JP2007285606A - Heat transfer tube for air preheater - Google Patents

Heat transfer tube for air preheater Download PDF

Info

Publication number
JP2007285606A
JP2007285606A JP2006113717A JP2006113717A JP2007285606A JP 2007285606 A JP2007285606 A JP 2007285606A JP 2006113717 A JP2006113717 A JP 2006113717A JP 2006113717 A JP2006113717 A JP 2006113717A JP 2007285606 A JP2007285606 A JP 2007285606A
Authority
JP
Japan
Prior art keywords
corrosion
heat transfer
tube
air
air preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006113717A
Other languages
Japanese (ja)
Inventor
Akira Usami
明 宇佐見
Hiroyuki Mimura
裕幸 三村
Junichi Okamoto
潤一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006113717A priority Critical patent/JP2007285606A/en
Publication of JP2007285606A publication Critical patent/JP2007285606A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer tube for an air preheater having high durability to low temperature corrosion generated on the heat transfer tube of the air preheater by a corrosive gas and moisture, and high economical rationality. <P>SOLUTION: With respect to the plurality of heat transfer tubes for the air preheater disposed between tube plates of an air preheater main body through which an exhaust gas including the corrosive gas passes, and heating the air while making the air pass therethrough, an area of 2-30% length to the total length from an air inlet side is composed of a corrosion-proof stainless steel tube having a value of corrosion-resisting alloy index GI=-[Cr]+3.6×[Ni]+4.7×[Mo]+11.6×[Cu] of 40 or more, or a Ni-base alloy tube, and an area of the remaining length is composed of a corrosion-proof low alloy steel tube in conformity to ASTM A423 Grade 3 Code Case 2494. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発電所や事業用ボイラー、ごみ焼却炉などに用いられるガス式の空気予熱器用の伝熱管に関するものである。より詳しくは、腐食性ガスと水分によって空気予熱器の伝熱管で生じる低温腐食に対して高耐久で経済合理性に優れた伝熱管に関するものである。   The present invention relates to a heat transfer tube for a gas-type air preheater used in a power plant, a business boiler, a waste incinerator or the like. More specifically, the present invention relates to a heat transfer tube that is highly durable and excellent in economic rationality against low temperature corrosion caused by a corrosive gas and moisture in a heat transfer tube of an air preheater.

排出される排ガスの余熱を利用するための手段として、一般に、ガス冷却室で高温ガスによる影響のない温度まで降温した排ガスと、空気とを熱交換するガス式空気予熱器(熱交換器)が多く用いられている。   As a means for utilizing the residual heat of the exhaust gas discharged, a gas-type air preheater (heat exchanger) that exchanges heat between the exhaust gas that has been cooled to a temperature that is not affected by the high-temperature gas in the gas cooling chamber and air is generally used. Many are used.

図1は、ごみ焼却炉における上記の排ガスの余熱利用設備の一例を示すブロック図で、1は焼却炉、2は焼却炉1から排出された排ガスを冷却する冷却室、3は冷却室2で降温された排ガスが送られる空気予熱器で、送風機4によって送り込まれた空気は空気予熱器3を通過する間に加熱され、余熱利用設備5へ送られる。一方、空気予熱器3を通過した排ガスは、集塵機6で清浄化され、送風機7により煙突8から外部へ排出される。   FIG. 1 is a block diagram showing an example of the exhaust gas residual heat utilization facility in a waste incinerator, where 1 is an incinerator, 2 is a cooling chamber for cooling the exhaust gas discharged from the incinerator 1, and 3 is a cooling chamber 2. In the air preheater to which the exhaust gas whose temperature has been lowered is sent, the air sent by the blower 4 is heated while passing through the air preheater 3 and is sent to the residual heat utilization facility 5. On the other hand, the exhaust gas that has passed through the air preheater 3 is cleaned by the dust collector 6 and discharged from the chimney 8 to the outside by the blower 7.

上記のような余熱利用設備において、熱交換器3には、一般に、ダストによる閉塞等のトラブルが少ない管外ガス式と呼ばれる形式のものが使用されている。このような管外ガス式熱交換器の一例を図2に示す。31は排ガスが通過する例えば断面方形の熱交換器本体で、排ガス入口32と排ガス出口33とを有し、両側壁(以下管板ということあり)34a、34b間には外側に突出して開口する複数の伝熱管35が平行に取り付けられている。空気導入口側のダクト36は、空気導入口38を有し、熱交換器本体31の一方の側壁34aに伝熱管35の開口部を含む側壁34aを覆って取り付けられたほぼ漏斗状の空気導入部であり、空気流出口側のダクト37は、空気出口39を有し、他方の側壁34bに伝熱管35の開口部を含む側壁34bを覆って取り付けられたほぼ漏斗状の空気導出部である。   In the residual heat utilization equipment as described above, the heat exchanger 3 is generally of a type called an extra-tube gas type that has less troubles such as blockage due to dust. An example of such an extra-tube gas heat exchanger is shown in FIG. Reference numeral 31 denotes a heat exchanger body having a square cross section through which the exhaust gas passes, and has an exhaust gas inlet 32 and an exhaust gas outlet 33. The side walls (hereinafter sometimes referred to as tube plates) 34a and 34b project outward and open. A plurality of heat transfer tubes 35 are attached in parallel. The duct 36 on the air inlet side has an air inlet 38, and a substantially funnel-shaped air inlet attached to one side wall 34 a of the heat exchanger body 31 so as to cover the side wall 34 a including the opening of the heat transfer tube 35. The duct 37 on the air outlet side is a substantially funnel-shaped air outlet portion having an air outlet 39 and attached to the other side wall 34b so as to cover the side wall 34b including the opening of the heat transfer tube 35. .

上記のような熱交換器3においては、ガス冷却器2から送られた排ガスは、排ガス入口32から熱交換本体31内に導かれ、伝熱管35の間を経て排ガス出口33から集塵機6へ送られる。一方、送風機4によって送られた空気は、空気導入口38から空気導入部36に導かれ、各伝熱管35内を通って空気導出部37、空気流出口39を経て排出される。この間、熱交換器本体31内を通過する200〜500℃程度の排ガスにより、空気導入部36から各伝熱管35に導かれた常温程度の空気は、最高250℃程度まで加熱されて余熱利用設備5へ送られる。   In the heat exchanger 3 as described above, the exhaust gas sent from the gas cooler 2 is guided into the heat exchange body 31 from the exhaust gas inlet 32, and is sent to the dust collector 6 from the exhaust gas outlet 33 through the heat transfer pipe 35. It is done. On the other hand, the air sent by the blower 4 is guided from the air inlet 38 to the air inlet 36, passes through the heat transfer tubes 35, and is discharged through the air outlet 37 and the air outlet 39. During this time, air at about room temperature led from the air introduction part 36 to each heat transfer tube 35 by the exhaust gas of about 200 to 500 ° C. passing through the heat exchanger main body 31 is heated to about 250 ° C. at maximum, and the residual heat utilization equipment Sent to 5.

ところで、事業用ボイラーやごみ焼却炉等の排ガスには腐食性ガスが含まれており、特に、排ガス中にSOxが1ppmまで含まれると硫酸が100℃以上で結露し、排ガス系の機器や煙道を激しく腐食させる。これを低温腐食(硫酸露点腐食)とよぶ。低温腐食を軽減するために、機器や煙道のケーシング温度を極力高く保持するために、排ガスの温度を維持したうえで、十分な保温や加熱を行なっている。しかしながら、前述の熱交換器3においては、伝熱管35の中を空気が流れて熱交換を行なっているため、排ガスと接する伝熱管35の表面は全体を通して容易に硫酸露点より低温になり、硫酸露点腐食を受ける。   By the way, corrosive gas is contained in exhaust gas from business boilers and waste incinerators. Especially when SOx is contained up to 1ppm, sulfuric acid is condensed at 100 ° C or more, and exhaust gas equipment and smoke Corrodes the road violently. This is called low temperature corrosion (sulfuric acid dew point corrosion). In order to reduce low temperature corrosion, in order to keep the casing temperature of equipment and flue as high as possible, the temperature of the exhaust gas is maintained and sufficient heat insulation and heating are performed. However, in the heat exchanger 3 described above, air flows through the heat transfer tube 35 to perform heat exchange. Therefore, the entire surface of the heat transfer tube 35 in contact with the exhaust gas easily becomes lower than the sulfuric acid dew point. Subject to dew point corrosion.

伝熱管の低温腐食対策としては、特許文献1によれば、例えば、図3に示すように、伝熱管35の入側開口部から伝熱管35内に短い内挿管40を密着して内挿し、排ガスと空気との間の伝熱量を下げて伝熱管35の表面温度の低下を抑制し、低温腐食を防止する方法、すなわち二重管方式も使用されている。また、特許文献1では、さらに、図4に示すように、内挿管52と伝熱管35とを密着させずに隙間54を設け、かつ、管板を二重構造として空気流入口55から空気を取り込む構造を提案している。   As a countermeasure against low temperature corrosion of heat transfer tubes, according to Patent Document 1, for example, as shown in FIG. 3, a short insertion tube 40 is closely inserted into the heat transfer tube 35 from the entrance side opening of the heat transfer tube 35, A method of reducing the amount of heat transfer between the exhaust gas and air to suppress a decrease in the surface temperature of the heat transfer tube 35 and preventing low temperature corrosion, that is, a double tube method is also used. Further, in Patent Document 1, as shown in FIG. 4, a gap 54 is provided without bringing the inner tube 52 and the heat transfer tube 35 into close contact with each other, and air is supplied from the air inlet 55 with the tube plate having a double structure. A structure to capture is proposed.

一方、耐低温腐食性に優れた耐食管を採用する方法として、例えば特許文献2で提案されている耐硫酸性に優れたオーステナイト系ステンレス鋼を鋼管として採用する方法が考えられる。   On the other hand, as a method of adopting a corrosion-resistant pipe excellent in low-temperature corrosion resistance, for example, a method of adopting austenitic stainless steel excellent in sulfuric acid resistance proposed in Patent Document 2 as a steel pipe can be considered.

特開平07−167585号公報Japanese Patent Laid-Open No. 07-167585 特開平10−168552号公報JP-A-10-168552

しかしながら、上記従来技術の二重管方式を採用する場合(図3参照)、多数ある伝熱管35への内挿管40の挿入施工が困難であり、また、管板34a及び外板41と内挿管40との溶接が面倒で、多くの工数を要するといった施工上の問題あった。さらに、外板41を通して伝熱管35から放熱されるので、低温腐食は避けがたい、といった問題があった。   However, when the above-described conventional double tube method is employed (see FIG. 3), it is difficult to insert the inner tube 40 into the heat transfer tubes 35, and the tube plate 34a, the outer plate 41, and the inner tube are inserted. There was a construction problem that welding with 40 was troublesome and required a lot of man-hours. Furthermore, since heat is radiated from the heat transfer tube 35 through the outer plate 41, there is a problem that low temperature corrosion is unavoidable.

また、特許文献1に記載の従来技術も、施工コストがかかるだけでなく、管板からの抜熱があるために低温腐食を抜本的に回避することが難しいといった問題があった。また、耐硫酸性に優れた耐食管(オーステナイト系)を採用する場合、材料コストが著しく高くなるという問題だけでなく、管板などの他の構成材料が炭素鋼(フェライト系)であり、伝熱管と管板等の構成材料とで熱膨張率が大きく異なるため、ガスのリークを防ぐためには両管板に伝熱管を接合固定する必要があり、設計が極めて難しくなるといった問題があった。   In addition, the conventional technique described in Patent Document 1 has a problem that not only the construction cost is high, but it is difficult to drastically avoid low-temperature corrosion due to heat removal from the tube sheet. In addition, when a corrosion-resistant pipe (austenitic) with excellent sulfuric acid resistance is adopted, not only the material cost is remarkably increased, but other constituent materials such as a tube sheet are carbon steel (ferrite-based), Since the thermal expansion coefficient differs greatly between the heat tube and the constituent material such as the tube plate, it is necessary to join and fix the heat transfer tube to both the tube plates in order to prevent gas leakage, and there is a problem that the design becomes extremely difficult.

そこで、本発明は、腐食性ガスと水分によって空気予熱器の伝熱管で生じる低温腐食に対して、高耐久で経済合理性に優れた空気予熱器用伝熱管を提供することを目的とするものである。   Accordingly, the object of the present invention is to provide a heat transfer tube for an air preheater that is highly durable and excellent in economic rationality against low temperature corrosion that occurs in a heat transfer tube of an air preheater due to corrosive gas and moisture. is there.

本発明者らは、上記課題を解決するために、空気予熱器の伝熱管の腐食機構を鋭意研究した結果、下記の知見を得た。   In order to solve the above-mentioned problems, the present inventors diligently studied the corrosion mechanism of the heat transfer tube of the air preheater, and as a result, obtained the following knowledge.

(i)伝熱管の低温腐食は一様ではない。空気入り側端からある長さまでは酸性を示す大量のドレインによる水腐食が支配的であり、より高温側になると硫酸露点腐食が支配的である。 (I) Low temperature corrosion of heat transfer tubes is not uniform. Water corrosion due to a large amount of drain that shows acidity is dominant at a certain length from the pneumatic side end, and sulfuric acid dew point corrosion is dominant at higher temperatures.

(ii)空気入り側端付近で生じる酸性ドレインによる水腐食に対しては、GI値≧50を示すオーステナイト系ステンレス鋼または二相ステンレス鋼、またはNi基合金が優れている。より高温側で生じる硫酸露点腐食に対しては、例えばCuを0.3%程度、Sbを0.1%程度含有する耐硫酸露点腐食鋼管が優れている。 (Ii) Austenitic stainless steel or duplex stainless steel showing a GI value ≧ 50, or Ni-based alloy is excellent against water corrosion caused by acidic drains that occur near the air-side end. For sulfuric acid dew point corrosion occurring on the higher temperature side, for example, a sulfuric acid dew point corrosion steel pipe containing about 0.3% Cu and about 0.1% Sb is excellent.

(iii )上記知見(ii)を満足する耐食ステンレス鋼管を空気入り側とし、残部を耐硫酸性低合金鋼管とし、両者を摩擦圧接接合した複合鋼管で1本の伝熱管を製作し、従来の炭素鋼製伝熱管に代えて試験した。管板および継手部で、異種継手における異種金属接触腐食による選択腐食を懸念していたが、予想を覆し、実用上問題ないレベルであることを知見した。その理由を鋭意研究した結果、凝結による液薄膜が極めて薄く、異種金属間で電池を十分に形成しないことを知見した。 (Iii) A corrosion-resistant stainless steel pipe satisfying the above-mentioned knowledge (ii) is made into a pneumatic side, the remainder is made of a sulfate-resistant low-alloy steel pipe, and one heat transfer pipe is manufactured by a composite steel pipe in which both are friction welded. The test was conducted in place of a carbon steel heat transfer tube. At the tube sheet and joint part, we were concerned about selective corrosion due to dissimilar metal contact corrosion at dissimilar joints. As a result of earnest research on the reason, it was found that the liquid thin film formed by condensation was extremely thin and the battery was not sufficiently formed between different metals.

(iv)高耐食鋼管の長さが全体の長さの30%以下であれば、熱膨張率の差による弊害もないことが確認された。 (Iv) If the length of the highly corrosion-resistant steel pipe is 30% or less of the total length, it was confirmed that there is no harmful effect due to the difference in thermal expansion coefficient.

本発明は、以上の知見を基になされたもので、その要旨とするところは、腐食性ガスを含む排ガスが通過する空気予熱器本体の管板間に複数取り付けられ、その中に空気を通過させて空気を加熱する空気予熱器用伝熱管であって、空気入り側から全長に対して2〜30%の長さ領域が、耐食合金指標GI=−[Cr]+3.6×[Ni]+4.7×[Mo]+11.6×[Cu]の値が40以上の耐食ステンレス鋼管、またはNi基合金管からなり、残部の長さ領域がASTM A423 Grade 3 Code Case 2494に準拠した耐食性低合金鋼管からなることを特徴とする、空気予熱器用伝熱管である。   The present invention has been made on the basis of the above knowledge, and the gist of the present invention is that a plurality of air preheater main bodies through which exhaust gas containing corrosive gas passes are attached, and the air passes through them. The heat transfer tube for an air preheater that heats the air and has a length region of 2 to 30% with respect to the entire length from the air-filled side is a corrosion-resistant alloy index GI = − [Cr] + 3.6 × [Ni] +4 Corrosion-resistant low alloy consisting of a corrosion-resistant stainless steel pipe or Ni-based alloy pipe having a value of 7 × [Mo] + 11.6 × [Cu] of 40 or more and the remaining length region conforming to ASTM A423 Grade 3 Code Case 2494 It is a heat transfer tube for an air preheater characterized by comprising a steel tube.

本発明の空気予熱器用伝熱管は、施工コスト、材料コストに優れながら、設備の構造や施工方法はほぼ従来のままで、低温腐食に対して優れた耐久性を示し、熱効率の安定化および維持管理費の低減など、希少合金使用量の削減など、産業上の寄与は極めて大きい。   The heat transfer tube for the air preheater of the present invention is excellent in construction cost and material cost, and the structure and construction method of the equipment is almost the same as the conventional one, exhibiting excellent durability against low temperature corrosion, and stabilizing and maintaining the thermal efficiency. Industrial contributions such as reduction of administration costs and reduction of rare alloy usage are extremely significant.

本発明は、前述の課題を克服し、目的を達成するもので、その具体的手段を図面に基づいて説明する。   The present invention overcomes the above-mentioned problems and achieves the object, and specific means thereof will be described with reference to the drawings.

図1は、本発明の実施形態に係る空気予熱器を設備したごみ焼却炉の全体フロー図であり、図2は、空気予熱器の全体図、図5は、本発明の伝熱管の構造図である。   FIG. 1 is an overall flow diagram of a waste incinerator equipped with an air preheater according to an embodiment of the present invention, FIG. 2 is an overall view of the air preheater, and FIG. 5 is a structural diagram of a heat transfer tube of the present invention. It is.

図6は、図2の空気予熱器で1年間使用した普通鋼管(JIS G 3461 STB340)を抜管し、表層の鉄さびの構成分の割合、および腐食減肉量と空気入り側端からの関係を示す。腐食減肉量は、図6中で、空気入口からの管長率でおよそ0.2を境に二つの領域(以下、便宜的に、空気入口からの管長率の低い側を領域I、高い側を領域IIという。)に大別されることがわかる。また、硫酸鉄は、硫酸露点腐食による腐食生成物であり、FeOOHは水腐食による腐食生成物であることから、領域Iでは主として水腐食、領域IIでは主として硫酸露点腐食が生じていたことがわかる。従って、領域Iで優れた耐食性を示す合金と領域IIで優れた耐食性を示す材料を選択すれば合理的である。   Fig. 6 shows the relationship between the steel rust component of the surface layer and the amount of corrosion thinning and the relationship from the pneumatic end to the normal steel pipe (JIS G 3461 STB340) used for one year with the air preheater shown in Fig. 2. Show. In FIG. 6, the amount of corrosion thinning is divided into two regions with a tube length ratio from the air inlet of about 0.2 as a boundary (hereinafter, for convenience, the lower side of the tube length from the air inlet is the region I, and the higher side. It is understood that this is broadly divided into area II). In addition, since iron sulfate is a corrosion product due to sulfuric acid dew point corrosion, and FeOOH is a corrosion product due to water corrosion, it can be seen that water corrosion mainly occurs in region I and sulfuric acid dew point corrosion mainly occurs in region II. . Therefore, it is reasonable to select an alloy that exhibits excellent corrosion resistance in region I and a material that exhibits excellent corrosion resistance in region II.

領域Iの材質:
領域Iの材料としては、耐食合金指標、GI=[Cr]+1.6×[Ni]+6.0×[Mo]+7.1×[Cu]の値が40未満であると、低pHのドレインによる全面腐食やすきま部での孔食や応力腐食割れなどで満足する耐食性が得られないので、GI値が40以上の耐食合金が必要である。SUS316以上の高グレードのオーステナイト系の耐食ステンレス鋼が望ましい。また、ハステロイなどのNi基合金も適用できる。
Area I material:
As the material of the region I, when the value of the corrosion-resistant alloy index, GI = [Cr] + 1.6 × [Ni] + 6.0 × [Mo] + 7.1 × [Cu] is less than 40, a low pH drain Since satisfactory corrosion resistance cannot be obtained due to pitting corrosion or stress corrosion cracking in the entire surface corrosion or crevice due to the above, a corrosion resistant alloy having a GI value of 40 or more is required. High grade austenitic corrosion resistant stainless steel of SUS316 or higher is desirable. Ni-based alloys such as Hastelloy can also be applied.

領域IIの材質:
領域IIでは硫酸露点腐食が支配的なので、十分な耐食性を得るにはCuやSbなどの耐食元素を合計で1%以下程度に添加した耐食低合金鋼である必要がある。
Area II material:
In region II, since sulfuric acid dew point corrosion is dominant, in order to obtain sufficient corrosion resistance, it is necessary to be a corrosion resistant low alloy steel to which a total of corrosion resistant elements such as Cu and Sb are added to about 1% or less.

領域Iの材質の所要長さ:
伝熱管の全長に対する領域Iの材質の所要長さは、十分な耐食性を得るには2%以上が必要である。また、30%を超えると材料コストが高くなり、また、熱膨張係数の増加が設計上無視できなくなるので30%以下に限定する。耐久性、施工性、材料コストを総合的に考慮すると、5〜20%が好ましい。
Required length of area I material:
The required length of the material in the region I with respect to the entire length of the heat transfer tube is 2% or more in order to obtain sufficient corrosion resistance. Further, if it exceeds 30%, the material cost becomes high, and an increase in the thermal expansion coefficient cannot be ignored in design, so it is limited to 30% or less. When comprehensively considering durability, workability, and material cost, 5 to 20% is preferable.

耐食高合金製鋼管と耐食低合金鋼管のサイズ:
内径および外径は同一が望ましい。特に、管内面を排ガスが通過する構造の場合は、内径を同一として継手付近での灰の堆積や閉塞を防ぐのが好ましい。
Size of corrosion resistant high alloy steel pipe and corrosion resistant low alloy steel pipe:
It is desirable that the inner diameter and the outer diameter are the same. In particular, in the case of a structure in which exhaust gas passes through the inner surface of the pipe, it is preferable to prevent the accumulation and blockage of ash near the joint with the same inner diameter.

異材管の接合方法については、本発明では限定しないが、突合せ円周溶接、摩擦圧接などの溶接法や、焼きばめなどの機械接合等、いずれも適用できる。   The method for joining the dissimilar pipes is not limited in the present invention, but any of welding methods such as butt circumference welding and friction welding, and mechanical joining such as shrink fitting can be applied.

以下に、本発明の効果を実施例によりさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the effects of the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to the following Example.

表1に示した素材を用いて、表2に示す伝熱管を製作し、ごみ焼却炉の空気予熱器に2年間使用した後、抜管し、除錆後の腐食減肉量を測定評価した。いずれも、初期板厚は3.7mmであった。   Using the materials shown in Table 1, the heat transfer tubes shown in Table 2 were manufactured and used for 2 years in an air preheater of a garbage incinerator, then piped out, and the corrosion thinning after rust removal was measured and evaluated. In all cases, the initial plate thickness was 3.7 mm.

なお、伝熱管の全長は5.0mである。ごみ焼却炉は連続運転で稼動し、2ヶ月に一度、数日の定期修理で休止した。   The total length of the heat transfer tube is 5.0 m. The waste incinerator operated continuously, and was suspended once every two months for several days.

比較例1は、領域I、IIともに普通鋼(炭素鋼)製の鋼管であるので、領域Iでは腐食孔あき、領域IIでも2mm以上の減肉が認められた。   Since Comparative Example 1 is a steel pipe made of ordinary steel (carbon steel) in both regions I and II, corrosion perforations were found in region I, and a thickness reduction of 2 mm or more was observed in region II.

比較例2は、領域I、IIともに耐硫酸性低合金鋼管製であるので、領域IIでの減肉は0.5mm未満で良好だったが、領域Iでは腐食孔あきが認められた。   In Comparative Example 2, since both the regions I and II are made of a sulfate-resistant low alloy steel pipe, the thickness reduction in the region II was good at less than 0.5 mm, but in the region I, corrosion holes were observed.

比較例3は、領域IがSUS304製、領域IIがASTM A423 Grade 3 Code Case 2494に準拠した耐硫酸性鋼(CRLS)製としたが、領域IのSUS304のGI値が50未満と本発明の範囲外なので、領域Iで1mm以上の腐食減肉、孔食による孔あき、応力腐食割れが認められた。   In Comparative Example 3, the region I was made of SUS304, and the region II was made of sulfuric acid resistant steel (CRLS) compliant with ASTM A423 Grade 3 Code Case 2494. However, the GI value of the SUS304 of the region I was less than 50. Since it was out of range, corrosion thinning of 1 mm or more, perforation due to pitting corrosion, and stress corrosion cracking were observed in region I.

比較例4は、領域IがSUS329J1製、領域IIが耐硫酸性鋼(CRLS)製としたが、SUS329J1のGI値が50未満と本発明の範囲外なので、領域Iで1mm以上の腐食減肉が認められた。   In Comparative Example 4, the region I was made of SUS329J1 and the region II was made of sulfuric acid resistant steel (CRLS). However, since the GI value of SUS329J1 is less than 50 and outside the scope of the present invention, the thickness of the corrosion is 1 mm or more in the region I. Was recognized.

比較例5は、領域IがSUS316製、領域IIが普通鋼製の鋼管で、領域IIで2mm以上の減肉が認められた。   In Comparative Example 5, the region I was a steel pipe made of SUS316 and the region II was made of plain steel, and a thickness reduction of 2 mm or more was observed in the region II.

本発明例11、12は、領域Iで0.3mm、領域IIで0.5mm未満であり、推定耐食寿命が8年超と比較例よりも延長されることが明らかである。   Inventive Examples 11 and 12 are 0.3 mm in Region I and less than 0.5 mm in Region II, and it is clear that the estimated corrosion resistance life is more than 8 years, which is longer than that of the Comparative Example.

表3に、本発明例21〜24の結果を示す。本発明例21〜24は、領域IをUNS. 83254に準拠したステンレス鋼(YUS270)製、領域IIを耐硫酸性鋼(CRLS)製とし、YUS270製鋼管の長さを変化させ、CRLS製鋼管で低温側で発生する水腐食による減肉が生じているか判定した結果を示す。YUS270の管長率は最低2%以上必要なことが明らかである。   Table 3 shows the results of Examples 21 to 24 of the present invention. In invention examples 21 to 24, the region I is defined as UNS. Made of stainless steel (YUS270) compliant with 83254, made of region II made of sulfuric acid resistant steel (CRLS), changing the length of the YUS270 steel pipe, resulting in thinning due to water corrosion occurring on the low temperature side of the CRLS steel pipe Indicates the result of determining whether or not It is clear that the tube length ratio of YUS270 is required to be at least 2%.

Figure 2007285606
Figure 2007285606

Figure 2007285606
Figure 2007285606

Figure 2007285606
Figure 2007285606

排ガスの余熱利用設備の一例を示すブロック図である。It is a block diagram which shows an example of the residual heat utilization equipment of waste gas. 従来の熱交換器の全体構造の一例を模式式に示す図である。It is a figure which shows typically an example of the whole structure of the conventional heat exchanger. 従来の熱交換器の伝熱管の要部の一例を断面図で模式的に示す図である。It is a figure which shows typically an example of the principal part of the heat exchanger tube of the conventional heat exchanger with sectional drawing. 従来の熱交換器の伝熱管の要部の他の例を断面図で模式的に示す図である。It is a figure which shows typically other examples of the principal part of the heat exchanger tube of the conventional heat exchanger with sectional drawing. 本発明の伝熱管の構造図である。It is a structural diagram of the heat transfer tube of the present invention. 熱交換器の伝熱管として経年使用した普通鋼製鋼管の腐食減肉量、腐食生成物の相対強度と空気入口端からの距離との関係を示す図である。It is a figure which shows the relationship between the corrosion thinning amount of the normal steel steel pipe used for a long time as a heat exchanger tube of a heat exchanger, the relative strength of a corrosion product, and the distance from an air inlet end.

符号の説明Explanation of symbols

1 焼却炉
2 ガス冷却室
3 空気予熱器
4 送風機
5 余熱利用設備
6 集塵機
7 誘引送風機
8 煙突
31 空気予熱器本体
32 排ガス入口
33 排ガス出口
34a 空気導入側の管板
34b 空気流出側の管板
35 伝熱管
36 空気導入口側のダクト(空気導入部)
37 空気流出口側のダクト(空気導出部)
38 空気導入口
39 空気流出口
40 内挿管
41 二重管板の外板
42 断熱材
50 内挿管ユニット
51 二重管板の外板
52 内挿管
53 隙間
54 隙間
55 空気流入口
DESCRIPTION OF SYMBOLS 1 Incinerator 2 Gas cooling chamber 3 Air preheater 4 Blower 5 Excess heat utilization equipment 6 Dust collector 7 Induction fan 8 Chimney 31 Air preheater main body 32 Exhaust gas inlet 33 Exhaust gas outlet 34a Air introduction side tube plate 34b Air outflow side tube plate 35 Heat transfer tube 36 Duct on the air inlet side (air inlet)
37 Duct on the air outlet side (air outlet)
38 Air Inlet 39 Air Outlet 40 Inner Intubation 41 Outer Plate of Double Tube Sheet 42 Insulating Material 50 Inner Intubation Unit 51 Outer Plate of Double Tube Sheet 52 Inner Intubation 53 Gap 54 Gap 55 Air Inlet

Claims (1)

腐食性ガスを含む排ガスが通過する空気予熱器本体の管板間に複数取り付けられ、その中に空気を通過させて空気を加熱する空気予熱器用伝熱管であって、空気入り側から全長に対して2〜30%の長さ領域が、耐食合金指標GI=−[Cr]+3.6×[Ni]+4.7×[Mo]+11.6×[Cu]の値が40以上の耐食ステンレス鋼管、またはNi基合金管からなり、残部の長さ領域がASTM A423 Grade 3 Code Case 2494に準拠した耐食性低合金鋼管からなることを特徴とする空気予熱器用伝熱管。   A plurality of air preheater heat transfer tubes that are attached between the tube plates of the air preheater main body through which exhaust gas containing corrosive gas passes, and that allow air to pass through them and heat the air, 2-30% length region is a corrosion resistant alloy index GI = − [Cr] + 3.6 × [Ni] + 4.7 × [Mo] + 11.6 × [Cu] with a value of 40 or more. A heat transfer tube for an air preheater comprising: a Ni-based alloy tube, and the remaining length region comprising a corrosion-resistant low alloy steel tube compliant with ASTM A423 Grade 3 Code Case 2494.
JP2006113717A 2006-04-17 2006-04-17 Heat transfer tube for air preheater Pending JP2007285606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113717A JP2007285606A (en) 2006-04-17 2006-04-17 Heat transfer tube for air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113717A JP2007285606A (en) 2006-04-17 2006-04-17 Heat transfer tube for air preheater

Publications (1)

Publication Number Publication Date
JP2007285606A true JP2007285606A (en) 2007-11-01

Family

ID=38757555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113717A Pending JP2007285606A (en) 2006-04-17 2006-04-17 Heat transfer tube for air preheater

Country Status (1)

Country Link
JP (1) JP2007285606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080215A (en) * 2014-10-14 2016-05-16 株式会社プランテック Heat transfer pipe repair method of heat exchanger and insertion pipe for heat transfer pipe repair

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56171487U (en) * 1980-05-22 1981-12-18
JPH02170946A (en) * 1988-12-23 1990-07-02 Nippon Steel Corp High alloy stainless steel for chimney, flue and desulfurizing equipment having excellent corrosion resistance
JPH07167585A (en) * 1993-12-14 1995-07-04 Nkk Corp Low temperature corrosion prevention structure of heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56171487U (en) * 1980-05-22 1981-12-18
JPH02170946A (en) * 1988-12-23 1990-07-02 Nippon Steel Corp High alloy stainless steel for chimney, flue and desulfurizing equipment having excellent corrosion resistance
JPH07167585A (en) * 1993-12-14 1995-07-04 Nkk Corp Low temperature corrosion prevention structure of heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080215A (en) * 2014-10-14 2016-05-16 株式会社プランテック Heat transfer pipe repair method of heat exchanger and insertion pipe for heat transfer pipe repair

Similar Documents

Publication Publication Date Title
JP5827659B2 (en) Oxygen heat exchanger
JP5927163B2 (en) Pipe manufacturing method
CA2872451C (en) Heat exchanger having enhanced corrosion resistance
JP2003328088A (en) Ferritic stainless steel for heat exchanger
JP4948834B2 (en) Corrosion-resistant coating alloy and member coated therewith
JP2007285606A (en) Heat transfer tube for air preheater
JP2007163115A (en) Heat exchanger
JP2007162987A (en) Heat exchanger, its manufacturing method and heat exchange method
EP1936315A1 (en) Protected carbon steel pipe for conveying flue gases in a heat exchange apparatus
JP2705545B2 (en) Low temperature corrosion prevention structure of heat exchanger
CA2912555C (en) Corrosion resistant air preheater with lined tubes
JP2007017029A (en) Waste heat recovery device for industrial furnace
JP2007054887A (en) Heat resistant clad steel sheet
KR20080051115A (en) Duct for an electric furnace
JP2004184045A (en) Heat exchanger
JPH11211046A (en) Waste incinerating furnace
Cox et al. Components susceptible to dew-point corrosion
JP2005221133A (en) Heat exchanger and combustion furnace device using the same
JP5622323B2 (en) Heat exchanger
JP5366851B2 (en) Heat exchanger
Sekulic Failure Analysis of Heat Exchangers
JPH09210260A (en) Anticorrosive steel pipe
ADAMSON Application of titanium in shipboard seawater cooling systems
JP2004069102A (en) Double cylinder type heat exchanger
JP2021085046A (en) Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Effective date: 20110111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628