JP2007281992A - Optical spatial communication device - Google Patents

Optical spatial communication device Download PDF

Info

Publication number
JP2007281992A
JP2007281992A JP2006107190A JP2006107190A JP2007281992A JP 2007281992 A JP2007281992 A JP 2007281992A JP 2006107190 A JP2006107190 A JP 2006107190A JP 2006107190 A JP2006107190 A JP 2006107190A JP 2007281992 A JP2007281992 A JP 2007281992A
Authority
JP
Japan
Prior art keywords
optical axis
light
calculation unit
optical
received light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006107190A
Other languages
Japanese (ja)
Inventor
Junji Shigeta
潤二 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006107190A priority Critical patent/JP2007281992A/en
Publication of JP2007281992A publication Critical patent/JP2007281992A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical spatial communication device which prevents the incorrect acknowledgement about the cause of cutting in communication. <P>SOLUTION: When the communication is disconnected according to a certain cause in S3, it moves to S4. In S4, the level of receiving light is judged whether it is changed suddenly or not and when the receiving light is changed gradually, it moves to S5 and it is judged that the cutting of communication is caused by bad weather and an elapsed history is preserved in S6. Then it moves to the process in S7. When the level of receiving light is judged so that it is changed suddenly in S4 while the deviating amount of optical axis and the level of reception of light are dropped at the same time in S8, it is judged that it is instantaneous cutting due to obstacles in S9, and the elapse history is recorded together with a time in S10 and it moves to the process in S7. When the light receiving level is not deteriorated together with the change of deviating amount of optical axis upon change of the receiving optical level in S8, it is judged in S11 that the deviation of optical axis is due to gust, earthquake or the like and the elapse history is preserved in S12 together with the time and, thereafter, the alarm of abnormality is transmitted to the manager of a network in S13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、遠隔地に対し光ビームを介して情報伝達を行う光空間通信装置に関する。   The present invention relates to an optical space communication apparatus that transmits information to a remote place via a light beam.

一般的に、自由空間中に光ビームを伝搬させて通信を行う光空間通信装置は、光パワーを効率良く通信するために、光ビームの拡がり角を極力小さくする必要がある。しかし、光ビームの拡がり角を狭くすると、建物或いは設置架台の風圧や振動による揺れ、温度変動による歪み、経時変化による角度変動等により、光ビームが相手方装置から外れ易くなり、安定した通信が困難となる。   In general, an optical space communication apparatus that performs communication by propagating a light beam in free space needs to reduce the divergence angle of the light beam as much as possible in order to communicate light power efficiently. However, if the light beam divergence angle is narrowed, the light beam is likely to be detached from the other device due to wind pressure or vibration of the building or installation base, distortion due to temperature fluctuation, angle fluctuation due to aging, etc., making stable communication difficult. It becomes.

そのために、装置の角度が変化しても角度変化を補正することにより、常に光ビームが相手側装置を向くような光軸ずれ補正機能を有する装置が提案されている。このため、相手側装置からの光ビームLの位置を光位置検出素子を用いて検出している。   For this reason, there has been proposed an apparatus having an optical axis deviation correction function in which the light beam always faces the counterpart apparatus by correcting the angle change even if the angle of the apparatus changes. For this reason, the position of the light beam L from the counterpart device is detected using an optical position detection element.

図6は4分割されたフォトダイオード1a〜1dから成る上述の光位置検出素子の正面図を示している。これらのフォトダイオード1a〜1dに光スポットSが入射すると、これらのフォトダイオード1a〜1d同士の出力を比較することにより、光スポットSの位置を検出することができる。光位置検出素子からの信号は角度補正情報として演算処理され、駆動回路に駆動信号として出力される。この駆動信号により駆動機構を駆動し、フォトダイオード1a〜1dの出力が全て等しくなるような方向、つまり光スポットSの位置が光位置検出素子1の中心に至るように調整する。   FIG. 6 shows a front view of the above-described optical position detecting element composed of the four divided photodiodes 1a to 1d. When the light spot S is incident on the photodiodes 1a to 1d, the position of the light spot S can be detected by comparing the outputs of the photodiodes 1a to 1d. A signal from the optical position detection element is processed as angle correction information and output to the drive circuit as a drive signal. The drive mechanism is driven by this drive signal and adjusted so that the outputs of the photodiodes 1 a to 1 d are all equal, that is, the position of the light spot S reaches the center of the light position detection element 1.

このようにして、送信光が受信光の方向、即ち相手側装置の方向を向くように光軸ずれ補正が行われる。   In this way, optical axis deviation correction is performed so that the transmitted light is directed in the direction of the received light, that is, the direction of the counterpart device.

しかし、光空間通信装置は様々な要因で通信断が発生し、通信断の原因によっては、通信を復帰させるための対処が必要な場合がある。通信断の原因として、次の(a)〜(c)が考えられる。
(a)降雨や降雪等の天候の悪化による光ビームの減衰によって、相手側装置からの光量が不足する場合。
(b)自装置と相手側装置との間に障害物が入った場合。
(c)突風や地震等の外的要因により光軸が外れた場合。
However, in the optical space communication device, communication disconnection occurs due to various factors, and depending on the cause of the communication disconnection, it may be necessary to take measures to restore communication. The following (a) to (c) can be considered as causes of the communication interruption.
(A) The amount of light from the counterpart device is insufficient due to the attenuation of the light beam due to worsening weather such as rain or snow.
(B) When an obstacle enters between the own device and the counterpart device.
(C) When the optical axis deviates due to external factors such as gusts and earthquakes.

(a)の悪天候による場合には天候が回復すれば通信も回復し、(b)の障害物による場合には光路上から障害物が外れれば回復する。(a)及び(b)の現象は、光ビームによる情報通信を行う光空間通信装置にとって想定されている運用状態であり、通信断になっている状態を知らせることはあっても、ネットワーク管理者に対して異常警告を発する必要はない。   In the case of bad weather of (a), communication is restored if the weather recovers, and in the case of obstacle of (b), it is restored if the obstacle is removed from the optical path. The phenomenon of (a) and (b) is an operation state assumed for an optical space communication apparatus that performs information communication using a light beam. There is no need to issue an abnormal warning.

しかし、(c)の外的要因による場合は、時間が経過しても通信が回復することはなく、人による復旧作業が必要になるため、ネットワーク管理者に異常警告を発する必要がある。   However, in the case of (c) due to an external factor, communication does not recover even after a lapse of time, and it is necessary to perform a recovery operation by humans. Therefore, it is necessary to issue an abnormality warning to the network administrator.

これを解決するために、特許文献1には受信光レベルの変化速度と通信断時間のパターンにより通信断の原因を判断する手段が開示されている。   In order to solve this problem, Patent Document 1 discloses means for determining the cause of communication interruption based on the pattern of the change rate of the received light level and the communication interruption time.

特開2003−188829号公報JP 2003-188829 A

しかし特許文献1では、自装置と相手側装置との間に障害物が入ってしまった場合と、突風や地震等による外的要因により光軸が外れることによる場合を通信断時間により判断している。そのため、自装置と相手側装置との間に長時間障害物が滞在した場合には、障害物による通信断であるのに外的要因により光軸ずれが生じ、通信断が発生したと誤認識してしまう場合がある。   However, in Patent Document 1, a case where an obstacle has entered between the own device and the counterpart device and a case where the optical axis is deviated due to an external factor such as a gust or an earthquake are determined based on the communication interruption time. Yes. Therefore, when an obstacle stays for a long time between the own device and the partner device, the communication is interrupted by the obstacle, but the optical axis shift occurs due to an external factor, and the communication is erroneously recognized. May end up.

本発明の目的は、上述の問題点を解消し、通信断の原因の誤認識を防止する光空間通信装置を提供することにある。   An object of the present invention is to provide an optical space communication device that solves the above-described problems and prevents erroneous recognition of the cause of communication interruption.

上記目的を達成するための本発明に係る光空間通信装置の技術的特徴は、離れた地点間で対向配置して光で通信する光空間通信装置において、相手側装置からの光を受光する領域が複数に分割された光電変換素子と、該光電変換素子の出力に基づいて前記相手側装置の光軸と自装置の光軸がなす角度を演算する角度演算部と、前記光電変換素子の総受光量を演算する総受光量演算部と、前記角度演算部の出力値及び前記総受光量演算部の出力値の時間変化に基づいて通信断の要因を判断する判断手段と、該判断手段が前記相手側装置の光軸と自装置の光軸がずれたことにより通信断が生じたと判断したときに警告する警告手段とを有する。   In order to achieve the above object, the technical feature of the optical space communication device according to the present invention is an optical space communication device in which light is transmitted by being arranged facing each other at remote points, and a region that receives light from the counterpart device Are divided into a plurality of photoelectric conversion elements, an angle calculation unit for calculating an angle formed by the optical axis of the counterpart device and the optical axis of the own device based on the output of the photoelectric conversion element, and a total of the photoelectric conversion elements A total received light amount calculation unit for calculating a received light amount; a determination unit that determines a cause of communication disconnection based on a time change of an output value of the angle calculation unit and an output value of the total received light amount calculation unit; and Warning means for warning when it is determined that a communication interruption has occurred due to a deviation between the optical axis of the counterpart device and the optical axis of the own device.

本発明に係る光空間通信装置によれば、通信断の原因を正確に判別することが可能となるため、人為的作業が必要になる外的要因による通信断を迅速に検出し、異常警告としてネットワーク管理者に通知することができる。   According to the optical space communication device according to the present invention, it is possible to accurately determine the cause of the communication disconnection, so that a communication disconnection due to an external factor that requires human work is quickly detected, and an abnormal warning is given. You can notify the network administrator.

本発明を図1〜図5に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は本実施例における光空間電送装置の構成図を示し、対向する光ビームの送信/受信のための一対の装置の一方のみを示している。筐体11内には、相手側装置側から送受信光レンズ12、13、ミラー14a、15aを用いて角度を変位する駆動装置14、15、偏光ビームスプリッタ16、ビームスプリッタ17、レンズ18、光位置検出素子19が順次に配列されている。偏光ビームスプリッタ16の入射方向には、レンズ20、半導体レーザー光源から成る発光素子21が設けられており、ビームスプリッタ17の分岐方向にはレンズ22、受光素子23が設けられている。   FIG. 1 shows a configuration diagram of a space optical transmission apparatus according to the present embodiment, and shows only one of a pair of apparatuses for transmitting / receiving opposing light beams. In the housing 11, driving devices 14, 15, polarization beam splitter 16, beam splitter 17, lens 18, optical position, whose angles are displaced using transmission / reception optical lenses 12, 13, mirrors 14 a, 15 a from the counterpart device side, are located. The detection elements 19 are arranged in sequence. In the incident direction of the polarization beam splitter 16, a lens 20 and a light emitting element 21 including a semiconductor laser light source are provided, and in the branching direction of the beam splitter 17, a lens 22 and a light receiving element 23 are provided.

光位置検出素子19の出力は制御回路24に接続され、制御回路24の出力は駆動回路25、26を介して、それぞれ駆動装置14、15に接続されている。   The output of the optical position detection element 19 is connected to the control circuit 24, and the output of the control circuit 24 is connected to the drive devices 14 and 15 via the drive circuits 25 and 26, respectively.

発光素子21から、レンズ20、偏光ビームスプリッタ16に向けて偏光方向を紙面に水平になるように偏光したレーザー光を出射すると、偏光ビームスプリッタ16で反射されたレーザー光は、送受信光レンズ13、12を経て相手側装置に出射する。この際に、送受信光レンズ12で、僅かに拡がりを有するほぼ水平の光ビームLとなる。   When laser light polarized so that the polarization direction is horizontal to the paper surface is emitted from the light emitting element 21 toward the lens 20 and the polarization beam splitter 16, the laser light reflected by the polarization beam splitter 16 is transmitted to the transmission / reception light lens 13, 12 and exits to the other device. At this time, the transmission / reception light lens 12 becomes a substantially horizontal light beam L having a slight spread.

また、相手側装置から送信されてきた光ビームLは、送受信光レンズ12、13、ミラー14a、15aを経て、偏光方向が紙面に垂直設定され、送信光と直交しているために、偏光ビームスプリッタ16をそのまま通過し、ビームスプリッタ17に入射する。そして、ビームスプリッタ17において二岐され、光ビームLの大部分は反射して、レンズ22を介して受光素子23に入射し、ビームスプリッタ17を透過した他方の光ビームは、レンズ18を経て光位置検出素子19に入射する。   Further, the light beam L transmitted from the counterpart device passes through the transmission / reception light lenses 12 and 13 and the mirrors 14a and 15a, the polarization direction is set perpendicular to the paper surface, and is orthogonal to the transmission light. The light passes through the splitter 16 as it is and enters the beam splitter 17. Then, the light beam L is split at the beam splitter 17, most of the light beam L is reflected, enters the light receiving element 23 through the lens 22, and the other light beam transmitted through the beam splitter 17 passes through the lens 18 to be light. The light enters the position detection element 19.

この光位置検出素子19により得られた信号は、制御回路24を介して駆動回路25、26に出力され、駆動装置14、15に出力され、光ビームの方向を調整する。   The signal obtained by the light position detecting element 19 is output to the drive circuits 25 and 26 via the control circuit 24 and is output to the drive devices 14 and 15 to adjust the direction of the light beam.

図2は光位置検出素子19に関するブロック回路構成図を示しており、光位置検出素子19は4分割されたフォトダイオード19a〜19dにより構成されている。個々のフォトダイオード19a〜19dの出力は、受光量に対応した電圧を受光量レベル値に変換するための受光量検出部31a〜31dに接続されている。また、受光量検出部31a〜31dの出力は、角度誤差演算部32と受光量の総和を算出する受光量演算部33に接続されている。   FIG. 2 is a block circuit configuration diagram relating to the optical position detection element 19, and the optical position detection element 19 is constituted by four divided photodiodes 19a to 19d. Outputs of the individual photodiodes 19a to 19d are connected to received light amount detectors 31a to 31d for converting a voltage corresponding to the received light amount into a received light amount level value. The outputs of the received light amount detectors 31a to 31d are connected to an angle error calculator 32 and a received light amount calculator 33 that calculates the sum of the received light amounts.

角度誤差演算部32及び受光量演算部33の出力は、時間的変化から通信断の原因を判断する通信断原因解析部34に接続され、通信断原因解析部34の出力は外部に通信断とその原因を装置管理者に知らせる異常通知部35に接続されている。   The outputs of the angle error calculation unit 32 and the received light amount calculation unit 33 are connected to a communication disconnection cause analysis unit 34 that determines the cause of communication disconnection from a temporal change. It is connected to an abnormality notification unit 35 that informs the device administrator of the cause.

相手側装置から送信された光ビームLは、光スポットSとして光位置検出素子19に入射し、各フォトダイオード19a〜19dは光スポットSが入射した面積に対応した電圧をそれぞれ出力する。フォトダイオード19a〜19dの各出力電圧は受光量検出部31a〜31dで受光レベル値に変換され、各受光レベル値は角度誤差演算部32と受光量演算部33に出力される。角度誤差演算部32では相手側装置との光軸ずれ量が算出され、受光量演算部33では光位置検出素子19の総受光レベルが算出される。   The light beam L transmitted from the counterpart device enters the light position detection element 19 as a light spot S, and each of the photodiodes 19a to 19d outputs a voltage corresponding to the area on which the light spot S is incident. Each output voltage of the photodiodes 19a to 19d is converted into a light reception level value by the light reception amount detection units 31a to 31d, and each light reception level value is output to the angle error calculation unit 32 and the light reception amount calculation unit 33. The angle error calculation unit 32 calculates the amount of optical axis deviation from the counterpart device, and the received light amount calculation unit 33 calculates the total light reception level of the optical position detection element 19.

このようにして得られた光軸ずれ量及び総受光レベルは、通信断原因解析部34に入力され、この通信断原因解析部34において、通信断の検出と通信断の原因の解析が行われる。   The optical axis deviation amount and the total light receiving level obtained in this way are input to the communication interruption cause analysis unit 34, and the communication interruption cause analysis unit 34 detects the communication interruption and analyzes the cause of the communication interruption. .

図3は背景技術で説明した(c)の外的要因による光軸ずれが生じた場合における光軸ずれ量とフォトダイオード19a〜19dの総受光量の変化のグラフ図を示している。光軸ずれのない光スポットS1の位置から相手側装置又は自装置が外的要因により光軸ずれを起こした場合に、光軸ずれに伴い光スポットSの位置は時系列的にS1→S4へと移動する。この光スポットSの移動に伴い光軸ずれ量は増加するが、総受光量は光スポットSが光位置検出素子19の中にある限り殆ど変化しない。光スポットSの位置がS3よりも更に変化し、光位置検出素子19から外方に移動すると総受光量は低下する。   FIG. 3 is a graph showing a change in the optical axis deviation amount and the total received light amount of the photodiodes 19a to 19d when the optical axis deviation occurs due to the external factor (c) described in the background art. When the counterpart device or the own device causes an optical axis shift from the position of the light spot S1 without the optical axis shift due to an external factor, the position of the light spot S along the optical axis shift from S1 to S4 in time series. And move. The amount of optical axis deviation increases with the movement of the light spot S, but the total amount of received light hardly changes as long as the light spot S is in the optical position detection element 19. When the position of the light spot S changes further than S3 and moves outward from the light position detecting element 19, the total amount of received light decreases.

光軸ずれ量は各フォトダイオード19a〜19dの受光量の差から算出している。従って、光スポットSが光位置検出素子19から外方に移動するに伴い、受光量の差が減少し、光スポットSが完全に光位置検出素子19よりも外方に移動した時点で光軸ずれ量は0となる。   The amount of optical axis deviation is calculated from the difference in the amount of light received by each of the photodiodes 19a to 19d. Accordingly, as the light spot S moves outward from the optical position detection element 19, the difference in the amount of received light decreases, and the optical axis is reached when the light spot S completely moves outward from the optical position detection element 19. The amount of deviation is zero.

図4は背景技術で説明した(a)、(b)のように、例えば障害物が光路上に進入し、光ビームを遮断した場合の光軸ずれ量と総受光量の変化のグラフ図を示している。光軸ずれのない光スポットS5の状態から障害物が光路上に進入し、遮光されると光スポットはS5→S8へと変化する。ここで、光スポットSの位置は変化せず、遮光された分だけ光スポットSの光強度が低下する。従って、障害物が光路上に進入するに従い、光軸ずれ量が増加し総受光量は低下する。   4A and 4B are graphs showing changes in the amount of optical axis deviation and the total amount of light received when, for example, an obstacle enters the optical path and blocks the light beam as described in the background art. Show. When an obstacle enters the optical path from the state of the light spot S5 with no optical axis deviation and is blocked, the light spot changes from S5 to S8. Here, the position of the light spot S does not change, and the light intensity of the light spot S decreases by the amount of light shielded. Therefore, as the obstacle enters the optical path, the amount of optical axis deviation increases and the total amount of received light decreases.

このように、通信断前の光軸ずれ量と総受光量の時間的変化をメモリに保存し、光軸ずれ変化時に総受光量の変動幅が或る一定の範囲内であれば、外的要因による光軸ずれと判断する。そうでなければ障害物が光路上に進入し、光ビームを遮断したと判断することができる。   As described above, the temporal change in the optical axis deviation and the total received light quantity before the communication interruption is stored in the memory, and if the fluctuation range of the total received light quantity is within a certain range at the time of the optical axis deviation change, it is external. Judged as optical axis misalignment due to factors. Otherwise, it can be determined that an obstacle has entered the optical path and has blocked the light beam.

図5はこの通信断の検出と通信断原因の解析処理のフローチャート図を示している。先ずステップS1において解析処理が開始されると、ステップS2において受光量演算部33により光位置検出素子19の受信光レベルの総和を取得し、続いてステップS3において、ステップS2で取得した受信光レベルから通信断か否か判断する。通常の通信状態ではステップS2に戻り、ステップS2、S3を繰り返すが、何らかの原因により通信断に至った場合にはステップS4に進む。   FIG. 5 shows a flowchart of the communication disconnection detection and communication disconnection cause analysis processing. First, when analysis processing is started in step S1, the received light level of the light position detecting element 19 is acquired by the received light amount calculation unit 33 in step S2, and then in step S3, the received light level acquired in step S2. To determine whether or not the communication is interrupted. In the normal communication state, the process returns to step S2, and steps S2 and S3 are repeated. If the communication is interrupted for some reason, the process proceeds to step S4.

このステップS4においては、受信光レベルの変化速度が急激に変化したか否かを判断する。受信光レベルが徐々に変化した場合には、ステップS5に進み、悪天候により通信断が生じたと判断し、ステップS6でメモリに経過履歴を保存し、ステップS7の処理に移る。   In step S4, it is determined whether or not the rate of change of the received light level has changed abruptly. If the received light level has gradually changed, the process proceeds to step S5, where it is determined that communication has been interrupted due to bad weather, the history is stored in the memory in step S6, and the process proceeds to step S7.

ステップS4において、受信光レベルが急激に変化したと判断された場合には、ステップS8において、障害物による瞬断か、外的要因による光軸外れかを判断する。つまり、角度誤差演算部32で得られる光ずれ量の変化と共に、受光量演算部33で得られる受光レベルが低下したか否かを判断する。或るレベル以上の受信光レベルを維持していたところから、一気に通信断のレベルまで受信光レベルが低下する要因には、外的要因による光軸ずれの場合と、障害物が光路上に進入し、光を遮断した場合の2通りがあり得る。   If it is determined in step S4 that the received light level has changed abruptly, it is determined in step S8 whether there is a momentary interruption due to an obstacle or off-axis due to an external factor. That is, it is determined whether or not the received light level obtained by the received light amount calculation unit 33 has decreased along with the change in the light shift amount obtained by the angle error calculating unit 32. The factors that cause the received light level to drop to the level at which communication is interrupted at a stretch from maintaining the received light level above a certain level are the case of an optical axis shift due to an external factor, and an obstacle entering the optical path. However, there can be two ways of blocking light.

光ずれ量と受光レベルが同時に低下した場合には、ステップS9において障害物による瞬断と判断し、ステップS10において時間と共に経過履歴をメモリに記録しステップS7の処理に移る。   If the light shift amount and the light reception level are simultaneously reduced, it is determined in step S9 that there is an instantaneous interruption due to an obstacle, and in step S10, the elapsed history is recorded in the memory with time, and the process proceeds to step S7.

またステップS8において、受光レベルが変化しても光ずれ量が変化しなかった場合には、ステップS11において外的要因による光軸ずれとしてステップS12で時間と共に経過履歴をメモリに保存する。その後に、異常警告をネットワーク管理者に送信する。   In step S8, if the amount of light deviation does not change even if the light reception level changes, in step S11, the elapsed history is stored in the memory with time in step S12 as the optical axis deviation due to an external factor. After that, an abnormality warning is sent to the network administrator.

このようにステップS8、つまり通信断原因解析部34で外的要因による光軸ずれと判断した場合は、異常通知部35に異常発生が通知され、通知を受けた異常通知部35は警告表示、警告音、通信によって異常発生を装置管理者に知らせる。この場合は、外的要因による光軸外れを起こしているため、リセットスタートするまで復帰しないので、外的要因が除かれリセットスタートが押されるとステップS1から始まる。   In this way, when the communication interruption cause analysis unit 34 determines that the optical axis shift is caused by an external factor, the abnormality notification unit 35 is notified of the occurrence of the abnormality, and the abnormality notification unit 35 that has received the notification displays a warning, Notify the system administrator of the occurrence of an abnormality through warning sound and communication. In this case, since the optical axis is off due to an external factor, it does not return until the reset start. Therefore, when the external factor is removed and the reset start is pressed, the process starts from step S1.

ステップS7において受信光レベルを取得し、ステップS14において受信光レベルが通信断のレベル以上か否かを判断する。通信断のレベル以上であったときは、ステップS15に進み、レベル復帰を時間と共に経過履歴にメモリ保存し、ステップS2の処理に戻る。   In step S7, the received light level is acquired. In step S14, it is determined whether or not the received light level is equal to or higher than the communication disconnection level. If it is equal to or higher than the communication disconnection level, the process proceeds to step S15, the level recovery is stored in the elapsed history with time, and the process returns to step S2.

光空間通信装置の構成図である。It is a block diagram of an optical space communication apparatus. 光位置検出素子に関するブロック回路構成図である。It is a block circuit block diagram regarding an optical position detection element. 外的要因による光軸ずれの場合の光軸ずれ量と総受光量の変化を示すグラフ図である。It is a graph which shows the change of the optical axis deviation | shift amount and the total light reception amount in the case of the optical axis deviation | shift by an external factor. 障害物が光路上に進入し光を遮断した場合の光軸ずれ量と総受光量の変化のグラフ図である。It is a graph of the change of the optical axis deviation | shift amount and total light reception amount when an obstruction approachs on an optical path and interrupts | blocks light. 動作フローチャート図である。It is an operation | movement flowchart figure. 位置検出用素子の正面図である。It is a front view of the element for position detection.

符号の説明Explanation of symbols

11 筐体
14、15 駆動機構
16 偏光ビームスプリッタ
17 ビームスプリッタ
19 光位置検出素子
19a〜19d フォトダイオード
21 発光素子
23 受光素子
24 制御回路
25、26 駆動回路
31a〜31d 受光量検出部
32 角度誤差演算部
33 受光量演算部
34 通信断原因解析部
35 異常通知部
DESCRIPTION OF SYMBOLS 11 Case 14, 15 Drive mechanism 16 Polarization beam splitter 17 Beam splitter 19 Optical position detection element 19a-19d Photodiode 21 Light emission element 23 Light reception element 24 Control circuit 25, 26 Drive circuit 31a-31d Light reception amount detection part 32 Angle error calculation Unit 33 received light amount calculation unit 34 communication disconnection cause analysis unit 35 abnormality notification unit

Claims (6)

離れた地点間で対向配置して光で通信する光空間通信装置において、相手側装置からの光を受光する領域が複数に分割された光電変換素子と、該光電変換素子の出力に基づいて前記相手側装置の光軸と自装置の光軸がなす角度を演算する角度演算部と、前記光電変換素子の総受光量を演算する総受光量演算部と、前記角度演算部の出力値及び前記総受光量演算部の出力値の時間変化に基づいて通信断の要因を判断する判断手段と、該判断手段が前記相手側装置の光軸と自装置の光軸がずれたことにより通信断が生じたと判断したときに警告する警告手段とを有することを特徴とする光空間通信装置。   In an optical space communication device that communicates with light by opposingly arranging between distant points, the photoelectric conversion element divided into a plurality of regions that receive light from the counterpart device, and the output of the photoelectric conversion element An angle calculation unit that calculates an angle formed by the optical axis of the counterpart device and the optical axis of the own device, a total received light amount calculation unit that calculates a total received light amount of the photoelectric conversion element, an output value of the angle calculation unit, and the Determining means for determining a cause of communication disconnection based on a time change of an output value of the total received light amount calculation unit; and when the determining means causes the optical axis of the counterpart device to deviate from the optical axis of the own device, the communication disconnection An optical space communication device comprising warning means for warning when it is determined that the error has occurred. 前記判断手段は、前記角度演算部の出力値が予め定められた範囲外へ変化するときの前記総受光量演算部の出力値が予め定められた範囲であった場合は、前記相手側装置の光軸と自装置との光軸ずれであると判断することを特徴とする請求項1に記載の光空間通信装置。   If the output value of the total received light amount calculation unit is within a predetermined range when the output value of the angle calculation unit changes outside the predetermined range, 2. The optical space communication apparatus according to claim 1, wherein it is determined that the optical axis is shifted between the optical axis and the own apparatus. 前記判断手段は、前記角度演算部の出力値及び前記総受光量演算部の出力値が予め定められた範囲外へ同時に変化した場合は、前記相手側装置の光軸と自装置との光軸ずれであるとは判断しないことを特徴とする請求項1又は2に記載の光空間通信装置。   When the output value of the angle calculation unit and the output value of the total received light amount calculation unit are simultaneously changed outside a predetermined range, the determination unit determines that the optical axis of the counterpart device and the optical axis of the device itself The optical space communication apparatus according to claim 1, wherein the optical space communication apparatus is not determined to be a deviation. 前記判断手段は、前記総受光量演算部の出力値が予め定められた範囲外へ変化したときの変化速度が予め定められた速度以下であるときは、前記相手側装置の光軸と自装置との光軸ずれであるとは判断しないことを特徴とする請求項1〜3の何れか1つの請求項に記載の光空間通信装置。   When the change speed when the output value of the total received light amount calculation unit changes outside a predetermined range is equal to or lower than a predetermined speed, the determination means determines the optical axis of the counterpart device and the own apparatus. The optical space communication apparatus according to any one of claims 1 to 3, wherein it is not determined that the optical axis is deviated from the optical axis. 前記光電変換素子は4分割フォトダイオードであることを特徴とする請求項1〜4の何れか1つの請求項に記載の光空間通信装置。   The optical space communication apparatus according to any one of claims 1 to 4, wherein the photoelectric conversion element is a quadrant photodiode. 前記角度演算部の出力値及び前記総受光量演算部の出力値を記憶する記憶手段を有することを特徴とする請求項1〜5の何れか1つの請求項に記載の光空間通信装置。 The optical space communication apparatus according to claim 1, further comprising a storage unit that stores an output value of the angle calculation unit and an output value of the total received light amount calculation unit.
JP2006107190A 2006-04-10 2006-04-10 Optical spatial communication device Pending JP2007281992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107190A JP2007281992A (en) 2006-04-10 2006-04-10 Optical spatial communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107190A JP2007281992A (en) 2006-04-10 2006-04-10 Optical spatial communication device

Publications (1)

Publication Number Publication Date
JP2007281992A true JP2007281992A (en) 2007-10-25

Family

ID=38682976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107190A Pending JP2007281992A (en) 2006-04-10 2006-04-10 Optical spatial communication device

Country Status (1)

Country Link
JP (1) JP2007281992A (en)

Similar Documents

Publication Publication Date Title
US9338528B2 (en) Optimal positioning of reflecting optical devices
JP2009182220A (en) Optical transmission module, wavelength monitor, and wavelength shift detecting method
US20130153756A1 (en) Object detecting device and information acquiring device
JP4371910B2 (en) Optical space transmission equipment
US10557708B2 (en) Range finder
CN107024744A (en) A kind of optical module and wavelength monitor method
US7489871B2 (en) Light detection apparatus and free space optics communication apparatus
JP2012247255A (en) Laser displacement gauge
US20010043380A1 (en) Optical space transmitter
JP2007281992A (en) Optical spatial communication device
JP6274204B2 (en) Light control device, space optical communication device using the same, and light control method
JP4506408B2 (en) Laser distance monitoring system
US20100195183A1 (en) Optical switching apparatus and optical switching method
JP3927827B2 (en) Optical space communication device
JP2006319881A (en) Optical space communication system
JP2007282144A (en) Optical space communication apparatus
JP4446087B2 (en) Photodetector and photodetection system using the same
US20040202482A1 (en) Optical transmission device
JP5650635B2 (en) Optical transmission module, wavelength monitor, and wavelength shift detection method
JP4513057B2 (en) Optical transmission system, optical wireless transmitter, and optical transmission method
JP3870197B2 (en) Optical space transmission equipment
RU2272358C1 (en) Two-way optical communication device
JP2024043977A (en) Management system, management device, and management method
JP5698996B2 (en) Photoelectric sensor
JP2006197078A (en) Optical space communication system