JP2007282120A - Ofdm signal receiving device - Google Patents

Ofdm signal receiving device Download PDF

Info

Publication number
JP2007282120A
JP2007282120A JP2006109016A JP2006109016A JP2007282120A JP 2007282120 A JP2007282120 A JP 2007282120A JP 2006109016 A JP2006109016 A JP 2006109016A JP 2006109016 A JP2006109016 A JP 2006109016A JP 2007282120 A JP2007282120 A JP 2007282120A
Authority
JP
Japan
Prior art keywords
signal
interference
transmission
signals
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006109016A
Other languages
Japanese (ja)
Other versions
JP4722752B2 (en
Inventor
Shiyuuta Ueno
衆太 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006109016A priority Critical patent/JP4722752B2/en
Publication of JP2007282120A publication Critical patent/JP2007282120A/en
Application granted granted Critical
Publication of JP4722752B2 publication Critical patent/JP4722752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain excellent reception characteristics by removing interfering signal components included in reception signals when there are interfering signals asynchronous with a desired signal. <P>SOLUTION: The OFDM signal receiving device includes: a transmission line estimating means of calculating transfer factors of the desired signal and interfering signals by using preamble signals of the desired signal and interfering signals included in reception signals received by two receiving antennas; an interference extracting means of extracting the interfering signal components by suppressing a desired signal component included in the reception signals based upon the transfer factors of the desired signal and interfering signals obtained by the transmission line estimating means; and an interference compensating means of outputting a desired signal component wherein interfering signal components included in the reception signals are suppressed by using the interfering signal components by controlling the interfering signal components extracted by the interference extracting means based upon the transfer factors of the interfering signals obtained by the transmission line estimating means. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、受信したOFDM(Orthogonal Frequency Division Multiplexing、直交周波数分割多重)信号に対する干渉キャンセル機能を有するOFDM信号受信装置に関する。   The present invention relates to an OFDM signal receiving apparatus having an interference cancellation function for a received OFDM (Orthogonal Frequency Division Multiplexing) signal.

干渉キャンセラを用いる技術の一つとして、複数の送信アンテナと複数の受信アンテナを用いてMIMO(Multiple Input Multiple Output) チャネルを構成し、受信側で伝送路推定回路と干渉キャンセラを用いて各受信アンテナの受信信号から各送信アンテナからの送信信号を分離して復元することにより、送信アンテナの数だけチャネルを増加させ、周波数利用効率を向上させる手法がある。   As one of the techniques using an interference canceller, a MIMO (Multiple Input Multiple Output) channel is configured using a plurality of transmitting antennas and a plurality of receiving antennas, and each receiving antenna is configured using a transmission path estimation circuit and an interference canceller on the receiving side. There is a technique of increasing the frequency utilization efficiency by increasing the number of channels by the number of transmission antennas by separating and restoring the transmission signals from the transmission antennas from the received signals.

ここで、2本ずつの送信アンテナおよび受信アンテナからなる2×2MIMO伝送システムにおいて、OFDM信号伝送に適用した場合の構成を図18を参照して説明する(特許文献1)。   Here, a configuration when applied to OFDM signal transmission in a 2 × 2 MIMO transmission system including two transmitting antennas and two receiving antennas will be described with reference to FIG.

図18において、OFDM信号送信装置100は、マッピング回路101−1,101−2に2系統の入力データ系列S1,S2を入力して指定された変調方式の複素信号にマッピングし、次にプリアンブル挿入回路102−1,102−2で送信信号の先頭に所定のプリアンブル信号を付加した送信信号系列D1[i], D2[i]を生成し、高速逆フーリエ変換回路(IFFT)103−1,103−2でそれをサブキャリア群に分割してマルチキャリア伝送を行うOFDM信号を生成し、D/A変換器104−1,104−2でOFDM信号をアナログ信号に変換し、さらに送信機(Tx)105−1,105−2で所定の送信周波数に変換し、2本の送信アンテナ106−1,106−2から送信する構成である。 In FIG. 18, an OFDM signal transmitting apparatus 100 inputs two systems of input data sequences S1 and S2 to mapping circuits 101-1 and 101-2, maps them to a complex signal of a designated modulation scheme, and then inserts a preamble. The circuit 102-1 and 102-2 generate transmission signal sequences D 1 [i] and D 2 [i] with a predetermined preamble signal added to the head of the transmission signal, and a fast inverse Fourier transform circuit (IFFT) 103-1. , 103-2 divides it into subcarrier groups to generate an OFDM signal for multi-carrier transmission, D / A converters 104-1 and 104-2 convert the OFDM signal to an analog signal, and a transmitter (Tx) 105-1 and 105-2 are converted to a predetermined transmission frequency and transmitted from two transmission antennas 106-1 and 106-2.

OFDM信号受信装置110は、2本の受信アンテナ111−1,111−2で受信した各信号を受信機(Rx)112−1,112−2およびA/D変換器113−1,113−2でディジタル信号に変換し、高速フーリエ変換回路(FFT)114−1,114−2で各サブキャリアの受信信号系列x1[i], x2[i]を復調し、次に伝送路推定回路115で4通りの伝送路パスの各サブキャリア成分(h11[i],h12[i],h21[i],h22[i] )の伝達係数行列H[i] を推定し、干渉キャンセラ116でその逆行列H[i]-1 とFFT114−1,114−2から出力される受信信号系列x1[i], x2[i]を乗算することによりチャネル間の相互干渉を補償し、最後に干渉キャンセラ116の出力を識別回路117−1,117−2でビット列に変換し、出力データ系列Y1,Y2として出力する。 The OFDM signal receiving apparatus 110 receives signals received by the two receiving antennas 111-1 and 111-2 as receivers (Rx) 112-1 and 112-2 and A / D converters 113-1 and 113-2. Is converted to a digital signal, and the received signal sequences x 1 [i], x 2 [i] of each subcarrier are demodulated by fast Fourier transform circuits (FFT) 114-1, 114-2, and then a transmission path estimation circuit 115, the transfer coefficient matrix H [i] of each subcarrier component (h 11 [i], h 12 [i], h 21 [i], h 22 [i]) of the four transmission path paths is estimated, The interference canceller 116 multiplies the inverse matrix H [i] −1 by the received signal sequences x 1 [i] and x 2 [i] output from the FFTs 114-1 and 114-2 to reduce mutual interference between channels. Finally, the output of the interference canceller 116 is converted into a bit string by the identification circuits 117-1 and 117-2 and output. Output as data series Y1, Y2.

なお、本構成例では、OFDM信号伝送において伝送品質を向上させるために行う誤り訂正処理と、マルチパスによる遅延波の影響を除去するために付加するガードインターバルについての説明を省略する。   In this configuration example, descriptions of error correction processing performed to improve transmission quality in OFDM signal transmission and guard intervals added to eliminate the influence of delayed waves due to multipath are omitted.

各受信アンテナ111−1,111−2の受信信号の中には、2本の送信アンテナ106−1,106−2から輻射された各送信信号が混在して含まれている。以下に、受信信号から各送信信号系列を分離して復元する動作原理について説明する。図19は、バースト伝送におけるi番目のサブキャリアの2系統の送信信号系列を示す。これは、OFDM信号送信装置100のIFFT103−1,103−2に入力する送信信号系列D1[i], D2[i]に相当する。先頭の伝達係数推定用のプリアンブル信号は、既知パタンP1[i], P2[i]を用いて構成する。送信アンテナ106−1から送信されるプリアンブル信号(P1[i], 0)、送信アンテナ106−2から送信されるプリアンブル信号(0,P2[i])と、これらに対応する受信プリアンブル信号(Pr 11[i],Pr 12[i],Pr 21[i],Pr 22[i] )との関係は、伝達係数(h11[i],h12[i],h21[i],h22[i] )を成分とする2行2列の伝達係数行列H[i] を用いて次のように表される。 The reception signals of the reception antennas 111-1 and 111-2 include a mixture of the transmission signals radiated from the two transmission antennas 106-1 and 106-2. Hereinafter, an operation principle for separating and restoring each transmission signal sequence from the received signal will be described. FIG. 19 shows two transmission signal sequences of the i-th subcarrier in burst transmission. This corresponds to the transmission signal sequences D 1 [i] and D 2 [i] input to the IFFTs 103-1 and 103-2 of the OFDM signal transmission apparatus 100. The preamble signal for estimating the leading transfer coefficient is configured using known patterns P 1 [i] and P 2 [i]. Preamble signal (P 1 [i], 0) transmitted from the transmission antenna 106-1, preamble signal (0, P 2 [i]) transmitted from the transmission antenna 106-2, and reception preamble signals corresponding thereto (P r 11 [i], P r 12 [i], P r 21 [i], P r 22 [i]) the relationship between the transfer coefficient (h 11 [i], h 12 [i], h 21 [i], h 22 [i]) is used as a component and expressed as follows using a 2-by-2 transfer coefficient matrix H [i].

