JP2007017029A - Waste heat recovery device for industrial furnace - Google Patents

Waste heat recovery device for industrial furnace Download PDF

Info

Publication number
JP2007017029A
JP2007017029A JP2005196690A JP2005196690A JP2007017029A JP 2007017029 A JP2007017029 A JP 2007017029A JP 2005196690 A JP2005196690 A JP 2005196690A JP 2005196690 A JP2005196690 A JP 2005196690A JP 2007017029 A JP2007017029 A JP 2007017029A
Authority
JP
Japan
Prior art keywords
cylinder
heat exchange
flue
heat recovery
recuperator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005196690A
Other languages
Japanese (ja)
Inventor
Hiroaki Takeshita
弘秋 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005196690A priority Critical patent/JP2007017029A/en
Publication of JP2007017029A publication Critical patent/JP2007017029A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Air Supply (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily prevent deformation and breakage of a heat exchange tube and improve the life thereof by facilitating maintenance of a waste heat recovery device for industrial furnace. <P>SOLUTION: The waste heat recovery device is adapted so that combustion air is preheated by latent heat of exhaust gas discharged through a flue by supporting upper headers 4 and 5 of recuperators 2a and 2b on an upper wall portion of a cylinder 1 provided in the middle of a flue, suspending a plurality of heat exchange tubes 7 continued from the upper headers to a lower header 6 within the cylinder, and circulating the combustion air to the recuperators. In this device, a dust cleaning port 11 openable and closable by a door 12 is provided on a lower wall portion of the cylinder, so that dust collected in clearances 10a and 10b between the bottom surface of the cylinder and the lower header can be discharged through the dust cleaning port. The heat exchange tubes are made of austenic stainless steel (SUS310S), and subjected to calorize treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加熱炉等の工業用炉の煙道の途中に設けられ排ガスの顕熱によって燃焼用空気を予熱する排熱回収装置に関するものである。   The present invention relates to an exhaust heat recovery apparatus that is provided in the middle of a flue of an industrial furnace such as a heating furnace and preheats combustion air by sensible heat of exhaust gas.

加熱炉、熱処理炉、焼却炉等の工業用炉では、その煙道の途中に複数本の熱交換チューブからなるレキュペレータを設け、燃焼用空気が該熱交換チューブを通してバーナ等に供給されるようにすることで、該煙道を通る高温度の排ガスの顕熱により該燃焼用空気を予熱し、熱効率を向上させることが通常行われる。   In industrial furnaces such as heating furnaces, heat treatment furnaces, and incinerators, a recuperator consisting of a plurality of heat exchange tubes is provided in the middle of the flue so that combustion air is supplied to the burner and the like through the heat exchange tubes. Thus, the combustion air is usually preheated by the sensible heat of the high-temperature exhaust gas passing through the flue to improve the thermal efficiency.

ところで上記レキュペレータの熱交換チューブは、従来から高温強度が優れたSUS304等のオーステナイト系ステンレス鋼が使用されていたが、同材料は高温酸化性があり耐食性が必ずしも良くないという問題がある。このため高温度の排ガスにより変形、破損し易く、寿命が短いのが問題であった。また、フェライト系耐熱ステンレス鋼のシクロマル(Cr−Si−Al鋼)は、比較的耐高温腐食性が良好であるものの、高温強度が弱く材料温度が850℃以上になると強度不足による変形が激しいという問題がある。
このため、従来では煙道に冷風を導入し排ガス温度を下げた後に熱交換チューブに接触(ダイリューション)させるようにしたり、或いは、下記特許文献1に提示されたように煙道に冷却水を吹き込むことも考えられた。
特開2003−21471号公報
By the way, as for the heat exchange tube of the recuperator, austenitic stainless steel such as SUS304 having excellent high-temperature strength has been conventionally used. However, this material has a problem that it has high-temperature oxidation and does not necessarily have good corrosion resistance. For this reason, it has been a problem that it is easily deformed and damaged by high-temperature exhaust gas and has a short life. In addition, the ferritic heat resistant stainless steel cyclomal (Cr-Si-Al steel) has relatively good high-temperature corrosion resistance, but the high-temperature strength is weak and deformation due to insufficient strength is severe when the material temperature exceeds 850 ° C. There's a problem.
For this reason, conventionally, cold air is introduced into the flue and the exhaust gas temperature is lowered, and then the heat exchange tube is brought into contact (dilution), or cooling water is supplied to the flue as disclosed in Patent Document 1 below. It was also possible to blow in.
JP 2003-21471 A

しかし、煙道に冷風を導入することでは熱回収効率が悪くなるという問題があり、また、煙道に冷却水を吹き込むと、排ガス中の硫黄と水とが反応して硫酸が発生し熱交換チューブを一層腐食させるおそれがある。   However, introducing cold air into the flue has the problem of poor heat recovery efficiency, and when cooling water is blown into the flue, sulfur in the exhaust gas reacts with water to generate sulfuric acid and heat exchange. There is a risk of further corroding the tube.

また、熱交換チューブの熱膨脹代を吸収し得る間隙を設けることにより該熱交換チューブの変形,破損を防止する構造は採られていたが、この間隙には排ガス中のダストが非常に堆積し易いにも拘わらず、従来では操業を一旦停止しレキュペレータを上方に吊り出してからでないとこの間隙のダストを除去することができなかったので、長期連続操業を行うことを常とする加熱炉においては操業中にもこの間隙にダストが充満してしまい、熱交換チューブを変形させることが多かった。   In addition, a structure for preventing deformation and breakage of the heat exchange tube by providing a gap capable of absorbing the thermal expansion allowance of the heat exchange tube has been adopted, but dust in the exhaust gas is very easily accumulated in this gap. In spite of this, in the past, it was not possible to remove dust in the gaps until the operation was temporarily stopped and the recuperator was lifted upward. In many cases, the gap was filled with dust, and the heat exchange tube was often deformed.

本発明は上記課題を解決しようとするもので、請求項1に記載の排熱回収装置は、煙道の途中に設けられる筒体の上壁部にレキュペレータの上部ヘッダを支持し、該上部ヘッダから下部ヘッダに連なる複数本の熱交換チューブを筒体内に垂下し、該レキュペレータに燃焼用空気を循環させることにより該煙道を通って排出される排ガスの顕熱により該燃焼用空気が予熱されるようにした排熱回収装置において、筒体の下部側壁に扉によって開閉可能なるダスト清掃口を設け、該ダスト清掃口から該筒体の底面と下部ヘッダとの間隙に溜まるダストを排出し得るようにしたことを特徴とする。
また請求項2に記載の発明は、上記排熱回収装置において、レキュペレータの熱交換チューブはオーステナイト系ステンレス鋼(SUS310S)を材料とし、カロライズ処理をすることによりその表面にアルミ拡散浸透層を形成してなるものであることを特徴とする。
The present invention is intended to solve the above-mentioned problem, and the exhaust heat recovery apparatus according to claim 1 supports an upper header of a recuperator on an upper wall portion of a cylinder provided in the middle of a flue, and the upper header. The combustion air is preheated by the sensible heat of the exhaust gas discharged through the flue by suspending a plurality of heat exchange tubes connected to the lower header in the cylinder and circulating the combustion air through the recuperator. In the exhaust heat recovery apparatus configured as described above, a dust cleaning port that can be opened and closed by a door is provided on the lower side wall of the cylinder, and dust accumulated in a gap between the bottom surface of the cylinder and the lower header can be discharged from the dust cleaning port. It is characterized by doing so.
Further, in the second aspect of the present invention, the heat exchange tube of the recuperator is made of austenitic stainless steel (SUS310S) and calorized to form an aluminum diffusion / permeation layer on the surface thereof. It is characterized by the above.

請求項1に記載した排熱回収装置では、レキュペレータの下部ヘッダと筒体の底面との間隙に溜まったダストをその側壁のダスト清掃口から容易に排出することができるので、メンテナンスが容易となり、熱交換チューブの変形,破損を容易に防止することができる。
請求項1に記載の排熱回収装置では、熱交換チューブが優れた耐食性、耐熱性を備えていることから、レキュペレータの寿命を向上させる。
In the exhaust heat recovery apparatus according to claim 1, since dust accumulated in the gap between the lower header of the recuperator and the bottom surface of the cylindrical body can be easily discharged from the dust cleaning port of the side wall, maintenance becomes easy. Deformation and breakage of the heat exchange tube can be easily prevented.
In the exhaust heat recovery apparatus according to claim 1, since the heat exchange tube has excellent corrosion resistance and heat resistance, the life of the recuperator is improved.

図1は本発明に係る排熱回収装置の縦断面図、図2はそのA−A線断面拡大図である。1は加熱炉の排ガスを矢印で示した方向に流す煙道の途中に設けられる筒体、2a,2bは該筒体に設けられ該排ガスの顕熱を回収する高温側のレキュペレータと低温側のレキュペレータである。該各レキュペレータは、一対の上部ヘッダ4,5と下部ヘッダ6とを複数本の熱交換チューブ7により連結することにより構成されている。そして、筒体1の上壁部に開口8a,8bを開設すると共に、筒体1の下壁部にピット9a,9bを形成し、上部ヘッダ4,5を該筒体1の上壁部上面に設けられた支持縁10上に乗架することにより熱交換チューブ7を該筒体1内に垂下し下部ヘッダ6をピット9a,9b中にて筒体1の底面とそれぞれ間隙10a,10bを隔てて対峙するように宙づりにすることで該下部ヘッダ6が熱交換チューブ7の熱膨張・収縮に合わせて自在に昇降するようにしている。   FIG. 1 is a longitudinal sectional view of an exhaust heat recovery apparatus according to the present invention, and FIG. 2 is an enlarged sectional view taken along line AA. 1 is a cylinder provided in the middle of a flue through which the exhaust gas of the heating furnace flows in the direction indicated by the arrow, 2a and 2b are a high temperature side recuperator that is provided in the cylinder and collects sensible heat of the exhaust gas, and a low temperature side It is a recuperator. Each of the recuperators is configured by connecting a pair of upper headers 4, 5 and a lower header 6 by a plurality of heat exchange tubes 7. And opening 8a, 8b is opened in the upper wall part of the cylinder 1, and pits 9a, 9b are formed in the lower wall part of the cylinder 1, and the upper headers 4, 5 are connected to the upper wall part upper surface of the cylinder 1. The heat exchange tube 7 is suspended in the cylindrical body 1 by being laid on the support edge 10 provided on the bottom of the cylindrical body 1 so that the lower header 6 is spaced from the bottom surface of the cylindrical body 1 in the pits 9a and 9b. The lower header 6 is lifted and lowered freely according to the thermal expansion / contraction of the heat exchange tube 7 by being suspended so as to face each other.

そして図2に示したように、煙道1の下部側壁にダスト清掃口11を開設し、該ダスト清掃口に扉12を設け、該扉をボルト13で締め付けることで、該ダスト清掃口が常態では閉止状態に保たれるようにしている。なお、14a,14bはピット9a,9bの上流側堤上に積んだレンガで、該レンガを積むことにより排ガス中のダストが該ピット9a,9b中に流れ込み難いようにしている。   And as shown in FIG. 2, the dust cleaning port 11 is opened in the lower side wall of the flue 1, the door 12 is provided in the dust cleaning port, and the door is tightened with the bolt 13, so that the dust cleaning port is in a normal state. Then, it keeps it in a closed state. 14a and 14b are bricks piled on the upstream bank of the pits 9a and 9b, and the bricks are piled up so that the dust in the exhaust gas does not easily flow into the pits 9a and 9b.

なお、このレキュペレータ2a,2bの各熱交換チューブ7は、25Cr−20Niのオーステナイト系ステンレス鋼(SUS310S)からなり、これをカロライズ処理することにより表面にアルミ拡散浸透処理層を形成する。カロライズ処理は、熱交換チューブをFe・Al合金粉およびNHCl粉よりなる調合剤と共に鋼製ケース内に埋め込んで密閉し、900〜1000℃に加熱することにより、Fe・Al合金粉中のAlがHClと反応してAlCl蒸気となりそのAlを熱交換チューブの表面に拡散浸透させるものであり、図3に示したように、このアルミ拡散浸透処理層が高温排ガス中でOと反応しAl(アルミナ)を生じさせることから耐食性が向上する。 The heat exchange tubes 7 of the recuperators 2a and 2b are made of 25Cr-20Ni austenitic stainless steel (SUS310S), and an aluminum diffusion / penetration treatment layer is formed on the surface by calorizing this. In the calorizing treatment, the heat exchange tube is embedded and sealed in a steel case together with a preparation composed of Fe · Al alloy powder and NH 4 Cl powder, and heated to 900 to 1000 ° C. Al reacts with HCl to form AlCl 3 vapor, which diffuses and permeates the surface of the heat exchange tube. As shown in FIG. 3, this aluminum diffusion permeation treatment layer reacts with O 2 in high-temperature exhaust gas. In addition, since Al 2 O 3 (alumina) is produced, the corrosion resistance is improved.

図4は、上記オーステナイト系ステンレス鋼(SUS310S)と、同じくオーステナイト系ステンレス鋼(SUS303)と、フェライト系ステンレス鋼(Cr−Si−Al鋼)として知られているシクロマル(SICRMAL12)の高温引張強度を比較したグラフであり、また、図5はこれらの高温酸化性を比較したグラフである。この両グラフからSUS310Sは高温引張強度が優れているものの、高温酸化性がSUS303と比べて良くないことが分かる。   FIG. 4 shows the high-temperature tensile strengths of the austenitic stainless steel (SUS310S), the austenitic stainless steel (SUS303), and the cyclomal (SICRMAL12) known as ferritic stainless steel (Cr-Si-Al steel). FIG. 5 is a graph comparing these high-temperature oxidation properties. From these graphs, it can be seen that SUS310S is excellent in high-temperature tensile strength, but high-temperature oxidation is not as good as SUS303.

一方、図6はこれらの3つの材料を用いて作ったチューブ、および上記カロライズ処理によりSUS310Sの表面にアルミ拡散浸透処理層を形成したチューブを約1000℃の排ガスが通過する均熱炉の排ガス通路に1月間置いて耐久テストを実施し、その腐食減量を測定した結果をグラフに示すものである。この結果、SUS310Sの表面にアルミ拡散浸透処理層を形成した熱交換チューブは、上記のように表面がAlの皮膜によって保護されシクロマルと同等に腐食減量が非常に少なく抑えられること分かった。これによって、カロライズ処理をしたSUS310Sからなる熱交換チューブは非常に優れた耐食性、耐熱性を備えていることが確かめられた。 On the other hand, FIG. 6 shows an exhaust gas passage of a soaking furnace through which exhaust gas of about 1000 ° C. passes through a tube made using these three materials and a tube in which an aluminum diffusion permeation treatment layer is formed on the surface of SUS310S by the calorizing treatment. The graph shows the results of the endurance test conducted for 1 month and the corrosion weight loss measured. As a result, it was found that the heat exchange tube in which the aluminum diffusion permeation treatment layer was formed on the surface of SUS310S was protected by the Al 2 O 3 film as described above, and the corrosion weight loss was suppressed to be as low as cyclomal. . As a result, it was confirmed that the heat exchange tube made of SUS310S subjected to calorizing treatment has very excellent corrosion resistance and heat resistance.

そして、この排熱回収装置では扉12を開けダスト清掃口11よりピット9a,9bに溜まったダストを排出することができ、従来のように清掃のためにレキュペレータ2a,2bをいちいち吊り出す必要がない。このため熱交換チューブ7の熱膨張・収縮を吸収する下部ヘッダ6と筒体1の底面との間隙10a,10bが容易に確保でき、熱交換チューブ7の変形,破損を防止するためのメンテナンスが容易となる。   In this exhaust heat recovery device, the door 12 can be opened and the dust accumulated in the pits 9a and 9b can be discharged from the dust cleaning port 11, and it is necessary to suspend the recuperators 2a and 2b one after another for cleaning. Absent. Therefore, the gaps 10a and 10b between the lower header 6 that absorbs the thermal expansion / contraction of the heat exchange tube 7 and the bottom surface of the cylinder 1 can be easily secured, and maintenance for preventing deformation and breakage of the heat exchange tube 7 can be performed. It becomes easy.

本発明に係る排熱回収装置の縦断面図。The longitudinal cross-sectional view of the waste heat recovery apparatus which concerns on this invention. 図1のA−A線断面拡大図。FIG. 2 is an enlarged sectional view taken along line AA in FIG. 1. 本発明に係る排熱回収装置の熱交換チューブの縦断面図。The longitudinal cross-sectional view of the heat exchange tube of the waste heat recovery apparatus which concerns on this invention. 高温引張強度を比較するグラフ。Graph comparing high-temperature tensile strength. 高温酸化性を比較するグラフ。Graph comparing high temperature oxidation. 腐食減量の測定結果を示すグラフ。The graph which shows the measurement result of corrosion weight loss.

符号の説明Explanation of symbols

1 筒体
2a,2b レキュペレータ
4,5 上部ヘッダ
6 下部ヘッダ
7 熱交換チューブ
9a,9b ピット
10a,10b 間隙
11 ダスト清掃口
12 扉
DESCRIPTION OF SYMBOLS 1 Tubular body 2a, 2b Recuperator 4,5 Upper header 6 Lower header 7 Heat exchange tube 9a, 9b Pit 10a, 10b Gap 11 Dust cleaning port 12 Door

Claims (2)

煙道の途中に設けられる筒体の上壁部にレキュペレータの上部ヘッダを支持し、該上部ヘッダから下部ヘッダに連なる複数本の熱交換チューブを筒体内に垂下し、該レキュペレータに燃焼用空気を循環させることにより該煙道を通って排出される排ガスの顕熱により該燃焼用空気が予熱されるようにした排熱回収装置において、筒体の下部側壁に扉によって開閉可能なるダスト清掃口を設け、該ダスト清掃口から該筒体の底面と下部ヘッダとの間隙に溜まるダストを排出し得るようにしたことを特徴とする工業用炉の排熱回収装置。   The upper wall of the cylinder provided in the middle of the flue supports the upper header of the recuperator, and a plurality of heat exchange tubes connected from the upper header to the lower header are suspended in the cylinder, and combustion air is supplied to the recuperator. In the exhaust heat recovery apparatus in which the combustion air is preheated by sensible heat of exhaust gas exhausted through the flue by circulation, a dust cleaning port that can be opened and closed by a door on the lower side wall of the cylinder An industrial furnace exhaust heat recovery apparatus, characterized in that the dust accumulated in the gap between the bottom surface of the cylinder and the lower header can be discharged from the dust cleaning port. レキュペレータの熱交換チューブはオーステナイト系ステンレス鋼(SUS310S)を材料とし、カロライズ処理をすることによりその表面にアルミ拡散浸透層を形成してなるものである請求項1に記載した工業用炉の排熱回収装置。   The exhaust heat of an industrial furnace according to claim 1, wherein the heat exchanger tube of the recuperator is made of austenitic stainless steel (SUS310S) and calorized to form an aluminum diffusion and permeation layer on the surface thereof. Recovery device.
JP2005196690A 2005-07-05 2005-07-05 Waste heat recovery device for industrial furnace Pending JP2007017029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196690A JP2007017029A (en) 2005-07-05 2005-07-05 Waste heat recovery device for industrial furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196690A JP2007017029A (en) 2005-07-05 2005-07-05 Waste heat recovery device for industrial furnace

Publications (1)

Publication Number Publication Date
JP2007017029A true JP2007017029A (en) 2007-01-25

Family

ID=37754342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196690A Pending JP2007017029A (en) 2005-07-05 2005-07-05 Waste heat recovery device for industrial furnace

Country Status (1)

Country Link
JP (1) JP2007017029A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534891A (en) * 2014-12-29 2015-04-22 西安建筑科技大学 Waste heat exchanger based on cement kiln head exhaust gas
JP2016160490A (en) * 2015-03-02 2016-09-05 国立大学法人 大分大学 Method for surface-treating metal base material
CN111527347A (en) * 2017-06-30 2020-08-11 乔治洛德方法研究和开发液化空气有限公司 Furnace with integrated heat recovery radiant recuperator for preheating combustion reactants using heat from flue gas
CN112985094A (en) * 2021-03-30 2021-06-18 郑员锋 Waste gas collecting and purifying treatment device for sintering furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534891A (en) * 2014-12-29 2015-04-22 西安建筑科技大学 Waste heat exchanger based on cement kiln head exhaust gas
CN104534891B (en) * 2014-12-29 2016-04-13 西安建筑科技大学 A kind of afterheat heat exchanger based on cement kiln head waste gas
JP2016160490A (en) * 2015-03-02 2016-09-05 国立大学法人 大分大学 Method for surface-treating metal base material
CN111527347A (en) * 2017-06-30 2020-08-11 乔治洛德方法研究和开发液化空气有限公司 Furnace with integrated heat recovery radiant recuperator for preheating combustion reactants using heat from flue gas
CN112985094A (en) * 2021-03-30 2021-06-18 郑员锋 Waste gas collecting and purifying treatment device for sintering furnace

Similar Documents

Publication Publication Date Title
JP5827659B2 (en) Oxygen heat exchanger
ES2288030T3 (en) WATER REFRIGERATION SHIRTS FOR ELECTRIC ARC OVEN.
JP4781504B2 (en) High performance heat exchanger
JP2007017029A (en) Waste heat recovery device for industrial furnace
JP2005061712A (en) Latent heat recovering economizer with enhanced corrosion resistance
JP4157534B2 (en) High temperature air heater
Nimbalkar et al. Technologies and materials for recovering waste heat in harsh environments
USAMI et al. New S-TENTM1: An Innovative Acid-Resistant Low-Alloy Steel
JP2005069575A (en) Heat exchanger
US20060075976A1 (en) Heat-recovery boiler
JP2007285606A (en) Heat transfer tube for air preheater
JP3678937B2 (en) Ceramic tube for heat exchanger
JP2005221133A (en) Heat exchanger and combustion furnace device using the same
JP2001324289A (en) High temperature heat exchanger
Słania et al. Protective Coatings in the Power Boilers which are Used to Combust Waste–Surfacing Anticorrosive Layers
Fatah et al. Failure Investigation of a High-Temperature Cast Soot Blower Lance Tube Nozzle
JP5366851B2 (en) Heat exchanger
Cox et al. Components susceptible to dew-point corrosion
Holmes et al. Materials for Service in Municipal Waste-& Biomass-Fired Power Generation… a Review of Recent Experience
CN106288863A (en) The application in petrochemical industry produces of a kind of energy saver (carborundum tubular heat exchanger)
CA1178497A (en) Supporting the weight of a structure in a hot environment
Li Corrosion Assessment and Mechanisms of Materials in Advanced Thermal Energy Production Systems
Homoki et al. Bioenergy Options Heat Recovery for Thermal Processing
Karczewski High-efficiency ceramic recuperators to glass furnaces
JPH0894051A (en) High-temperature corrosion resistant air heater