JP2007283203A - Method and apparatus for treating water accompanying in oil field - Google Patents

Method and apparatus for treating water accompanying in oil field Download PDF

Info

Publication number
JP2007283203A
JP2007283203A JP2006113058A JP2006113058A JP2007283203A JP 2007283203 A JP2007283203 A JP 2007283203A JP 2006113058 A JP2006113058 A JP 2006113058A JP 2006113058 A JP2006113058 A JP 2006113058A JP 2007283203 A JP2007283203 A JP 2007283203A
Authority
JP
Japan
Prior art keywords
oil
associated water
oil field
water
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006113058A
Other languages
Japanese (ja)
Inventor
Toshiaki Arato
利昭 荒戸
Hidehiro Iizuka
秀宏 飯塚
Akira Mochizuki
明 望月
Tomoko Suzuki
朋子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006113058A priority Critical patent/JP2007283203A/en
Publication of JP2007283203A publication Critical patent/JP2007283203A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating the water accompanying in an oil field, each of which is suitable for removing a dissolved organic compound contained in the water accompanying in the oil field, which is obtained by separating/removing oil from the produced water associated with the crude oil produced by mining crude oil. <P>SOLUTION: The water accompanying in the oil field is brought into contact with zeolite having 100-200 molar ratio of SiO<SB>2</SB>/Al<SB>2</SB>O<SB>3</SB>to adsorb/remove the dissolved organic compound. It is preferable that the water accompanying in the oil field is brought into contact with Y-type zeolite having 170-200 molar ratio of SiO<SB>2</SB>/Al<SB>2</SB>O<SB>3</SB>and then brought into contact with ZSM-5 having 100-200 molar ratio of SiO<SB>2</SB>/Al<SB>2</SB>O<SB>3</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原油を採掘したときに産出される原油産出水の処理に係り、特に原油産出水から油を分離除去した後の油田随伴水の処理方法及び処理装置に関する。   The present invention relates to processing of crude oil produced water produced when mining crude oil, and more particularly to a method and apparatus for treating oil field associated water after separating and removing oil from crude oil produced water.

原油の採掘時には塩分を含んだ原油産出水が排出される。この原油産出水は原油を分離した後に海洋等に放流されるが、原油産出水には有機化合物が溶解しており、悪臭発生の原因或いは海洋汚染の原因になりかねないことから、これを事前に処理することが要求される。   When mining crude oil, salinized crude oil output is discharged. This crude oil output is released into the ocean after separating the crude oil, but organic compounds are dissolved in the crude oil output, which may cause malodors or marine pollution. Is required to be processed.

特許文献1には、海底油田から採掘した際に産出される原油産出水から油分を分離除去すること、及び、乳化破壊を起こさせて油水分離した水を微生物処理する例があることが記載されている。   Patent Document 1 describes that there is an example in which oil is separated and removed from crude oil-produced water produced when mining from an offshore oil field, and microbial treatment is performed on water that has been separated into oil and water by causing emulsion breakage. ing.

また、特許文献2には、原油産出水ではなく、発電所や下水或いはごみ埋め立て地の排水に含まれている油や有機化合物を除去する技術であるが、砂濾過による油吸着と活性炭によるCOD成分の吸着とを組み合わせることが記載されている。   Patent Document 2 discloses a technique for removing oil and organic compounds contained in wastewater from power plants, sewage, or landfills, not from crude oil produced water. Oil absorption by sand filtration and COD by activated carbon Combining component adsorption is described.

特開2003−144805号公報Japanese Patent Laid-Open No. 2003-144805 特開2004−275884号公報Japanese Patent Application Laid-Open No. 2004-275484

原油を採掘した際に産出される原油産出水から油分を分離除去した後の水(以下、油田随伴水と称す)には、酢酸、プロピオン酸、吉草酸など、多種類の有機化合物が溶解している。このように多種類の溶存有機化合物を吸着除去する方法として、活性炭吸着法は必ずしも適切ではない。   Many organic compounds such as acetic acid, propionic acid, and valeric acid are dissolved in the water after separating and removing the oil from the crude oil produced when the crude oil is mined (hereinafter referred to as oilfield associated water). ing. As described above, the activated carbon adsorption method is not necessarily appropriate as a method for adsorbing and removing many kinds of dissolved organic compounds.

本発明の目的は、油田随伴水に含まれる溶存有機化合物を除去するのに適した処理方法と処理装置を提供することにある。   The objective of this invention is providing the processing method and processing apparatus suitable for removing the dissolved organic compound contained in oil field accompanying water.

本発明は、原油の採掘時に産出された原油産出水から原油を分離除去した後の油田随伴水を、SiO/Alのモル比が100〜200の範囲内にあるゼオライトと接触させて、油田随伴水に含まれている溶存有機化合物を吸着除去することにある。 In the present invention, the oil field associated water after separating and removing the crude oil from the crude oil produced during the mining of the crude oil is brought into contact with a zeolite having a SiO 2 / Al 2 O 3 molar ratio in the range of 100 to 200. The purpose is to adsorb and remove dissolved organic compounds contained in the water accompanying the oil field.

本発明によれば、油田随伴水に含まれている溶存有機化合物の除去性能を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the removal performance of the dissolved organic compound contained in oil field accompanying water can be improved.

溶存有機化合物の含有量を測る指標としては、生物化学的酸素要求量(COD:Chemical Oxygen Demand)がある。このため、溶存有機化合物は一般にCOD成分と称される。   As an index for measuring the content of the dissolved organic compound, there is a biochemical oxygen demand (COD: Chemical Oxygen Demand). For this reason, dissolved organic compounds are generally referred to as COD components.

本発明者は、有機化合物の処理方法として従来から知られている各種の方法について、油田随伴水の処理に適するかどうか検討した。その結果、活性汚泥処理法は塩素の影響を受ける上に処理時間が長いこと、次亜塩素酸ナトリウム添加法と次亜塩素酸発生法(電気分解法)及びフェントン酸化法は、COD成分の低減効果が乏しいことが分かった。また、減圧濃縮(蒸留)法は、水と沸点が大きく異なる物質でないと分離しにくい上に濃縮液の処理が問題であること、活性炭吸着法はCOD成分除去効果に優れるが、再生しにくく、且つ、大量の活性炭が必要でありコストが高くなることが分かった。   This inventor examined whether various methods conventionally known as a processing method of an organic compound were suitable for a process of oil field accompanying water. As a result, the activated sludge treatment method is affected by chlorine and the treatment time is long. The sodium hypochlorite addition method, the hypochlorous acid generation method (electrolysis method) and the Fenton oxidation method reduce COD components. It turns out that the effect is poor. In addition, the vacuum concentration (distillation) method is difficult to separate unless it is a substance having a boiling point significantly different from that of water, and the treatment of the concentrated solution is a problem. In addition, it has been found that a large amount of activated carbon is required and the cost is increased.

これに対し、ゼオライトのうちで、SiO/Alのモル比が100〜200の範囲内にあるものは、油田随伴水中のCOD成分の吸着剤として適することが分かった。ゼオライトは再生も容易である。 In contrast, among the zeolites, those the molar ratio of SiO 2 / Al 2 O 3 is within the range of 100 to 200 have been found to be suitable as an adsorbent for COD components oilfield associated water. Zeolite is easy to regenerate.

ゼオライトには、天然ゼオライト、合成ゼオライト、人工ゼオライト等があるが、SiO/Alのモル比が100〜200の範囲内に含まれるものであれば、そのいずれも使用可能である。その中でも、合成ゼオライトの一種であるZSM−5は、他のゼオライトに比べて油田随伴水の溶存有機化合物の吸着特性が特に優れており、最も好ましい吸着剤である。 Zeolite includes natural zeolite, synthetic zeolite, artificial zeolite and the like, and any of them can be used as long as the molar ratio of SiO 2 / Al 2 O 3 is within the range of 100 to 200. Among them, ZSM-5, which is a kind of synthetic zeolite, is the most preferable adsorbent because it has particularly excellent adsorption characteristics of dissolved organic compounds in oilfield-associated water compared to other zeolites.

油田随伴水には、少量の油がエマルジョン化して分散しており、また、極めて微小な泥、砂、そのほかの固形物が含まれている。これらは吸着剤の目詰まりの原因になるので、油田随伴水を吸着剤と接触させる前に除去しておくことが望ましい。また、油田随伴水にはアセトンのように揮発性有機化合物も含まれている。吸着剤による溶存有機化合物の吸着性能を高めるためには、この揮発性有機化合物も事前に除去しておくことが望ましい。   A small amount of oil is emulsified and dispersed in the water accompanying the oil field, and contains very fine mud, sand, and other solid substances. Since these cause clogging of the adsorbent, it is desirable to remove the oilfield-associated water before bringing it into contact with the adsorbent. The oil field accompanying water also contains volatile organic compounds such as acetone. In order to enhance the adsorption performance of the dissolved organic compound by the adsorbent, it is desirable to remove this volatile organic compound in advance.

油田随伴水に含まれる溶存有機化合物を低分子化してから、吸着剤と接触させることも望ましい。特にZSM−5の場合、低分子有機化合物の吸着性能が優れるので、この方法はZSM−5による吸着性能を高める上で好ましい。   It is also desirable to lower the molecular weight of dissolved organic compounds contained in the oilfield-associated water before contacting with the adsorbent. In particular, in the case of ZSM-5, the adsorption performance of the low molecular weight organic compound is excellent, so this method is preferable for enhancing the adsorption performance by ZSM-5.

油田随伴水を最初にSiO/Alのモル比が170〜200の範囲内にあるY型ゼオライトと接触させ、次に、SiO/Alのモル比が100〜200の範囲内にZSM−5と接触させることも、好ましい方法の一つである。SiO/Alのモル比が170〜200の範囲内にあるY型ゼオライトは、分子サイズの大きな有機化合物を吸着するのに適し、ZSM−5は油田随伴水に含まれる溶存有機化合物の全てに対して良好な吸着性能を有するが、特に分子サイズが小さい有機化合物を吸着するのに適する。油田随伴水をまずY型ゼオライトに接触させ、その後、ZSM−5に接触させることにより、油田随伴水に含まれる溶存有機化合物が効率よく除去できるようになる。 The oil field associated water is first contacted with a Y-type zeolite having a SiO 2 / Al 2 O 3 molar ratio in the range of 170-200, and then the SiO 2 / Al 2 O 3 molar ratio is 100-200. Contacting ZSM-5 within the range is one of the preferred methods. Y-type zeolite having a molar ratio of SiO 2 / Al 2 O 3 in the range of 170 to 200 is suitable for adsorbing organic compounds having a large molecular size, and ZSM-5 is a dissolved organic compound contained in water associated with oil fields. Although it has a good adsorption performance for all of these, it is particularly suitable for adsorbing organic compounds having a small molecular size. By bringing the oil field associated water first into contact with the Y-type zeolite and then contacting with ZSM-5, the dissolved organic compounds contained in the oil field associated water can be efficiently removed.

本発明の油田随伴水処理装置は、油田随伴水の処理系統にSiO/Alのモル比が100〜200の範囲内にあるゼオライトが充填された吸着装置を備えることによって達成される。好ましい処理装置は、前記吸着装置の上流側に、油田随伴水に含まれている固形物を除去する装置と、油田随伴水に含まれている揮発性有機化合物を除去する装置及び油田随伴水に溶解している溶存有機化合物を低分子化する装置の少なくとも1つよりなる前処理装置を備える。また、好ましい処理装置は、油田随伴水の処理系統の上流側にSiO/Alのモル比が170〜200の範囲内にあるY型ゼオライトが充填された吸着装置を備え、下流側にSiO/Alのモル比が100〜200の範囲内にあるZSM−5が充填された吸着装置を備える。 The oilfield-associated water treatment apparatus of the present invention is achieved by providing the oilfield-associated water treatment system with an adsorption device filled with zeolite having a SiO 2 / Al 2 O 3 molar ratio in the range of 100 to 200. . A preferable treatment apparatus includes an apparatus for removing solids contained in the oilfield associated water, an apparatus for removing volatile organic compounds contained in the oilfield associated water, and an oilfield associated water upstream of the adsorption apparatus. A pretreatment device comprising at least one device for reducing the molecular weight of dissolved organic compounds is provided. Also, the preferred processing apparatus includes a suction device that Y-type zeolite molar ratio of SiO 2 / Al 2 O 3 is within the range of 170 to 200 is filled in the upstream side of the processing system of oilfield produced water, downstream And an adsorption device filled with ZSM-5 having a SiO 2 / Al 2 O 3 molar ratio in the range of 100 to 200.