Figure 2007282120
Figure 2007282120

これにより、伝達係数逆行列H[i]-1は、次のように推定することができる。

Figure 2007282120
Accordingly, the transfer coefficient inverse matrix H [i] −1 can be estimated as follows.
Figure 2007282120

一方、データ信号系列については、時刻nにおけるi番目の送信サブキャリアD1[i](n),D2[i](n) と、OFDM信号受信装置110のFFT114−1,114−2から出力される受信サブキャリアx1[i](n),x2[i](n) の関係は、次のように表される。

Figure 2007282120
On the other hand, for the data signal sequence, the i-th transmission subcarriers D 1 [i] (n) and D 2 [i] (n) at time n and the FFTs 114-1 and 114-2 of the OFDM signal receiving apparatus 110 are used. The relationship between the output reception subcarriers x 1 [i] (n) and x 2 [i] (n) is expressed as follows.
Figure 2007282120

なお、受信信号中に含まれる熱雑音成分は省略した。受信サブキャリアx1[i](n),x2[i](n) に対して、(3) 式で求めた伝達係数逆行列H[i]-1 を乗算することにより、次のように送信サブキャリアD1[i](n),D2[i](n) が得られる。

Figure 2007282120
The thermal noise component included in the received signal is omitted. By multiplying the reception subcarrier x 1 [i] (n), x 2 [i] (n) by the transfer coefficient inverse matrix H [i] −1 obtained by the equation (3), the following is obtained. Thus, transmission subcarriers D 1 [i] (n) and D 2 [i] (n) are obtained.
Figure 2007282120

このように、従来のMIMO伝送システムでは、同一時刻に同一周波数チャネルで2本の送信アンテナから送信し、受信側の2本の受信アンテナの受信信号から伝送路推定回路と干渉キャンセラを用いて、各送信アンテナからの送信信号を分離して復元することができる。
特開2002−374224号公報
As described above, in the conventional MIMO transmission system, transmission is performed from two transmission antennas on the same frequency channel at the same time, and the transmission path estimation circuit and the interference canceller are used from the reception signals of the two reception antennas on the reception side. The transmission signal from each transmission antenna can be separated and restored.
JP 2002-374224 A

従来のMIMO伝送システムでは、複数の送信アンテナは同一装置内か、あるいは近接して設置されており、送信信号を同期させることができた。このため、それぞれの送信アンテナからプリアンブル信号を同時刻に送信することが可能であり、受信側ではプリアンブル信号を同時刻に受信し、チャネル間の相互干渉とならずに伝送路推定を行うことができるので、干渉キャンセラは送信信号を分離することができた。   In a conventional MIMO transmission system, a plurality of transmission antennas are installed in the same apparatus or close to each other, and transmission signals can be synchronized. For this reason, it is possible to transmit a preamble signal from each transmitting antenna at the same time, and the receiving side can receive the preamble signal at the same time and perform transmission path estimation without causing mutual interference between channels. As a result, the interference canceller was able to separate the transmission signal.

しかし、図20に示す他セル間干渉の場合はこれとは異なり、希望局と干渉局が相互に同期して同時刻にプリアンブル信号を送信するとは限らない。すなわち、希望局に対して非同期の干渉局が存在する場合、受信局は希望局のプリアンブル信号を受信中に、干渉局からの未知の信号を受信することになり、希望信号に対して伝送路推定を正常に行うことができない。このため、希望局と干渉局が存在する環境では、従来のMIMO伝送システムで用いられていた干渉キャンセル技術を適用することができない。   However, in the case of inter-cell interference shown in FIG. 20, unlike this, the desired station and the interfering station do not always transmit a preamble signal at the same time in synchronization with each other. That is, when there is an asynchronous interfering station with respect to the desired station, the receiving station receives an unknown signal from the interfering station while receiving the preamble signal of the desired station. Estimation cannot be performed normally. For this reason, the interference cancellation technique used in the conventional MIMO transmission system cannot be applied in an environment where a desired station and an interference station exist.

本発明は、希望信号に対して非同期の干渉信号がある場合に受信信号中に含まれる干渉信号成分を除去し、良好な受信特性を得ることができるOFDM信号受信装置を提供することを目的とする。   An object of the present invention is to provide an OFDM signal receiving apparatus capable of removing an interference signal component contained in a received signal and obtaining good reception characteristics when there is an asynchronous interference signal with respect to a desired signal. To do.

第1の発明は、希望局からOFDM信号として送信された希望信号と、該希望局に対して非同期の干渉局からOFDM信号として送信された干渉信号を2本の受信アンテナで受信し、各受信アンテナの受信信号をそれぞれフーリエ変換して各サブキャリアの受信信号を復調するOFDM信号受信装置において、2本の受信アンテナで受信した受信信号中に含まれる希望信号と干渉信号の各プリアンブル信号を用いて、希望信号および干渉信号の各伝達係数を算出する伝送路推定手段と、伝送路推定手段で得られた希望信号および干渉信号の各伝達係数に基づいて、受信信号中に含まれる希望信号成分を抑圧して干渉信号成分を抽出する干渉抽出手段と、伝送路推定手段で得られた干渉信号の伝達係数に基づいて干渉抽出手段で抽出された干渉信号成分を制御し、この干渉信号成分を用いて受信信号中に含まれる干渉信号成分を抑圧した希望信号成分を出力する干渉補償手段とを備える。   The first invention receives a desired signal transmitted as an OFDM signal from a desired station and an interference signal transmitted as an OFDM signal from an interference station asynchronous to the desired station by two receiving antennas. In the OFDM signal receiving apparatus that demodulates the received signal of each subcarrier by performing Fourier transform on the received signal of the antenna, each preamble signal of the desired signal and the interference signal included in the received signals received by the two receiving antennas is used. And a transmission path estimation means for calculating each transmission coefficient of the desired signal and the interference signal, and a desired signal component included in the received signal based on each transmission coefficient of the desired signal and the interference signal obtained by the transmission path estimation means. Interference extraction means for extracting interference signal components by suppressing the interference and interference extracted by the interference extraction means based on the transmission coefficient of the interference signal obtained by the transmission path estimation means No. controls the components, and a interference compensation unit for outputting a desired signal component suppress interference signal component included in the received signal using the interference signal component.

ここで、伝送路推定手段で得られた希望信号の伝達係数に基づいて干渉補償手段から出力される希望信号成分を同相合成する合成手段を備えてもよい。   Here, a synthesizing unit that performs in-phase synthesis of the desired signal component output from the interference compensation unit based on the transmission coefficient of the desired signal obtained by the transmission path estimation unit may be provided.

第2の発明は、希望局からOFDM(直交周波数分割多重)信号として送信された希望信号と、該希望局に対して非同期の複数J個の干渉局からそれぞれOFDM信号として送信された複数の干渉信号を複数M個(M≧J+1)の受信アンテナで受信し、各受信アンテナの受信信号をそれぞれフーリエ変換して各サブキャリアの受信信号を復調するOFDM信号受信装置において、複数の受信アンテナで受信した受信信号中に含まれる希望信号と複数の干渉信号の各プリアンブル信号を用いて、希望信号および複数の干渉信号の各伝達係数を算出する伝送路推定手段と、伝送路推定手段で得られた希望信号および複数の干渉信号の各伝達係数に基づいて、受信信号中に含まれる希望信号成分を抑圧して該当する複数の干渉信号成分を抽出する干渉抽出手段と、伝送路推定手段で得られた複数の干渉信号の伝達係数に基づいて干渉抽出手段で抽出された複数の干渉信号成分を制御し、この干渉信号成分を用いて受信信号中に含まれる干渉信号成分を抑圧した希望信号成分を出力する干渉補償手段と、伝送路推定手段で得られた希望信号の伝達係数に基づいて干渉補償手段から出力される複数の希望信号成分を同相合成する合成手段とを備える。   The second invention provides a desired signal transmitted as an OFDM (Orthogonal Frequency Division Multiplexing) signal from a desired station and a plurality of interferences transmitted as OFDM signals from a plurality of J interfering stations asynchronous to the desired station. In an OFDM signal receiving apparatus that receives signals with a plurality of M (M ≧ J + 1) receiving antennas and demodulates the received signals of each subcarrier by performing a Fourier transform on the received signals of each receiving antenna. The transmission path estimation means for calculating the transmission coefficients of the desired signal and the plurality of interference signals using the desired signal and the preamble signals of the plurality of interference signals included in the received signal obtained by the transmission path estimation means Based on the transfer coefficients of the desired signal and the plurality of interference signals, the desired signal component contained in the received signal is suppressed to extract the corresponding plurality of interference signal components. Based on the transmission coefficients of the plurality of interference signals obtained by the interference extraction means and the transmission path estimation means, the plurality of interference signal components extracted by the interference extraction means are controlled, and the interference signal components are used in the received signal. In-phase synthesis of multiple desired signal components output from the interference compensation unit based on the transmission coefficient of the desired signal obtained by the transmission path estimation unit and the interference compensation unit that outputs the desired signal component in which the included interference signal component is suppressed Synthesizing means.

第1の発明および第2の発明のOFDM信号受信装置において、伝送路推定手段は、プリアンブル信号とは別に、希望信号と干渉信号の送信信号系列に配置したトレーニング信号系列を用いて希望信号および干渉信号の各伝達係数を算出する構成としてもよい。   In the OFDM signal receiving apparatus according to the first and second inventions, the transmission path estimation means uses the training signal sequence arranged in the transmission signal sequence of the desired signal and the interference signal, separately from the preamble signal, and the desired signal and interference signal. It is good also as a structure which calculates each transmission coefficient of a signal.

第1の発明は、OFDM信号の受信過程においてプリアンブル信号を用いて伝送路を推定し、算出した伝達係数を用いて希望信号を抑圧して干渉信号を抽出し、この干渉信号を用いて受信信号中に含まれる干渉信号成分をサブキャリアごとに除去することができる。このため、他セルからの干渉を受けているような干渉信号が希望信号と非同期の場合でも、干渉信号抑圧効果を実現することができる。   In the first invention, a transmission path is estimated using a preamble signal in the process of receiving an OFDM signal, an interference signal is extracted by suppressing a desired signal using the calculated transmission coefficient, and a received signal is extracted using the interference signal. Interference signal components contained therein can be removed for each subcarrier. For this reason, even when the interference signal receiving interference from another cell is asynchronous with the desired signal, the interference signal suppression effect can be realized.

また、干渉補償手段の後段に接続した合成手段で干渉補償後の受信信号を同相合成することにより、良好な受信特性を得ることができる。   Also, good reception characteristics can be obtained by combining the received signal after interference compensation in phase with the combining means connected to the subsequent stage of the interference compensation means.

第2の発明は、干渉局が2以上であっても、少なくとも干渉局数より1つ多い受信アンテナを用い、希望信号と各干渉信号のプリアンブル信号を用いて伝送路を推定し、算出したそれぞれの伝達係数を用いて希望信号を抑圧して各干渉信号を抽出し、この各干渉信号を用いて受信信号中に含まれる各干渉信号成分をサブキャリアごとに除去することができる。このため、他セルからの干渉を受けているような干渉信号が希望信号と非同期の場合でも、干渉信号抑圧効果を実現することができる。さらに、干渉補償手段の後段に接続した合成手段で干渉補償後の受信信号を同相合成することにより、良好な受信特性を得ることができる。   In the second invention, even when there are two or more interfering stations, at least one receiving antenna more than the number of interfering stations is used, and a transmission path is estimated and calculated using a desired signal and a preamble signal of each interfering signal. Each interference signal can be extracted by suppressing the desired signal using the transfer coefficient, and each interference signal component included in the received signal can be removed for each subcarrier using each interference signal. For this reason, even when the interference signal receiving interference from another cell is asynchronous with the desired signal, the interference signal suppression effect can be realized. Furthermore, a good reception characteristic can be obtained by performing in-phase synthesis of the received signal after interference compensation by the synthesis means connected to the subsequent stage of the interference compensation means.

また、第1の発明および第2の発明において、伝送路推定にプリアンブル信号とは別に配置したトレーニング信号系列を用いることにより、高精度に伝送路推定を行うことが可能となり、干渉信号抑圧効果を高めることができる。   Also, in the first and second inventions, by using a training signal sequence arranged separately from the preamble signal for transmission path estimation, it is possible to perform transmission path estimation with high accuracy, and to suppress the interference signal suppression effect. Can be increased.

(第1の実施形態)
図1は、本発明のOFDM信号受信装置の第1の実施形態を示す。なお、従来技術の説明では2×2MIMO伝送システムにおける干渉キャンセラを示したが、本実施形態では2つの受信アンテナに希望局1からの希望信号と、これ以外の第三の干渉局2からの干渉信号を受けているOFDM信号受信装置について説明する。
(First embodiment)
FIG. 1 shows a first embodiment of the OFDM signal receiving apparatus of the present invention. In the description of the prior art, the interference canceller in the 2 × 2 MIMO transmission system is shown, but in this embodiment, the desired signal from the desired station 1 and the interference from the other third interfering station 2 are transmitted to the two receiving antennas. An OFDM signal receiving apparatus that receives signals will be described.

図1において、OFDM信号受信装置は、2本の受信アンテナ11−1,11−2で受信した各信号を受信機(Rx)12−1,12−2およびA/D変換器13−1,13−2でそれぞれディジタルの受信信号に変換する。A/D変換器13−1,13−2から出力される受信信号R=(r1 ,r2)はそれぞれ分岐し、一方は高速フーリエ変換回路(FFT)14−1,14−2に入力して各サブキャリアの受信信号X[i] =(x1[i], x2[i])が復調され、他方は伝送路推定部15に入力し、受信した希望信号と干渉信号のプリアンブル信号を用いて希望信号の各サブキャリアの伝達係数 d 1d[i], d 2d[i] と、干渉信号の各サブキャリアの伝達係数 u 1u[i], u 2u[i] が算出される。FFT14−1,14−2から出力される受信信号X[i] =(x1[i], x2[i])はそれぞれ分岐し、一方は干渉抽出部16に、他方は干渉補償部17に入力される。 In FIG. 1, the OFDM signal receiving apparatus receives signals received by two receiving antennas 11-1 and 11-2 as receivers (Rx) 12-1 and 12-2 and an A / D converter 13-1, In 13-2, each signal is converted into a digital received signal. The received signals R = (r 1 , r 2 ) output from the A / D converters 13-1 and 13-2 are branched, and one is input to the fast Fourier transform circuits (FFT) 14-1 and 14-2. Then, the received signal X [i] = (x 1 [i], x 2 [i]) of each subcarrier is demodulated, and the other is input to the transmission path estimation unit 15 to receive the received desired signal and the preamble of the interference signal. The transmission coefficient h d 1d [i], h d 2d [i] of each subcarrier of the desired signal using the signal and the transmission coefficient h u 1u [i], h u 2u [i] of each subcarrier of the interference signal Is calculated. The received signals X [i] = (x 1 [i], x 2 [i]) output from the FFTs 14-1 and 14-2 are branched, one being the interference extracting unit 16 and the other being the interference compensating unit 17. Is input.

干渉抽出部16では、FFT14−1,14−2から出力される受信信号X[i] =(x1[i], x2[i])と、伝送路推定部15から出力される希望信号の各サブキャリアの伝達係数 d 1d[i], d 2d[i] および干渉信号の各サブキャリアの伝達係数 u 1u[i], u 2u[i] を入力し、受信信号中の希望信号成分を抑圧した干渉信号成分Uex[i] を抽出する。干渉補償部17では、FFT14−1,14−2から出力される受信信号X[i] と、干渉抽出部16から出力される干渉信号成分Uex[i] と、伝送路推定部15から出力される干渉信号の各サブキャリアの伝達係数 u 1u[i], u 2u[i] を入力し、受信信号から干渉信号成分を除去した希望信号Y[i] =(y1[i], y2[i])を出力する。この希望信号Y[i] =(y1[i], y2[i])は、識別回路(DET)18−1,18−2に入力してビット列に変換され、出力データ系列Z[i] =(z1[i], z2[i])として出力される。 In the interference extraction unit 16, the received signals X [i] = (x 1 [i], x 2 [i]) output from the FFTs 14-1 and 14-2 and the desired signal output from the transmission path estimation unit 15. Input the transfer coefficient h d 1d [i], h d 2d [i] of each subcarrier and the transfer coefficient h u 1u [i], h u 2u [i] of each subcarrier of the interference signal. The interference signal component Uex [i] in which the desired signal component is suppressed is extracted. In the interference compensation unit 17, the reception signal X [i] output from the FFTs 14-1 and 14-2, the interference signal component Uex [i] output from the interference extraction unit 16, and the transmission path estimation unit 15 output. The input signal h u 1u [i], h u 2u [i] of each subcarrier of the interference signal is input, and the desired signal Y [i] = (y 1 [i], y 2 [i]) is output. This desired signal Y [i] = (y 1 [i], y 2 [i]) is input to identification circuits (DET) 18-1 and 18-2, converted into a bit string, and output data series Z [i ] = (Z 1 [i], z 2 [i]).

図2は、第1の実施形態における送信信号系列のフォーマットを示す。ここでは、希望信号の送信信号系列を示すが、干渉信号も同様のフォーマットになっている。送信信号系列の先頭には通常のOFDM方式のバースト伝送でタイミング同期、周波数同期および伝送路推定のために用いられる既知パタンのプリアンブル信号が配置されている。ここで、希望信号および干渉信号のプリアンブル信号をK個のデータ値として
希望信号:Pd(0), Pd(1), …,Pd(K-1)
干渉信号:Pu(0), Pu(1), …,Pu(K-1)
と表す。なお、希望信号と干渉信号を区別するために、それぞれのプリアンブル信号は異なるものとする。
FIG. 2 shows a format of a transmission signal sequence in the first embodiment. Here, the transmission signal sequence of the desired signal is shown, but the interference signal has the same format. A preamble signal having a known pattern used for timing synchronization, frequency synchronization, and transmission path estimation in normal OFDM burst transmission is arranged at the head of the transmission signal sequence. Here, the desired signal and the preamble signal of the interference signal are set as K data values. Desired signal: Pd (0), Pd (1),..., Pd (K-1)
Interference signal: Pu (0), Pu (1), ..., Pu (K-1)
It expresses. In order to distinguish between the desired signal and the interference signal, each preamble signal is different.

図3は、第1の実施形態における伝送路推定部15の構成例を示す。図3において、伝送路推定部15は、入力される受信信号R=(r1 ,r2)をそれぞれ分岐し、一方は希望信号を検出するマッチドフィルタ21−1,21−2に入力し、他方は干渉信号を検出するマッチドフィルタ22−1,22−2に入力する。マッチドフィルタ21−1,21−2は各受信信号中に含まれる希望信号のインパルス応答を算出し、各インパルス応答を高速フーリエ変換回路(FFT)23−1,23−2に入力してフーリエ変換し、希望信号の各サブキャリアの伝達係数 d 1d[i], d 2d[i] を算出する。 FIG. 3 shows a configuration example of the transmission path estimation unit 15 in the first embodiment. In FIG. 3, the transmission path estimation unit 15 branches an input received signal R = (r 1 , r 2 ), respectively, and inputs one to matched filters 21-1 and 21-2 that detect a desired signal. The other is input to matched filters 22-1 and 22-2 that detect interference signals. The matched filters 21-1 and 21-2 calculate impulse responses of desired signals included in the received signals, and input the impulse responses to fast Fourier transform circuits (FFT) 23-1 and 23-2 to perform Fourier transform. Then, transfer coefficients h d 1d [i] and h d 2d [i] of each subcarrier of the desired signal are calculated.

ここで、FFT23−1で算出される伝達係数 d 1d[i]は、受信アンテナ11−1に受信された希望信号の伝達係数のi番目のサブキャリアに対応した成分であり、FFT23−2で算出される伝達係数 d 2d[i]は、受信アンテナ11−2に受信された希望信号の伝達係数のi番目のサブキャリアに対応した成分である。同様に、マッチドフィルタ22−1,22−2は、各受信信号中に含まれる干渉信号のインパルス応答を算出し、そのインパルス応答を高速フーリエ変換回路(FFT)24−1,24−2に入力してフーリエ変換し、干渉信号の各サブキャリアの伝達係数 u 1u[i], u 2u[i] を算出する。 Here, the transfer coefficient h d 1d [i] calculated by the FFT 23-1 is a component corresponding to the i-th subcarrier of the transfer coefficient of the desired signal received by the receiving antenna 11-1. The transmission coefficient h d 2d [i] calculated in (1) is a component corresponding to the i-th subcarrier of the transmission coefficient of the desired signal received by the receiving antenna 11-2. Similarly, matched filters 22-1 and 22-2 calculate impulse responses of interference signals included in the received signals, and input the impulse responses to fast Fourier transform circuits (FFT) 24-1 and 24-2. Then, Fourier transform is performed to calculate transfer coefficients h u 1u [i] and h u 2u [i] of each subcarrier of the interference signal.

図4は、第1の実施形態におけるマッチドフィルタ21の構成例を示す。図4において、希望信号を検出するマッチドフィルタ21は、K−1個の遅延回路25−1〜25−(K-1) と、K個の乗算回路26−1〜26−Kと、合成回路27から構成され、各遅延回路の遅延量Tはサンプリング周期である。各遅延回路25−1〜25−(K-1) で順次遅延させた受信信号r1 (r2 )は、各乗算回路26−1〜26−Kで希望信号のプリアンブル信号の複素共役Pd(0)* , Pd(1)* , …,Pd(K-1)* とそれぞれ乗算され、合成回路27は各乗算結果を合成して出力する。これにより、それぞれの受信信号中に含まれる希望信号のインパルス応答を算出する。 FIG. 4 shows a configuration example of the matched filter 21 in the first embodiment. In FIG. 4, the matched filter 21 for detecting a desired signal includes K-1 delay circuits 25-1 to 25- (K-1), K multiplier circuits 26-1 to 26-K, and a synthesis circuit. The delay amount T of each delay circuit is a sampling period. The received signals r 1 (r 2 ) sequentially delayed by the delay circuits 25-1 to 25- (K-1) are converted into complex conjugate Pd () of the preamble signal of the desired signal by the multiplier circuits 26-1 to 26-K. 0) * , Pd (1) * ,..., Pd (K-1) *, and the synthesis circuit 27 synthesizes and outputs the multiplication results. Thereby, the impulse response of the desired signal included in each received signal is calculated.

同様に、干渉信号を検出するマッチドフィルタ22では、乗算回路26−1〜26−Kの係数を干渉信号のプリアンブル信号の複素共役Pu(0)* , Pu(1)* , …,Pu(K-1)* とすることにより、干渉信号のインパルス応答を算出する。 Similarly, in the matched filter 22 that detects an interference signal, the coefficients of the multiplication circuits 26-1 to 26-K are converted into complex conjugates Pu (0) * , Pu (1) * ,..., Pu (K -1) Calculate the impulse response of the interference signal by setting * .

各マッチドフィルタで算出するインパルス応答の一例を図5に示す。マルチパス環境で受信した信号のインパルス応答には、複数の到来波(例では3波)が存在する。このインパルス応答を先頭波から64個のサンプリングデータをフーリエ変換して求めた伝達係数を図6に示す。図6において、横軸は周波数に相当し、縦軸の値が対応するサブキャリア成分の伝達係数となる。なお、インパルス応答および伝達係数は複素数であるが、図5および図6はそれぞれ振幅成分で表している。   An example of the impulse response calculated by each matched filter is shown in FIG. A plurality of incoming waves (three waves in the example) exist in the impulse response of the signal received in the multipath environment. FIG. 6 shows transfer coefficients obtained by Fourier transforming 64 impulses of the impulse response from the leading wave. In FIG. 6, the horizontal axis corresponds to the frequency, and the value on the vertical axis represents the transfer coefficient of the corresponding subcarrier component. Although the impulse response and the transfer coefficient are complex numbers, FIG. 5 and FIG. 6 are each represented by an amplitude component.

一方、OFDMシンボルの番号をnとして、希望信号のi番目の送信サブキャリアD[i](n)と、干渉信号のi番目の送信サブキャリアU[i](n)と、FFT14−1,14−2から出力される受信サブキャリアx1[i](n),x2[i](n) との関係は、次のように表される。
1[i](n) =hd 1d[i]・D[i](n)+hu 1u[i]・U[i](n) …(6-1)
2[i](n) =hd 2d[i]・D[i](n)+hu 2u[i]・U[i](n) …(6-2)
これらの出力を干渉抽出部16に入力し、サブキャリアごとに希望信号を除去して干渉信号を抽出する。
On the other hand, where the number of the OFDM symbol is n, the i-th transmission subcarrier D [i] (n) of the desired signal, the i-th transmission subcarrier U [i] (n) of the interference signal, the FFT 14-1, The relationship between the received subcarriers x 1 [i] (n) and x 2 [i] (n) output from 14-2 is expressed as follows.
x 1 [i] (n) = h d 1d [i] · D [i] (n) + h u 1u [i] · U [i] (n) ... (6-1)
x 2 [i] (n) = h d 2d [i] · D [i] (n) + h u 2u [i] · U [i] (n) ... (6-2)
These outputs are input to the interference extraction unit 16, and a desired signal is removed for each subcarrier to extract an interference signal.

図7は、第1の実施形態における干渉抽出部16の構成例を示す。図7において、干渉抽出部16は、希望信号抑圧回路31、演算回路32、干渉信号分離回路33により構成される。希望信号抑圧回路31は、乗算回路34−1,34−2にFFT14−1,14−2から出力される受信信号x1[i], x2[i]と、伝送路推定部15から出力される希望信号の各サブキャリアの伝達係数 d 2d[i] , d 1d[i] を入力してそれぞれ乗算し、減算回路35で乗算回路34−1の出力から乗算回路34−2の出力を減算する構成である。減算後の信号のi番目のサブキャリア成分は、次のように希望信号が除かれて干渉信号成分のみとなる。
d 2d[i]・x1[i](n)− d 1d[i]・x2[i](n)
=( d 2d[i]・hu 1u[i]− d 1d[i]・hu 2u[i])・U[i](n)
=Δ[i] ・U[i](n) …(7)
FIG. 7 shows a configuration example of the interference extraction unit 16 in the first embodiment. In FIG. 7, the interference extraction unit 16 includes a desired signal suppression circuit 31, an arithmetic circuit 32, and an interference signal separation circuit 33. The desired signal suppression circuit 31 outputs the received signals x 1 [i], x 2 [i] output from the FFTs 14-1 and 14-2 to the multiplication circuits 34-1 and 34-2 and the transmission path estimation unit 15. The transmission coefficients h d 2d [i] and h d 1d [i] of the respective subcarriers of the desired signal to be inputted are respectively multiplied, and the subtraction circuit 35 uses the output of the multiplication circuit 34-1 to output the multiplication circuit 34-2. The output is subtracted. The i-th subcarrier component of the signal after subtraction becomes only the interference signal component by removing the desired signal as follows.
h d 2d [i] · x 1 [i] (n) − h d 1d [i] · x 2 [i] (n)
= (H d 2d [i] · h u 1u [i] - h d 1d [i] · h u 2u [i]) · U [i] (n)
= Δ [i] ・ U [i] (n) (7)

演算回路32は、伝送路推定部15から出力される希望信号の各サブキャリアの伝達係数 d 1d[i], d 2d[i] および干渉信号の各サブキャリアの伝達係数 u 1u[i], u 2u[i] を用い、次に示すように各伝達係数の関数である1/Δ[i] を算出する。
1/Δ[i] =1/( d 2d[i]・ u 1u[i]− d 1d[i]・ u 2u[i]) …(8)
干渉信号分離回路33は、乗算回路36で希望信号抑圧回路31の出力と演算回路32の出力1/Δ[i] を乗算する構成であり、受信信号中の希望信号成分を抑圧した干渉信号成分U[i](n)を抽出し、干渉信号成分Uex[i](n)として出力する。
The arithmetic circuit 32 transmits the transfer coefficient h d 1d [i], h d 2d [i] of each subcarrier of the desired signal output from the transmission path estimation unit 15 and the transfer coefficient h u 1u [of each subcarrier of the interference signal]. i], using a h u 2u [i], is a function of the transfer coefficient as shown below 1 / delta calculating a [i].
1 / Δ [i] = 1 / ( h d 2d [i] · h u 1u [i] −h d 1d [i] · h u 2u [i]) (8)
The interference signal separation circuit 33 is configured to multiply the output of the desired signal suppression circuit 31 and the output 1 / Δ [i] of the arithmetic circuit 32 by the multiplication circuit 36, and suppresses the desired signal component in the received signal. U [i] (n) is extracted and output as an interference signal component Uex [i] (n).

図8は、第1の実施形態における干渉補償部17の構成例を示す。図8において、干渉補償部17は、干渉信号制御回路41および干渉減算回路42により構成される。干渉信号制御回路41は、乗算回路43−1,43−2で干渉抽出部16から出力される干渉信号成分Uex[i](n)と、伝送路推定部15から出力される干渉信号の各サブキャリアの伝達係数hu 1u[i],hu 2u[i]をそれぞれ乗算して干渉減算回路41に与える。干渉減算回路41は、減算回路44−1でFFT14−1から出力される受信信号x1[i]から乗算回路43−1の乗算結果を減算し、減算回路44−2でFFT14−2から出力される受信信号x2[i]から乗算回路43−2の乗算結果を減算する。減算回路44−1,44−2の出力y1[i],y2[i]は、(6-1),(6-2) 式より次のようになる。
1[i]=x1[i](n)− u 1u[i]・Uex[i](n)→hd 1d[i]・D[i](n) …(9-1)
2[i]=x2[i](n)− u 2u[i]・Uex[i](n)→hd 2d[i]・D[i](n) …(9-2)
この結果、干渉補償部17の出力y1[i],y2[i]は、受信信号中の干渉信号を除去した希望信号のみとなる。
FIG. 8 shows a configuration example of the interference compensation unit 17 in the first embodiment. In FIG. 8, the interference compensation unit 17 includes an interference signal control circuit 41 and an interference subtraction circuit 42. The interference signal control circuit 41 outputs the interference signal component Uex [i] (n) output from the interference extraction unit 16 in the multiplication circuits 43-1 and 43-2 and the interference signal output from the transmission path estimation unit 15. The subcarrier transmission coefficients h u 1u [i] and h u 2u [i] are multiplied and given to the interference subtraction circuit 41. The interference subtraction circuit 41 subtracts the multiplication result of the multiplication circuit 43-1 from the reception signal x 1 [i] output from the FFT 14-1 by the subtraction circuit 44-1, and outputs the result from the FFT 14-2 by the subtraction circuit 44-2. The multiplication result of the multiplication circuit 43-2 is subtracted from the received signal x 2 [i]. The outputs y 1 [i] and y 2 [i] of the subtraction circuits 44-1 and 44-2 are as follows from the equations (6-1) and (6-2).
y 1 [i] = x 1 [i] (n) - h u 1u [i] · Uex [i] (n) → h d 1d [i] · D [i] (n) ... (9-1)
y 2 [i] = x 2 [i] (n) - h u 2u [i] · Uex [i] (n) → h d 2d [i] · D [i] (n) ... (9-2)
As a result, the outputs y 1 [i] and y 2 [i] of the interference compensator 17 are only desired signals from which the interference signals in the received signal are removed.

このように、希望信号と干渉信号の既存のプリアンブル信号を用いて伝送路推定を行い、算出した伝達係数により干渉信号を抽出し、これを用いて干渉補償を行うことができる。本実施形態の構成では、干渉信号を抽出するために2本の受信アンテナを用いており、それぞれの受信信号について干渉補償処理を行っている。   As described above, it is possible to perform transmission path estimation using the desired preamble signal and the existing preamble signal of the interference signal, extract the interference signal using the calculated transmission coefficient, and perform interference compensation using this. In the configuration of the present embodiment, two receiving antennas are used to extract interference signals, and interference compensation processing is performed on each received signal.

(第2の実施形態)
第1の実施形態は、干渉信号の特性を利用した伝送路推定により干渉信号の抽出および除去を行っているが、第2の実施形態では、プリアンブル信号の前に配置するトレーニング信号系列を用いて伝送路推定を行うことを特徴とする。
(Second Embodiment)
In the first embodiment, the interference signal is extracted and removed by channel estimation using the characteristics of the interference signal. In the second embodiment, a training signal sequence arranged before the preamble signal is used. Transmission path estimation is performed.

図9は、第2の実施形態における送信信号系列のフォーマットを示す。送信信号系列の先頭には既知パタンのプリアンブル信号の前にトレーニング信号系列が配置される。このトレーニング信号系列は、既存のプリアンブル信号を用いるのに比べて伝送路推定精度を向上させることを目的に付加するものである。例えば、±1からなるPN系列をトレーニング信号系列とし、これをBPSK変調のシングルキャリアで送信する。ここで、希望信号および干渉信号のトレーニング信号系列をK' 個のデータ値として
希望信号:Cd(0), Cd(1), …,Cd(K'-1)
干渉信号:Cu(0), Cu(1), …,Cu(K'-1)
と表す。なお、希望信号と干渉信号を区別するために、それぞれのプリアンブル信号は異なるものとし、相互に直交性が強いものとする。
FIG. 9 shows a format of a transmission signal sequence in the second embodiment. At the beginning of the transmission signal sequence, a training signal sequence is arranged before the preamble signal having a known pattern. This training signal sequence is added for the purpose of improving the transmission path estimation accuracy as compared with the case where an existing preamble signal is used. For example, a PN sequence consisting of ± 1 is used as a training signal sequence, which is transmitted using a single carrier of BPSK modulation. Here, the training signal sequence of the desired signal and the interference signal is set as K ′ data values. Desired signal: Cd (0), Cd (1),..., Cd (K′−1)
Interference signal: Cu (0), Cu (1), ..., Cu (K'-1)
It expresses. In order to distinguish between the desired signal and the interference signal, the preamble signals are different from each other and are highly orthogonal to each other.

図10は、第2の実施形態におけるマッチドフィルタ21の構成例を示す。図4に示す第1の実施形態におけるマッチドフィルタ21と異なる点は、各乗算回路26−1〜26−Kの係数として希望信号のトレーニング信号系列の複素共役Cd(0)* , Cd(1)* , …,Cd(K'-1)*を用いることである。なお、干渉信号を検出するマッチドフィルタ22においても同様である。このトレーニング信号系列を用いることにより、マッチドフィルタで算出するインパルス応答、さらにフーリエ変換して求める伝達係数の推定精度を向上させることができる。その結果、干渉抽出部(図1,図7:16)では、より高精度に干渉信号を抽出することができ、干渉補償部(図1,図8:17)における干渉抑圧特性が良好となる。以下に示す実施形態においても同様である。 FIG. 10 shows a configuration example of the matched filter 21 in the second embodiment. The difference from the matched filter 21 in the first embodiment shown in FIG. 4 is that the complex conjugates Cd (0) * , Cd (1) of the training signal sequence of the desired signal are used as the coefficients of the multiplication circuits 26-1 to 26-K. * , ..., Cd (K'-1) * is used. The same applies to the matched filter 22 that detects an interference signal. By using this training signal sequence, it is possible to improve the impulse response calculated by the matched filter and the estimation accuracy of the transfer coefficient obtained by Fourier transform. As a result, the interference extraction unit (FIG. 1, FIG. 7: 16) can extract the interference signal with higher accuracy, and the interference suppression characteristic in the interference compensation unit (FIG. 1, FIG. 8: 17) is improved. . The same applies to the embodiments described below.

(第3の実施形態)
図11は、本発明のOFDM信号受信装置の第3の実施形態を示す。本実施形態の特徴は、図1に示す第1の実施形態の構成における干渉補償部17の出力段にSD合成部19を配置し、干渉補償部17で受信信号から干渉信号成分を除去した希望信号Y[i] =(y1[i], y2[i])を同相合成し、その合成出力W[i] を識別回路18で識別して出力データ系列Z[i] として出力するところにある。SD合成部19には、伝送路推定部15から出力される希望信号の各サブキャリアの伝達係数 d 1d[i], d 2d[i] が入力される。
(Third embodiment)
FIG. 11 shows a third embodiment of the OFDM signal receiving apparatus of the present invention. The feature of this embodiment is that an SD synthesis unit 19 is arranged at the output stage of the interference compensation unit 17 in the configuration of the first embodiment shown in FIG. 1, and the interference signal component is removed from the received signal by the interference compensation unit 17 The signal Y [i] = (y 1 [i], y 2 [i]) is synthesized in phase, and the synthesized output W [i] is identified by the discriminating circuit 18 and output as an output data series Z [i]. It is in. The SD combining unit 19 receives the transfer coefficients h d 1d [i] and h d 2d [i] of each subcarrier of the desired signal output from the transmission path estimation unit 15.

図12は、第3の実施形態におけるSD合成部19の構成例を示す。図12において、SD合成部19は、伝送路推定部15から出力される希望信号の各サブキャリアの伝達係数 d 1d[i] , d 2d[i] を複素共役演算部51に入力し、乗算回路52−1,52−2に干渉補償部17から出力される干渉信号成分が除去された希望信号y1[i], y2[i]と、複素共役演算部51から出力される希望信号の伝達係数の複素共役 d 1d[i]* d 2d[i]* を入力してそれぞれ乗算し、加算回路53で乗算回路52−1,52−2の各出力を合成する。合成後のi番目の信号W[i] は次のように表される。
W[i] = d 1d[i]*・y1[i](n)+ d 2d[i]*・y2[i](n)
=(| d 1d[i]|2+| d 2d[i]|2)・D[i](n) …(10)
FIG. 12 shows a configuration example of the SD composition unit 19 in the third embodiment. In FIG. 12, the SD synthesis unit 19 inputs the transfer coefficients h d 1d [i] and h d 2d [i] of each subcarrier of the desired signal output from the transmission path estimation unit 15 to the complex conjugate calculation unit 51. The desired signals y 1 [i], y 2 [i] from which the interference signal components output from the interference compensation unit 17 have been removed and the complex conjugate calculation unit 51 output to the multiplication circuits 52-1 and 52-2. The complex conjugates h d 1d [i] * and h d 2d [i] * of the transfer coefficient of the desired signal are input and multiplied, and the adder circuit 53 combines the outputs of the multiplier circuits 52-1 and 52-2. . The i-th signal W [i] after synthesis is expressed as follows.
W [i] = h d 1d [i] * · y 1 [i] (n) + h d 2d [i] * · y 2 [i] (n)
= (| H d 1d [i] | 2 + | h d 2d [i] | 2 ) · D [i] (n) (10)

(第4の実施形態)
図13は、本発明のOFDM信号受信装置の第4の実施形態を示す。本実施形態の特徴は、図1に示す第1の実施形態および図11に示す第3の実施形態が2本の受信アンテナ11−1,11−2を用いて1つの干渉局2からの干渉信号をキャンセルする構成であるのに対して、一般に複数の受信アンテナを用いて複数の干渉信号をキャンセルするように拡張したところにある。ここで、干渉局の数をJ、用いる受信アンテナの数をMとした場合に、M≧J+1とする。希望局1から受信アンテナ11−mまでの伝達係数をhd md[i]、干渉局2−jから受信アンテナ11−mまでの伝達係数をhu mj[i]で表す(m=1,2,…,M、j=1,2,…,J)。
(Fourth embodiment)
FIG. 13 shows a fourth embodiment of the OFDM signal receiving apparatus of the present invention. The feature of this embodiment is that the first embodiment shown in FIG. 1 and the third embodiment shown in FIG. 11 use two receiving antennas 11-1 and 11-2 to interfere with one interfering station 2. While the configuration is such that the signal is canceled, it is generally extended to cancel a plurality of interference signals using a plurality of receiving antennas. Here, when J is the number of interfering stations and M is the number of receiving antennas to be used, M ≧ J + 1. The transfer coefficient from the desired station 1 to the receiving antenna 11-m is represented by h d md [i], and the transfer coefficient from the interference station 2-j to the receiving antenna 11-m is represented by h u mj [i] (m = 1, 2, ..., M, j = 1, 2, ..., J).

本実施形態の特徴は、図11に示す第3の実施形態の構成に対して受信系統がM個あるとともに、伝送路推定部15′、干渉抽出部16′、干渉補償部17′、SD合成部19′の構成にある。   The feature of this embodiment is that there are M reception systems compared to the configuration of the third embodiment shown in FIG. 11, a transmission path estimation unit 15 ', an interference extraction unit 16', an interference compensation unit 17 ', and SD synthesis. It is in the structure of the part 19 '.

伝送路推定部15′は、各受信アンテナ11−1〜11−Mの受信信号R=(r1 ,…,rM)から希望信号と干渉信号の各サブキャリアの伝達係数を求める。詳しくは図14を参照して説明する。干渉抽出部16′は、FFT14−1〜14−Mから出力される各受信信号Rのフーリエ変換後の受信信号X[i](n)=(x1[i](n),…,xM[i](n)) を入力し、各受信信号中に含まれるJ個の干渉局からの干渉信号成分Uex[i](n)=(u1[i](n),…, uJ[i](n))を抽出する。詳しくは図15を参照して説明する。干渉補償部17′は、フーリエ変換後の受信信号X[i](n)から干渉信号成分Uex[i](n)を減算し、受信信号中の各干渉信号成分を除去する。詳しくは、図16を参照して説明する。SD合成部19′は、干渉補償後の希望信号Y[i](n)=(y1[i](n),…, yM[i](n))を同相合成し、合成出力W[i](n)として出力する。詳しくは、図17を参照して説明する。 Channel estimation unit 15 ', the received signal R = (r 1, ..., r M) of the receiving antennas 11-1 to 11-M determine the transfer coefficient of each subcarrier of the desired signal and the interference signal from the. Details will be described with reference to FIG. The interference extraction unit 16 ′ receives received signals X [i] (n) = (x 1 [i] (n),..., X after Fourier transform of the received signals R output from the FFTs 14-1 to 14-M. M [i] (n)) is input, and interference signal components Uex [i] (n) = (u 1 [i] (n),..., U from J interference stations included in each received signal J [i] (n)) is extracted. Details will be described with reference to FIG. The interference compensator 17 ′ subtracts the interference signal component Uex [i] (n) from the received signal X [i] (n) after the Fourier transform, and removes each interference signal component in the received signal. Details will be described with reference to FIG. The SD synthesizing unit 19 ′ performs in-phase synthesis of the desired signal Y [i] (n) = (y 1 [i] (n),..., Y M [i] (n)) after interference compensation, and the synthesized output W Output as [i] (n). Details will be described with reference to FIG.

図14は、第4の実施形態における伝送路推定部15′の構成例を示す。図14において、伝送路推定部15′は受信アンテナ11−1〜11−Mの受信信号R=(r1 ,…,rM )をそれぞれ分岐し、希望信号検出回路28と干渉信号検出回路29−1〜29−Jに入力する構成である。 FIG. 14 shows a configuration example of the transmission path estimation unit 15 ′ in the fourth embodiment. In FIG. 14, the transmission path estimation unit 15 ′ branches the received signals R = (r 1 ,..., R M ) of the receiving antennas 11-1 to 11 -M, respectively, and a desired signal detection circuit 28 and an interference signal detection circuit 29. It is the structure which inputs to -1-29-J.

希望信号検出回路28は、M個のマッチドフィルタ21−1〜21−Mと高速フーリエ変換回路(FFT)23−1〜23−Mから構成される。受信信号R=(r1 ,…,rM )を入力するマッチドフィルタ21−1〜21−Mは、各受信信号中に含まれる希望信号のインパルス応答を算出し、各インパルス応答をFFT23−1〜23−Mに入力してフーリエ変換し、希望信号の各サブキャリアの伝達係数 d 1d[i],…, d Md[i] を算出する。 The desired signal detection circuit 28 includes M matched filters 21-1 to 21-M and fast Fourier transform circuits (FFT) 23-1 to 23-M. Matched filters 21-1 to 21 -M that receive received signals R = (r 1 ,..., R M ) calculate impulse responses of desired signals included in the received signals, and convert the impulse responses to FFT 23-1. ˜23-M and Fourier-transformed to calculate the transfer coefficients h d 1d [i],..., H d Md [i] of each subcarrier of the desired signal.

干渉信号検出回路29−jは、M個のマッチドフィルタ22−j−1〜22−j−Mと高速フーリエ変換回路(FFT)24−j−1〜24−j−Mから構成される。受信信号R=(r1 ,…,rM )を入力するマッチドフィルタ22−j−1〜22−j−Mは、各受信信号中に含まれる干渉信号のインパルス応答を算出し、各インパルス応答をFFT24−j−1〜24−j−Mに入力してフーリエ変換し、干渉信号の各サブキャリアの伝達係数 u 1j[i],…, u Mj[i] を算出する。 The interference signal detection circuit 29-j includes M matched filters 22-j-1 to 22-j-M and a fast Fourier transform circuit (FFT) 24-j-1 to 24-j-M. Matched filters 22-j-1 to 22-j-M to which received signals R = (r 1 ,..., R M ) are input, calculate impulse responses of interference signals included in the received signals, and each impulse response. Are input to FFT24-j-1 to 24-j-M and Fourier-transformed to calculate transmission coefficients h u 1j [i],..., H u Mj [i] of each subcarrier of the interference signal.

希望信号検出回路28および干渉信号検出回路29−jの構成は同じであるが、希望信号検出回路28のマッチドフィルタ21−1〜21−Mでは各乗算回路の係数に希望信号のプリアンブル信号またはトレーニング信号を用いて伝送路を推定し、干渉信号検出回路29−jのマッチドフィルタ22−j−1〜22−j−Mでは各乗算回路の係数に干渉信号のプリアンブル信号またはトレーニング信号を用いて伝送路を推定する。   The desired signal detection circuit 28 and the interference signal detection circuit 29-j have the same configuration, but in the matched filters 21-1 to 21-M of the desired signal detection circuit 28, the preamble signal or training of the desired signal is used as the coefficient of each multiplier circuit. The transmission path is estimated using the signal, and the matched filter 22-j-1 to 22-j-M of the interference signal detection circuit 29-j transmits using the preamble signal or training signal of the interference signal as the coefficient of each multiplier circuit. Estimate the road.

一方、図13において、OFDMシンボルの番号をnとして、希望信号のi番目の送信サブキャリアD[i](n)と、干渉局2−jによる干渉信号のi番目の送信サブキャリアUj [i](n)と、FFT14−mでフーリエ変換された受信信号xm[i](n) との関係は次のように表される。

Figure 2007282120
これらの出力を干渉抽出部16′に入力し、サブキャリアごとに希望信号を除去して干渉信号を抽出する。 On the other hand, in FIG. 13, the OFDM symbol number is n, and the i-th transmission subcarrier D [i] (n) of the desired signal and the i-th transmission subcarrier U j [ The relationship between i] (n) and the received signal x m [i] (n) Fourier-transformed by FFT 14-m is expressed as follows.
Figure 2007282120
These outputs are input to the interference extraction unit 16 ′, and the desired signal is removed for each subcarrier to extract the interference signal.

図15は、第4の実施形態における干渉抽出部16′の構成例を示す。図15において、干渉抽出部16′は、希望信号抑圧回路31−1〜31−J、演算回路32、干渉信号分離回路33により構成される。希望信号抑圧回路31−jは、乗算回路34−j−1,31−j−2にFFT14−M,14−mから出力される受信信号xM[i](n),xm[i](n)と、伝送路推定部15′から出力される希望信号の各サブキャリアの伝達係数 d md[i], d Md[i]を入力してそれぞれ乗算し、減算回路35−jで乗算回路31−j−1の出力から乗算回路31−j−2の出力を減算する。ここでは、j=mとし、希望信号抑圧回路31−1〜31−Jに、FFT14−1〜14−Jから出力される受信信号x1[i](n)〜xJ[i](n)をそれぞれ入力し、FFT14−Mから出力される受信信号xM[i](n) を共通に入力しているが、それらはM個の受信信号x1[i](n)〜xM[i](n)のうち任意のJ個と1個の組み合わせでよい。すなわち、希望信号抑圧回路31−1〜31−Jは、M個ある受信信号のうちJ+1個の受信信号とそれらに対応する希望信号の伝達係数との乗算を行い,それぞれ希望信号を抑圧した干渉信号成分を出力する。 FIG. 15 shows a configuration example of the interference extraction unit 16 ′ in the fourth embodiment. In FIG. 15, the interference extraction unit 16 ′ includes desired signal suppression circuits 31-1 to 31 -J, an arithmetic circuit 32, and an interference signal separation circuit 33. The desired signal suppression circuit 31-j receives the received signals x M [i] (n) and x m [i] output from the FFTs 14-M and 14-m to the multiplication circuits 34-j-1 and 31-j-2. (n) and the transfer coefficients h d md [i] and h d Md [i] of each subcarrier of the desired signal output from the transmission path estimation unit 15 ′ are input and multiplied, respectively, and the subtraction circuit 35-j Then, the output of the multiplier circuit 31-j-2 is subtracted from the output of the multiplier circuit 31-j-1. Here, j = m is set, and the received signals x 1 [i] (n) to x J [i] (n) output from the FFTs 14-1 to 14 -J to the desired signal suppression circuits 31-1 to 31 -J. ) And the reception signal x M [i] (n) output from the FFT 14-M are input in common, but they are M reception signals x 1 [i] (n) to x M. Any combination of [i] (n) and one may be used. That is, the desired signal suppression circuits 31-1 to 31-J multiply the M + 1 received signals among the M received signals and the corresponding transfer coefficients of the desired signals, and each suppress the desired signal. Output the signal component.

希望信号抑圧回路31−jから出力されるi番目の信号vm[i](n) は次のように表される。

Figure 2007282120
The i-th signal v m [i] (n) output from the desired signal suppression circuit 31-j is expressed as follows.
Figure 2007282120

これにより、希望信号抑圧回路31−jの出力vm[i](n) は希望信号が除かれて干渉信号成分のみとなる。ここで、希望信号抑圧回路31−1〜31−JのJ個の出力をV[i](n)=(v1[i](n),…,vJ[i](n)) としてベクトル表示し、(12)式のsmj[i] を要素するJ行J列の行列をS[i] とすると、(12)式は次のように表される。
V[i](n)=S[i]・U[i](n) …(13)
As a result, the output v m [i] (n) of the desired signal suppression circuit 31-j is removed from the desired signal and becomes only the interference signal component. Here, V [i] to the J output of the desired signal suppression circuit 31-1~31-J (n) = ( v 1 [i] (n), ..., v J [i] (n)) as Assuming that S [i] is a matrix of J rows and J columns that represents s mj [i] in equation (12) in vector display, equation (12) is expressed as follows.
V [i] (n) = S [i] · U [i] (n) (13)

S[i] の各要素smj[i] は、伝送路推定部15′で算出したの各サブキャリアの伝達係数 d 1d[i],…, d Md[i] および干渉信号の各サブキャリアの伝達係数 u 1j[i],…, u Mj[i] から計算できる。演算回路32では、このS[i] の逆行列S-1[i] を算出し、これを干渉信号分離回路33でV[i](n)と乗算することにより、受信信号中の希望信号成分を抑圧した干渉信号成分Uex[i](n)=(u1[i](n),…, uJ[i](n)) が次のように得られ、これを干渉補償部17′に入力する。
Uex[i](n)=S-1[i]・V[i](n) …(14)
Each element s mj [i] of S [i] represents the transmission coefficients h d 1d [i],..., H d Md [i] of the subcarriers calculated by the transmission path estimator 15 ′ and the interference signals. subcarrier transfer coefficient h u 1j [i], ... , can be calculated from h u Mj [i]. The arithmetic circuit 32 calculates an inverse matrix S -1 [i] of this S [i], and multiplies it by V [i] (n) by the interference signal separation circuit 33, thereby obtaining a desired signal in the received signal. The interference signal component Uex [i] (n) = (u 1 [i] (n),..., U J [i] (n)) with suppressed components is obtained as follows. Input to ′.
Uex [i] (n) = S −1 [i] · V [i] (n) (14)

図16は、第4の実施形態における干渉補償部17′の構成例を示す。図16において、干渉補償部17′は、干渉信号制御回路41および干渉減算回路42から構成される。干渉信号制御回路41は、干渉抽出部16′から出力される干渉信号成分Uex[i](n)に対して、各要素が干渉信号の各サブキャリアの伝達係数hu mj[i]からなるM行J列の干渉伝達係数行列Hu[i]を乗算し、干渉減算回路42の減算回路44−1〜44−MはX[i](n)から干渉信号制御回路41の出力を減算する。干渉減算回路42の出力Y[i](n)=(y1[i](n),…, yM[i](n))は、(11)式より次のようになる。

Figure 2007282120
この結果、干渉補償部17′の出力Y[i](n)は、受信信号中の干渉信号を除去した希望信号のみとなる。 FIG. 16 shows a configuration example of the interference compensation unit 17 ′ in the fourth embodiment. In FIG. 16, the interference compensation unit 17 ′ includes an interference signal control circuit 41 and an interference subtraction circuit 42. In the interference signal control circuit 41, each element is composed of a transfer coefficient h u mj [i] of each subcarrier of the interference signal with respect to the interference signal component Uex [i] (n) output from the interference extraction unit 16 ′. The interference transfer coefficient matrix H u [i] of M rows and J columns is multiplied, and the subtraction circuits 44-1 to 44-M of the interference subtraction circuit 42 subtract the output of the interference signal control circuit 41 from X [i] (n). To do. The output Y [i] (n) = (y 1 [i] (n),..., Y M [i] (n)) of the interference subtraction circuit 42 is as follows from the equation (11).
Figure 2007282120
As a result, the output Y [i] (n) of the interference compensation unit 17 ′ is only the desired signal from which the interference signal in the received signal has been removed.

図17は、第4の実施形態におけるSD合成部19′の構成例を示す。図17において、SD合成部19′は、伝送路推定部15′から出力される希望信号の各サブキャリアの伝達係数 d 1d[i] 〜 d Md[i] を複素共役演算部51′に入力し、乗算回路52−1〜52−Mに干渉補償部17′から出力される干渉信号成分が除去された希望信号Y[i] と、複素共役演算部51′から出力される希望信号の伝達係数の複素共役 d 1d[i]* d Md[i]*を入力してそれぞれ乗算し、合成回路53′で乗算回路52−1〜52−Mの各出力を合成する。合成後のi番目の信号W[i] は次のように表される。

Figure 2007282120
FIG. 17 shows a configuration example of the SD synthesis unit 19 ′ in the fourth embodiment. In FIG. 17, the SD synthesizing unit 19 ′ converts the transmission coefficients h d 1d [i] to h d Md [i] of each subcarrier of the desired signal output from the transmission path estimation unit 15 ′ into the complex conjugate calculation unit 51 ′. The desired signal Y [i] from which the interference signal component output from the interference compensation unit 17 'is removed to the multiplication circuits 52-1 to 52-M and the desired signal output from the complex conjugate calculation unit 51'. The complex conjugates of the transfer coefficients h d 1d [i] * to h d Md [i] * are inputted and multiplied, and the synthesis circuit 53 ′ synthesizes the outputs of the multiplication circuits 52-1 to 52-M. The i-th signal W [i] after synthesis is expressed as follows.
Figure 2007282120

このように干渉補償部17′では、干渉信号を除去した複数の受信信号を同相合成することができ、より良好な受信特性を得ることができる。   In this way, the interference compensation unit 17 ′ can perform in-phase synthesis of a plurality of reception signals from which interference signals have been removed, and obtain better reception characteristics.

本発明のOFDM信号受信装置の第1の実施形態を示す図。The figure which shows 1st Embodiment of the OFDM signal receiver of this invention. 第1の実施形態における送信信号系列のフォーマットを示す図。The figure which shows the format of the transmission signal series in 1st Embodiment. 第1の実施形態における伝送路推定部15の構成例を示す図。The figure which shows the structural example of the transmission path estimation part 15 in 1st Embodiment. 第1の実施形態におけるマッチドフィルタ21の構成例を示す図。The figure which shows the structural example of the matched filter 21 in 1st Embodiment. インパルス応答の例を示す図。The figure which shows the example of an impulse response. 伝達係数の例を示す図。The figure which shows the example of a transmission coefficient. 第1の実施形態における干渉抽出部16の構成例を示す図。The figure which shows the structural example of the interference extraction part 16 in 1st Embodiment. 第1の実施形態における干渉補償部17の構成例を示す図。The figure which shows the structural example of the interference compensation part 17 in 1st Embodiment. 第2の実施形態における送信信号系列のフォーマットを示す図。The figure which shows the format of the transmission signal series in 2nd Embodiment. 第2の実施形態におけるマッチドフィルタ21の構成例を示す図。The figure which shows the structural example of the matched filter 21 in 2nd Embodiment. 本発明のOFDM信号受信装置の第3の実施形態を示す図。The figure which shows 3rd Embodiment of the OFDM signal receiver of this invention. 第3の実施形態におけるSD合成部19の構成例を示す図。The figure which shows the structural example of the SD synthetic | combination part 19 in 3rd Embodiment. 本発明のOFDM信号受信装置の第4の実施形態を示す図。The figure which shows 4th Embodiment of the OFDM signal receiver of this invention. 第4の実施形態における伝送路推定部15′の構成例を示す図。The figure which shows the structural example of transmission-line estimation part 15 'in 4th Embodiment. 第4の実施形態における干渉抽出部16′の構成例を示す図。The figure which shows the structural example of interference extraction part 16 'in 4th Embodiment. 第4の実施形態における干渉補償部17′の構成例を示す図。The figure which shows the structural example of interference compensation part 17 'in 4th Embodiment. 第4の実施形態におけるSD合成部19′の構成例を示す図。The figure which shows the structural example of SD synthetic | combination part 19 'in 4th Embodiment. MIMO伝送システムの構成例を示す図。The figure which shows the structural example of a MIMO transmission system. 従来技術における送信信号系列のフォーマットを示す図。The figure which shows the format of the transmission signal series in a prior art. 他セル間干渉の例を示す図。The figure which shows the example of interference between other cells.

符号の説明Explanation of symbols

1 希望局
2 干渉局
11 受信アンテナ
12 受信機(Rx)
13 A/D変換器
14 高速フーリエ変換器(FFT)
15 伝送路推定部
16 干渉抽出部
17 干渉補償部
18 識別回路(DET)
19 SD合成部
21,22 マッチドフィルタ
23,24 高速フーリエ変換器(FFT)
25 遅延回路(T)
26 乗算回路
27 合成回路
31 希望信号抑圧回路
32 演算回路
33 干渉信号分離回路
34,36 乗算回路
35 減算回路
41 干渉信号制御回路
42 干渉減算回路
43 乗算回路
44 減算回路
51 位相共役演算部
52 乗算回路
53 合成回路
1 desired station 2 interfering station 11 receiving antenna 12 receiver (Rx)
13 A / D converter 14 Fast Fourier transform (FFT)
DESCRIPTION OF SYMBOLS 15 Transmission path estimation part 16 Interference extraction part 17 Interference compensation part 18 Identification circuit (DET)
19 SD synthesis unit 21, 22 Matched filter 23, 24 Fast Fourier transform (FFT)
25 Delay circuit (T)
26 Multiplication Circuit 27 Synthesis Circuit 31 Desired Signal Suppression Circuit 32 Arithmetic Circuit 33 Interference Signal Separation Circuit 34, 36 Multiplication Circuit 35 Subtraction Circuit 41 Interference Signal Control Circuit 42 Interference Subtraction Circuit 43 Multiplication Circuit 44 Subtraction Circuit 51 Phase Conjugate Operation Unit 52 Multiplication Circuit 53 Synthesis Circuit

Claims (4)

希望局からOFDM(直交周波数分割多重)信号として送信された希望信号と、該希望局に対して非同期の干渉局からOFDM信号として送信された干渉信号を2本の受信アンテナで受信し、各受信アンテナの受信信号をそれぞれフーリエ変換して各サブキャリアの受信信号を復調するOFDM信号受信装置において、
前記2本の受信アンテナで受信した受信信号中に含まれる希望信号と干渉信号の各プリアンブル信号を用いて、希望信号および干渉信号の各伝達係数を算出する伝送路推定手段と、
前記伝送路推定手段で得られた前記希望信号および前記干渉信号の各伝達係数に基づいて、前記受信信号中に含まれる希望信号成分を抑圧して干渉信号成分を抽出する干渉抽出手段と、
前記伝送路推定手段で得られた前記干渉信号の伝達係数に基づいて前記干渉抽出手段で抽出された干渉信号成分を制御し、この干渉信号成分を用いて前記受信信号中に含まれる干渉信号成分を抑圧した希望信号成分を出力する干渉補償手段と
を備えたことを特徴とするOFDM信号受信装置。
A receiving signal is received by two receiving antennas from a desired station as an OFDM (orthogonal frequency division multiplexing) signal and an interference signal transmitted as an OFDM signal from an asynchronous station asynchronous to the desired station. In the OFDM signal receiving apparatus that demodulates the received signal of each subcarrier by Fourier transforming the received signal of the antenna,
Transmission path estimation means for calculating each transfer coefficient of the desired signal and the interference signal using each preamble signal of the desired signal and the interference signal included in the received signals received by the two receiving antennas;
Interference extraction means for suppressing the desired signal component contained in the received signal and extracting the interference signal component based on the transmission coefficients of the desired signal and the interference signal obtained by the transmission path estimation means;
The interference signal component extracted by the interference extraction means is controlled based on the transmission coefficient of the interference signal obtained by the transmission path estimation means, and the interference signal component contained in the received signal is used using this interference signal component An OFDM signal receiving apparatus comprising: interference compensation means for outputting a desired signal component with suppressed signal.
請求項1に記載のOFDM信号受信装置において、
前記伝送路推定手段で得られた前記希望信号の伝達係数に基づいて前記干渉補償手段から出力される希望信号成分を同相合成する合成手段を備えた
ことを特徴とするOFDM信号受信装置。
The OFDM signal receiving apparatus according to claim 1, wherein
An OFDM signal receiving apparatus, comprising: a synthesizing unit that performs in-phase synthesis of a desired signal component output from the interference compensation unit based on a transmission coefficient of the desired signal obtained by the transmission path estimation unit.
希望局からOFDM(直交周波数分割多重)信号として送信された希望信号と、該希望局に対して非同期の複数J個の干渉局からそれぞれOFDM信号として送信された複数の干渉信号を複数M個(M≧J+1)の受信アンテナで受信し、各受信アンテナの受信信号をそれぞれフーリエ変換して各サブキャリアの受信信号を復調するOFDM信号受信装置において、
前記複数の受信アンテナで受信した受信信号中に含まれる希望信号と複数の干渉信号の各プリアンブル信号を用いて、希望信号および複数の干渉信号の各伝達係数を算出する伝送路推定手段と、
前記伝送路推定手段で得られた前記希望信号および前記複数の干渉信号の各伝達係数に基づいて、前記受信信号中に含まれる希望信号成分を抑圧して該当する複数の干渉信号成分を抽出する干渉抽出手段と、
前記伝送路推定手段で得られた前記複数の干渉信号の伝達係数に基づいて前記干渉抽出手段で抽出された複数の干渉信号成分を制御し、この干渉信号成分を用いて前記受信信号中に含まれる干渉信号成分を抑圧した希望信号成分を出力する干渉補償手段と、
前記伝送路推定手段で得られた前記希望信号の伝達係数に基づいて前記干渉補償手段から出力される複数の希望信号成分を同相合成する合成手段と
を備えたことを特徴とするOFDM信号受信装置。
A desired signal transmitted as an OFDM (Orthogonal Frequency Division Multiplexing) signal from a desired station and a plurality of M interference signals transmitted as OFDM signals from a plurality of J interfering stations asynchronous to the desired station. In an OFDM signal receiving apparatus that receives a reception antenna of M ≧ J + 1) and demodulates a reception signal of each subcarrier by performing Fourier transform on the reception signal of each reception antenna,
Transmission path estimation means for calculating each transmission coefficient of the desired signal and the plurality of interference signals using the preamble signal of the desired signal and the plurality of interference signals included in the reception signals received by the plurality of reception antennas;
Based on the desired signal and the transfer coefficients of the plurality of interference signals obtained by the transmission path estimation means, the desired signal component contained in the received signal is suppressed to extract the corresponding plurality of interference signal components. Interference extraction means;
A plurality of interference signal components extracted by the interference extraction means are controlled based on transmission coefficients of the plurality of interference signals obtained by the transmission path estimation means, and are included in the received signal using the interference signal components. Interference compensation means for outputting a desired signal component with suppressed interference signal components,
An OFDM signal receiving apparatus comprising: combining means for combining a plurality of desired signal components output from the interference compensation means in phase based on a transmission coefficient of the desired signal obtained by the transmission path estimation means .
請求項1または請求項3に記載のOFDM信号受信装置において、
前記伝送路推定手段は、前記プリアンブル信号とは別に、前記希望信号と前記干渉信号の送信信号系列に配置したトレーニング信号系列を用いて希望信号および干渉信号の各伝達係数を算出する構成である
ことを特徴とするOFDM信号受信装置。
In the OFDM signal receiving device according to claim 1 or 3,
The transmission path estimation means is configured to calculate each transfer coefficient of the desired signal and the interference signal using a training signal sequence arranged in the transmission signal sequence of the desired signal and the interference signal separately from the preamble signal. An OFDM signal receiving apparatus.
JP2006109016A 2006-04-11 2006-04-11 OFDM signal receiver Expired - Fee Related JP4722752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109016A JP4722752B2 (en) 2006-04-11 2006-04-11 OFDM signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109016A JP4722752B2 (en) 2006-04-11 2006-04-11 OFDM signal receiver

Publications (2)

Publication Number Publication Date
JP2007282120A true JP2007282120A (en) 2007-10-25
JP4722752B2 JP4722752B2 (en) 2011-07-13

Family

ID=38683078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109016A Expired - Fee Related JP4722752B2 (en) 2006-04-11 2006-04-11 OFDM signal receiver

Country Status (1)

Country Link
JP (1) JP4722752B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070925A1 (en) 2008-12-19 2010-06-24 日本電信電話株式会社 Wireless communication system and method of communicating wirelessly
JP2011135574A (en) * 2009-12-23 2011-07-07 Intel Corp Multi-radio platform and method for mitigating interference between co-located radios
WO2011158757A1 (en) * 2010-06-15 2011-12-22 株式会社エヌ・ティ・ティ・ドコモ Mobile station device and method for signal detection and channel estimation
JP2012514403A (en) * 2008-12-31 2012-06-21 エスティー‐エリクソン、ソシエテ、アノニム Process and receiver for interference cancellation of interfering base stations in a synchronous OFDM system
JP2016163318A (en) * 2015-03-05 2016-09-05 株式会社デンソー Ofdm reception device
JP2017515337A (en) * 2014-04-17 2017-06-08 ライ ラディオテレヴィズィオーネ イタリアーナ エッセ.ピー.アー. System for transmitting and / or receiving signals having electromagnetic mode with orbital angular momentum, and device and method thereof
US9756453B2 (en) 2015-02-27 2017-09-05 Fujitsu Limited Wireless communication apparatus, wireless communication system, and channel estimating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264526A (en) * 2002-03-12 2003-09-19 Sony Corp Radio communication equipment and method, and computer program
JP2004236188A (en) * 2003-01-31 2004-08-19 Toyota Central Res & Dev Lab Inc Multicarrier diversity demodulation method and multicarrier diversity demodulator
JP2005006116A (en) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd Receiver and receiving method
JP2005057673A (en) * 2003-08-07 2005-03-03 Mitsubishi Electric Corp Multicarrier receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264526A (en) * 2002-03-12 2003-09-19 Sony Corp Radio communication equipment and method, and computer program
JP2004236188A (en) * 2003-01-31 2004-08-19 Toyota Central Res & Dev Lab Inc Multicarrier diversity demodulation method and multicarrier diversity demodulator
JP2005006116A (en) * 2003-06-12 2005-01-06 Matsushita Electric Ind Co Ltd Receiver and receiving method
JP2005057673A (en) * 2003-08-07 2005-03-03 Mitsubishi Electric Corp Multicarrier receiver

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644404B2 (en) 2008-12-19 2014-02-04 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
EP2863563A1 (en) 2008-12-19 2015-04-22 Nippon Telegraph And Telephone Corporation Wireless communication system for detecting interference
WO2010070925A1 (en) 2008-12-19 2010-06-24 日本電信電話株式会社 Wireless communication system and method of communicating wirelessly
JP2012514403A (en) * 2008-12-31 2012-06-21 エスティー‐エリクソン、ソシエテ、アノニム Process and receiver for interference cancellation of interfering base stations in a synchronous OFDM system
JP2011135574A (en) * 2009-12-23 2011-07-07 Intel Corp Multi-radio platform and method for mitigating interference between co-located radios
JP2012004743A (en) * 2010-06-15 2012-01-05 Ntt Docomo Inc Mobile station device, signal detection and channel estimation method
CN102948094A (en) * 2010-06-15 2013-02-27 株式会社Ntt都科摩 Mobile station device and method for signal detection and channel estimation
WO2011158757A1 (en) * 2010-06-15 2011-12-22 株式会社エヌ・ティ・ティ・ドコモ Mobile station device and method for signal detection and channel estimation
JP2017515337A (en) * 2014-04-17 2017-06-08 ライ ラディオテレヴィズィオーネ イタリアーナ エッセ.ピー.アー. System for transmitting and / or receiving signals having electromagnetic mode with orbital angular momentum, and device and method thereof
JP2020039129A (en) * 2014-04-17 2020-03-12 ライ ラディオテレヴィズィオーネ イタリアーナ エッセ.ピー.アー. System for transmitting and/or receiving signal having electromagnetic mode with orbital angular momentum, and device and method thereof
US10665960B2 (en) 2014-04-17 2020-05-26 Rai Radiotelevisione Italiana S.P.A. System for transmission and/or reception of signals having electromagnetic modes with orbital angular momentum, and device and method thereof
JP7056857B2 (en) 2014-04-17 2022-04-19 ライ ラディオテレヴィズィオーネ イタリアーナ エッセ.ピー.アー. A system for transmitting and / or receiving a signal having an electromagnetic mode having orbital angular momentum, and a device and method thereof.
US9756453B2 (en) 2015-02-27 2017-09-05 Fujitsu Limited Wireless communication apparatus, wireless communication system, and channel estimating method
JP2016163318A (en) * 2015-03-05 2016-09-05 株式会社デンソー Ofdm reception device

Also Published As

Publication number Publication date
JP4722752B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
KR100686969B1 (en) Noise power estimation apparatus, noise power estimation method and signal detection apparatus
JP4722752B2 (en) OFDM signal receiver
KR100997310B1 (en) Equalization device and equalization method
EP2211512B1 (en) Method and arrangement of delay spread compensation
EP2399372B1 (en) OFDM receiver having a plurality of FFTS according to G-Rake structure
TW201110533A (en) Adaptive known signal canceller
CN106534030B (en) A kind of channel estimation methods based on joint training sequence and pilot tone in 802.11n multiple antennas ofdm system
JP6612106B2 (en) Single carrier MIMO transmitter and single carrier MIMO receiver
JP4722753B2 (en) OFDM signal transmission system, OFDM signal transmission method, and OFDM signal receiving apparatus
TWI454103B (en) Ofdm receivers, compensating devices and methods for detecting and compensating for a sampling clock offset in a receiver
JP3905541B2 (en) Delay profile estimation apparatus and correlator
EP2273709A1 (en) Communication system, reception device, and communication method
CN102113285A (en) A simplified equalizationscheme for distributed resource allocation in multi-carrier systems
JPH11275047A (en) Transmitter and receiver, and transmission method therefor
JP4719102B2 (en) Propagation path estimation device and path diversity reception device
JP2006222836A (en) Reception device, reception circuit, reception method, and reception program
KR101559294B1 (en) - multiple antennas signal receiving device of multi-path interference
CN102035779B (en) Demodulation module, signal analysis device and signal analysis method
US9667448B2 (en) Method and apparatus for channel estimation in wireless communication system
KR101351603B1 (en) System for estimating carrier frequency offset using single-carrier mimo and method therefor
KR20050000261A (en) TDS-OFDM receiver for oversampling OFDM signals to equalize channel
JP2008079117A (en) Reception apparatus, and sampling clock control method of repeater
KR100574013B1 (en) Method and apparatus for auto-reporting a result of self-test
JP2004201338A (en) Transmitter and transmission method
KR20130123161A (en) Method and apparatus for receiving multipath signal in wireless communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees