JP2007285550A - Storage type heat exchanger and air conditioning system - Google Patents

Storage type heat exchanger and air conditioning system Download PDF

Info

Publication number
JP2007285550A
JP2007285550A JP2006111373A JP2006111373A JP2007285550A JP 2007285550 A JP2007285550 A JP 2007285550A JP 2006111373 A JP2006111373 A JP 2006111373A JP 2006111373 A JP2006111373 A JP 2006111373A JP 2007285550 A JP2007285550 A JP 2007285550A
Authority
JP
Japan
Prior art keywords
heat
medium
storage material
carrying
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006111373A
Other languages
Japanese (ja)
Other versions
JP4862465B2 (en
Inventor
Kenji Tsubone
賢二 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006111373A priority Critical patent/JP4862465B2/en
Publication of JP2007285550A publication Critical patent/JP2007285550A/en
Application granted granted Critical
Publication of JP4862465B2 publication Critical patent/JP4862465B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently exchange heat among a heat carrying-in medium, a heat storage material and a heat carrying-out medium. <P>SOLUTION: This storage type heat exchanger 1 comprising the heat storage material 2, the heat carrying-in medium 4 exchanging heat with the heat storage material 2, and the heat carrying-out medium 6 exchanging heat with the heat storage material 2 and the heat carrying-in medium 4, comprises a first indirect heat exchanging portion 8 where the heat carrying-in medium 4 and the heat carrying-out medium 6 exchange heat through the heat storage material 2, and a first direct heat exchanging portion 9 where the heat carrying-in medium 4 and the heat carrying-out medium 6 exchange heat through a partitioning wall 10 defining flow channels of the mediums 4, 6, and the heat carrying-in medium 4 and the heat carrying-out medium 6 flow toward the first indirect heat exchanging portion 8 toward the first direct heat exchanging portion 9 respectively in the flow channels 5, 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、冷媒などの熱搬入媒体と蓄熱材(蓄冷材を含む)およびブラインなどの熱搬出媒体との間で熱交換を行う蓄熱型の熱交換器、およびその熱交換器を使用した空調システムに関するものである。   The present invention relates to a heat storage type heat exchanger that performs heat exchange between a heat carrying medium such as a refrigerant and a heat storage medium (including a cold storage material) and a heat carrying medium such as brine, and an air conditioner using the heat exchanger. It is about the system.

圧縮式のヒートポンプが車両に搭載されていることは周知のとおりである。そのヒートポンプの動力源は、走行用の動力源を兼ねている内燃機関やモータであり、そのため、車両の走行のための駆動力に大きい動力を必要とする場合には、ヒートポンプで使用できる動力が制約され、また反対に走行のために要求される動力が小さい場合には、ヒートポンプなどに使用できるいわゆる余剰動力が大きくなる。このような動力の変動とヒートポンプに要求される動力とは必ずしも一致しないので、ヒートポンプを駆動して得られた熱を蓄熱もしくは蓄冷しておくことが好ましい。   As is well known, a compression heat pump is mounted on a vehicle. The power source of the heat pump is an internal combustion engine or a motor that also serves as a power source for traveling. Therefore, when a large driving force is required for driving the vehicle, the power that can be used by the heat pump is In contrast, when the power required for traveling is small, so-called surplus power that can be used for a heat pump or the like increases. Since such fluctuations in power and power required for the heat pump do not always match, it is preferable to store heat or cool stored heat obtained by driving the heat pump.

このようにすれば、動力源で発生する余剰の動力を、蓄熱もしくは蓄冷の形で回収することができ、また冷房や暖房のために要求されるヒートポンプの駆動力が不足する場合には、蓄熱材に蓄えた熱エネルギを利用して冷房もしくは暖房を行うことができる。また、このように構成した場合には、冷凍サイクルにおける凝縮器から外部に放出していた熱を回収できるので、エネルギ効率を向上させ、ひいては車両の燃費を向上させることができる。   In this way, surplus power generated in the power source can be recovered in the form of heat storage or cold storage, and if the driving force of the heat pump required for cooling or heating is insufficient, Cooling or heating can be performed using the thermal energy stored in the material. Moreover, when comprised in this way, since the heat | fever discharge | released outside from the condenser in a refrigerating cycle can be collect | recovered, energy efficiency can be improved and by extension, the fuel consumption of a vehicle can be improved.

上記のような蓄熱(以下、蓄冷を含めて蓄熱という)を行う場合、全体としての構成を簡素化するなどのために、蓄熱機能と併せて、熱搬入媒体と熱搬出媒体との間で熱交換を行わせる機能を備えた蓄熱型熱交換器を使用することが好ましい。このような機能を備えた熱交換器が特許文献1に記載されている。この特許文献1に記載された熱交換器は、熱源流体を流す第1流路と、熱回収流体を流す第2流路とを、両者を区画する隔壁を介して密着した状態に形成し、これら一体化した二つの流路を蓄熱材の内部に貫通させ、その蓄熱材の内部における第1流路の全流域で、熱源流体から熱回収流体に熱を伝達すると同時に、熱源流体から蓄熱材に熱を伝達するように構成されている。   When performing heat storage as described above (hereinafter referred to as heat storage including cold storage), in order to simplify the overall configuration, heat is transferred between the heat carry-in medium and the heat carry-out medium together with the heat storage function. It is preferable to use a heat storage type heat exchanger having a function of performing exchange. A heat exchanger having such a function is described in Patent Document 1. The heat exchanger described in Patent Document 1 forms a first flow path for flowing a heat source fluid and a second flow path for flowing a heat recovery fluid in close contact via a partition wall that divides both, These two integrated flow paths are penetrated into the heat storage material, and heat is transferred from the heat source fluid to the heat recovery fluid in the entire flow path of the first flow path inside the heat storage material, and at the same time, from the heat source fluid to the heat storage material. It is configured to transfer heat to.

特開2003−336974号公報JP 2003-336974 A

上述した特許文献1に記載されている熱交換器では、熱源流体は、蓄熱材の内部を流れる全域で、熱回収媒体との間および蓄熱材との間で直接熱交換を行うようになっている。そのために、熱回収流体が停止しているなどのことに伴って蓄熱を優先的に行う場合であっても、隔壁を介して接触している熱回収媒体に過剰に熱を伝達し、その分、蓄熱量が少なくなり、もしくは蓄熱効率が低下する可能性がある。また、熱源流体を十分に流動させることができないなどのいわゆる入熱が少なく、それに伴って熱回収流体が蓄熱材から熱を受け取って冷房や暖房を行う場合、熱回収流体が蓄熱材から熱を受け取るいわゆる受熱面積が小さく、蓄熱材からの熱の放出効率や蓄熱材を熱源として冷房や暖房の効率が低下する可能性があった。   In the heat exchanger described in Patent Document 1 described above, the heat source fluid directly exchanges heat with the heat recovery medium and with the heat storage material in the entire region flowing through the heat storage material. Yes. For this reason, even when heat storage is preferentially performed due to the heat recovery fluid being stopped, excessive heat is transferred to the heat recovery medium in contact with the partition wall, There is a possibility that the amount of heat storage is reduced or the heat storage efficiency is lowered. In addition, when the heat recovery fluid receives heat from the heat storage material and performs cooling or heating with a small amount of so-called heat input such as the heat source fluid not being able to flow sufficiently, the heat recovery fluid generates heat from the heat storage material. The so-called heat receiving area to be received is small, and there is a possibility that the efficiency of cooling or heating will be reduced by using the heat storage efficiency as a heat source.

この発明は上記の課題に着目してなされたものであり、蓄熱材に対する入熱および蓄熱材からの熱の放出を効率良く行うことができるとともに、熱搬入媒体と熱搬出媒体との間で効率良く熱交換させることのできる蓄熱型熱交換器およびその蓄熱型熱交換器を使用した空調システムを提供することを目的とするものである。   The present invention has been made paying attention to the above-mentioned problems, and can efficiently input heat to the heat storage material and release heat from the heat storage material, and can efficiently perform between the heat carry-in medium and the heat carry-out medium. It is an object of the present invention to provide a heat storage type heat exchanger capable of exchanging heat well and an air conditioning system using the heat storage type heat exchanger.

上記目的を達成するため請求項1の発明は、蓄熱材と、その蓄熱材との間で熱交換する熱搬入媒体と、前記蓄熱材及び熱搬入媒体との間で熱交換する熱搬出媒体とを備えた蓄熱型熱交換器において、前記熱搬入媒体と前記熱搬出媒体とが前記蓄熱材を介して熱交換を行う第1間接熱交換部と、前記熱搬入媒体と前記熱搬出媒体とがそれぞれの媒体の流路を形成している隔壁を介して熱交換する第1直接熱交換部とを備え、前記熱搬入媒体と前記熱搬出媒体とがそれぞれの流路を前記第1間接熱交換部から第1直接熱交換部に向けて流れるように構成されていることを特徴とするものである。   In order to achieve the above object, the invention of claim 1 includes a heat storage material, a heat carry-in medium that exchanges heat with the heat storage material, and a heat carry-out medium that exchanges heat between the heat storage material and the heat carry-in medium. In the heat storage type heat exchanger comprising: a first indirect heat exchange unit in which the heat carry-in medium and the heat carry-out medium exchange heat via the heat storage material, the heat carry-in medium, and the heat carry-out medium A first direct heat exchange unit that exchanges heat through a partition wall that forms a flow path for each medium, and the heat carry-in medium and the heat carry-out medium exchange the respective flow paths with the first indirect heat exchange. It is comprised so that it may flow toward a 1st direct heat exchange part from a part.

請求項2の発明は、請求項1の発明において、前記第1直接熱交換部より下流側の前記熱搬入媒体と前記第1直接熱交換部より上流側の熱搬出媒体が前記蓄熱材を介して熱交換する第2間接熱交換部と、その第2間接熱交換部より下流側の前記熱搬入媒体と前記第2熱交換部より下流側の前記熱搬出媒体とがそれぞれの流路を形成している隔壁を介して熱交換する第2直接熱交換部とを備えていることを特徴とする蓄熱型熱交換器である。   According to a second aspect of the present invention, in the first aspect of the invention, the heat carry-in medium downstream from the first direct heat exchange section and the heat carry-out medium upstream from the first direct heat exchange section are interposed via the heat storage material. A second indirect heat exchanging part that exchanges heat, the heat carry-in medium downstream from the second indirect heat exchange part, and the heat carry-out medium downstream from the second heat exchange part form respective flow paths. And a second direct heat exchange section that exchanges heat through the partition wall.

請求項3の発明は、請求項1または2に記載された蓄熱型熱交換器における前記熱搬出媒体を室内熱交換器に循環流動させる第1循環流路と、冷凍サイクルによって圧縮・膨張させられる冷媒を前記熱搬入媒体として前記蓄熱型熱交換に循環流動させる第2循環流路とを備えていることを特徴とする空調システムである。   The invention of claim 3 is compressed / expanded by a first circulation passage for circulating and flowing the heat carrying-out medium in the heat storage type heat exchanger according to claim 1 or 2 to the indoor heat exchanger, and a refrigeration cycle. An air conditioning system comprising: a second circulation channel that circulates and flows a refrigerant in the heat storage type heat exchange as the heat carrying medium.

請求項4の発明は、請求項3の発明において、前記第1循環流路から分岐して形成され、かつ前記熱搬出媒体を前記室内熱交換器を経由させずに前記蓄熱材の内部に繰り返し循環させる第3循環流路と、前記熱搬出媒体を前記第1循環流路と第3循環流路とに切り替えて流す切換弁とを備えていることを特徴とする空調システムである。   The invention of claim 4 is the invention of claim 3, which is formed by branching from the first circulation flow path, and the heat carrying-out medium is repeated inside the heat storage material without passing through the indoor heat exchanger. An air conditioning system comprising: a third circulation channel for circulation; and a switching valve for switching the heat carrying medium to the first circulation channel and the third circulation channel.

請求項5の発明は、請求項4の発明において、前記熱搬出媒体を一時的に貯留する貯留器が、前記第1循環流路と第3循環流路とに共通の流路の部分に設けられていることを特徴とする空調システムである。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the reservoir for temporarily storing the heat carrying-out medium is provided in a portion of the flow path common to the first circulation flow path and the third circulation flow path. It is an air conditioning system characterized by that.

請求項6の発明は、車両に搭載されていることを特徴とする請求項3ないし5のいずれかの空調システムである。   A sixth aspect of the present invention is the air conditioning system according to any one of the third to fifth aspects, which is mounted on a vehicle.

請求項1の発明によれば、熱搬入媒体は蓄熱材に流入した当初、十分な熱量(冷熱量を含む。以下同じ)を有しており、その状態で、先ず、第1間接熱交換部において蓄熱材の間で熱交換し、併せて蓄熱材を介して熱搬出媒体との間で熱交換する。したがって、蓄熱材に充分、熱を伝達して蓄熱することができる。また、熱搬入媒体の下流側における第1直接熱交換部では、熱量を幾分放出した熱搬入媒体と、熱量を幾分受け取った熱搬出媒体とが、それぞれの流路を区画している隔壁を介して熱交換する。その場合には、蓄熱材が介在しないので、各媒体の間の熱伝達量もしくは熱伝達効率を良好なものとすることができる。その結果、熱搬入媒体が有する熱を、蓄熱材に充分蓄熱でき、また熱搬出媒体に対して効率良く熱を伝達することができる。また、熱搬入媒体による熱の搬出が停止している場合であっても、第1間接熱交換部において蓄熱材に熱を充分伝達できるので、熱搬入媒体が持ち去ってしまう熱量を少なくでき、蓄熱効率を良好なものとすることができる。   According to the first aspect of the present invention, the heat carrying medium initially has a sufficient amount of heat (including the amount of cold heat; the same shall apply hereinafter) when it flows into the heat storage material. In this case, heat is exchanged between the heat storage materials, and heat is also exchanged with the heat transfer medium via the heat storage materials. Therefore, heat can be sufficiently transmitted to the heat storage material and stored. Further, in the first direct heat exchange section on the downstream side of the heat carry-in medium, the heat carry-in medium that has released some amount of heat and the heat carry-out medium that has received some heat amount partition each flow path. To exchange heat. In that case, since the heat storage material does not intervene, the heat transfer amount or heat transfer efficiency between the respective media can be improved. As a result, the heat that the heat carrying medium has can be sufficiently stored in the heat storage material, and the heat can be efficiently transferred to the heat carrying medium. In addition, even when the heat carry-out medium has stopped carrying out heat, heat can be sufficiently transferred to the heat storage material in the first indirect heat exchange section, so that the amount of heat taken away by the heat carry-in medium can be reduced, and heat storage Efficiency can be made favorable.

請求項2の発明によれば、熱搬入媒体の蓄熱材の内部における上流側と下流側、換言すれば熱搬出媒体の蓄熱材の内部における下流側と上流側とに、上述した間接熱交換と直接熱交換部とが一対ずつ設けられているので、熱搬入媒体と熱搬出媒体との間の熱交換効率や蓄熱効率を向上させることができる。   According to the invention of claim 2, the indirect heat exchange described above is performed on the upstream side and the downstream side in the heat storage material of the heat carrying-in medium, in other words, on the downstream side and the upstream side in the heat storage material of the heat carrying-out medium. Since a pair of direct heat exchange units are provided, heat exchange efficiency and heat storage efficiency between the heat carry-in medium and the heat carry-out medium can be improved.

請求項3の発明によれば、冷凍サイクルで発生する熱および/または冷熱を効率良く蓄えることができるとともに、蓄熱材の有する熱によって冷房および/または暖房を効率良く行うことができる。   According to invention of Claim 3, while being able to store efficiently the heat and / or cold heat which generate | occur | produce in a refrigerating cycle, cooling and / or heating can be performed efficiently with the heat which a thermal storage material has.

請求項4の発明によれば、熱搬出媒体を室内熱交換器に循環させない場合には、蓄熱材に対して繰り返し循環させるので、蓄熱材と熱搬出媒体との熱交換時間を長くして両者の間の熱交換量を多くすることができる。   According to the invention of claim 4, when the heat carrying medium is not circulated through the indoor heat exchanger, the heat carrying medium is repeatedly circulated with respect to the heat accumulating material, so that the heat exchange time between the heat accumulating material and the heat carrying medium is increased. The amount of heat exchange between the two can be increased.

請求項5の発明によれば、熱搬出媒体を第3循環流路で循環流動させる場合、第3循環流路の全体としての容積が貯留器によって、第2循環流路と同程度に増大させられているので、第3循環流路の全長を短くすることができる。   According to the invention of claim 5, when the heat carrying-out medium is circulated in the third circulation channel, the volume of the third circulation channel as a whole is increased by the reservoir to the same extent as the second circulation channel. Therefore, the overall length of the third circulation channel can be shortened.

請求項6の発明によれば、車両用の空調システムの熱効率を向上させることができ、特に車両の動力源から得られる空調用の動力の変動が大きい場合であっても、安定して空調を行うことができ、ひいては車両の燃費を向上させることができる。   According to the invention of claim 6, the thermal efficiency of the air conditioning system for vehicles can be improved, and even when the fluctuation of the power for air conditioning obtained from the power source of the vehicle is large, the air conditioning can be stably performed. This can improve the fuel efficiency of the vehicle.

つぎにこの発明をより具体的に説明する。先ず、この発明に係る蓄熱型熱交換器1の一例を説明すると、図1において、符号2は潜熱蓄熱材を示し、第1蓄熱器21、第2蓄熱器38には、酢酸ナトリウム3水塩や硫酸ナトリウム10水塩などからなる蓄熱材が用いられ、一方、蓄冷器26には、水やエチルグリコール水溶液、塩化アンモニウム水溶液など融点が低く、融解熱が比較的大きい潜熱蓄熱材が用いられている。この蓄熱材2は断熱構造の筐体3の内部に収容されており、その蓄熱材2を貫通するように二本の流路が設けられている。   Next, the present invention will be described more specifically. First, an example of the heat storage type heat exchanger 1 according to the present invention will be described. In FIG. 1, reference numeral 2 denotes a latent heat storage material, and the first heat storage 21 and the second heat storage 38 include sodium acetate trihydrate. Is used, and the regenerator 26 is a latent heat storage material having a low melting point and a relatively large melting heat, such as water, an ethyl glycol aqueous solution, or an ammonium chloride aqueous solution. Yes. The heat storage material 2 is housed inside a housing 3 having a heat insulating structure, and two flow paths are provided so as to penetrate the heat storage material 2.

一方の流路は、冷媒などの熱搬入媒体4を流通させるための熱搬入流路5であり、図1に示す例では、この熱搬入流路5は、蓄熱材2に対して図1の左側下部から入り、蓄熱材2の内部で折り返して図1の左側上部で蓄熱材2から抜け出ている。他方の流路は、ブラインなどの熱搬出媒体6を流通させるための熱搬出流路7であり、この熱搬出流路7は、蓄熱材2に対して図1の右側上部から入り、蓄熱材2の内部で折り返して図1の右側下部で蓄熱材2から抜け出ている。   One flow path is a heat carry-in flow path 5 for circulating a heat carry-in medium 4 such as a refrigerant. In the example shown in FIG. It enters from the lower left side, is folded inside the heat storage material 2, and comes out of the heat storage material 2 at the upper left side in FIG. The other flow path is a heat carry-out flow path 7 for circulating a heat carry-out medium 6 such as brine, and this heat carry-out flow path 7 enters from the upper right side of FIG. 2 is folded back from the heat storage material 2 at the lower right side in FIG.

これらの流路5,7は、蓄熱材2の内部で、各媒体4,6と蓄熱材2との間で熱交換が生じるように構成されており、さらに各媒体4,6同士の間で直接熱交換が生じるように構成されている。具体的に説明すると、熱搬入流路5の上流側の部分すなわち熱搬入流路5のうちの入口側の部分と、熱搬出流路7の下流側の部分すなわち熱搬出流路7のうちの出口側に近い部分とが、蓄熱材2を挟んで互いに接近し、蓄熱材2を介して熱交換するように配置されている。このようにして第1間接熱交換部8が形成されている。   These flow paths 5 and 7 are configured so that heat exchange occurs between the respective media 4 and 6 and the heat storage material 2 inside the heat storage material 2, and further, between the respective media 4 and 6. Direct heat exchange is configured to occur. Specifically, the upstream side portion of the heat carry-in flow channel 5, that is, the inlet side portion of the heat carry-in flow channel 5, and the downstream portion of the heat carry-out flow channel 7, that is, the heat carry-out flow channel 7 The portions close to the outlet side are arranged so as to approach each other with the heat storage material 2 interposed therebetween and to exchange heat via the heat storage material 2. In this way, the first indirect heat exchange unit 8 is formed.

熱搬入流路5のうち前記第1間接熱交換部8より下流側の部分に、熱搬入媒体4と熱搬出媒体6とが直接熱交換する第1直接熱交換部9が形成されている。この第1直接熱交換部9は、第1間接熱交換部8を通過した熱搬入媒体4と熱搬出媒体6との間で、各流路5,7を区画する隔壁10を介して熱交換を生じさせる部分である。したがって、この第1直接熱交換部9は、一方の流路5,7を他方の流路7,5に気密状態を維持して貫通させた構成とすることができ、あるいは気密状態に二つの流路を形成し、それぞれの流路に上記の熱搬入流路5および熱搬出流路7を接続した適宜の熱交換器によって構成することができる。   A first direct heat exchanging section 9 in which the heat carry-in medium 4 and the heat carry-out medium 6 directly exchange heat is formed in a portion of the heat carry-in flow path 5 downstream of the first indirect heat exchange section 8. The first direct heat exchanging unit 9 exchanges heat between the heat carrying-in medium 4 and the heat carrying-out medium 6 that have passed through the first indirect heat exchanging unit 8 via the partition walls 10 that partition the flow paths 5 and 7. This is the part that produces Therefore, the first direct heat exchanging section 9 can be configured such that one of the flow paths 5 and 7 is passed through the other flow paths 7 and 5 while maintaining an airtight state, or two airtight states are provided. A flow path is formed, and each heat flow path can be configured by an appropriate heat exchanger in which the heat carry-in flow path 5 and the heat carry-out flow path 7 are connected.

さらに、熱搬入流路5のうち上記の第1直接熱交換部9より下流側部分に、第2間接熱交換部11が設けられている。この第2間接熱交換部11は、上述した第1間接熱交換部8とほぼ同様の構成であって、熱搬入流路5のうち出口側に近い部分と、熱搬出流路7のうち最も上流側の部分すなわち入口側の部分とが、蓄熱材2を挟んで接近し、蓄熱材2を介して各媒体4,6との間で熱交換が生じるように構成されている。   Furthermore, a second indirect heat exchange unit 11 is provided in the heat carry-in channel 5 in a portion downstream of the first direct heat exchange unit 9. The second indirect heat exchanging portion 11 has substantially the same configuration as the first indirect heat exchanging portion 8 described above, and is the most close to the outlet side of the heat carry-in flow path 5 and the heat carry-out flow path 7. The upstream side portion, that is, the inlet side portion approaches the heat storage material 2 so that heat exchange occurs between the media 4 and 6 via the heat storage material 2.

そして、熱搬入流路5における前記第2間接熱交換部11よりも下流側の部分すなわち出口側の部分に、熱搬入媒体4と熱搬出媒体6とが各流路5,7を区画する隔壁10を介して直接熱交換する第2直接熱交換部12が設けられている。この第2直接熱交換部12は、前述した第1直接熱交換部9とほぼ同様の構成であって、一方の流路5,7を他方の流路7,5に気密状態を維持して貫通させた構成とすることができ、あるいは気密状態に二つの流路を形成し、それぞれの流路に上記の熱搬入流路5および熱搬出流路7を接続した適宜の熱交換器によって構成することができる。   And the partition in which the heat carrying-in medium 4 and the heat carrying-out medium 6 divide each flow path 5 and 7 in the downstream part from the said 2nd indirect heat exchange part 11 in the heat carrying-in flow path 5, ie, the part on the exit side. A second direct heat exchange unit 12 that directly exchanges heat through 10 is provided. The second direct heat exchange unit 12 has substantially the same configuration as the first direct heat exchange unit 9 described above, and maintains one air flow path 5, 7 in an airtight state with the other flow path 7, 5. It can be configured to penetrate, or is constituted by an appropriate heat exchanger in which two flow paths are formed in an airtight state, and the above-described heat carry-in flow path 5 and heat carry-out flow path 7 are connected to the respective flow paths. can do.

したがって図1に示す蓄熱型熱交換器1は、熱搬入媒体4を、熱搬入流路5の図1における左側下部から供給し、左側上部から流出させ、また熱搬出媒体6を、熱搬出流路7の図1の右側上部から供給し、右側下部から流出させるようなっている。各媒体4,6がこのように流動する間に、各媒体4,6と蓄熱材2との三者の間もしくはいずれかの媒体4,6と蓄熱材2との間で熱交換が生じる。具体的に説明すると、先ず、第1間接熱交換部8では、熱搬入媒体4の有する熱がその周囲の蓄熱材2に伝達され、さらに熱搬出流路7の内部の熱搬出媒体6に伝達される。その場合、熱搬入媒体4の有する熱量が多いので、蓄熱材2に対して十分に熱伝達することができ、また熱搬出媒体6に対して間接的な熱伝達であっても十分に熱伝達することができる。   Therefore, the heat storage type heat exchanger 1 shown in FIG. 1 supplies the heat carry-in medium 4 from the lower left part in FIG. 1 of the heat carry-in flow path 5 and flows it out from the upper left part. It supplies from the upper right part of FIG. 1 of the path 7, and flows out from the lower right part. While each medium 4 and 6 flows in this way, heat exchange occurs between the three media 4 and 6 and the heat storage material 2 or between any one of the media 4 and 6 and the heat storage material 2. More specifically, first, in the first indirect heat exchange unit 8, the heat of the heat carry-in medium 4 is transmitted to the surrounding heat storage material 2 and further transferred to the heat carry-out medium 6 inside the heat carry-out flow path 7. Is done. In this case, since the heat carrying medium 4 has a large amount of heat, it can sufficiently transfer heat to the heat storage material 2, and even heat transfer to the heat carrying medium 6 can be performed sufficiently. can do.

こうして熱量を低下させた熱搬入媒体4と、熱量を増やした熱搬出媒体6との間の熱交換が、第1直接熱交換部9で生じる。ここでは、各流路5,7を区画する隔壁10のみを介したいわゆる直接熱交換によって各媒体4,6の間で熱交換されるので、熱搬入媒体4の熱量が上記のように幾分低下し、また熱搬出媒体6の熱量が増大しているとしても、すなわち各媒体5,7の熱量(温度)の差が少なくなっているとしても、効率良くかつ十分に熱伝達が行われる。このように、熱量の多い熱搬入媒体4と熱を受け取る熱搬出媒体6とが共に同方向に流動する構成であっても、上流側で蓄熱材2を介したいわゆる間接熱交換を行い、その下流側でいわゆる直接熱交換を行うようになっているので、蓄熱を効率良くかつ十分に行うことができるとともに、各媒体4,6の間で効率良くかつ十分に熱交換を生じさせることができる。   Heat exchange between the heat carry-in medium 4 with the reduced amount of heat and the heat carry-out medium 6 with the increased amount of heat occurs in the first direct heat exchange unit 9. Here, since heat is exchanged between the media 4 and 6 by so-called direct heat exchange only through the partition walls 10 partitioning the flow paths 5 and 7, the amount of heat of the heat transfer medium 4 is somewhat as described above. Even if the amount of heat of the heat transfer medium 6 decreases and increases, that is, even if the difference in the amount of heat (temperature) between the media 5 and 7 decreases, heat transfer is performed efficiently and sufficiently. In this way, even if the heat carrying medium 4 having a large amount of heat and the heat carrying medium 6 that receives heat flow in the same direction, so-called indirect heat exchange is performed via the heat storage material 2 on the upstream side. Since so-called direct heat exchange is performed on the downstream side, heat can be stored efficiently and sufficiently, and heat can be efficiently and sufficiently exchanged between the media 4 and 6. .

熱搬入流路5の相対的に上流側で熱搬入媒体4と熱搬出媒体6との間接的な熱交換を生じさせ、その下流側で両者の媒体4,6の直接的な熱交換を生じさせることは、上述した第2間接熱交換部11および第2直接熱交換部12とについても同様である。すなわち、先述した第1直接熱交換部9において熱搬出媒体6に熱を与えて熱量を低下させた熱搬入媒体4は、第2間接熱交換部11において、蓄熱材2を介して、熱搬出媒体6との間で熱交換する。その場合、熱搬入媒体4の熱量が低下しているとしても、熱搬出媒体6の熱量が増大していないので、両者の間の熱量差(例えば温度差)が大きく、したがって熱搬入媒体4と熱搬出媒体6との間の熱交換効率を向上させ、必要十分な熱交換を生じさせることができる。   Indirect heat exchange between the heat carry-in medium 4 and the heat carry-out medium 6 occurs on the relatively upstream side of the heat carry-in flow path 5, and direct heat exchange between the two media 4 and 6 occurs on the downstream side. The same applies to the second indirect heat exchange unit 11 and the second direct heat exchange unit 12 described above. That is, the heat carry-in medium 4 in which the amount of heat is reduced by applying heat to the heat carry-out medium 6 in the first direct heat exchange unit 9 described above is transferred to the second indirect heat exchange unit 11 via the heat storage material 2. Heat exchange is performed with the medium 6. In that case, even if the amount of heat of the heat carrying-in medium 4 is reduced, the amount of heat of the heat carrying-out medium 6 is not increased, so that there is a large heat amount difference (for example, a temperature difference) between the two. The heat exchange efficiency with the heat carrying-out medium 6 can be improved, and necessary and sufficient heat exchange can be caused.

そして、第2直接熱交換部12では、熱量が更に低下している熱搬入媒体4と、熱量が幾分増大している熱搬出媒体6との間で熱交換が生じる。その場合、熱搬入媒体4と熱搬出媒体6との熱量差(例えば温度差)が小さくなっているが、その熱交換は隔壁10を介したいわゆる直接熱交換であるから、効率良く、また必要十分に熱交換することができる。   And in the 2nd direct heat exchange part 12, heat exchange arises between the heat carrying-in medium 4 in which the calorie | heat amount further falls, and the heat carrying-out medium 6 in which the calorie | heat amount has increased somewhat. In this case, the heat amount difference (for example, temperature difference) between the heat carrying medium 4 and the heat carrying medium 6 is small, but since the heat exchange is so-called direct heat exchange through the partition wall 10, it is efficient and necessary. Heat exchange can be performed sufficiently.

一方、熱搬出媒体6の流動が停止しているなどのことによって熱の搬出が止まっている場合、各直接熱交換部9,12における熱搬入媒体4と熱搬出媒体6との間の熱量差が殆どなくなるので、熱搬出媒体6に対する熱伝達は殆ど生じない。これに対して、熱搬入流路5は、上記の各直接熱交換部9,12を除いて、蓄熱材2の内部を貫通していて蓄熱材2との間で熱交換するようになっているので、熱搬入流路5と蓄熱材2との間の熱交換面積が広いことと相まって、効率良く、かつ十分に蓄熱材2に熱を与えて蓄熱することができる。このような事情は、熱搬入媒体4による熱の搬入がない状態で熱を搬出する場合も同様であり、熱搬出流路7は各直接熱交換部9,12を除いて蓄熱材2と熱交換可能に接触している。そのため、蓄熱材2と熱搬出媒体6との間の熱交換面積が広く、蓄熱材2の有する熱を効率良く、かつ十分に熱搬出媒体6に伝達できる。   On the other hand, when the heat transfer is stopped because the flow of the heat transfer medium 6 is stopped, the difference in the amount of heat between the heat transfer medium 4 and the heat transfer medium 6 in each of the direct heat exchange units 9 and 12. Therefore, heat transfer to the heat transfer medium 6 hardly occurs. On the other hand, the heat carry-in channel 5 passes through the inside of the heat storage material 2 except for the direct heat exchange portions 9 and 12 and exchanges heat with the heat storage material 2. Therefore, coupled with the large heat exchange area between the heat carrying-in flow path 5 and the heat storage material 2, the heat storage material 2 can be efficiently and sufficiently heated to store heat. Such a situation is the same when heat is carried out in the state where heat is not carried in by the heat carrying-in medium 4, and the heat carrying-out flow path 7 is connected to the heat storage material 2 and the heat except for the direct heat exchange parts 9 and 12. Contact is possible in exchange. Therefore, the heat exchange area between the heat storage material 2 and the heat transfer medium 6 is wide, and the heat of the heat storage material 2 can be efficiently and sufficiently transferred to the heat transfer medium 6.

上述した熱搬入媒体4として冷凍サイクルで内部エネルギを低下させられた冷媒を連続的に循環流動させ、また熱搬出媒体として冷房用のブラインを連続的に循環流動させた場合の熱交換の状況を表1にまとめて示してある。

Figure 2007285550
The state of heat exchange in the case where the refrigerant whose internal energy has been reduced in the refrigeration cycle is continuously circulated and flown as the heat carry-in medium 4 and the cooling brine is continuously circulated and flown as the heat carry-out medium. Table 1 summarizes the results.
Figure 2007285550

表1において、Tr-1,Tr-2,Tr-3,Tr-4は、順に、第1間接熱交換部8、第1直接熱交換部9、第2間接熱交換部11、第2直接熱交換部12における冷媒の温度を示し、Tb-1,Tb-2,Tb-3,Tb-4は、順に、第1間接熱交換部8、第1直接熱交換部9、第2間接熱交換部11、第2直接熱交換部12におけるブラインの温度を示している。この表1から知られるように、熱搬入流路5と熱搬出流路7との間に蓄熱材2が介在する間接熱交換の場合には、冷媒とブラインとの温度差が大きく、また反対に蓄熱材2が介在しない直接熱交換の場合には、冷媒とブラインとの間の温度差が小さくなる。その結果、蓄熱材2に対する蓄熱および冷媒とブラインとの間の熱交換を効率良く行うことができる。   In Table 1, Tr-1, Tr-2, Tr-3, and Tr-4 are, in order, a first indirect heat exchange unit 8, a first direct heat exchange unit 9, a second indirect heat exchange unit 11, and a second direct The temperature of the refrigerant | coolant in the heat exchange part 12 is shown, Tb-1, Tb-2, Tb-3, Tb-4 are the 1st indirect heat exchange part 8, the 1st direct heat exchange part 9, and the 2nd indirect heat in order. The temperature of the brine in the exchange part 11 and the 2nd direct heat exchange part 12 is shown. As known from Table 1, in the case of indirect heat exchange in which the heat storage material 2 is interposed between the heat carry-in channel 5 and the heat carry-out channel 7, the temperature difference between the refrigerant and the brine is large and the opposite. In the case of direct heat exchange in which the heat storage material 2 does not intervene, the temperature difference between the refrigerant and the brine becomes small. As a result, heat storage for the heat storage material 2 and heat exchange between the refrigerant and the brine can be performed efficiently.

上述した蓄熱型熱交換器1は、車両に搭載される空調システムに使用することができる。その一例を図2に模式図で示してある。図2に示す例は、冷凍サイクルで動作するヒートポンプにおけるコンデンサおよびエバポレータ、ならびにブラインと冷却水との熱交換部にこの発明を適用した例である。先ず、その冷凍サイクルについて説明すると、エンジンや電動機(それぞれ図示せず)などの動力源によって駆動されるコンプレッサー20は、冷媒を加圧圧縮するように構成された公知のものであり、その吐出部にこの発明に係る第1蓄熱器21が接続されている。この第1蓄熱器21は前述した図1に示す構成を備えており、加圧圧縮されて温度の上昇した冷媒の有する熱を蓄熱材2によって奪うことにより冷媒を液化させるように構成されている。したがってこの第1蓄熱器21は冷凍サイクルにおけるコンデンサー(凝縮器)に相当している。   The heat storage heat exchanger 1 described above can be used in an air conditioning system mounted on a vehicle. An example of this is shown schematically in FIG. The example shown in FIG. 2 is an example in which the present invention is applied to a condenser and an evaporator in a heat pump operating in a refrigeration cycle, and a heat exchange section between brine and cooling water. First, the refrigeration cycle will be described. A compressor 20 driven by a power source such as an engine or an electric motor (not shown) is a known one configured to pressurize and compress a refrigerant, and a discharge portion thereof. The 1st heat storage device 21 concerning this invention is connected to. The first heat accumulator 21 has the configuration shown in FIG. 1 described above, and is configured to liquefy the refrigerant by removing the heat of the refrigerant whose pressure has been increased by pressurization and compression by the heat storage material 2. . Therefore, the first heat accumulator 21 corresponds to a condenser (condenser) in the refrigeration cycle.

上記の第1蓄熱器21の出力側にレシーバタンク22と膨張弁23とが順に接続されている。レシーバタンク22は、放熱して液化した冷媒(液冷媒)を一時的に貯留するためのものであり、併せて液冷媒とガス冷媒とを分離する機能を備えている。このレシーバタンク22と前記第1蓄熱器21との間の管路には、温度センサ24と圧力センサ25とが介装されている。また、膨張弁23は、冷媒を断熱膨張させてその圧力を低下させる弁であって、絞り弁やキャピラリーチューブなどの従来知られているものを使用することができる。   A receiver tank 22 and an expansion valve 23 are connected in order to the output side of the first heat accumulator 21. The receiver tank 22 is for temporarily storing a refrigerant (liquid refrigerant) liquefied by radiating heat, and has a function of separating the liquid refrigerant and the gas refrigerant together. A temperature sensor 24 and a pressure sensor 25 are interposed in the pipe line between the receiver tank 22 and the first heat accumulator 21. The expansion valve 23 is a valve that adiabatically expands the refrigerant to reduce its pressure, and a conventionally known one such as a throttle valve or a capillary tube can be used.

断熱膨張させた冷媒に熱を与えて気化させるための蓄冷器(エバポレータ)26が設けられている。この蓄冷器26は、冷媒の有する冷熱を蓄熱材2やブラインに与えるように構成された蓄熱型熱交換器であり、前述した図1に示す構成を備えている。前記膨張弁23とこの蓄冷器26との間の管路には、断熱膨張した冷媒の圧力を検出する圧力センサ27と温度センサ28とが介装されている。そして、蓄冷器26の出力側が前記コンプレッサー20の吸入部に接続されている。   A regenerator (evaporator) 26 is provided for applying heat to the adiabatically expanded refrigerant to vaporize it. The regenerator 26 is a heat storage type heat exchanger configured to give the cold energy of the refrigerant to the heat storage material 2 and the brine, and has the configuration shown in FIG. 1 described above. A pressure sensor 27 and a temperature sensor 28 for detecting the pressure of the adiabatically expanded refrigerant are interposed in the pipe line between the expansion valve 23 and the regenerator 26. The output side of the regenerator 26 is connected to the suction part of the compressor 20.

上記の冷凍サイクルで生成される熱および冷熱は、熱エネルギとして使用することができ、一例として車両における車室の空気調和に使用される。そのために、前記加圧圧縮された冷媒の有する熱あるいは第1蓄熱器21の有する熱によって車室内の空気を加熱し、また断熱膨張した冷媒もしくは蓄冷器26の冷熱によって車室内の空気を冷却する車室内熱交換器29が設けられている。この車室内熱交換器29に暖房のための熱を供給するための構成について説明すると、第1蓄熱器21と車室内熱交換器29との間で暖房用熱媒体(ブライン)を循環させる第1循環流路30が設けられている。   The heat and cold generated in the refrigeration cycle can be used as heat energy, and is used for air conditioning of a passenger compartment in a vehicle as an example. For this purpose, the air in the passenger compartment is heated by the heat of the pressure-compressed refrigerant or the heat of the first regenerator 21, and the air in the passenger compartment is cooled by the adiabatic expansion of the refrigerant or the cool heat of the regenerator 26. A vehicle interior heat exchanger 29 is provided. The configuration for supplying heating heat to the vehicle interior heat exchanger 29 will be described. The heating heat medium (brine) is circulated between the first heat accumulator 21 and the vehicle interior heat exchanger 29. One circulation channel 30 is provided.

この暖房用熱媒体と前記冷媒との間の熱交換は、第1蓄熱器21の内部で行うように構成されており、したがって第1循環流路30は第1蓄熱器21における図1に示す熱搬出流路7に相当する管路に接続されている。   The heat exchange between the heating heat medium and the refrigerant is configured to be performed inside the first heat accumulator 21, and therefore the first circulation passage 30 is shown in FIG. It is connected to a pipe line corresponding to the heat carrying-out flow path 7.

前記第1循環流路30のうち第1蓄熱器21から車室内熱交換器29に暖房用熱媒体が流れるいわゆる往路には、温度センサ31が介装されている。また、車室内熱交換器29から第1蓄熱器21に暖房用熱媒体が流れるいわゆる復路には、三方弁32と、温度センサ33と、貯留タンク34と、ポンプ35と、逆止弁36とが順に介装されている。三方弁32は、上記の第1循環流路30から分岐した第2循環流路37を上記のいわゆる復路に選択的に連通させるための切換弁であり、電気信号によって切り替え動作するように構成されている。また、貯留タンク34は、暖房用熱媒体を、前記車室内熱交換30を経由させずに、第2循環流路37に流す場合、第2循環流路37自体の容積が第1循環流路30の容積に比較して小さいために、余剰の暖房用熱媒体を一時的に貯留するために設けられている。さらに、逆止弁36は車室内熱交換器29から第1蓄熱器21に向けたいわゆる順方向への暖房用熱媒体の流動を許容し、これとは反対のいわゆる逆方向の流動を阻止する弁である。したがって、三方弁32と、温度センサ33と、貯留タンク34と、ポンプ35と、逆止弁36は、第1循環流路30と第2循環流路37とのいわゆる共通部分に設けられている。   A temperature sensor 31 is interposed in a so-called forward path in which the heating heat medium flows from the first heat accumulator 21 to the vehicle interior heat exchanger 29 in the first circulation flow path 30. A so-called return path through which the heating heat medium flows from the vehicle interior heat exchanger 29 to the first heat accumulator 21 includes a three-way valve 32, a temperature sensor 33, a storage tank 34, a pump 35, and a check valve 36. Are inserted in order. The three-way valve 32 is a switching valve for selectively communicating the second circulation channel 37 branched from the first circulation channel 30 with the so-called return path, and is configured to be switched by an electric signal. ing. Further, when the storage tank 34 flows the heating heat medium to the second circulation channel 37 without passing through the vehicle interior heat exchange 30, the volume of the second circulation channel 37 itself is the first circulation channel. Since it is smaller than the volume of 30, it is provided for temporarily storing an excess heating medium. Further, the check valve 36 allows the flow of the heating heat medium in the so-called forward direction from the vehicle interior heat exchanger 29 toward the first heat accumulator 21, and prevents the so-called reverse flow that is opposite to this. It is a valve. Therefore, the three-way valve 32, the temperature sensor 33, the storage tank 34, the pump 35, and the check valve 36 are provided in a so-called common part of the first circulation channel 30 and the second circulation channel 37. .

暖房用熱媒体以外の流体からの熱回収や加熱を行う第2蓄熱器38が設けられている。この第2蓄熱器38は、上記の第1蓄熱器21と同様に蓄熱型熱交換器からなるものであって、熱搬入媒体として上記の冷媒に替えて、エンジン冷却水や自動変速機オイル(ATF−OIL)冷却水を流通させ、また、熱搬出媒体として前記暖房用熱媒体を流通させるように構成されている。また、エンジンや自動変速機オイル(ATF−OIL)の暖機を行なう場合は、前記暖房用熱媒体を流通させ、第1蓄熱器21の熱を第2蓄熱器38へ移動させ、エンジン冷却水や自動変速機オイル(ATF−OIL)冷却水を暖め暖機を促進させる。すなわち、第2蓄熱器38は、熱搬入流路を備え、この熱搬入流路に第1循環流路31が接続されている。また、二本の熱搬出流路を備えており、一方の熱搬出流路にエンジン冷却水管路39が接続され、他方の熱搬出流路に自動変速機オイル冷却水管路40が接続されている。そして、それぞれの管路39,40には、温度センサ41,42およびポンプ43,44が介装されている。   A second heat accumulator 38 that performs heat recovery and heating from a fluid other than the heating heat medium is provided. The second heat accumulator 38 is composed of a heat accumulating heat exchanger similar to the first heat accumulator 21 described above. The second heat accumulator 38 is replaced with the above refrigerant as a heat carrying medium, and engine coolant or automatic transmission oil ( ATF-OIL) cooling water is circulated, and the heating heat medium is circulated as a heat carrying medium. In addition, when warming up the engine or automatic transmission oil (ATF-OIL), the heating heat medium is circulated, the heat of the first heat accumulator 21 is moved to the second heat accumulator 38, and engine cooling water is supplied. And automatic transmission oil (ATF-OIL) cooling water to warm up. That is, the second heat accumulator 38 includes a heat carry-in flow path, and the first circulation flow path 31 is connected to the heat carry-in flow path. In addition, two heat carrying-out passages are provided, the engine cooling water conduit 39 is connected to one heat carrying-out passage, and the automatic transmission oil cooling water conduit 40 is connected to the other heat carrying-out passage. . Further, temperature sensors 41 and 42 and pumps 43 and 44 are interposed in the pipe lines 39 and 40, respectively.

また、冷房を行うために、蓄冷器26と車室内熱交換器29との間で冷房用熱媒体(ブライン)を選択的に循環させる第3循環流路45が設けられている。この第3循環流路45は、蓄冷器26の内部で冷媒および蓄熱材2と冷房用熱媒体との間で熱交換が生じるように構成されており、その熱交換器としては前述した図1に示す構成と同様のものを採用することができる。また、第3循環流路45において冷房用熱媒体を蓄冷器26から車室内熱交換器29に向けて流すいわゆる往路には、ポンプ46および温度センサ47が介装されている。また、車室内熱交換器29から蓄冷器26に冷房用熱媒体を流すいわゆる復路には温度センサ48が介装されている。なお、第1蓄熱器21における蓄熱材2の温度を検出する温度センサ49と、第2蓄熱器38における蓄熱材2の温度を検出する温度センサ50と、蓄冷器26の温度を検出する温度センサ51と、車室内熱交換器29における空気の吹き出し温度を検出する温度センサ52とが設けられている。   Further, in order to perform cooling, a third circulation passage 45 for selectively circulating a cooling heat medium (brine) between the regenerator 26 and the vehicle interior heat exchanger 29 is provided. The third circulation flow path 45 is configured so that heat exchange occurs between the refrigerant and the heat storage material 2 and the cooling heat medium inside the regenerator 26. As the heat exchanger, FIG. A configuration similar to that shown in FIG. A pump 46 and a temperature sensor 47 are interposed in a so-called forward path in which the cooling heat medium flows from the regenerator 26 toward the vehicle interior heat exchanger 29 in the third circulation channel 45. In addition, a temperature sensor 48 is interposed in a so-called return path in which a cooling heat medium flows from the vehicle interior heat exchanger 29 to the regenerator 26. In addition, the temperature sensor 49 which detects the temperature of the heat storage material 2 in the 1st heat storage device 21, the temperature sensor 50 which detects the temperature of the heat storage material 2 in the 2nd heat storage device 38, and the temperature sensor which detects the temperature of the cool storage device 26 51 and a temperature sensor 52 that detects an air blowing temperature in the vehicle interior heat exchanger 29 are provided.

上記のコンプレッサー20や各ポンプは、電気的に制御されて駆動・停止するようになっている。そのための制御装置53が設けられている。この制御装置53は、一例としてマイクロコンピュータを主体として構成されたものであって、前述した各温度センサや圧力センサで検出された温度情報や圧力情報が入力され、また図示しない冷房要求信号や暖房要求信号などの他の信号が入力されている。   The compressor 20 and each pump are driven and stopped electrically controlled. For this purpose, a control device 53 is provided. The control device 53 is configured mainly with a microcomputer as an example, and is input with temperature information and pressure information detected by each of the temperature sensors and pressure sensors described above, and also includes a cooling request signal and heating (not shown). Another signal such as a request signal is input.

つぎに上述した装置の作用について説明する。先ず、冷凍サイクルの作用について簡単に説明すると、冷房の要求に基づきコンプレッサー20が駆動され、ガス冷媒が加圧されて圧縮される。圧力の上昇と共に温度が高くなって過熱蒸気となった冷媒は、第1蓄熱器21において放熱し、暖房用熱媒体および蓄熱材2に熱を与える。その場合の蓄熱及び熱交換の状態は、図1を参照して説明したとおりである。その結果、冷媒の温度(冷媒の内部エネルギ)が低下して次第に凝縮する。その状態の冷媒の温度が温度センサ24(圧力センサ25の検出値から換算してもよい)によって検出され、また圧力が圧力センサ25(温度センサ24の検出値から換算してもよい)によって検出される。その温度や圧力は、冷媒が過冷却されていないと、設計上定まる所定値より高くなる。   Next, the operation of the above-described apparatus will be described. First, the operation of the refrigeration cycle will be briefly described. The compressor 20 is driven based on the cooling requirement, and the gas refrigerant is pressurized and compressed. The refrigerant, which has become a superheated steam due to an increase in pressure, dissipates heat in the first heat accumulator 21 and gives heat to the heating heat medium and the heat storage material 2. The state of heat storage and heat exchange in that case is as described with reference to FIG. As a result, the temperature of the refrigerant (the internal energy of the refrigerant) decreases and condenses gradually. The temperature of the refrigerant in that state is detected by the temperature sensor 24 (which may be converted from the detection value of the pressure sensor 25), and the pressure is detected by the pressure sensor 25 (which may be converted from the detection value of the temperature sensor 24). Is done. If the refrigerant is not supercooled, the temperature and pressure are higher than a predetermined value determined by design.

凝縮した冷媒は、レシーバタンク22に一時的に貯留される。その場合、凝縮していない冷媒が混入していれば、ここで気液分離が行われる。ついで、膨張弁23において冷媒が断熱膨張させられ、冷媒の一部が蒸発することにより液冷媒とガス冷媒とが混合した状態となる。その混合冷媒の圧力が圧力センサ27(温度センサ28の検出値から換算してもよい)によって検出され、また温度が温度センサ28(圧力センサ27の検出値から換算してもよい)によって検出される。そして、混合冷媒は蓄冷器26に送られ、その内部の蓄熱材2や冷房用熱媒体から熱を奪って蒸発する。その場合の蓄冷は図1を参照して説明したように生じ、したがって、蓄冷器26にいわゆる冷熱が蓄えられ、また冷房用熱媒体が冷却される。こうして気化した冷媒は、再度コンプレッサー20によって加圧圧縮される。   The condensed refrigerant is temporarily stored in the receiver tank 22. In that case, if uncondensed refrigerant is mixed, gas-liquid separation is performed here. Next, the refrigerant is adiabatically expanded in the expansion valve 23, and a part of the refrigerant evaporates, so that the liquid refrigerant and the gas refrigerant are mixed. The pressure of the mixed refrigerant is detected by the pressure sensor 27 (which may be converted from the detection value of the temperature sensor 28), and the temperature is detected by the temperature sensor 28 (which may be converted from the detection value of the pressure sensor 27). The Then, the mixed refrigerant is sent to the regenerator 26 and evaporates by taking heat from the heat storage material 2 and the cooling heat medium inside. In this case, the cold storage occurs as described with reference to FIG. 1, and so-called cold heat is stored in the regenerator 26, and the cooling heat medium is cooled. The refrigerant thus vaporized is pressurized and compressed again by the compressor 20.

なお、上述した第2蓄熱器38における蓄熱材2とエンジン冷却水および自動変速機オイル冷却水との間で熱交換が生じるように構成されているので、これらの冷却水の温度が低い場合には、蓄熱材2の有する熱によって冷却水が加温され、いわゆる暖機が促進される。また、車両の運転を継続したことによりこれらの冷却水の温度が高くなった場合には、その冷却水の熱が蓄熱材2に伝達されて熱回収される。   In addition, since it is comprised so that heat exchange may occur between the thermal storage material 2 in the 2nd thermal storage device 38 mentioned above, engine cooling water, and automatic transmission oil cooling water, when the temperature of these cooling water is low The cooling water is heated by the heat of the heat storage material 2, and so-called warm-up is promoted. Moreover, when the temperature of these cooling waters becomes high by continuing driving | running | working of a vehicle, the heat of the cooling water is transmitted to the thermal storage material 2, and is heat-recovered.

上述したように冷媒の凝縮は、蓄熱材2や暖房用熱媒体が熱を奪うことによって行うが、蓄熱材2の温度が次第に上昇した場合や暖房用熱媒体が熱を輸送していない場合には、冷媒の冷却効率が低下し、冷媒を過冷却状態にまで冷却できない可能性がある。そこで、この発明では、冷媒を過冷却状態にまで確実に冷却するために、以下のように強制過冷却を行う。   As described above, the condensation of the refrigerant is performed by the heat storage material 2 or the heating medium deprived of heat. However, when the temperature of the heat storage material 2 gradually increases or the heating medium does not transport heat. In this case, the cooling efficiency of the refrigerant is lowered, and there is a possibility that the refrigerant cannot be cooled to the supercooled state. Therefore, in the present invention, in order to reliably cool the refrigerant to the supercooled state, forced supercooling is performed as follows.

図3はその過冷却操作を説明するためのフローチャートであって、先ず、各種の情報が読み込まれる(ステップS1)。例えばコンプレッサー20あるいは冷凍サイクルなどの作動要求信号や、各圧力センサからの情報および各温度センサからの情報などが読み込まれる。ついで、第1循環流路30の暖房用熱媒体を流動させるポンプ35が作動中か否かが判断される(ステップS2)。すなわち、暖房用熱媒体が第1循環流路30の内部を流れていて蓄熱材2あるいは冷媒と熱交換しているか否かが判断される。このステップS2で肯定的に判断された場合には、特に制御を行うことなくこのルーチンを一旦終了する。   FIG. 3 is a flowchart for explaining the supercooling operation. First, various pieces of information are read (step S1). For example, an operation request signal for the compressor 20 or the refrigeration cycle, information from each pressure sensor, information from each temperature sensor, and the like are read. Next, it is determined whether or not the pump 35 that causes the heating heat medium in the first circulation passage 30 to flow is in operation (step S2). That is, it is determined whether the heating heat medium flows through the first circulation flow path 30 and exchanges heat with the heat storage material 2 or the refrigerant. If the determination in step S2 is affirmative, the routine is temporarily terminated without performing any particular control.

これとは反対にステップS2で否定的に判断された場合には、冷媒の強制離冷却が必要か否かが判断される(ステップS3)。暖房用熱媒体が循環しいない状態でコンプレッサー20あるいは冷凍サイクルが動作していると、冷凍サイクルにおける凝縮器として機能する第1蓄熱器21の蓄熱材2に熱が次第に蓄えられる。特に熱搬入流路5の周囲の蓄熱材2の温度が上昇すると、冷媒の凝縮が低調になって冷凍サイクルの熱効率が低下する。ステップS3ではそのような状況を判断しており、具体的には、マップに基づいて判断することができる。   On the other hand, if a negative determination is made in step S2, it is determined whether or not forced cooling of the refrigerant is necessary (step S3). When the compressor 20 or the refrigeration cycle is operating in a state where the heating heat medium is not circulated, heat is gradually stored in the heat storage material 2 of the first heat storage device 21 that functions as a condenser in the refrigeration cycle. In particular, when the temperature of the heat storage material 2 around the heat carry-in flow path 5 rises, the condensation of the refrigerant becomes low, and the thermal efficiency of the refrigeration cycle decreases. In step S3, such a situation is determined. Specifically, it can be determined based on the map.

図4にはそのマップの一例を示してあり、前記レシーバタンク22の直前に設けられている圧力センサ25の検出値(温度センサ24の検出値でもよい)を横軸に採り、第1蓄熱器21における蓄熱材2の温度を検出する温度センサ49の検出値を縦軸に採り、これらの検出値によって領域を定めたマップである。ここに示すマップでは、圧力が予め定めた値以上でかつ蓄熱材2の温度が予め定めた所定温度以下の領域が、強制冷却作動域とされている。すなわち、冷媒の凝縮が不十分になると、その圧力が次第に高くなるので、第1蓄熱器21によって冷媒を更に冷却する必要のあることが圧力によって判定することができる。またその場合、第1蓄熱器21の温度が高くなることがあるが、その温度が所定値以上に高くなると、最早、冷媒から熱を受け取ることが困難になる。そこで、強制冷却作動域を所定温度以下の領域とし、それ以上に温度が高くなった場合には、システムを停止するなどの対策を採ることとすればよい。   FIG. 4 shows an example of the map. The detection value of the pressure sensor 25 provided immediately before the receiver tank 22 (or the detection value of the temperature sensor 24) is taken on the horizontal axis, and the first heat accumulator is shown. 21 is a map in which the detection value of the temperature sensor 49 for detecting the temperature of the heat storage material 2 in 21 is taken on the vertical axis, and the region is defined by these detection values. In the map shown here, a region where the pressure is equal to or higher than a predetermined value and the temperature of the heat storage material 2 is equal to or lower than a predetermined temperature is defined as a forced cooling operation region. That is, when the condensation of the refrigerant becomes insufficient, the pressure gradually increases. Therefore, it can be determined by the pressure that the refrigerant needs to be further cooled by the first heat accumulator 21. In that case, the temperature of the first heat accumulator 21 may become high, but when the temperature becomes higher than a predetermined value, it becomes difficult to receive heat from the refrigerant. Therefore, the forced cooling operation region is set to a region below a predetermined temperature, and if the temperature becomes higher than that, measures such as stopping the system may be taken.

強制冷却の必要な状況に到っていないことによりステップS3で否定的に判断された場合には、特に制御を行うことなくこのルーチンを一旦終了する。これとは反対に肯定的に判断された場合には、前記三方弁32を作動させて(ステップS4)、第2循環流路37を第1循環流路30に連通させるとともに、前記ポンプ35を作動させて(ステップS5)、暖房用熱媒体を車室内熱交換器29を経由させずに第1蓄熱器21に対して循環流動させる。第1蓄熱器21は、図1に示すように、第1および第2の直接熱交換部9,12を備えているから、冷媒から直接熱を受けた暖房用熱媒体が、各間接熱交換部8,11において蓄熱材2に熱を伝達する。すなわち、暖房用熱媒体が冷媒と蓄熱材2との間の熱伝達を媒介し、その作用が繰り返し生じるので、冷媒の有する熱を蓄熱材2に効率良くかつ多量に伝達し、冷媒を過冷却状態にまで冷却することが可能になる。   If a negative determination is made in step S3 because the situation that requires forced cooling has not been reached, this routine is temporarily terminated without performing any particular control. On the contrary, if the determination is affirmative, the three-way valve 32 is operated (step S4), the second circulation passage 37 is communicated with the first circulation passage 30, and the pump 35 is turned on. By operating (step S5), the heating heat medium is circulated through the first heat accumulator 21 without passing through the vehicle interior heat exchanger 29. As shown in FIG. 1, the first heat accumulator 21 includes first and second direct heat exchange units 9 and 12, so that the heating heat medium that receives heat directly from the refrigerant performs each indirect heat exchange. Heat is transmitted to the heat storage material 2 in the parts 8 and 11. That is, since the heating heat medium mediates heat transfer between the refrigerant and the heat storage material 2 and the action repeatedly occurs, the heat of the refrigerant is efficiently and efficiently transferred to the heat storage material 2 to supercool the refrigerant. It becomes possible to cool to a state.

このように第1循環路21を循環する暖房用熱媒体は、それ自体が蓄熱機能を奏するとともに、蓄熱材2に対する熱伝達を促進するので、冷媒を冷却する熱量が十分に確保され、冷媒を過冷却することができる。その結果、冷凍サイクル全体としての熱効率を向上させることができる。また、冷媒の凝縮のための熱や蒸発のための冷熱を蓄えておくことができるので、熱エネルギの有効利用を図り、ひいては車両の燃費を向上させることができる。   Thus, the heating heat medium circulating in the first circulation path 21 itself has a heat storage function and promotes heat transfer to the heat storage material 2, so that a sufficient amount of heat for cooling the refrigerant is secured, Can be supercooled. As a result, the thermal efficiency of the entire refrigeration cycle can be improved. Further, since heat for condensing the refrigerant and cold heat for evaporation can be stored, it is possible to effectively use the heat energy and thus improve the fuel efficiency of the vehicle.

なお、この発明は上述した各具体例に限定されないのであって、車室内の空調を行うシステムに限らず、居室や貯蔵庫などの適宜の空間の冷暖房のためのシステムにも適用することができる。   Note that the present invention is not limited to the specific examples described above, and can be applied not only to a system that air-conditions a vehicle interior, but also to a system for heating and cooling an appropriate space such as a living room or a storage.

この発明に係る蓄熱型熱交換器の一例を模式的に示す図である。It is a figure which shows typically an example of the heat storage type heat exchanger which concerns on this invention. その蓄熱型熱交換器を蓄熱器もしくは蓄冷器として用いた車両用空調システムの一例を示すブロック図である。It is a block diagram which shows an example of the vehicle air conditioning system which used the thermal storage type heat exchanger as a thermal storage or a cool storage. 図1に示すシステムを対象とする制御の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the control which makes object the system shown in FIG. その制御例において強制冷却の要否を判定するために使用するモップの一例を示す図である。It is a figure which shows an example of the mop used in order to determine the necessity of forced cooling in the example of control.

符号の説明Explanation of symbols

1…蓄熱型熱交換器、 2…潜熱蓄熱材、 4…熱搬入媒体、 5…熱搬入流路、 6…熱搬出媒体、 7…熱搬出流路、 8…第1間接熱交換部、 9…第1直接熱交換部、 10…隔壁、 11…第2間接熱交換部、 12…第2直接熱交換部、 20…コンプレッサー、 21…第1蓄熱器、 29…車室内熱交換器、 30…第1循環流路、 34…貯留タンク、 37…第2循環流路、 38…第2蓄熱器、 45…第3循環流路、 53…制御装置。   DESCRIPTION OF SYMBOLS 1 ... Heat storage type heat exchanger, 2 ... Latent heat storage material, 4 ... Heat carrying-in medium, 5 ... Heat carrying-in channel, 6 ... Heat carrying-out medium, 7 ... Heat carrying-out channel, 8 ... 1st indirect heat exchange part, 9 DESCRIPTION OF SYMBOLS 1st direct heat exchange part, 10 ... Partition, 11 ... 2nd indirect heat exchange part, 12 ... 2nd direct heat exchange part, 20 ... Compressor, 21 ... 1st regenerator, 29 ... Car interior heat exchanger, 30 ... 1st circulation flow path, 34 ... Storage tank, 37 ... 2nd circulation flow path, 38 ... 2nd heat accumulator, 45 ... 3rd circulation flow path, 53 ... Control apparatus.

Claims (6)

蓄熱材と、その蓄熱材との間で熱交換する熱搬入媒体と、前記蓄熱材及び熱搬入媒体との間で熱交換する熱搬出媒体とを備えた蓄熱型熱交換器において、
前記熱搬入媒体と前記熱搬出媒体とが前記蓄熱材を介して熱交換を行う第1間接熱交換部と、前記熱搬入媒体と前記熱搬出媒体とがそれぞれの媒体の流路を形成している隔壁を介して熱交換する第1直接熱交換部とを備え、
前記熱搬入媒体と前記熱搬出媒体とがそれぞれの流路を前記第1間接熱交換部から第1直接熱交換部に向けて流れるように構成されていることを特徴とする蓄熱型熱交換器。
In a heat storage type heat exchanger comprising a heat storage material, a heat carrying medium that exchanges heat between the heat storage material, and a heat carrying medium that exchanges heat between the heat storage material and the heat carrying medium,
The first indirect heat exchanging unit in which the heat carrying medium and the heat carrying medium exchange heat via the heat storage material, the heat carrying medium and the heat carrying medium form a flow path for each medium. A first direct heat exchanging part for exchanging heat through the partition wall,
The heat storage type heat exchanger, wherein the heat carrying medium and the heat carrying medium are configured to flow through the respective flow paths from the first indirect heat exchange section toward the first direct heat exchange section. .
前記第1直接熱交換部より下流側の前記熱搬入媒体と前記第1直接熱交換部より上流側の熱搬出媒体が前記蓄熱材を介して熱交換する第2間接熱交換部と、
その第2間接熱交換部より下流側の前記熱搬入媒体と前記第2熱交換部より下流側の前記熱搬出媒体とがそれぞれの流路を形成している隔壁を介して熱交換する第2直接熱交換部と
を備えていることを特徴とする請求項1に記載の蓄熱型熱交換器。
A second indirect heat exchange section in which the heat carry-in medium downstream from the first direct heat exchange section and a heat carry-out medium upstream from the first direct heat exchange section exchange heat through the heat storage material;
The second heat exchange medium downstream from the second indirect heat exchange part and the heat carry-out medium downstream from the second heat exchange part exchange heat through the partition walls forming the respective flow paths. The heat storage type heat exchanger according to claim 1, further comprising a direct heat exchange unit.
請求項1または2に記載された蓄熱型熱交換器における前記熱搬出媒体を室内熱交換器に循環流動させる第1循環流路と、
冷凍サイクルによって圧縮・膨張させられる冷媒を前記熱搬入媒体として前記蓄熱型熱交換に循環流動させる第2循環流路と
を備えていることを特徴とする空調システム。
A first circulation flow path for circulating and flowing the heat carrying-out medium in the heat storage type heat exchanger according to claim 1 or 2 to an indoor heat exchanger;
An air conditioning system comprising: a second circulation passage that circulates and flows the refrigerant compressed and expanded by a refrigeration cycle to the heat storage type heat exchange as the heat carrying medium.
前記第1循環流路から分岐して形成され、かつ前記熱搬出媒体を前記室内熱交換器を経由させずに前記蓄熱材の内部に繰り返し循環させる第3循環流路と、前記熱搬出媒体を前記第1循環流路と第3循環流路とに切り替えて流す切換弁とを備えていることを特徴とする請求項3に記載の空調システム。   A third circulation passage formed by branching from the first circulation passage, and repeatedly circulating the heat carrying medium inside the heat storage material without passing through the indoor heat exchanger; and the heat carrying medium. The air conditioning system according to claim 3, further comprising a switching valve that switches between the first circulation channel and the third circulation channel. 前記熱搬出媒体を一時的に貯留する貯留器が、前記第1循環流路と第3循環流路とに共通の流路の部分に設けられていることを特徴とする請求項4に記載の空調システム。   5. The reservoir according to claim 4, wherein a reservoir for temporarily storing the heat carrying-out medium is provided in a portion of a flow path common to the first circulation flow path and the third circulation flow path. Air conditioning system. 車両に搭載されていることを特徴とする請求項3ないし5のいずれかに記載の空調システム。   6. The air conditioning system according to claim 3, wherein the air conditioning system is mounted on a vehicle.
JP2006111373A 2006-04-13 2006-04-13 Thermal storage heat exchanger and air conditioning system Expired - Fee Related JP4862465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111373A JP4862465B2 (en) 2006-04-13 2006-04-13 Thermal storage heat exchanger and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111373A JP4862465B2 (en) 2006-04-13 2006-04-13 Thermal storage heat exchanger and air conditioning system

Publications (2)

Publication Number Publication Date
JP2007285550A true JP2007285550A (en) 2007-11-01
JP4862465B2 JP4862465B2 (en) 2012-01-25

Family

ID=38757504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111373A Expired - Fee Related JP4862465B2 (en) 2006-04-13 2006-04-13 Thermal storage heat exchanger and air conditioning system

Country Status (1)

Country Link
JP (1) JP4862465B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281561A (en) * 2009-06-05 2010-12-16 Valeo Systemes Thermiques Heat exchange device and thermal management system
JP2013531218A (en) * 2010-07-12 2013-08-01 シーメンス アクチエンゲゼルシヤフト Thermal energy storage and recovery device and system with heat exchange device using compressed gas
KR102089419B1 (en) * 2018-10-04 2020-04-23 박흥석 Heat exchanger using phase change material
CN111829284A (en) * 2019-04-17 2020-10-27 合肥华凌股份有限公司 Refrigeration water tank and refrigeration equipment
WO2020250763A1 (en) * 2019-06-10 2020-12-17 株式会社デンソー Refrigeration cycle device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146054A (en) * 1978-05-08 1979-11-14 Hitachi Ltd Heat accumulator
JPH0611285A (en) * 1992-06-26 1994-01-21 Matsushita Electric Works Ltd Heat accumulating system
JPH07215044A (en) * 1994-02-02 1995-08-15 Toyota Motor Corp Heat accumulating heating device for vehicle
JPH1071839A (en) * 1996-08-30 1998-03-17 Denso Corp Cooling water circuit for internal combustion engine
JP2003336974A (en) * 2002-05-20 2003-11-28 Toyo Radiator Co Ltd Regenerative heat exchanger
JP2004050991A (en) * 2002-07-22 2004-02-19 Denso Corp Cold storage type refrigeration cycle device
JP2004074824A (en) * 2002-08-09 2004-03-11 Toyota Motor Corp Air conditioner for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146054A (en) * 1978-05-08 1979-11-14 Hitachi Ltd Heat accumulator
JPH0611285A (en) * 1992-06-26 1994-01-21 Matsushita Electric Works Ltd Heat accumulating system
JPH07215044A (en) * 1994-02-02 1995-08-15 Toyota Motor Corp Heat accumulating heating device for vehicle
JPH1071839A (en) * 1996-08-30 1998-03-17 Denso Corp Cooling water circuit for internal combustion engine
JP2003336974A (en) * 2002-05-20 2003-11-28 Toyo Radiator Co Ltd Regenerative heat exchanger
JP2004050991A (en) * 2002-07-22 2004-02-19 Denso Corp Cold storage type refrigeration cycle device
JP2004074824A (en) * 2002-08-09 2004-03-11 Toyota Motor Corp Air conditioner for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281561A (en) * 2009-06-05 2010-12-16 Valeo Systemes Thermiques Heat exchange device and thermal management system
JP2013531218A (en) * 2010-07-12 2013-08-01 シーメンス アクチエンゲゼルシヤフト Thermal energy storage and recovery device and system with heat exchange device using compressed gas
US8991183B2 (en) 2010-07-12 2015-03-31 Siemens Aktiengesellschaft Thermal energy storage and recovery device and system having a heat exchanger arrangement using a compressed gas
KR102089419B1 (en) * 2018-10-04 2020-04-23 박흥석 Heat exchanger using phase change material
CN111829284A (en) * 2019-04-17 2020-10-27 合肥华凌股份有限公司 Refrigeration water tank and refrigeration equipment
WO2020250763A1 (en) * 2019-06-10 2020-12-17 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP4862465B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4201011B2 (en) Heat storage device
RU2472643C1 (en) System for cooling and heating
CN103998874B (en) Chiller
JP5391379B2 (en) Refrigerant cycle of automobile air conditioner
JP5962556B2 (en) Thermal management system for vehicles
JP5989328B2 (en) Heat exchanger
CN103380014B (en) Cooling system of vehicle
JP5626194B2 (en) Heat exchange system
US9352634B2 (en) Air conditioner for a vehicle using a composite heat exchanger
JP6973446B2 (en) In-vehicle temperature control device
CN102788452A (en) Condenser for vehicle and air conditioning system for vehicle
JP5979078B2 (en) Temperature control device
US9681590B2 (en) Cooling system with controlled apportioning of the cooled high pressure refrigerant between the condenser and the expansion valve
MXPA03001817A (en) Method and arrangement for defrosting a vapor compression system.
US20140223925A1 (en) Heat exchange apparatus and method for controlling heat exchange apparatus
JP2020183857A (en) Heat pump system for electric vehicle and control method of the same
JP4862465B2 (en) Thermal storage heat exchanger and air conditioning system
KR20190057768A (en) Heat Pump For a Vehicle
CN103842741A (en) Control method for cooling apparatus
KR20210114344A (en) In-vehicle temperature control system
JP2021142793A (en) On-vehicle temperature control system
KR20190057769A (en) Heat Pump For a Vehicle
CN103512255A (en) Climate control system for motor vehicle and method of operating the climate control system
KR20190057770A (en) Heat Pump For a Vehicle
JP2014206301A (en) Chiller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4862465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees