7, and a plurality of indoor heat exchangers 20 installed in the room are arranged in parallel to open and close the open / close valve 9 side and the open / close valve. It is connected between the valve 8 side. In the illustrated example, two indoor heat exchangers 20 are installed, and are connected to the on-off valve 9 side via pressure reducing devices 21, respectively. The decompression device 21 decompresses the heat medium flowing into the indoor heat exchanger.

さらに開閉弁9と減圧装置21との間の管路は、熱交換器2と開閉弁8との間の管路と接続されていて、一つの流路30をなしている。   Further, the pipe line between the on-off valve 9 and the pressure reducing device 21 is connected to the pipe line between the heat exchanger 2 and the on-off valve 8 to form one flow path 30.

このように、これらの構成機器を、熱媒体の配管と、この熱媒体の流路を切替える開閉弁8,9とで連結し、後述の制御装置40により制御を行って冷凍サイクル回路を形成する。   As described above, these components are connected by the heat medium pipe and the on-off valves 8 and 9 for switching the flow path of the heat medium, and controlled by the control device 40 described later to form a refrigeration cycle circuit. .

蓄熱装置の運転のための制御装置40は、テータベースを記憶する記憶手段41と、計測データを入力する計測データ入力手段42と、これらの手段41そして42からの出力にもとづいて演算を行う演算手段43と、この演算手段43からの出力にもとづいて前記構成機器を制御する運転制御手段44とを有している。前記計測データ入力手段42は、蓄熱槽1に設けられた固相率センサ5と蓄熱量センサ6からの計測データが入力される。演算手段43は、記憶手段41と計測データ入力手段42からのデータにもとづいて、固相率そして蓄熱量をそれぞれ演算する固相率演算手段43Aと蓄熱量演算手段43Bとを有している。また、運転制御手段44は、前記演算手段から演算結果を受けて作動する運転モード切替手段44Aと攪拌装置運転制御手段44Bとを有している。   The control device 40 for operating the heat storage device includes a storage means 41 for storing the data base, a measurement data input means 42 for inputting measurement data, and an operation for performing an operation based on outputs from these means 41 and 42. Means 43 and operation control means 44 for controlling the components based on the output from the computing means 43 are provided. The measurement data input means 42 receives measurement data from the solid phase rate sensor 5 and the heat storage amount sensor 6 provided in the heat storage tank 1. The calculation means 43 has a solid phase rate calculation means 43A and a heat storage amount calculation means 43B for calculating the solid phase rate and the heat storage amount based on the data from the storage means 41 and the measurement data input means 42, respectively. Further, the operation control means 44 includes an operation mode switching means 44A and a stirrer operation control means 44B that operate in response to a calculation result from the calculation means.

次に、上述の制御装置40を構成する各手段について、さらに詳述する。   Next, each means which comprises the above-mentioned control apparatus 40 is further explained in full detail.

A.記憶手段
記憶手段41には各種のデータベースが記憶されている。記憶されているデータベースは、蓄熱材の特性としての蓄熱材の水和物生成開始温度と水溶液中の水和物生成物質濃度との関係を表した水和物生成曲線、水和物スラリーの温度と固相率の関係を表した曲線、蓄熱材の比熱、潜熱量、蓄熱材の初期濃度、蓄熱材の重量があり、また冷房需要に基づいた予定蓄熱量がある。予定蓄熱量の設定は、季節や曜日などの情報、記憶手段に記憶された過去の冷熱需要データ等に基づき、翌日に必要な蓄熱量を予測するプログラムなどから設定される蓄熱需要を予測して設定する。
A. Storage means The storage means 41 stores various databases. The stored database is a hydrate formation curve representing the relationship between the hydrate formation start temperature of the heat storage material as a characteristic of the heat storage material and the concentration of the hydrate formation material in the aqueous solution, and the temperature of the hydrate slurry. There is a curve showing the relationship between the solid phase ratio, the specific heat of the heat storage material, the amount of latent heat, the initial concentration of the heat storage material, the weight of the heat storage material, and the planned heat storage amount based on the cooling demand. The planned heat storage amount is set by predicting the heat storage demand set from a program that predicts the heat storage amount required for the next day based on information such as season and day of the week, past cold demand data stored in the storage means, etc. Set.

B.計測データ入力手段
計測データ入力手段42は、蓄熱槽1に備えられた固相率センサ5、蓄熱量センサ6から出力されたデータを演算手段に入力するためのハードウェアおよびソフトウェアをいう。
B. Measurement Data Input Unit The measurement data input unit 42 refers to hardware and software for inputting data output from the solid phase rate sensor 5 and the heat storage amount sensor 6 provided in the heat storage tank 1 to the calculation unit.

C.演算手段
演算手段43はCPU等によってプログラムが実行されることで実現されるものである。演算手段43は、計測データ入力手段42によって入力された蓄熱材温度と記憶手段によって記憶されている蓄熱材の初期濃度、蓄熱材の水和物スラリー温度と固相率の関係曲線に基づき、固相率を演算する固相率演算手段43Aと、計測データ入力手段42によって入力された蓄熱材温度、蓄熱材液位と、記憶手段41によって記憶されている蓄熱材の水和物生成曲線、比熱、潜熱量、初期濃度、重量とから蓄熱量を演算する蓄熱量演算手段43Bとを備えている。
C. Arithmetic means The arithmetic means 43 is realized by executing a program by a CPU or the like. The calculation means 43 is based on the relationship curve between the heat storage material temperature input by the measurement data input means 42 and the initial concentration of the heat storage material stored by the storage means, the hydrate slurry temperature of the heat storage material and the solid phase ratio. Solid phase ratio calculating means 43A for calculating the phase ratio, heat storage material temperature and heat storage material liquid level input by the measurement data input means 42, hydrate generation curve of the heat storage material stored in the storage means 41, specific heat And a heat storage amount calculating means 43B for calculating the heat storage amount from the latent heat amount, the initial concentration, and the weight.

D.運転制御手段
運転制御手段44は演算手段43から出力される固相率に基づいて攪拌装置を運転制御する攪拌装置運転制御手段44Bと、演算手段43から出力される蓄熱量や、予め記憶手段41に格納された予定蓄熱量に基づいて冷凍サイクルを運転制御、すなわち蓄熱運転、蓄熱利用冷房運転、蓄熱非利用冷房運転などの運転モードの切替えを行う運転モード切替手段44Aとを備える。具体的には、運転モード切替手段44Aは圧縮機11の運転制御および開閉弁8,9の開閉制御を行う。
D. Operation Control Unit The operation control unit 44 is a stirrer operation control unit 44B that controls the stirrer operation based on the solid phase ratio output from the calculation unit 43, a heat storage amount output from the calculation unit 43, and a storage unit 41 in advance. Operation mode switching means 44A that performs operation control of the refrigeration cycle based on the planned heat storage amount stored in the storage unit, that is, operation mode switching such as heat storage operation, heat storage use cooling operation, and heat storage non-use cooling operation. Specifically, the operation mode switching unit 44 </ b> A performs operation control of the compressor 11 and opening / closing control of the on-off valves 8 and 9.

次に、前記のように構成された本蓄熱式空調システムの動作を説明する。このシステムでは、蓄熱運転、蓄熱利用過冷却冷房運転、そして一般冷房運転に切り替えることができる。   Next, operation | movement of this thermal storage type | formula air conditioning system comprised as mentioned above is demonstrated. In this system, it is possible to switch to a heat storage operation, a heat storage-use supercooling cooling operation, and a general cooling operation.

(a)蓄熱運転
蓄熱運転時には、攪拌装置の起動後に、開閉弁8が「開」となり、開閉弁9が「閉」となる。また、蓄熱槽1内の熱交換器2(伝熱管)に熱媒体(冷媒)が流通される。前記のような開閉弁の状態において、圧縮機11から吐出された熱媒体は室外側熱交換器10で凝縮される。液化した熱媒体は減圧弁7で減圧され、この減圧された熱媒体は熱交換器2内で蒸発して蓄熱材を冷却し水和物を生成して蓄熱する。蓄熱運転においては、蓄熱槽1に収められている熱交換器2の表面が冷却面となり、蓄熱材であるTBAB水溶液が冷却され、包接水和物が生成され包接水和物粒子が水溶液中に分散または懸濁した水和物スラリーが製造される。さらに熱交換器2の周囲に水和物が塊状に生成する。
(A) Heat storage operation During the heat storage operation, the on-off valve 8 is "opened" and the on-off valve 9 is "closed" after the stirring device is started. Further, a heat medium (refrigerant) is circulated through the heat exchanger 2 (heat transfer tube) in the heat storage tank 1. In the state of the on-off valve as described above, the heat medium discharged from the compressor 11 is condensed in the outdoor heat exchanger 10. The liquefied heat medium is depressurized by the pressure reducing valve 7, and the depressurized heat medium evaporates in the heat exchanger 2, cools the heat storage material, generates a hydrate, and stores heat. In the heat storage operation, the surface of the heat exchanger 2 housed in the heat storage tank 1 becomes a cooling surface, the TBAB aqueous solution as the heat storage material is cooled, clathrate hydrate is generated, and the clathrate hydrate particles are the aqueous solution. A hydrate slurry dispersed or suspended therein is produced. Further, a hydrate is formed in a lump around the heat exchanger 2.

蓄熱運転を開始する時に上述のように攪拌装置を起動すると、蓄熱槽1の底部から蓄熱材の水溶液Lを抜き出し蓄熱槽1の上部の液面近傍に戻すように循環させる。蓄熱材の水溶液を循環させることにより蓄熱材の水溶液を攪拌するので、熱交換器2から水溶液への効果的な熱伝達が可能になり、熱交換器2の伝熱面に包接化合物を速やかに生成させ、成長させることができる。これにより、蓄熱時に必要な冷媒を冷却する圧縮機11の負荷をより少なくすることができる。   When the stirrer is started as described above when starting the heat storage operation, the aqueous solution L of the heat storage material is extracted from the bottom of the heat storage tank 1 and is circulated so as to return to the vicinity of the liquid surface at the top of the heat storage tank 1. Since the aqueous solution of the heat storage material is agitated by circulating the aqueous solution of the heat storage material, effective heat transfer from the heat exchanger 2 to the aqueous solution becomes possible, and the clathrate compound is quickly applied to the heat transfer surface of the heat exchanger 2. Can be generated and grown. Thereby, the load of the compressor 11 which cools a refrigerant | coolant required at the time of heat storage can be decreased more.

ここで、攪拌操作終了の時期判定について説明する。   Here, the timing determination of the end of the stirring operation will be described.

計測データ入力手段42によって入力された蓄熱材温度と記憶手段41によって記憶されている蓄熱材の初期濃度、蓄熱材の水和物スラリー温度と固相率の関係曲線に基づき、固相率を演算する。あらかじめ攪拌により熱伝達が促進され蓄熱速度を大きくできる固相率の適切な範囲を所定範囲として求めておき、演算した固相率が所定範囲の上限値に達したら、攪拌を停止する。このようにすることにより奏効的な範囲で攪拌を行うことができ、攪拌のための循環ポンプの省エネルギーにも資することができる。   Based on the relationship between the heat storage material temperature input by the measurement data input means 42 and the initial concentration of the heat storage material stored in the storage means 41, the hydrate slurry temperature of the heat storage material and the solid phase ratio, the solid phase ratio is calculated. To do. An appropriate range of a solid phase rate that can increase heat storage speed by increasing the heat storage speed by stirring is obtained in advance as a predetermined range, and when the calculated solid phase rate reaches the upper limit of the predetermined range, stirring is stopped. By doing in this way, it can stir in an effective range and can also contribute to the energy saving of the circulation pump for stirring.

(b)蓄熱利用過冷却冷房運転
蓄熱利用過冷却冷房運転時には、開閉弁8,9を「閉」とする。また、減圧弁7は全開にしておく。
(B) Supercooling cooling operation using heat storage During the supercooling cooling operation using heat storage, the on-off valves 8 and 9 are closed. The pressure reducing valve 7 is fully opened.

前記のような開閉弁の状態において、圧縮機11から吐出された冷媒は室外側熱交換器10で凝縮される。液化した熱媒体(冷媒)は開弁した減圧弁7を経由して蓄熱槽1内の熱交換器2で蓄熱材と熱交換して過冷却状態になる。   In the state of the on-off valve as described above, the refrigerant discharged from the compressor 11 is condensed in the outdoor heat exchanger 10. The liquefied heat medium (refrigerant) exchanges heat with the heat storage material in the heat exchanger 2 in the heat storage tank 1 via the opened pressure reducing valve 7 and enters a supercooled state.

熱交換器2を経由して過冷却状態になった熱媒体は、減圧装置21で減圧されて室内側熱交換器20で蒸発して室内を冷房し、再び圧縮機11に戻る。   The heat medium that has been in a supercooled state via the heat exchanger 2 is depressurized by the decompression device 21, evaporated by the indoor heat exchanger 20, cools the room, and returns to the compressor 11 again.

(c)一般冷房運転(蓄熱非利用冷房運転)
蓄熱を利用しない一般冷房運転時には、開閉弁9を「開」とし、開閉弁8を「閉」とする。前記のような開閉弁の状態において、圧縮機11から吐出された熱媒体は室外側熱交換器10で凝縮される。液化した熱媒体は開弁した開閉弁9を経由して減圧装置21で減圧される。室内側熱交換器20で熱媒体は蒸発して室内を冷房し、再び圧縮機11に戻る。
(C) General cooling operation (cooling operation without heat storage)
During general cooling operation that does not use heat storage, the on-off valve 9 is set to “open” and the on-off valve 8 is set to “closed”. In the state of the on-off valve as described above, the heat medium discharged from the compressor 11 is condensed in the outdoor heat exchanger 10. The liquefied heat medium is depressurized by the depressurization device 21 via the opened on-off valve 9. The heat medium evaporates in the indoor heat exchanger 20, cools the room, and returns to the compressor 11 again.

次に、原料溶液の攪拌操作について、さらに説明を加える。蓄熱利用冷房運転終了後には攪拌操作を行うとよい。蓄熱利用冷房運転を行い蓄熱した蓄熱剤から冷熱を回収する放熱工程を実行すると、原料溶液の温度が包接化合物の凝固点よりも高い温度になるので、蓄熱槽内に自ずと原料溶液の上方が相対的に高温で、下方は相対的に低温という温度勾配が生じる。また、蓄熱工程と放熱工程を繰り返し実行すると、包接化合物が融解した場所にゲスト分子が滞留することでゲスト分子の濃化が起こり、濃度勾配が生じることがある。更に、熱エネルギーの取り出しを行っても、包接化合物が未融解のまま残存することがあり、熱エネルギーをそれ以上取り出せない。特に、本実施形態に係る蓄熱装置のような内融式の蓄熱装置の運転時においては、包接化合物と原料溶液との比重が異なると、放熱工程の際、その比重の差に応じて未融解の包接化合物が浮揚又は沈降し、蓄熱槽内に偏在することがあり、かかる未融解の包接化合物の存在が原料溶液の濃度勾配や温度勾配の原因になる。   Next, the stirring operation of the raw material solution will be further described. A stirring operation may be performed after completion of the heat storage use cooling operation. When the heat release using the heat storage cooling operation is performed to recover the cold from the stored heat storage agent, the temperature of the raw material solution becomes higher than the freezing point of the clathrate compound. In particular, a temperature gradient of a high temperature and a relatively low temperature occurs below. Further, when the heat storage step and the heat release step are repeatedly executed, the guest molecules stay in a place where the clathrate compound is melted, so that the guest molecules are concentrated and a concentration gradient may be generated. Furthermore, even if the thermal energy is taken out, the clathrate compound may remain unmelted, and no further thermal energy can be taken out. In particular, during operation of an internal fusion type heat storage device such as the heat storage device according to the present embodiment, if the specific gravity of the clathrate compound and the raw material solution is different, the difference in specific gravity is not determined during the heat dissipation process. The melted clathrate compound floats or settles and is unevenly distributed in the heat storage tank, and the presence of such unmelted clathrate compound causes the concentration gradient and temperature gradient of the raw material solution.

これに対し、蓄熱利用冷房運転終了後、再度蓄熱運転を開始する前に蓄熱材を攪拌する工程を設ける。この攪拌を行うと、相対的に高温の原料溶液と相対的に低温の原料溶液とを混合させることができ、ゲスト分子の濃度が相対的に高い原料溶液と相対的に低い原料溶液とを混合させることにより、又は包接化合物の凝固点以上の原料溶液との混合による未融解の包接化合物の融解させることにより、原料溶液の温度勾配やゲスト分子の濃度勾配を解消し、原料溶液をより均質化することができ、かかる原料溶液から生成される包接化合物の物性のばらつきを小さくすることもできる。   In contrast, a step of stirring the heat storage material is provided after the heat storage use cooling operation is completed and before the heat storage operation is started again. When this stirring is performed, a relatively high temperature raw material solution and a relatively low temperature raw material solution can be mixed, and a raw material solution having a relatively high concentration of guest molecules and a relatively low raw material solution are mixed. Or by melting the unmelted clathrate compound by mixing with the raw material solution above the freezing point of the clathrate compound, eliminating the temperature gradient of the raw material solution and the concentration gradient of the guest molecule, making the raw material solution more homogeneous The variation in physical properties of the clathrate compound produced from the raw material solution can be reduced.

かくして、均質な熱エネルギーを蓄積でき、熱エネルギーの蓄積と取り出しを無駄なく、効率的に行うことができる。   Thus, homogeneous heat energy can be stored, and heat energy can be stored and taken out efficiently without waste.

本発明は、以上の形態に限定されず、種々変更が可能である。例えば、攪拌装置を変更できる。   The present invention is not limited to the above form, and various modifications are possible. For example, the stirring device can be changed.

図5は循環ポンプによる攪拌装置を備えた蓄熱装置の例である。図1では蓄熱槽1の底部から原料溶液を抜出し蓄熱槽の上部の原料溶液面近傍に戻すように循環させるようにしたが、図5では蓄熱時に蓄熱槽1の液面付近に存在する水溶液もしくはスラリーをポンプ4で蓄熱槽1の底部付近に送ることで、蓄熱材を強制対流させ伝熱特性を改善するものである。吐出管先端を小径化して高流速化してもよい。また、吸込、吐出部ともに1箇所ではなく複数の箇所設けてもよいし、吸込または吐出を分散して行うように分配配管を設けると攪拌効果を高めることができる。また蓄熱時に蓄熱槽の液面付近に存在する水溶液もしくはスラリーの密度が底部付近に存在する水溶液もしくはスラリーの密度より小さい場合には、分配配管に設ける吐出孔を下向き又は斜め下向きに吐出するようにすると、攪拌効果を高めることができる。   FIG. 5 shows an example of a heat storage device provided with a stirring device using a circulation pump. In FIG. 1, the raw material solution is extracted from the bottom of the heat storage tank 1 and circulated so as to return to the vicinity of the raw material solution surface in the upper part of the heat storage tank, but in FIG. 5, the aqueous solution present near the liquid surface of the heat storage tank 1 during heat storage or By sending the slurry to the vicinity of the bottom of the heat storage tank 1 with the pump 4, the heat storage material is forcedly convected to improve heat transfer characteristics. The discharge pipe tip may be reduced in diameter to increase the flow velocity. In addition, the suction and discharge portions may be provided at a plurality of locations instead of one location, and the agitation effect can be enhanced by providing a distribution pipe so that suction or discharge is performed in a distributed manner. If the density of the aqueous solution or slurry existing near the liquid surface of the heat storage tank during heat storage is smaller than the density of the aqueous solution or slurry existing near the bottom, the discharge holes provided in the distribution pipe should be discharged downward or diagonally downward. Then, the stirring effect can be enhanced.

次に、図6のように攪拌翼4Aを回転させる攪拌装置を備えて水溶液あるいはスラリーを攪拌させて伝熱特性を改善させてもよい。   Next, as shown in FIG. 6, a stirring device for rotating the stirring blade 4A may be provided to stir the aqueous solution or slurry to improve the heat transfer characteristics.

さらには、図7のように蓄熱槽の底部に気泡を放出する散気装置を設けエアポンプ4Bにより空気を供給して気泡の浮上により原料溶液またはスラリーを攪拌する攪拌装置を設けてもよい。   Furthermore, as shown in FIG. 7, an air diffuser that discharges bubbles may be provided at the bottom of the heat storage tank, and an agitation device that supplies air by the air pump 4B and stirs the raw material solution or slurry by floating the bubbles may be provided.

本発明の第一実施形態としての蓄熱装置の概要構成図である。It is a schematic block diagram of the thermal storage apparatus as 1st embodiment of this invention. 図1装置で、攪拌を行う場合と行わない場合における、蓄熱経過時間と蓄熱速度との関係を示す図である。It is a figure which shows the relationship between the heat storage elapsed time and the heat storage speed in the case where stirring is not performed in the apparatus of FIG. 水和物スラリー温度と固相率との関係を示す図である。It is a figure which shows the relationship between hydrate slurry temperature and a solid-phase rate. 本発明の第二実施形態としての蓄熱式空調システムの構成図である。It is a block diagram of the thermal storage type | formula air conditioning system as 2nd embodiment of this invention. 他の実施形態としての攪拌装置の図である。It is a figure of the stirring apparatus as other embodiment. さらに他の実施形態としての攪拌装置の図である。It is the figure of the stirring apparatus as other embodiment. さらに他の実施形態としての攪拌装置の図である。It is the figure of the stirring apparatus as other embodiment.

符号の説明Explanation of symbols

1 蓄熱槽
2 熱交換器(伝熱管)
3 攪拌装置(循環経路)
4 攪拌装置(ポンプ)
L (原料)溶液
L1 包接化合物
1 Heat storage tank 2 Heat exchanger (heat transfer tube)
3 Stirring device (circulation path)
4 Stirrer (pump)
L (raw material) solution L1 inclusion compound

Claims (6)

包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液を、該溶液中に配置された熱交換器を介して熱媒体と熱交換させることにより、該熱交換器の伝熱面に包接化合物を生成させる工程を有する包接化合物の生成方法において、
熱交換の終了前の所定時間の時間帯に、前記溶液を攪拌することを特徴とする包接化合物の生成方法。
A solution containing a host molecule of the clathrate compound as a solvent and a guest molecule as a solute is subjected to heat exchange with a heat medium via a heat exchanger disposed in the solution, thereby enclosing the heat transfer surface of the heat exchanger. In a method for producing an inclusion compound, which comprises a step of producing an inclusion compound,
The method for producing an clathrate compound, wherein the solution is stirred in a predetermined time period before the end of heat exchange.
包接化合物の生成と融解によって熱エネルギーの蓄積と取り出しを行う方法において、 包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液を、該溶液中に配置された熱交換器を介して熱媒体と熱交換させることにより、該熱交換器の伝熱面に包接化合物を生成させ、熱エネルギーを蓄積する第1工程と、前記熱交換器の伝熱面に生成している包接化合物を前記伝熱面の側から融解させ、前記熱エネルギーを取り出す第2工程とを有し、
前記第1工程の終了前で所定時間の時間帯に、前記溶液を攪拌することを特徴とする熱エネルギーの蓄積と取り出しを行う方法。
In a method of accumulating and extracting thermal energy by generating and melting an inclusion compound, a solution containing a host molecule of the inclusion compound as a solvent and a guest molecule as a solute is passed through a heat exchanger disposed in the solution. A first step of generating a clathrate compound on the heat transfer surface of the heat exchanger by heat exchange with the heat medium to accumulate heat energy, and a clathrate generated on the heat transfer surface of the heat exchanger A second step of melting the compound from the side of the heat transfer surface and taking out the heat energy;
A method for accumulating and taking out thermal energy, characterized in that the solution is stirred for a predetermined time period before the end of the first step.
第1工程と第2工程とを繰り返すとともに、前記第2工程の終了から前記第1工程の開始までの時間帯においても、前記溶液を攪拌することを特徴とする請求項2に記載の熱エネルギーの蓄積と取り出しを行う方法。   The thermal energy according to claim 2, wherein the solution is stirred in a time zone from the end of the second step to the start of the first step while repeating the first step and the second step. To store and retrieve data. 包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液の中に配置される熱交換器と該熱交換器を収容する蓄熱槽とを備え、該熱交換器の伝熱面に包接化合物を生成させることにより熱エネルギーを前記蓄熱槽内に蓄積する蓄熱動作と、前記熱交換器の伝熱面に生成している包接化合物を前記伝熱面の側から融解させることにより前記熱エネルギーを前記蓄熱槽外に取り出す放熱動作を行う蓄熱装置において、
蓄熱動作の終了前の所定時間の時間帯で、前記溶液を攪拌する攪拌装置を備えることを特徴とする蓄熱装置。
A heat exchanger disposed in a solution containing a host molecule of a clathrate compound as a solvent and a guest molecule as a solute; and a heat storage tank for housing the heat exchanger, wherein the clathrate is included in the heat transfer surface of the heat exchanger A heat storage operation for storing thermal energy in the heat storage tank by generating a compound, and the heat generated by melting a clathrate compound generated on the heat transfer surface of the heat exchanger from the heat transfer surface side. In a heat storage device that performs a heat dissipation operation to extract energy out of the heat storage tank,
A heat storage device comprising a stirring device for stirring the solution in a predetermined time period before the end of the heat storage operation.
包接化合物のホスト分子を溶媒としゲスト分子を溶質として含む溶液の中に配置される熱交換器と該熱交換器を収容する蓄熱槽と、前記溶液を攪拌する攪拌装置とを備える蓄熱装置の運転方法において、
前記熱交換器の伝熱面に包接化合物を生成させることにより熱エネルギーを前記蓄熱槽内に蓄積する蓄熱工程と、前記熱交換器の伝熱面に生成している包接化合物を前記伝熱面の側から融解させることにより前記熱エネルギーを前記蓄熱槽外に放出する放熱工程を有し、
前記蓄熱工程の終了前の所定時間の時間帯において、前記攪拌装置を駆動させる工程を有することを特徴とする蓄熱装置の運転方法。
A heat storage device comprising: a heat exchanger disposed in a solution containing a host molecule of a clathrate compound as a solvent and a guest molecule as a solute; a heat storage tank containing the heat exchanger; and a stirrer for stirring the solution In driving method,
A heat storage process for storing thermal energy in the heat storage tank by generating a clathrate compound on the heat transfer surface of the heat exchanger, and a clathrate compound generated on the heat transfer surface of the heat exchanger. Having a heat dissipation step of releasing the thermal energy out of the heat storage tank by melting from the hot surface side;
A method for operating a heat storage device, comprising: a step of driving the stirring device in a predetermined time period before the end of the heat storage step.
前記蓄熱工程と前記放熱工程とを繰り返すとともに、いずれかの放熱工程の終了から次の蓄熱動作の開始までの時間帯においても、前記攪拌装置を駆動させることを特徴とする請求項5に記載の蓄熱装置の運転方法。   The said agitation apparatus is driven also in the time slot | zone from the completion | finish of one of the thermal radiation processes to the start of the next thermal storage operation | movement while repeating the said thermal storage process and the said thermal radiation process. Operation method of the heat storage device.
JP2007050397A 2007-02-28 2007-02-28 Clathrate compound forming method, heat energy storage and takeout method, heat storage device and its operation method Pending JP2008215654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007050397A JP2008215654A (en) 2007-02-28 2007-02-28 Clathrate compound forming method, heat energy storage and takeout method, heat storage device and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050397A JP2008215654A (en) 2007-02-28 2007-02-28 Clathrate compound forming method, heat energy storage and takeout method, heat storage device and its operation method

Publications (1)

Publication Number Publication Date
JP2008215654A true JP2008215654A (en) 2008-09-18

Family

ID=39835900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050397A Pending JP2008215654A (en) 2007-02-28 2007-02-28 Clathrate compound forming method, heat energy storage and takeout method, heat storage device and its operation method

Country Status (1)

Country Link
JP (1) JP2008215654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095494A (en) * 2012-11-08 2014-05-22 Panasonic Corp Thermal storage device and air conditioner with the same
JP2015025654A (en) * 2014-11-05 2015-02-05 パナソニック株式会社 Thermal storage device and air conditioner including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111283A (en) * 1998-10-07 2000-04-18 Nkk Corp Manufacture of inclusion hydrate slurry
JP2000205775A (en) * 1998-11-12 2000-07-28 Nkk Corp Manufacture of clathrate hydrate slurry
JP2000283506A (en) * 1999-03-29 2000-10-13 Sekisui Plant Systems Co Ltd Cooling method and device by heat storage tank
JP2001021283A (en) * 1999-07-12 2001-01-26 Daikin Ind Ltd Refrigerating device
JP2001280874A (en) * 2000-03-31 2001-10-10 Nkk Corp Apparatus for generating slurry hydrate of different hydration number
JP2002243377A (en) * 2001-02-15 2002-08-28 Mitsubishi Heavy Ind Ltd Latent heat accumulating system
JP2005029591A (en) * 2003-07-07 2005-02-03 New Industry Research Organization Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111283A (en) * 1998-10-07 2000-04-18 Nkk Corp Manufacture of inclusion hydrate slurry
JP2000205775A (en) * 1998-11-12 2000-07-28 Nkk Corp Manufacture of clathrate hydrate slurry
JP2000283506A (en) * 1999-03-29 2000-10-13 Sekisui Plant Systems Co Ltd Cooling method and device by heat storage tank
JP2001021283A (en) * 1999-07-12 2001-01-26 Daikin Ind Ltd Refrigerating device
JP2001280874A (en) * 2000-03-31 2001-10-10 Nkk Corp Apparatus for generating slurry hydrate of different hydration number
JP2002243377A (en) * 2001-02-15 2002-08-28 Mitsubishi Heavy Ind Ltd Latent heat accumulating system
JP2005029591A (en) * 2003-07-07 2005-02-03 New Industry Research Organization Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095494A (en) * 2012-11-08 2014-05-22 Panasonic Corp Thermal storage device and air conditioner with the same
JP2015025654A (en) * 2014-11-05 2015-02-05 パナソニック株式会社 Thermal storage device and air conditioner including the same

Similar Documents

Publication Publication Date Title
Zhang et al. An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems
Yin et al. Hydrates for cold energy storage and transport: A review
Tay et al. Review on transportable phase change material in thermal energy storage systems
EP3121522B1 (en) Method for controlling a heat storage device and method for controlling a hot water generation device
KR20020065515A (en) Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
Lee et al. Heat transfer characteristics of the ice slurry at melting process in a tube flow
CN101434833A (en) Nano refrigerant hydrate phase change cold-storage working substance and preparation thereof
Wang et al. Experimental study on the thermodynamic performance of a novel tetrabutylammonium bromide hydrate cold storage system
Ding et al. The heat transfer enhancement of low temperature airflow foam effect in the ice storage charging process
Liu et al. Evaluation of the energy storage performance of PCM nano-emulsion in a small tubular heat exchanger
Gao et al. Experimental investigation of producing ice slurry with water using opposed-nozzle impinging jet method
Zhang et al. Solid fraction determination in cold storage by tetra-n-butyl ammonium bromide clathrate hydrate slurry
Shi et al. Cold storage by tetra-n-butyl ammonium bromide clathrate hydrate slurry generated with different storage approaches at 40 wt% initial aqueous solution concentration
JP2008215654A (en) Clathrate compound forming method, heat energy storage and takeout method, heat storage device and its operation method
Yan et al. Study on the performance enhancement of ice storage and melting processes in an ice-on-coil thermal energy storage system
JP2008215655A (en) Heat storage device and its operation method
Liang et al. Towards idealized thermal stratification in a novel phase change emulsion storage tank
CN103007841B (en) Preparation method and device for direct phase change heat transfer type gas hydrates
Samah et al. Review on ice crystallization and adhesion to optimize ice slurry generators without moving components
El Abbassi et al. Energetic performances of a refrigerating loop using ice slurry
JP3972734B2 (en) Hydrate slurry manufacturing apparatus and operation method thereof
Bi et al. Experimental study on cool release process of gas-hydrate with additives
Yun et al. Ice formation in the subcooled brine environment
JP2007285627A (en) Solidification/fusion promotion method of thermal storage material and thermal storage device
CN104610922B (en) Phase-change material for cold accumulation air-conditioner and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111024