油田随伴水に含まれている主要な物質とその分子式及び濃度分析値の例を表1及び表2に示す。表1と表2では、原油採掘地が異なる。   Tables 1 and 2 show examples of major substances contained in the oilfield-associated water, their molecular formulas, and concentration analysis values. In Table 1 and Table 2, crude oil mining sites are different.

Figure 2007283203
Figure 2007283203

Figure 2007283203
Figure 2007283203

表1及び表2に記載されている溶存有機化合物のうち、ノルマル酪酸(n−酪酸)イソ酪酸(iso−酪酸)、ノルマル吉草酸(n−吉草酸)は、特に悪臭を発生しやすい原因物質とされている。   Of the dissolved organic compounds listed in Tables 1 and 2, normal butyric acid (n-butyric acid) isobutyric acid (iso-butyric acid) and normal valeric acid (n-valeric acid) are particularly causative substances that are likely to generate malodors. It is said that.

表1に示す油田随伴水のCODMn値は430mg/Lであり、表2に示す油田随伴水のCODMn値は1080mg/Lであった。 The COD Mn value of oil field associated water shown in Table 1 was 430 mg / L, and the COD Mn value of oil field associated water shown in Table 2 was 1080 mg / L.

油田随伴水に含まれている主要な溶存有機化合物の分子サイズを表3に示す。   Table 3 shows the molecular sizes of the main dissolved organic compounds contained in the oilfield-associated water.

Figure 2007283203
Figure 2007283203

合成ゼオライトの一種であるZSM−5のSiO/Alのモル比と各種カルボン酸に対する吸着特性との関係を図1に示し、Y型ゼオライトのSiO/Alのモル比と各種カルボン酸に対する吸着特性との関係を図2に示す。また、モルデナイトと各種カルボン酸に対する吸着特性との関係を図3に示す。 The relationship between the adsorption properties to the molar ratio and the various carboxylic acids of SiO 2 / Al 2 O 3 of ZSM-5 which is a kind of synthetic zeolite shown in FIG. 1, the molar ratio of SiO 2 / Al 2 O 3 of Y-type zeolite FIG. 2 shows the relationship between the adsorption properties for various carboxylic acids. Moreover, the relationship between the mordenite and the adsorption characteristic with respect to various carboxylic acids is shown in FIG.

図1〜3により明らかなように、ゼオライトの種類によって有機化合物の除去性能は異なり、また、SiO/Alのモル比によって有機化合物の除去性能が異なる。図1〜3の結果から言えることは、いずれのゼオライトでもSiO/Alのモル比が大きくなるにつれて吸着量が増大し、特にSiO/Alのモル比が100〜200の範囲において、その効果が顕著に現れるということである。 As apparent from FIGS. 1 to 3, the removal performance of the organic compound varies depending on the type of zeolite, and the removal performance of the organic compound varies depending on the molar ratio of SiO 2 / Al 2 O 3 . What can be said from the results of FIGS. 1-3, the adsorption amount increases as the molar ratio of SiO 2 / Al 2 O 3 is greater at any zeolite, in particular the molar ratio of SiO 2 / Al 2 O 3 100 to 200 This means that the effect appears remarkably in the range.

図2より、SiO/Alのモル比が170〜200の範囲にあるY型ゼオライトは、分子サイズが大きい有機化合物を多く吸着することが分かる。また、図1より、ZSM−5は分子サイズが小さい有機化合物を多く吸着することが分かる。これより、SiO/Alのモル比が170〜200の範囲にあるY型ゼオライトと、SiO/Alのモル比が100〜200の範囲にあるZSM−5を組み合わせることは有効である。 From FIG. 2, it can be seen that Y-type zeolite having a SiO 2 / Al 2 O 3 molar ratio in the range of 170 to 200 adsorbs a large amount of an organic compound having a large molecular size. Further, FIG. 1 shows that ZSM-5 adsorbs many organic compounds having a small molecular size. From this, combining the Y-type zeolite in which the molar ratio of SiO 2 / Al 2 O 3 is in the range of 170 to 200 and ZSM-5 in which the molar ratio of SiO 2 / Al 2 O 3 is in the range of 100 to 200. Is valid.

ここに示した合成ゼオライトは、いずれも、三次元構造の細孔を有している。ただし、Y型ゼオライトは細孔同士が交差する位置に、さらに径の大きな空孔が存在する結晶構造を有する点で他のZSM−5等とは結晶構造が若干異なっている。Y型ゼオライトが分子サイズの大きい有機化合物の吸着性能が優れるのは、径の大きな空孔に分子サイズの大きな有機化合物で吸着されるためではないかと推定される。   All the synthetic zeolites shown here have three-dimensional pores. However, the crystal structure of Y-type zeolite is slightly different from other ZSM-5 etc. in that it has a crystal structure in which pores with larger diameters exist at positions where the pores intersect. It is presumed that the adsorption performance of the organic compound having a large molecular size is excellent because the Y-type zeolite is adsorbed by the organic compound having a large molecular size in the pore having a large diameter.

図4に、ZSM−5、Y型ゼオライト及びモルデナイトのSiO/Alモル比と酢酸吸着量との関係を示した。また、図5に、ZSM−5、Y型ゼオライト及びモルデナイトのSiO/Alモル比とプロピオン酸吸着量との関係を示した。図6にZSM−5、Y型ゼオライト及びモルデナイトのSiO/Alモル比とn−酪酸吸着量との関係を示した。ZSM−5、Y型ゼオライト及びモルデナイトの三種類の中では、ZSM−5の吸着特性が最も優れており、ついで、Y型ゼオライト、モルデナイトの順であった。 FIG. 4 shows the relationship between the SiO 2 / Al 2 O 3 molar ratio of ZSM-5, Y-type zeolite and mordenite and the acetic acid adsorption amount. Further, FIG. 5 shows the relationship between the SiO 2 / Al 2 O 3 molar ratio of ZSM-5, Y-type zeolite and mordenite and the propionic acid adsorption amount. FIG. 6 shows the relationship between the SiO 2 / Al 2 O 3 molar ratio of ZSM-5, Y-type zeolite and mordenite and the n-butyric acid adsorption amount. Among the three types of ZSM-5, Y-type zeolite and mordenite, the adsorption characteristics of ZSM-5 were the most excellent, followed by Y-type zeolite and mordenite.

本発明による処理装置の一実施形態を図7に示す。図7の処理装置は、油田随伴水中の油分及び固形物を分離除去する磁気分離式の回転濾過装置4と油田随伴水中の油分及び固形物を除去した後の濾過水90を曝気処理する曝気処理装置15と一次処理水から溶存COD成分を吸着除去する吸着装置17,18及び排気燃焼装置16から構成されている。   An embodiment of a processing apparatus according to the present invention is shown in FIG. 7 is a magnetic separation type rotary filtration device 4 that separates and removes oil and solids in oilfield-associated water and aeration treatment that aeration-treats filtered water 90 after removing oil and solids in oilfield-associated water. It comprises an apparatus 15, adsorption apparatuses 17, 18 that adsorb and remove dissolved COD components from the primary treated water, and an exhaust combustion apparatus 16.

油田随伴水1には少量の油がエマルジョン化して残留しており、そのほかに泥、砂、その他の固形物が混入している。そこで、水タンク2に収容された油田随伴水1を凝集槽3に送り、硫酸第二鉄やポリ塩化アルミニウム等の凝集剤或いはマグネタイト(Fe)、γヘマタイト(Fe)等の磁性粒子を用いて、浮遊物を凝集させてフロック化する処理を行う。 A small amount of oil remains in the oilfield-associated water 1 after emulsification, and in addition, mud, sand, and other solid substances are mixed. Therefore, the oilfield-associated water 1 stored in the water tank 2 is sent to the coagulation tank 3, and a coagulant such as ferric sulfate or polyaluminum chloride, magnetite (Fe 3 O 4 ), γ-hematite (Fe 2 O 3 ), etc. Using the magnetic particles, the suspended matter is agglomerated to form a floc.

フロックを含む油田随伴水は回転濾過装置4に送り、油分とフロックを油田随伴水から分離する。回転濾過装置4には回転濾過膜5と回転円筒体6が備えられており、回転円筒体6の内部には図示しないが電磁石等の磁場発生装置が設けられている。油田随伴水は回転濾過膜5によって濾過され、回転円筒体6に堆積した油分及びフロック7は、洗浄水の吹き付け或いは掻き落し板による掻き落しによって回転円筒体6から除去され、回転濾過装置4の外部に排出される。本発明において、固形物除去装置は磁気分離式の回転濾過装置に限定されるものではないが、この磁気分離式の回転濾過装置は油田随伴水における固形物除去装置として極めて好適である。   The oilfield associated water containing floc is sent to the rotary filtration device 4 to separate the oil and floc from the oilfield associated water. The rotary filtration device 4 includes a rotary filtration membrane 5 and a rotary cylinder 6, and a magnetic field generator such as an electromagnet (not shown) is provided inside the rotary cylinder 6. Oil field-associated water is filtered by the rotary filtration membrane 5, and oil and floc 7 deposited on the rotary cylinder 6 are removed from the rotary cylinder 6 by spraying cleaning water or scraping off with a scraping plate, and the rotary filter 4 It is discharged outside. In the present invention, the solid matter removing device is not limited to a magnetic separation type rotary filtration device, but this magnetic separation type rotary filtration device is extremely suitable as a solid matter removal device in oilfield-associated water.

油分及びフロックが分離除去された濾過水90は、次いで、曝気処理装置15に送られ、濾過水中に溶解している揮発性有機化合物が気化される。濾過水を吸着装置に送る前に、予め揮発性有機物を気化して除去しておくことにより、吸着装置でのCOD成分の除去性能を高めることができる。   The filtered water 90 from which the oil and floc are separated and removed is then sent to the aeration treatment device 15 to vaporize volatile organic compounds dissolved in the filtered water. Before the filtered water is sent to the adsorption device, the volatile organic substances are vaporized and removed in advance, whereby the COD component removal performance in the adsorption device can be enhanced.

曝気処理された処理水62は合成ゼオライトよりなる吸着剤171が充填された吸着装置17に送られ、続いて合成ゼオライトよりなる吸着剤181が充填された吸着装置18に送られる。ここで、分子サイズの大きい有機化合物は吸着装置17で除去し、分子サイズの小さい有機化合物は吸着装置18で除去することにより、吸着効果を高めることができる。このためには、吸着装置17にSiO/Alのモル比が170〜200の範囲内にあるY型ゼオライトを充填し、吸着装置18にはSiO/Alのモル比が100〜200の範囲内にあるZSM−5を充填することが望ましい。 The treated water 62 subjected to the aeration treatment is sent to the adsorption device 17 filled with the adsorbent 171 made of synthetic zeolite, and then sent to the adsorption device 18 filled with the adsorbent 181 made of synthetic zeolite. Here, the adsorption effect can be enhanced by removing the organic compound having a large molecular size by the adsorption device 17 and removing the organic compound having a small molecular size by the adsorption device 18. For this purpose, the adsorber 17 is filled with Y-type zeolite having a SiO 2 / Al 2 O 3 molar ratio in the range of 170 to 200, and the adsorber 18 is filled with a SiO 2 / Al 2 O 3 molar ratio. Is preferably filled with ZSM-5 in the range of 100-200.

なお、吸着装置17,18に同一種類のゼオライトを充填してもよく、吸着装置を一基設けるときよりも吸着量を多くすることができる。この場合には、ゼオライトとしてZSM−5を充填することが望ましい。   Note that the adsorption devices 17 and 18 may be filled with the same kind of zeolite, and the amount of adsorption can be increased as compared with the case where one adsorption device is provided. In this case, it is desirable to fill ZSM-5 as zeolite.

吸着装置17には加熱装置20,21が備えられ、吸着装置18には加熱装置21が備えられている。これらの加熱装置は電気炉であってもよいし、マイクロ波誘導加熱炉であっても良い。加熱装置20,21は吸着剤を加熱して再生するために使用される。吸着剤の加熱再生は、吸着装置内の水を水抜き管24,25によって抜き、ブロワ22,23を作動して吸着装置内に100〜120℃程度の温風を数十分ないし1時間程度吹き込み、吸着剤を乾燥することによって行うことができる。送風時間は吸着装置の高さ及び送風温度によって変わり、この限りではない。ブロア22,23によって発生する空気の温度が400℃以上であれば、加熱装置20,21の代替としても用いることができる。ブロアで送風する熱風の雰囲気は大気成分であることが望ましい。   The adsorption device 17 includes heating devices 20 and 21, and the adsorption device 18 includes a heating device 21. These heating devices may be electric furnaces or microwave induction heating furnaces. The heating devices 20 and 21 are used for heating and regenerating the adsorbent. In the heat regeneration of the adsorbent, water in the adsorber is drained by the drainage pipes 24 and 25, and the blowers 22 and 23 are operated to supply hot air of about 100 to 120 ° C. in the adsorber for several tens of minutes to about 1 hour. This can be done by blowing and drying the adsorbent. The blowing time varies depending on the height of the adsorption device and the blowing temperature, and is not limited to this. If the temperature of the air generated by the blowers 22 and 23 is 400 ° C. or higher, it can be used as an alternative to the heating devices 20 and 21. The atmosphere of hot air blown by the blower is preferably an atmospheric component.

図7では、吸着装置17,18に、ブロア22,23によって吹き込まれた空気を外部へ排出するための送風管28が設けられ、また、送風管に水分計29が設置されている。ブロアからの排気91に含まれる水分量を水分計29で測定し、ブロアによる送風量をコントロールすることが望ましい。   In FIG. 7, the suction devices 17 and 18 are provided with a blower pipe 28 for discharging the air blown by the blowers 22 and 23 to the outside, and a moisture meter 29 is installed in the blower pipe. It is desirable to measure the amount of water contained in the exhaust 91 from the blower with the moisture meter 29 and control the amount of air blown by the blower.

吸着剤を加熱再生し易くするために、吸着剤表面にはPt,Pd,Ru,Rh,Ni,Fe,Cu,Mn,Coから選ばれた少なくとも1種を担持しておくことが望ましい。これらの成分は燃焼触媒として働く。ゼオライト表面に担持した触媒成分によって、ゼオライトに吸着されている有機化合物は酸化燃焼され、吸着剤が再生されて、吸着性能が回復する。これらの燃焼触媒を担持した場合の吸着剤の再生温度は、400〜500℃が特に好ましい。   In order to facilitate heating and regeneration of the adsorbent, it is desirable that at least one selected from Pt, Pd, Ru, Rh, Ni, Fe, Cu, Mn, and Co be supported on the adsorbent surface. These components act as combustion catalysts. The organic compound adsorbed on the zeolite is oxidized and burned by the catalyst component supported on the zeolite surface, the adsorbent is regenerated, and the adsorption performance is recovered. The regeneration temperature of the adsorbent when these combustion catalysts are supported is particularly preferably 400 to 500 ° C.

本発明においては、吸着装置を並列に少なくとも二系統備え、一方で吸着処理中に、他方で再生処理を行うようにすることが望ましい。   In the present invention, it is desirable that at least two systems of adsorption devices are provided in parallel, and on the one hand, the regeneration process is performed on the other side during the adsorption process.

吸着装置18を通過した最終処理水40は、その後、海洋等へ放流される。最終処理水40のCOD成分をCOD分析計263で計測し、吸着剤の交換時期など、吸着剤の性能に及ぼす条件を制御することが好ましい。   The final treated water 40 that has passed through the adsorption device 18 is then discharged into the ocean or the like. It is preferable to measure the COD component of the final treated water 40 with the COD analyzer 263 and control conditions affecting the performance of the adsorbent, such as the adsorbent replacement timing.

また、吸着剤の加熱再生によって吸着装置18で発生したガス30は、排気ガス抜き出し管の途中に排気燃焼装置16を設置して、ガス中に含まれる有機化合物を燃焼除去することが望ましい。   Further, it is desirable that the gas 30 generated in the adsorption device 18 by heating and regeneration of the adsorbent is provided with an exhaust combustion device 16 in the middle of the exhaust gas extraction pipe to burn and remove organic compounds contained in the gas.

なお、吸着剤の形状は、粉状、粒状、ペレット状、棒状、繊維状、板状、ハニカム状、ラシヒリングなど種々の形状でよい。しかし、使用済の吸着剤は再生し、繰り返し使用することが望ましいことから、できれば再生容易な粉状、粒状、ペレット状などがよい。また、吸着剤は、メッシュや多孔板などで挟んで吸着装置の内部に設置するのがよい。   The shape of the adsorbent may be various shapes such as powder, granule, pellet, rod, fiber, plate, honeycomb, Raschig ring and the like. However, since it is desirable that the used adsorbent is regenerated and used repeatedly, it is preferable that the adsorbent be in the form of powder, granules, pellets, etc. that can be easily regenerated. Further, the adsorbent is preferably placed inside the adsorption device with a mesh or a perforated plate.

図1の処理装置において、吸着装置17にSiO/Alのモル比が100のZSM−5を充填し、吸着装置18にSiO/Alのモル比が200のZSM−5を充填して、表1に示す油田随伴水を模擬した水を処理した。サンプリングポート260,261で採取したCOD成分及び最終処理水のCODMn値を測定した。ここで、CODMn値を用いたのは、多成分の定量には時間を必要とするので、実際の操作中にはCODMn値(排出基準値CODMn≦120mg/L)を管理指標に用いるのが良いことによる。 In the processing apparatus of FIG. 1, the adsorber 17 is filled with ZSM-5 having a SiO 2 / Al 2 O 3 molar ratio of 100, and the adsorber 18 is filled with ZSM− having a SiO 2 / Al 2 O 3 molar ratio of 200. No. 5 was filled and treated with water simulating oil field associated water shown in Table 1. The COD components collected at the sampling ports 260 and 261 and the COD Mn value of the final treated water were measured. Here, COD Mn value is used because time is required for quantification of multi-components, and COD Mn value (emission standard value COD Mn ≦ 120 mg / L) is used as a management index during actual operation. Because of the good thing.

その結果、サンプリングポート260で採取した水はCODMn値が600mg/Lであったものが、サンプリングポート261で採取した水は200mg/Lに低下し、最終処理水40のメタノール濃度は10mg/L以下に減少し、CODMn値は50mg/Lとなった。 As a result, the water collected at the sampling port 260 had a COD Mn value of 600 mg / L, but the water collected at the sampling port 261 decreased to 200 mg / L, and the methanol concentration in the final treated water 40 was 10 mg / L. The COD Mn value decreased to 50 mg / L.

本発明による処理装置の別の実施形態を図8に示す。図8の処理装置は、吸着装置が直列に三基配置されており、これが並列に二系統設けられている。並列に二系統設けたのは、一系統で吸着処理を行っているときに、他方で再生処理を行い、連続的に処理を行えるようにするためである。吸着装置400,401には酪酸、吉草酸など比較的分子サイズの大きな有機化合物を吸着するのに適するSiO/Alのモル比が200のY型ゼオライトを充填した。吸着装置402,403にはSiO/Alのモル比が90〜200のZSM−5を用いた。吸着装置404,405にはメタノールの吸着特性が優れるモレキュラーシ−ブ4Aを充填した。 Another embodiment of a processing apparatus according to the present invention is shown in FIG. In the processing apparatus of FIG. 8, three adsorption devices are arranged in series, and two systems are provided in parallel. The reason why the two systems are provided in parallel is that when the adsorption process is performed in one system, the regeneration process is performed on the other side so that the process can be performed continuously. Adsorbers 400 and 401 were filled with Y-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 200 suitable for adsorbing organic compounds having a relatively large molecular size such as butyric acid and valeric acid. ZSM-5 having a SiO 2 / Al 2 O 3 molar ratio of 90 to 200 was used for the adsorption devices 402 and 403. The adsorbers 404 and 405 were filled with molecular sieve 4A having excellent methanol adsorption characteristics.

吸着処理の過程で、サンプリングポ−ト406,407,408,409により水を採取し、CODMn値を分析した。COD濃度の測定は、JIS K 0102工場排水試験法の過マンガン酸カリウムによる酸素要求量(CODMn)によって行った。また、油田随伴水中のカルボン酸類の濃度はイオンクロマトグラフィーによって定量した。メタノール等のアルコール類およびベンゼン系炭化水素の定量はガスクロマトグラフィーによって行った。原水、一次処理水、二次処理水及び最終処理水の分析結果を表4に示す。本実施例により、最終処理水のCODMn値は一般的な基準とされる120mg/Lを大幅に下回ることが確認された。 In the course of the adsorption treatment, water was sampled by sampling ports 406, 407, 408, and 409, and the COD Mn value was analyzed. The COD concentration was measured by the oxygen demand (COD Mn ) by potassium permanganate according to JIS K 0102 factory drainage test method. The concentration of carboxylic acids in the oil field-associated water was quantified by ion chromatography. Quantification of alcohols such as methanol and benzene hydrocarbons was performed by gas chromatography. Table 4 shows the analysis results of raw water, primary treated water, secondary treated water, and final treated water. According to this example, it was confirmed that the COD Mn value of the final treated water is significantly lower than 120 mg / L, which is a general standard.

Figure 2007283203
Figure 2007283203

ZSM−5のSiO/Alのモル比とカルボン酸吸着量との関係を示す特性図である。It is a characteristic diagram showing the relationship between the molar ratio and the acid adsorption amount of SiO 2 / Al 2 O 3 of ZSM-5. Y型ゼオライトのSiO/Alのモル比とカルボン酸吸着量との関係を示す特性図である。It is a characteristic diagram showing the relationship between the molar ratio and the acid adsorption amount of SiO 2 / Al 2 O 3 of Y-type zeolite. モルデナイトのSiO/Alのモル比とカルボン酸吸着量との関係を示す特性図である。It is a characteristic diagram showing the relationship between the molar ratio and the acid adsorption amount of SiO 2 / Al 2 O 3 of mordenite. 各種合成ゼオライトのSiO/Alのモル比と酢酸吸着量との関係を示す特性図である。It is a characteristic diagram showing the relationship between the molar ratio and the acid adsorption amount of SiO 2 / Al 2 O 3 of various synthetic zeolites. 各種合成ゼオライトのSiO/Alのモル比とプロピオン酸吸着量との関係を示す特性図である。It is a characteristic diagram showing the relationship between the molar ratio and propionic acid adsorption amount of SiO 2 / Al 2 O 3 of various synthetic zeolites. 各種合成ゼオライトのSiO/Alのモル比とn−酪酸吸着量との関係を示す特性図である。It is a characteristic diagram showing the relationship between the molar ratio and the n- butyric acid adsorption amount of SiO 2 / Al 2 O 3 of various synthetic zeolites. 本発明の一実施形態による油田随伴水処理装置の概略構成図である。It is a schematic block diagram of the oil field accompanying water processing apparatus by one Embodiment of this invention. 本発明による処理装置の他の実施形態を示した概略構成図である。It is the schematic block diagram which showed other embodiment of the processing apparatus by this invention.

符号の説明Explanation of symbols

1…油田随伴水、4…回転濾過装置、15…曝気処理装置、16…排気燃焼装置、17…吸着装置、18…吸着装置、171…吸着剤、181…吸着剤。   DESCRIPTION OF SYMBOLS 1 ... Oil field accompanying water, 4 ... Rotary filtration apparatus, 15 ... Aeration processing apparatus, 16 ... Exhaust combustion apparatus, 17 ... Adsorption apparatus, 18 ... Adsorption apparatus, 171 ... Adsorbent, 181 ... Adsorbent.

Claims (8)

原油の採掘により産出された原油産出水から油を分離除去した後の油田随伴水を、SiO/Alのモル比が100〜200の範囲内にあるゼオライトと接触させて、前記油田随伴水に含まれている溶存有機化合物を吸着除去するようにしたことを特徴とする油田随伴水の処理方法。 The oil field associated water after separating and removing the oil from the crude oil produced water produced by the mining of the crude oil is brought into contact with zeolite having a SiO 2 / Al 2 O 3 molar ratio in the range of 100 to 200, and the oil field A method for treating oilfield associated water, wherein dissolved organic compounds contained in associated water are adsorbed and removed. 請求項1において、前記ゼオライトとしてZSM−5を用いることを特徴とする油田随伴水の処理方法。   2. The method for treating oilfield associated water according to claim 1, wherein ZSM-5 is used as the zeolite. 原油の採掘により産出された原油産出水から油を分離除去した後の油田随伴水の処理方法において、前記油田随伴水に懸濁している固形物を除去する処理と前記油田随伴水に含まれている揮発性有機化合物を除去する処理及び前記油田随伴水に溶解している溶存有機化合物を低分子化する処理の少なくとも1つの処理を施した後に、SiO/Alのモル比が100〜200であるゼオライトを用いて溶存有機化合物を吸着除去するようにしたことを特徴とする油田随伴水の処理方法。 In the method for treating oil field associated water after separating and removing oil from the crude oil produced by the extraction of crude oil, the oil field associated water is included in the treatment for removing solids suspended in the oil field associated water. After performing at least one of the treatment for removing the volatile organic compound and the treatment for lowering the molecular weight of the dissolved organic compound dissolved in the oil field accompanying water, the molar ratio of SiO 2 / Al 2 O 3 is 100 A method for treating oilfield-associated water, wherein a dissolved organic compound is adsorbed and removed using a zeolite of ~ 200. 請求項3において、前記ゼオライトとしてZSM−5を用いることを特徴とする油田随伴水の処理方法。   4. The method for treating oilfield associated water according to claim 3, wherein ZSM-5 is used as the zeolite. 原油の採掘により産出された原油産出水から油を分離除去した後の油田随伴水を、SiO/Alのモル比が170〜200の範囲内にあるY型ゼオライトと接触させたのち、SiO/Alのモル比が100〜200の範囲内にあるZSM−5と接触させて溶存有機化合物を吸着除去するようにしたことを特徴とする油田随伴水の処理方法。 After contacting the oil field associated water after separating and removing the oil from the crude oil produced by the mining of crude oil with a Y-type zeolite having a SiO 2 / Al 2 O 3 molar ratio in the range of 170-200 A process for treating oilfield-associated water, wherein dissolved organic compounds are adsorbed and removed by contacting with ZSM-5 having a SiO 2 / Al 2 O 3 molar ratio in the range of 100 to 200. 原油の採掘により産出された原油産出水から油を分離除去した後の油田随伴水の処理装置であって、前記油田随伴水の処理系統にSiO/Alのモル比が100〜200の範囲内にあるゼオライトが充填された吸着装置を備えて、油田随伴水に含まれている溶存有機化合物を吸着除去するようにしたことを特徴とする油田随伴水の処理装置。 An oil field associated water treatment apparatus after separating and removing oil from crude oil produced water produced by crude oil extraction, wherein the SiO 2 / Al 2 O 3 molar ratio is 100 to 200 in the oil field associated water treatment system. An apparatus for treating oilfield-associated water, comprising an adsorption device filled with zeolite in the above range, wherein the organic compounds contained in the oilfield-associated water are adsorbed and removed. 原油の採掘により産出された原油産出水から油を分離除去した後の油田随伴水の処理装置であって、前記油田随伴水に含まれている固形物を除去する装置と前記油田随伴水に含まれている揮発性有機化合物を除去する装置及び前記油田随伴水に溶解している溶存有機化合物を低分子化する装置の少なくとも1つよりなる前処理装置と、前記前処理装置で処理された後の油田随伴水をSiO/Alのモル比が100〜200の範囲内にあるゼオライトと接触させて溶存有機化合物を吸着除去する吸着装置を備えたことを特徴とする油田随伴水の処理装置。 An oil field associated water treatment apparatus after separating and removing oil from crude oil produced by extraction of crude oil, the apparatus removing solids contained in the oil field associated water and included in the oil field associated water A pretreatment device comprising at least one of a device for removing volatile organic compounds and a device for reducing the molecular weight of dissolved organic compounds dissolved in the oil field accompanying water, and after being treated by the pretreatment device The oil field associated water is provided with an adsorbing device for adsorbing and removing dissolved organic compounds by contacting the oil field associated water with zeolite having a SiO 2 / Al 2 O 3 molar ratio in the range of 100 to 200. Processing equipment. 原油の採掘により産出された原油産出水から油を分離除去した後の油田随伴水の処理装置であって、前記油田随伴水の処理系統の上流側にSiO/Alのモル比が170〜200の範囲内にあるY型ゼオライトが充填された吸着装置を備え、下流側にSiO/Alのモル比が100〜200の範囲内にあるZSM−5が充填された吸着装置を備えたことを特徴とする油田随伴水の処理装置。
An oil field associated water treatment apparatus after separating and removing oil from crude oil produced water produced by crude oil extraction, wherein the molar ratio of SiO 2 / Al 2 O 3 is upstream of the oil field associated water treatment system. Adsorption apparatus equipped with an adsorption device filled with Y-type zeolite in the range of 170 to 200 and filled with ZSM-5 in which the molar ratio of SiO 2 / Al 2 O 3 is in the range of 100 to 200 on the downstream side An apparatus for treating oil field associated water characterized by comprising an apparatus.
JP2006113058A 2006-04-17 2006-04-17 Method and apparatus for treating water accompanying in oil field Pending JP2007283203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113058A JP2007283203A (en) 2006-04-17 2006-04-17 Method and apparatus for treating water accompanying in oil field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113058A JP2007283203A (en) 2006-04-17 2006-04-17 Method and apparatus for treating water accompanying in oil field

Publications (1)

Publication Number Publication Date
JP2007283203A true JP2007283203A (en) 2007-11-01

Family

ID=38755467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113058A Pending JP2007283203A (en) 2006-04-17 2006-04-17 Method and apparatus for treating water accompanying in oil field

Country Status (1)

Country Link
JP (1) JP2007283203A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142730A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2010247122A (en) * 2009-04-20 2010-11-04 J Top Kk Method and device for removing adhesion substance from porous adsorbent
JP2013071057A (en) * 2011-09-28 2013-04-22 Toshiba Corp Water treatment equipment
JP2013091057A (en) * 2011-10-03 2013-05-16 Tosoh Corp Palladium compound adsorbent and application thereof
JP2013103215A (en) * 2011-11-16 2013-05-30 Toshiba Corp Oil adsorbent, oil field associated water treatment system and method for removing oil
JP2013184124A (en) * 2012-03-08 2013-09-19 Toshiba Corp Water treatment apparatus, and water treatment method
JP2013184123A (en) * 2012-03-08 2013-09-19 Toshiba Corp Water treatment apparatus and water treatment method
US10160668B2 (en) 2014-05-20 2018-12-25 Japan Oil, Gas And Metals National Corporation Device and method for treating organic-material-containing water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730546A (en) * 1980-07-31 1982-02-18 Mitsubishi Heavy Ind Ltd Adsorbing agent for organic material in water
JPS62183897A (en) * 1985-12-30 1987-08-12 ユニオン・カ−バイド・コ−ポレ−シヨン Method of removing noxious organic substance from weak aqueous solution of said substance
JP2004533322A (en) * 2001-06-28 2004-11-04 エニテクノロジー、ソシエタ、ペル、アチオニ A method for treating contaminated water based on the use of zeolites
JP2005177532A (en) * 2003-12-16 2005-07-07 Hitachi Ltd Oil-polluted water treatment apparatus
WO2005063631A2 (en) * 2003-12-22 2005-07-14 Enitecnologie S.P.A. Process for the treatment of contaminated water based on the use of apolar zeolites having different characteristics
WO2006049149A1 (en) * 2004-11-05 2006-05-11 Hitachi, Ltd. Method and apparatus for removing organic substance from oily water from oilfield

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730546A (en) * 1980-07-31 1982-02-18 Mitsubishi Heavy Ind Ltd Adsorbing agent for organic material in water
JPS62183897A (en) * 1985-12-30 1987-08-12 ユニオン・カ−バイド・コ−ポレ−シヨン Method of removing noxious organic substance from weak aqueous solution of said substance
JP2004533322A (en) * 2001-06-28 2004-11-04 エニテクノロジー、ソシエタ、ペル、アチオニ A method for treating contaminated water based on the use of zeolites
JP2005177532A (en) * 2003-12-16 2005-07-07 Hitachi Ltd Oil-polluted water treatment apparatus
WO2005063631A2 (en) * 2003-12-22 2005-07-14 Enitecnologie S.P.A. Process for the treatment of contaminated water based on the use of apolar zeolites having different characteristics
WO2006049149A1 (en) * 2004-11-05 2006-05-11 Hitachi, Ltd. Method and apparatus for removing organic substance from oily water from oilfield

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142730A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2010247122A (en) * 2009-04-20 2010-11-04 J Top Kk Method and device for removing adhesion substance from porous adsorbent
JP2013071057A (en) * 2011-09-28 2013-04-22 Toshiba Corp Water treatment equipment
JP2013091057A (en) * 2011-10-03 2013-05-16 Tosoh Corp Palladium compound adsorbent and application thereof
JP2013103215A (en) * 2011-11-16 2013-05-30 Toshiba Corp Oil adsorbent, oil field associated water treatment system and method for removing oil
JP2013184124A (en) * 2012-03-08 2013-09-19 Toshiba Corp Water treatment apparatus, and water treatment method
JP2013184123A (en) * 2012-03-08 2013-09-19 Toshiba Corp Water treatment apparatus and water treatment method
US10160668B2 (en) 2014-05-20 2018-12-25 Japan Oil, Gas And Metals National Corporation Device and method for treating organic-material-containing water

Similar Documents

Publication Publication Date Title
RU2385296C2 (en) Method and device for removing organic substance from oil field associated water
JP2007283203A (en) Method and apparatus for treating water accompanying in oil field
Abu-Lail et al. Adsorption of methyl tertiary butyl ether on granular zeolites: batch and column studies
Carmona et al. Adsorption of phenol and chlorophenols onto granular activated carbon and their desorption by supercritical CO2
Rossner et al. MTBE adsorption on alternative adsorbents and packed bed adsorber performance
JP6242761B2 (en) Waste water treatment apparatus and treatment method
Hung et al. Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite
JP5927700B2 (en) Water treatment system
Moussavi et al. Efficiency of multi-walled carbon nanotubes in adsorbing humic acid from aqueous solutions
Iovino et al. Single and competitive adsorption of toluene and naphthalene onto activated carbon
Zhao et al. TPO–TPD study of an activated carbon-supported copper catalyst–sorbent used for catalytic dry oxidation of phenol
Hung et al. Competitive and hindering effects of natural organic matter on the adsorption of MTBE onto activated carbons and zeolites
JP2010221075A (en) System for treating organic solvent-containing gas
Lakdawala et al. Comparative Study of Effect of PAC and GAC on Removal of COD Contributing Component of Sugar Industry waste water
JP2012035232A (en) Wastewater treatment system
Feizi et al. Adsorptive removal of propranolol under fixed-bed column using magnetic tyre char: Effects of wastewater effluent organic matter and ball milling
Alenezi et al. Prediction of adsorption parameters for hydrogen sulfide removal from synthetic wastewater using Box-Behnken design
JP2007125507A (en) Method and apparatus for treating oil-containing waste water such as bilge waste water
Solisio et al. Treatment of effluent containing micropollutants by means of activated carbon
JP2014014783A (en) Method and apparatus for regenerating adsorbing material and water purification system using the apparatus
US20150321935A1 (en) Method of oxidising production water
Vignola et al. Remediation of hydrocarbon contaminants in groundwater using specific zeolites in full-scale pump&treat and demonstrative permeable barrier tests
JPH09220557A (en) Method for removing ether and polycyclic aromatic hydrocarbon from underground water
JPH11226394A (en) Adsorbing material for low-concentration organic chlorine compound
CA2837191C (en) Activated carbon associated with iodide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101