JP4506408B2 - Laser distance monitoring system - Google Patents

Laser distance monitoring system Download PDF

Info

Publication number
JP4506408B2
JP4506408B2 JP2004311436A JP2004311436A JP4506408B2 JP 4506408 B2 JP4506408 B2 JP 4506408B2 JP 2004311436 A JP2004311436 A JP 2004311436A JP 2004311436 A JP2004311436 A JP 2004311436A JP 4506408 B2 JP4506408 B2 JP 4506408B2
Authority
JP
Japan
Prior art keywords
laser
light
measurement
distance
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004311436A
Other languages
Japanese (ja)
Other versions
JP2006125885A (en
Inventor
晋一郎 浅利
一成 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004311436A priority Critical patent/JP4506408B2/en
Publication of JP2006125885A publication Critical patent/JP2006125885A/en
Application granted granted Critical
Publication of JP4506408B2 publication Critical patent/JP4506408B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レーザ距離計測器を用いて測定対象物までの距離を逐次計測して該測定対象物の変位又は形状変化を監視する、レーザ距離監視システムに関する。  The present invention relates to a laser distance monitoring system that sequentially measures a distance to a measurement object using a laser distance measuring device and monitors displacement or shape change of the measurement object.

従来、地形の変動等を監視するにあたり、図9に示すように、山腹等の測定対象物1の観測しようとする位置(以下、観測点という)に反射素子2を取り付ける一方、前記観測点から離間した位置に、投光部4、例えば、指向性の高いレーザダイオード(特許文献1)とか発光素子又は照明ランプ(特許文献2)から照明レンズ5を介して指向性を持たせた照明光が前記反射素子2を目掛けて投射され、該反射素子2で入射方向と略同一方向に反射された反射光が集光レンズ6を介して受光部7に入力され、演算処理部8により前記照明光が投射されてから受光素子2に受光されるまでの時間に基づいて前記観測点までの距離Dを算定する、光距離計測器3を設置し、該光距離計測器3の演算処理部8により前記観測点までの距離Dとか該距離Dの変化量ΔDを算定し、これらの算定結果に基づき前記測定対象物1の観測点の変位又は地形変動を監視することが知られている(特許文献1及び2を参照)。   Conventionally, when monitoring changes in terrain and the like, as shown in FIG. 9, the reflection element 2 is attached to a position (hereinafter referred to as an observation point) where a measurement object 1 such as a mountainside is to be observed. Illumination light having directivity from the light projecting unit 4, for example, a highly directional laser diode (Patent Document 1), a light emitting element, or an illumination lamp (Patent Document 2) through the illumination lens 5 at a separated position. Reflected light that is projected toward the reflecting element 2 and reflected by the reflecting element 2 in substantially the same direction as the incident direction is input to the light receiving unit 7 through the condenser lens 6, and the calculation processing unit 8 performs the illumination. An optical distance measuring device 3 that calculates the distance D to the observation point based on the time from when the light is projected until it is received by the light receiving element 2 is installed, and the arithmetic processing unit 8 of the optical distance measuring device 3 is installed. Or the distance D to the observation point or Calculated amount of change ΔD and D, to monitor the displacement or terrain variation of the measurement object 1 observation point based on these calculation results are known (see Patent Documents 1 and 2).

前述した従来形式の光距離計測器3を用いた光距離監視装置のいずれにおいても、反射素子2として、図10(a)、図10(b)に示すように、コーナーリフレクタ(特許文献1)とか、球面反射鏡(特許文献2)とかの単一タイプのものが使用され、一般的に、投光部4から数十メートル〜数百メートル離間して取り付けられる場合にあっては、投光部4から投射されるビーム又は光束の標的(ターゲット)は、当該投光部4から見て非常に小さい、実質的に点状のものとされる。   In any of the optical distance monitoring devices using the above-described conventional optical distance measuring device 3, as the reflecting element 2, as shown in FIGS. 10 (a) and 10 (b), a corner reflector (Patent Document 1). Or a spherical reflector (Patent Document 2) is used, and in general, when it is mounted several tens to hundreds of meters away from the light projecting unit 4, The target (target) of the beam or luminous flux projected from the unit 4 is very small as viewed from the light projecting unit 4 and is substantially point-like.

このような単一タイプの反射素子2と組み合わせて使用される従来形式の光距離監視装置においては、常時、投光部4から投射される光束の投射方向を、標的、即ち、反射素子2の反射領域に対応する測定範囲から外れると観測点までの距離の計測が不可能となるため、前記点状の標的に照準を合わせることが必要不可欠とされる。したがって、この種の光距離監視装置の稼動時には、常時、投光部4及び受光部7の光軸の俯仰角もしくは水平角の一方又は俯仰角及び水平角を調整しながら測定対象物1の観測点、したがって、反射素子2の点状の反射領域、いわゆる、反射スポット(標的)に追従するように制御される。このような標的の追従制御は、特許文献1の装置においては、方向制御装置25により、特許文献2の装置においては、(トランシット)制御装置5により行われている。  In a conventional optical distance monitoring device used in combination with such a single type of reflection element 2, the projection direction of the light beam projected from the light projecting unit 4 is always set to the target, that is, the reflection element 2. Since it is impossible to measure the distance to the observation point if it is outside the measurement range corresponding to the reflection region, it is essential to aim at the point target. Accordingly, when this type of optical distance monitoring device is in operation, the observation object 1 is always observed while adjusting one of the elevation angle or horizontal angle of the light projecting unit 4 and the light receiving unit 7 or the elevation angle and horizontal angle. Control is performed so as to follow the point, and thus the point-like reflection region of the reflection element 2, that is, the so-called reflection spot (target). Such target tracking control is performed by the direction control device 25 in the device of Patent Document 1 and by the (transit) control device 5 in the device of Patent Document 2.

前記従来形式の単一タイプの反射素子2と協働して距離の計測を行う、光距離監視装置においては、上述したように、投光部4からの投射光の標的は微小であるため、投光部4からの投射光が当該監視装置の稼動中に標的から外れる、即ち、測定範囲から外れるとその自動修復が難しく、距離計測が不能となり、安定性及び信頼性が不十分なものである。特に、無人式で定期的に距離の監視に使用する場合、このような問題は深刻なものとなる。また、前記投射光の方向制御装置は高精度かつ高応答性のものが要求され、当該制御回路又は装置自体が高価であるばかりでなく、当該監視装置全体のコストが非常に高価なものとなる。
特開平7−159162号公報 特開平4−348217号公報
In the optical distance monitoring device that measures the distance in cooperation with the single-type reflection element 2 of the conventional type, as described above, the target of the projection light from the light projecting unit 4 is very small. When the projection light from the light projecting unit 4 deviates from the target during operation of the monitoring device, that is, out of the measurement range, its automatic repair is difficult, distance measurement becomes impossible, and stability and reliability are insufficient. is there. This problem is particularly serious when used unattended and regularly for distance monitoring. Further, the direction control device of the projection light is required to have high accuracy and high response, and not only the control circuit or the device itself is expensive, but also the cost of the entire monitoring device becomes very expensive. .
JP-A-7-159162 JP-A-4-348217

前述の如く、従来形式の光距離計測を基本とする距離監視装置は、当該装置と協働する反射素子の有効測定範囲がピンポイント状の狭小なものであり、動作の安定性及び信頼性が不十分であり、製作コストが高価であるという欠点があった。   As described above, the distance monitoring device based on the conventional optical distance measurement has a narrow pinpoint effective measuring range of the reflecting element that cooperates with the device, and has stable and reliable operation. There was a drawback that it was insufficient and the manufacturing cost was expensive.

また、反射素子が距離監視装置の有効測定範囲から外れやすいので、距離監視装置が常時、投光部や受光部の光軸の俯仰角もしくは水平角を調整しながら測定対象物の観測点、すなわち標的(反射素子)を探すため、距離監視装置の駆動機構の摩耗や不具合、駆動機構を駆動するためのバッテリーが長持ちしない等の問題があった。   In addition, since the reflective element tends to deviate from the effective measurement range of the distance monitoring device, the distance monitoring device constantly adjusts the elevation angle or horizontal angle of the optical axis of the light projecting unit and the light receiving unit, that is, the observation point of the measurement object, that is, In order to search for the target (reflective element), there were problems such as wear and malfunction of the drive mechanism of the distance monitoring device, and the battery for driving the drive mechanism did not last long.

本発明は、上述した課題を解決するために創案されたものであり、距離計測に使用される投射光の標的への照準合せが簡単かつ容易に行え、投射光の標的外れをなるべく少なくして、距離監視装置の駆動機構の摩耗や不具合を防止し、電力消費を抑えることができるとともに、標的が距離監視の有効測定範囲から外れても、簡単かつ迅速に測定範囲内に戻すことができるレーザ光距離監視システムを提供することを目的としている。   The present invention was devised to solve the above-described problem, and it is possible to easily and easily aim the target of the projection light used for distance measurement, and reduce the target deviation of the projection light as much as possible. Laser that can prevent wear and malfunction of the drive mechanism of the distance monitoring device, reduce power consumption, and easily and quickly return to the measurement range even if the target is out of the effective range of distance monitoring The object is to provide an optical distance monitoring system.

請求項1に記載の発明は、測定対象物の観測点に、所定の広さの反射領域を有するとともに該反射領域に入射したレーザ光をその入射方向と略同一方向に反射する板状の反射体を取り付ける一方、前記測定対象物から離間した位置に、前記反射体の反射領域に向けてレーザ光を投射する投光手段と、前記反射体で反射されたレーザ光を受光可能とした受光手段と、前記投光手段及び受光手段の光軸を回転移動させる駆動手段と、前記受光手段に受光したレーザ光が前記投光手段から投射されて前記反射体の反射領域で反射されたものであるか、すなわち、前記測定対象物の観測点が前記反射体の反射領域に対応する測定範囲から外れているかどうかを判別する認識手段と、前記認識手段により前記測定対象物の観測点が前記測定範囲から外れていないと認識されるとき、前記駆動手段により前記投光手段及び受光手段の光軸を所定の範囲内で回転移動させながら、前記投光手段からのレーザ光の投射時点から前記反射体で反射されて前記受光手段に受光される時点までの時間を測定するとともに該測定時間に基づいて前記測定対象物の観測点までの最短距離を算定する演算処理手段とを備えたレーザ距離計測手段を配置し、前記レーザ距離計測手段により、逐次、前記測定対象物の観測点の距離を計測して前記演算処理手段により前記計測距離Dの変化量ΔDを算定し、該変化量ΔDに基づき前記測定対象物の変位又は形状変化を監視するように構成したことを特徴とするレーザ距離監視システムである。 The invention according to claim 1 is a plate-like reflection which has a reflection area of a predetermined area at the observation point of the measurement object and reflects the laser beam incident on the reflection area in the substantially same direction as the incident direction. A light projecting means for projecting a laser beam toward a reflection region of the reflector at a position spaced from the measurement object, and a light receiving means capable of receiving the laser light reflected by the reflector Driving means for rotating the optical axes of the light projecting means and the light receiving means, and laser light received by the light receiving means is projected from the light projecting means and reflected by the reflection region of the reflector. That is, a recognition unit that determines whether or not the observation point of the measurement object is out of the measurement range corresponding to the reflection region of the reflector, and the observation point of the measurement object by the recognition unit is the measurement range Off When it is recognized that not, while rotating movement within a predetermined range of the optical axis of said light projecting means and light receiving means by said drive means, said reflected by the reflector from the projection point of the laser light from said light projecting means And a laser distance measuring means comprising an arithmetic processing means for measuring a time until the light is received by the light receiving means and calculating a shortest distance to the observation point of the measurement object based on the measurement time. The laser distance measuring means sequentially measures the distance of the observation point of the measurement object, the calculation processing means calculates the change amount ΔD of the measurement distance D, and the measurement object is based on the change amount ΔD. This is a laser distance monitoring system configured to monitor displacement or shape change.

請求項2に記載の発明は、前記レーザ距離計測手段により測定対象物の観測点の距離計測を定期的に行い、各距離計測の開始時に、前記レーザ距離計測手段における認識手段により前記測定対象物の観測点が当該レーザ距離計測手段の測定範囲から外れていると認識されたとき、前記駆動手段により前記投光手段及び受光手段の光軸を回転移動させて前記測定対象物の観測点が前記測定範囲内に含まれるように自動的に調整することを特徴とする請求項1記載のレーザ距離監視システムである。 According to a second aspect of the present invention, the distance measurement point of the measurement object is periodically measured by the laser distance measurement means, and the measurement object is recognized by the recognition means in the laser distance measurement means at the start of each distance measurement. When the observation point is recognized as being out of the measurement range of the laser distance measuring means, the driving means rotates the optical axes of the light projecting means and the light receiving means so that the observation point of the measurement object is 2. The laser distance monitoring system according to claim 1, wherein the laser distance monitoring system is automatically adjusted so as to be included in a measurement range.

請求項3に記載の発明は、前記投光手段及び受光手段の光軸の回転移動は、縦方向回転移動と横方向回転移動を組み合わせることにより前回の距離計測時の位置を含む所定範囲内を走査することを特徴とする請求項2記載のレーザ距離監視システムである。 According to a third aspect of the present invention, the rotational movement of the optical axes of the light projecting means and the light receiving means is within a predetermined range including the position at the time of the previous distance measurement by combining the vertical rotational movement and the horizontal rotational movement. 3. The laser distance monitoring system according to claim 2, wherein scanning is performed.

請求項4に記載の発明は、前記投光手段及び受光手段の光軸の回転移動は、縦方向回転移動と横方向回転移動を組み合わせることにより前回の距離計測時の位置を起点として渦巻状に回転移動させることを特徴とする請求項2記載のレーザ距離監視システムである。 According to a fourth aspect of the present invention, the rotational movement of the optical axes of the light projecting means and the light receiving means is spirally started from the position at the previous distance measurement by combining the vertical rotational movement and the horizontal rotational movement. 3. The laser distance monitoring system according to claim 2, wherein the laser distance monitoring system is rotated .

本発明の請求項1に記載のレーザ距離監視システムによれば、レーザ光の投光方向(前後方向)の測定対象物の距離の変化を監視でき、測定対象物に取り付けられた反射体が所定の面積を有しているので、左右上下方向の変位に対して反射体が測定範囲からすぐには外れない。したがって、駆動手段を駆動させる頻度が減少するので、駆動機構の摩耗や不具合の発生、駆動手段を動作させるためのバッテリーの消耗などを減少させることができる。   According to the laser distance monitoring system of the first aspect of the present invention, it is possible to monitor a change in the distance of the measurement object in the laser light projection direction (front-rear direction), and the reflector attached to the measurement object is a predetermined reflector. Therefore, the reflector does not immediately deviate from the measurement range with respect to the horizontal and vertical displacements. Therefore, since the frequency of driving the driving means is reduced, it is possible to reduce the wear and malfunction of the driving mechanism, the consumption of the battery for operating the driving means, and the like.

本発明の請求項2に記載のレーザ距離監視システムによれば、定期的に観測を行い、測定範囲から測定対象物が外れた場合のみ、自動的にトランシット機構部の垂直軸及び水平軸を回転駆動するようにして測定対象物を見つけるようにしているので無人観測などに最適である。   According to the laser distance monitoring system of the second aspect of the present invention, the vertical axis and the horizontal axis of the transit mechanism are automatically rotated only when the observation object is periodically removed and the measurement object is out of the measurement range. It is ideal for unmanned observation because it is driven to find the measurement object.

本発明の請求項3に記載のレーザ距離監視システムによれば、測定範囲から測定対象物が外れた場合、レーザ距離計測器を縦方向又は横方向に広範囲に走査して反射体からの反射光を得るようにしているので、移動した(変位した)測定対象物を容易にかつ迅速に見つけることができる。   According to the laser distance monitoring system of the third aspect of the present invention, when the measurement object is out of the measurement range, the laser distance measuring device is scanned in a wide range in the vertical direction or the horizontal direction to reflect the reflected light from the reflector. Therefore, the moved (displaced) measurement object can be easily and quickly found.

本発明の請求項4に記載のレーザ距離監視システムによれば、測定範囲から外れた測定対象物を探すときに前回の距離計測時の位置を起点として投射光を渦巻き状に走査することで移動した(変位した)測定対象物をより速く見つけることができ、短時間で計測が完了する。   According to the laser distance monitoring system of claim 4 of the present invention, when searching for a measurement object that is out of the measurement range, it moves by scanning the projection light in a spiral shape starting from the position at the previous distance measurement. The measurement object that has been (displaced) can be found faster, and the measurement can be completed in a short time.

以下、本発明の実施の形態を、添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施例のレーザ距離監視システムの構成の概念を示し、例えば、地震等による地形の経時的変化とか、建物の経時的移動等を監視するのに使用される。地形のズレ又は変動、建物の移動等の監視は、監視しようとする測定対象物1における所定の位置の変位を測定することにより行われる。   FIG. 1 shows the concept of the configuration of a laser distance monitoring system according to an embodiment of the present invention, and is used for monitoring, for example, a change in terrain with time due to an earthquake or the like, a movement of a building with time, and the like. Monitoring of deviations or changes in topography, movement of buildings, and the like is performed by measuring a displacement at a predetermined position in the measurement object 1 to be monitored.

図1では、測定対象物1として土地が示されており、例えば、丘陵地の頂上付近の所定の地点(観測点)に、例えば、80cm×100cmの反射領域を有する平板状の反射体12が標識の支柱に貼り付けられるなどして設置される。この観測点から、例えば、300m程離間した麓地点に、前記反射体12と協働して該観測点までの距離Dを計測するレーザ距離計測器10が配置され、距離計測器10により経時的に前記観測点までの距離Dを計測するとともに該計測距離Dにより算出した距離Dの変化量ΔDにより観測点の変位を評価する、例えば、危険限度を示すしきい値を超えたかどうかを比較判定して当該丘陵地の変形等の監視が行われる。  In FIG. 1, land is shown as the measurement object 1. For example, a flat reflector 12 having a reflection area of 80 cm × 100 cm, for example, at a predetermined point (observation point) near the top of a hilly area. It is installed, for example, on a sign post. For example, a laser distance measuring device 10 that measures the distance D to the observation point in cooperation with the reflector 12 is disposed at a saddle point separated by about 300 m from the observation point. The distance D to the observation point is measured and the displacement of the observation point is evaluated based on the change amount ΔD of the distance D calculated from the measurement distance D. For example, whether or not a threshold value indicating a danger limit is exceeded is determined. Then, the deformation of the hilly area is monitored.

前記反射体12は、図3(a)に示すように、それ自体周知のキューブミラー13を、図3(c)に示すように、前記反射体12の基板面に並べて敷き詰めて形成される。この場合、個々のキューブミラー13のサイズは、前記投光部25から投射されるレーザ光のビーム径の10分の1以下とするのが望ましい。前記キューブミラー13は、図3(a)に示すように、立方体の一隅を切り取った形状を成す、互いに垂直な3つの反射面を有し、図中のABC面から入射した光は前記3つの反射面で1回づつ反射して再びABC面から出ていくようになっている。   As shown in FIG. 3A, the reflector 12 is formed by arranging cube mirrors 13 known per se on the substrate surface of the reflector 12 as shown in FIG. 3C. In this case, it is desirable that the size of each cube mirror 13 is 1/10 or less of the beam diameter of the laser light projected from the light projecting unit 25. As shown in FIG. 3 (a), the cube mirror 13 has three reflecting surfaces that are perpendicular to each other and have a shape in which one corner of the cube is cut off. The light incident from the ABC plane in the figure is The light is reflected once by the reflecting surface and comes out of the ABC surface again.

図3(b)に示すように、前記反射体12の基板面に多数のキューブミラー13を敷き詰めて形成される反射領域に前記レーザ距離計測器10の投光部25から投射されるレーザ光の入射角度が変化しても、反射点では入射角と反射角が等しくなるように反射されるため、反射光は入射方向と略同一方向に反射され(反射光は入射光と平行になる)、当該観測点までの距離Dの計測を行うことができる。   As shown in FIG. 3B, the laser beam projected from the light projecting unit 25 of the laser distance measuring device 10 is reflected in a reflection region formed by laying many cube mirrors 13 on the substrate surface of the reflector 12. Even if the incident angle changes, the reflection point is reflected so that the incident angle and the reflection angle are equal to each other, so the reflected light is reflected in substantially the same direction as the incident direction (the reflected light is parallel to the incident light), The distance D to the observation point can be measured.

前記レーザ距離計測器10は、図2に示すように、概略、レーザ光を投射する投光部25、受光部28、認識部32、演算処理部34、トランシット機構部40、該トランシット機構部40の駆動回路(41、51)及び駆動制御部36により構成される。また、図示はしていないが、レーザ距離計測器10内には、電子部品やモータ等の駆動部品などに電力を供給するためのバッテリーが搭載されている。   As shown in FIG. 2, the laser distance measuring instrument 10 generally includes a light projecting unit 25 that projects laser light, a light receiving unit 28, a recognition unit 32, an arithmetic processing unit 34, a transit mechanism unit 40, and the transit mechanism unit 40. Drive circuit (41, 51) and a drive control unit 36. Although not shown, a laser for supplying electric power to electronic components, driving components such as a motor, etc. is mounted in the laser distance measuring instrument 10.

前記投光部25は、距離測定に使用される、例えば、出力300mWのパルスレーザ光を出力する半導体レーザ素子(LD素子)22とレーザ駆動回路23とにより構成され、受光部28は、例えば、前記半導体レーザ素子(レーザダイオード)22に見合わせて選定された光−電気変換特性を有する、例えば、フォトダイオード(受光素子)26と、該受光素子26からの出力を増幅する増幅回路27とにより構成される。前記投光部25から射出されるレーザ光は、従来形式の光距離計測器3におけると同様、適当な対物レンズ(図示しない)を介して、後述する図4とともに説明する当該計測器ハウジング15の投光窓16から射出される。一方、投光部25から投射されたレーザ光のうち、前記反射体12の反射領域で反射された反射光とか、その他の該反射体12の周辺の物体等から反射されたレーザ光を、後述する図4とともに説明する当該計測器ハウジング15の受光窓18、図示しない集光レンズを通して入射されるレーザ光を受光する。 The light projecting unit 25 is composed of a semiconductor laser element (LD element) 22 used for distance measurement, for example, that outputs a pulsed laser beam with an output of 300 mW, and a laser driving circuit 23. For example, a photodiode (light receiving element) 26 having an optical-electrical conversion characteristic selected in accordance with the semiconductor laser element (laser diode) 22 and an amplification circuit 27 for amplifying the output from the light receiving element 26 are included. Is done. The laser light emitted from the light projecting unit 25 passes through an appropriate objective lens (not shown) as in the conventional optical distance measuring device 3, and the measuring device housing 15 described later with reference to FIG. The light is emitted from the projection window 16. On the other hand, of the laser light projected from the light projecting unit 25, the reflected light reflected by the reflection region of the reflector 12 or the laser light reflected from other objects around the reflector 12 is described later. 4 is received through a light receiving window 18 of the measuring instrument housing 15 and a condenser lens (not shown).

前記認識部32は、例えば、マイクロプロセッサを用いて構成された当該レーザ距離計測器10の中央処理部30におけるメモリー領域に格納された所定の認識動作プログラムにしたがって詳細に後述する図7に示す一連の認識動作を実行することにより、前記受光手段に受光したレーザ光が前記投光手段から投射されて前記反射体の反射領域で反射されたものであるか、すなわち、前記測定対象物の観測点が前記反射体の反射領域に対応する測定範囲から外れているかどうかを判別する。   The recognition unit 32 is, for example, a series shown in FIG. 7 which will be described in detail later according to a predetermined recognition operation program stored in a memory area in the central processing unit 30 of the laser distance measuring device 10 configured using a microprocessor. The laser beam received by the light receiving means is projected from the light projecting means and reflected by the reflection region of the reflector, that is, the observation point of the measurement object. Is determined to be out of the measurement range corresponding to the reflection area of the reflector.

前記演算処理部34は、中央処理部30でレーザ距離計測器10により行われた測定時間に基づいて当該レーザ距離計測器10から測定対象物1の観測点までの距離を算定する。前記認識部(回路)32により測定対象物1の観測点が前記反射体12の反射領域の大きさ(面積)に応じて定まる測定範囲、即ち、前記投光部25から投射されたレーザ光を受光部28に向けて反射可能とされる、したがって、該反射光により観測点までの距離Dを算定することができる範囲又は領域から外れていないと認識されるとき、投光部25からのレーザ光の投射時点から反射体12で反射されて受光部28に受光される時点までの時間を測定するとともに該測定時間と、当該レーザ光の伝播速度(光速)に基づいて前記測定対象物の観測点までの距離を算定する。   The arithmetic processing unit 34 calculates the distance from the laser distance measuring device 10 to the observation point of the measuring object 1 based on the measurement time performed by the laser distance measuring device 10 in the central processing unit 30. The measurement range in which the observation point of the measurement object 1 is determined by the recognition unit (circuit) 32 according to the size (area) of the reflection region of the reflector 12, that is, the laser beam projected from the light projecting unit 25. When it is recognized that the light can be reflected toward the light receiving unit 28 and, therefore, it is recognized that the distance D to the observation point can be calculated by the reflected light, the laser from the light projecting unit 25 is recognized. The time from the light projection time to the time when the light is reflected by the reflector 12 and received by the light receiving unit 28 is measured, and the measurement object is observed based on the measurement time and the propagation speed (light speed) of the laser light. Calculate the distance to the point.

前記トランシット機構部40は、図5に示されるような垂直軸回転機構部42と、図6に示されるような水平軸回転機構部52とにより構成される。   The transit mechanism section 40 includes a vertical axis rotation mechanism section 42 as shown in FIG. 5 and a horizontal axis rotation mechanism section 52 as shown in FIG.

前記垂直軸回転機構部42は、土台43に固定した垂直軸44にテーブル45を装着するとともに土台43に固定した電気モータ47とベルト48を介して前記テーブル45を垂直軸44の回りに回転可能に装着して構築された機構部である。この垂直軸回転機構部42の回転テーブル45に起立して固定された一対の支柱53に、電気モータ57及びベルト58を介して回転可能に水平軸54を取り付け、該水平軸54の回りに回転可能に計測器ハウジング15を装着して水平軸回転機構部52が構築される。   The vertical shaft rotating mechanism unit 42 mounts a table 45 on a vertical shaft 44 fixed to the base 43 and can rotate the table 45 around the vertical shaft 44 via an electric motor 47 and a belt 48 fixed to the base 43. It is a mechanism part built by attaching to the. A horizontal shaft 54 is attached to a pair of support columns 53 standing and fixed on the rotary table 45 of the vertical shaft rotation mechanism 42 so as to be rotatable via an electric motor 57 and a belt 58, and rotates around the horizontal shaft 54. The horizontal axis rotating mechanism 52 is constructed by mounting the measuring instrument housing 15 as possible.

前記垂直軸回転機構部42は、電気モータ47を介して回転駆動されると、その回転角度に応じて垂直軸44の回りに計測器ハウジング15、すなわち、投光部25及び受光部28を水平方向に回転し、該投光部25及び受光部28の光軸の水平角度、したがって、投光部25から反射体12の反射領域に向けて投射される水平角度を変えることができる。一方、前記水平軸回転機構部52は、電気モータ57を介して回転駆動されると、その回転角度に応じて水平軸54の回りに計測器ハウジング15、すなわち投光部25及び受光部28を水平軸54の回りに回転し、投光部25及び受光部28の光軸の俯仰角度、したがって、投光部25から反射体12の反射領域に向けて投射されるレーザ光の俯仰角度を変えることができる。  When the vertical axis rotation mechanism unit 42 is rotationally driven via an electric motor 47, the measuring instrument housing 15, that is, the light projecting unit 25 and the light receiving unit 28 are horizontally arranged around the vertical axis 44 according to the rotation angle. The horizontal angle of the optical axes of the light projecting unit 25 and the light receiving unit 28 and thus the horizontal angle projected from the light projecting unit 25 toward the reflection region of the reflector 12 can be changed. On the other hand, when the horizontal axis rotation mechanism 52 is driven to rotate through the electric motor 57, the measuring instrument housing 15, that is, the light projecting unit 25 and the light receiving unit 28 are moved around the horizontal axis 54 according to the rotation angle. It rotates around the horizontal axis 54 and changes the elevation angle of the optical axes of the light projecting unit 25 and the light receiving unit 28, and thus the elevation angle of the laser light projected from the light projecting unit 25 toward the reflection region of the reflector 12. be able to.

前記垂直軸回転機構部42の電気モータ47は、中央処理部30に構成される駆動制御部36によりプログラム制御されるようにした垂直軸回転駆動回路41により回転駆動される。一方、前記水平軸回転機構部52の電気モータ57は、中央処理部30に構成される駆動制御部36によりプログラム制御されるようにした水平軸回転駆動回路51により回転駆動される。   The electric motor 47 of the vertical axis rotation mechanism unit 42 is rotationally driven by a vertical axis rotation drive circuit 41 that is program-controlled by a drive control unit 36 configured in the central processing unit 30. On the other hand, the electric motor 57 of the horizontal axis rotation mechanism unit 52 is rotationally driven by a horizontal axis rotation drive circuit 51 that is program-controlled by a drive control unit 36 configured in the central processing unit 30.

前記認識部32により投光部25から投射されるレーザ光が測定対象物1に取り付けられた反射体12の反射領域に対応して定まる測定範囲から外れていると認識されると、駆動制御部36により垂直軸回転駆動回路41を制御して電気モータ47の回転角を制御し、該電気モータ47の回転角に応じて投光部25の水平角、したがって、前記反射体12の反射領域に対し投光部25から投射されるレーザ光の光軸が水平方向に回転移動される。一方、前記認識部32により投光部25から投射されるレーザ光が前記反射体12の反射領域に対応して定まる測定範囲から外れていると認識されると、駆動制御部36により水平軸回転駆動回路51を制御して電気モータ57の回転角を制御し、該電気モータ57の回転角に応じて投光部25の俯仰角が変化するので、前記反射体12の反射領域に対し投光部25から投射されるレーザ光の光軸が上下方向に回転移動する。 When the recognizing unit 32 recognizes that the laser light projected from the light projecting unit 25 is out of the measurement range determined corresponding to the reflection region of the reflector 12 attached to the measurement target 1, the drive control unit 36 to control the rotation angle of the electric motor 47 by controlling the vertical axis rotation drive circuit 41, and in accordance with the rotation angle of the electric motor 47, the horizontal angle of the light projecting unit 25, and hence the reflection region of the reflector 12. On the other hand, the optical axis of the laser light projected from the light projecting unit 25 is rotated and moved in the horizontal direction. On the other hand, when the recognition unit 32 recognizes that the laser light projected from the light projecting unit 25 is out of the measurement range determined corresponding to the reflection region of the reflector 12, the drive control unit 36 rotates the horizontal axis. The drive circuit 51 is controlled to control the rotation angle of the electric motor 57, and the elevation angle of the light projecting unit 25 changes according to the rotation angle of the electric motor 57, so that the light is projected onto the reflection region of the reflector 12. The optical axis of the laser light projected from the unit 25 rotates in the vertical direction.

前記レーザ距離計測器10で得られた種々の計測データは、例えば、RS−232Cの汎用の通信インターフェース38を介してコンピュータを用いて構成される遠隔監視装置61と通信可能とされ、該遠隔監視装置61において各地に設定されたレーザ距離計測器10で採取された計測距離Dデータを集中管理可能とされる。   Various measurement data obtained by the laser distance measuring instrument 10 can be communicated with a remote monitoring device 61 configured by using a computer via a general-purpose communication interface 38 of RS-232C, for example. In the apparatus 61, the measurement distance D data collected by the laser distance measuring device 10 set in each place can be centrally managed.

次に、前記レーザ距離計測器10を用いて地形の観測点の変位を定期的に監視している際、測定対象物1における観測点が急激に大きく変位して投光部25からの投射光が当該レーザ距離計測器10の測定範囲から外れ、距離計測が不能に陥った場合の自動回復動作について、図7の認識部32の動作フロー図とともに説明する。   Next, when the displacement of the observation point on the terrain is regularly monitored using the laser distance measuring device 10, the observation point on the measuring object 1 is suddenly greatly displaced, and the projection light from the light projecting unit 25. Will be described with reference to an operation flow diagram of the recognition unit 32 in FIG. 7 for an automatic recovery operation in the case where the distance measurement cannot be performed because the measurement distance of the laser distance measuring device 10 is out of range.

いま、前回の測定対象物1の観測点の変位が正常であり、今回の計測開始にあたり、ステップS1において、投光部25からレーザ光が投射されたとする。   Now, it is assumed that the displacement of the observation point of the previous measurement object 1 is normal, and laser light is projected from the light projecting unit 25 in step S1 at the start of the current measurement.

ステップS2において、認識部32により投光部25から投射されたレーザ光が測定範囲内のものかどうかが判定される。この判定は、投光部25からレーザ光が発射されてから受光部28で受光されるレーザ光に基づき演算処理部34において算定された距離Dが極端に大きいかもしくは無限大と算定されるか、又は、受光部28に受光される光量がゼロもしくは規定値を下回るかによって判定される。すなわち、投光部25から投射されたレーザ光が反射体12で反射される状態にあると、測定範囲内に在るとしてYESと判定され、ステップS7に進み、演算処理部34において、投光部25からのレーザ光の投射時点から受光部28での受光時点までの時間に基づいて観測点までの距離Dが算定される。  In step S <b> 2, it is determined by the recognition unit 32 whether the laser light projected from the light projecting unit 25 is within the measurement range. This determination is based on whether the distance D calculated by the arithmetic processing unit 34 based on the laser beam received by the light receiving unit 28 after the laser beam is emitted from the light projecting unit 25 is extremely large or infinite. Alternatively, the determination is made based on whether the amount of light received by the light receiving unit 28 is zero or below a specified value. That is, if the laser light projected from the light projecting unit 25 is reflected by the reflector 12, it is determined as YES because it is within the measurement range, and the process proceeds to step S7. The distance D to the observation point is calculated based on the time from the time when the laser beam is projected from the unit 25 to the time when the light is received by the light receiving unit 28.

この場合、垂直軸回転機構部42及び水平軸回転機構部52の駆動量を所定の範囲内で変化させながら算定された距離のうち、最短距離が算出されたときの反射体12の反射領域におけるレーザ光の反射点までの距離が観測点までの距離Dとして決定される。  In this case, in the reflection region of the reflector 12 when the shortest distance is calculated among the distances calculated while changing the drive amounts of the vertical axis rotation mechanism unit 42 and the horizontal axis rotation mechanism unit 52 within a predetermined range. The distance to the reflection point of the laser beam is determined as the distance D to the observation point.

一方、認識部32による判定がNOと判定されると、ステップS3に進み、観測点が測定範囲から外れていると判断され、ステップS4〜ステップS6の動作を繰返し実行する。ステップS4においては、駆動制御部36によりトランシット機構部40を微小角駆動し、投光部25から投射されるレーザ光の光軸が反射体12の反射領域で水平方向及び上下方向に微少量回転移動される。 On the other hand, if the determination by the recognition unit 32 is determined to be NO, the process proceeds to step S3, where it is determined that the observation point is out of the measurement range, and the operations of steps S4 to S6 are repeatedly executed. In step S4, the drive control unit 36 drives the transit mechanism unit 40 by a small angle, and the optical axis of the laser light projected from the light projecting unit 25 rotates slightly in the horizontal and vertical directions in the reflection region of the reflector 12. Moved.

次いでステップS5において、ステップS1と同様、投光部25のレーザダイオード22を駆動してレーザ光が反射体12の反射領域に向けて投射され、ステップS2におけると同様、受光部28に受光されるレーザ光により距離Dの演算結果又は受光光量の測定結果に基づき、測定範囲から外れているかどうかの判定が行われ、NOと判定されると、ステップS4に戻り、ステップS4からステップS6までのルーチンが、ステップS6における判定がYESとなるまで繰り返し実行される。  Next, in step S5, similarly to step S1, the laser diode 22 of the light projecting unit 25 is driven to project the laser beam toward the reflection region of the reflector 12, and is received by the light receiving unit 28 as in step S2. Based on the calculation result of the distance D or the measurement result of the amount of received light by the laser light, it is determined whether or not it is out of the measurement range. However, it is repeatedly executed until the determination in step S6 becomes YES.

このルーチンを繰り返し実行することにより、トランシット機構部40の垂直軸回転機構部42の水平角度及び水平軸回転機構部52の俯仰角を微小角度づつ変化させて投光部25から投射されるレーザ光の光軸が反射体12の反射領域で水平方向及び上下方向に微少量づつ回転移動し、投光部25から投射されるレーザ光が反射体12の反射領域における測定範囲内で反射されるように調整される。 By repeatedly executing this routine, the laser beam projected from the light projecting unit 25 while changing the horizontal angle of the vertical axis rotation mechanism unit 42 of the transit mechanism unit 40 and the elevation angle of the horizontal axis rotation mechanism unit 52 by a minute angle. the optical axis is small amount and at a time rotational movement in the horizontal direction and the vertical direction in the reflection area of the reflector 12, so that the laser light projected from the light projecting unit 25 is reflected within the measurement range in the reflection region of the reflector 12 Adjusted to

以上のように、所定の広さの反射領域を有するとともに該反射領域に入射したレーザ光をその入射方向と略同一方向に反射する板状の反射体12を測定対象物に取り付けて、レーザ距離計測を行うと、測定対象物の上下左右の少しの変位に対しては、観測点が反射領域から外れることがなく、レーザ距離計測器と測定対象物との間の距離の変化は継続して計測することができ、レーザ距離計測装置のトランシット機構部の駆動頻度を抑えることができるので、駆動部分の摩耗や不具合を防止し、電力消費を抑えることができる。  As described above, the plate-like reflector 12 that has the reflection area of a predetermined area and reflects the laser light incident on the reflection area in the substantially same direction as the incident direction is attached to the measurement object, and the laser distance is obtained. When the measurement is performed, the observation point does not deviate from the reflection area for a slight vertical and horizontal displacement of the measurement object, and the change in the distance between the laser distance measuring instrument and the measurement object continues. Since it can measure and the drive frequency of the transit mechanism part of a laser distance measuring device can be suppressed, abrasion and malfunction of a drive part can be prevented and power consumption can be suppressed.

前記ステップS4〜ステップS6までのルーチンを実行するにあたり、駆動制御部36によりトランシット機構部40を駆動する場合、垂直軸回転機構部42及び水平軸回転機構部52を駆動することにより、例えば前回の距離計測時の位置から所定距離離れた地点を起点として、投光部25からの投射レーザ光の光軸を縦及び横方向に回転移動させて投射レーザ光を反射体12の反射領域における測定範囲内で反射するように調整する。即ち、反射体12に対する投射レーザ光の照準合せをすることができる。図8(a)は、投光手段25及び受光手段28の光軸を縦方向回転移動と横方向回転移動とを組み合わせてラスタ状に変化させて行く様子を示す。前回の距離計測時(測定範囲から外れる前の時点での計測)を中心として一定の矩形状の範囲について投射レーザ光により査していく。このようにして、高速に測定範囲から外れた反射体を検出することができる。 In executing the routine from step S4 to step S6, when the transit mechanism unit 40 is driven by the drive control unit 36, the vertical axis rotation mechanism unit 42 and the horizontal axis rotation mechanism unit 52 are driven, for example, the previous time. A measurement range in the reflection region of the reflector 12 by rotating the optical axis of the projection laser light from the light projecting unit 25 in the vertical and horizontal directions starting from a point that is a predetermined distance away from the position at the time of distance measurement. Adjust to reflect inside. That is, the projection laser beam can be aimed at the reflector 12. FIG. 8A shows a state in which the optical axes of the light projecting means 25 and the light receiving means 28 are changed in a raster shape by combining the vertical rotation movement and the horizontal rotation movement. It continues to run by the projection laser beam for certain rectangular range around the (measured at a previous point in time deviates from the measurement range) previous distance measurement time. In this manner, a reflector that is out of the measurement range can be detected at high speed.

また、前記ステップS4〜ステップS6までのルーチンを実行するにあたり、駆動制御部36によりトランシット機構部40を駆動する場合、垂直軸回転機構部42又は水平軸回転機構部52を同時に所定の角度範囲内で逐次回転角を変化させながら投光手段25及び受光手段28の光軸を前回の距離計測時の位置を起点として渦巻状に回転移動させて投光部25から投射されるレーザ光を反射体12の反射領域における測定範囲内で反射するように調整することもできる。図8(b)に投光手段25及び受光手段28の光軸を渦巻状に回転移動させた様子を示す。投射レーザ光の光軸の縦方向の回転移動と横方向の回転移動とを交互に行うことにより渦巻状に検出範囲を広げていく。この方法によると、図8(a)のようにラスタ状に検出動作を行うよりも、速く反射体を見つけることができる。 In executing the routine from step S4 to step S6, when the transit mechanism 40 is driven by the drive controller 36, the vertical axis rotating mechanism 42 or the horizontal axis rotating mechanism 52 is simultaneously moved within a predetermined angle range. The laser light projected from the light projecting unit 25 is reflected by rotating the optical axes of the light projecting means 25 and the light receiving means 28 in a spiral shape starting from the position at the previous distance measurement while sequentially changing the rotation angle at It can also be adjusted to reflect within the measurement range in the 12 reflection regions. FIG. 8B shows a state in which the optical axes of the light projecting means 25 and the light receiving means 28 are rotationally moved in a spiral shape. It will expand the detection range in a spiral shape by performing the rotational movement of the rotational movement and lateral longitudinal direction of the optical axis of the projection laser beam alternately. According to this method, the reflector can be found faster than the detection operation in a raster shape as shown in FIG.

なお、本発明のレーザ距離監視システムは、前記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。  The laser distance monitoring system of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

本発明のレーザ距離監視システムの基本的構成概念図である。It is a basic composition conceptual diagram of the laser distance monitoring system of the present invention. 本発明の一実施例のレーザ距離監視システムのブロック図である。It is a block diagram of the laser distance monitoring system of one Example of this invention. 本発明に適用できる平板状の反射体の構成説明図であり、図3(a)は構成要素のキューブミラーの基本構成説明図、図3(b)はキューブミラーにおける反射光路線図、図3(c)は同一平面に多数のキューブミラーを敷き詰めて広い反射面を形成した反射体の部分拡大平面図である。FIG. 3A is a configuration explanatory diagram of a flat reflector applicable to the present invention, FIG. 3A is a basic configuration explanatory diagram of a constituent cube mirror, FIG. 3B is a reflected light path diagram of the cube mirror, FIG. (C) is a partially enlarged plan view of a reflector in which a large reflective surface is formed by laying a large number of cube mirrors on the same plane. レーザ距離計測器の外観斜視図である。It is an external appearance perspective view of a laser distance measuring device. 前記レーザ距離計測器における垂直軸回転機構部の概略平面図である。It is a schematic plan view of the vertical axis | shaft rotation mechanism part in the said laser distance measuring device. 前記レーザ距離計測器における水平軸回転機構部の概略側面図である。It is a schematic side view of the horizontal axis | shaft rotation mechanism part in the said laser distance measuring device. 本発明のレーザ距離監視システムにおける認識部の動作フロー図である。It is an operation | movement flowchart of the recognition part in the laser distance monitoring system of this invention. レーザ距離計測器における投射レーザ光の反射体の反射領域における適正な反射点の検出動作態様を示す説明図であり、図8(a)はラスタ型検出方式の動作概念を示し、図8(b)は渦巻き型検出方式の動作概念を示す。FIG. 8A is an explanatory diagram showing an operation of detecting an appropriate reflection point in a reflection region of a reflector of a projection laser beam in a laser distance measuring device. FIG. 8A shows an operation concept of a raster type detection method, and FIG. ) Shows the operation concept of the spiral detection method. 従来形式の光距離計測器の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the conventional optical distance measuring device. 従来形式の光距離計測器と協働して使用される単体タイプの反射素子であり、図10(a)はコーナーリフレクタの概略断面図であり、図10(b)は球面反射鏡の概略断面図である。FIG. 10A is a schematic sectional view of a corner reflector , and FIG. 10B is a schematic sectional view of a spherical reflector. FIG.

符号の説明Explanation of symbols

1 測定対象物
10 レーザ距離計測器
12 反射体
13 キューブミラー
22 レーザダイオード
23 レーザ駆動回路
25 投光部
26 受光素子
28 受光部
30 マイクロプロセッサ
32 認識部
34 演算処理部
36 駆動制御部
38 通信インターフェース
40 トランシット機構部
41 垂直軸回転駆動回路
42 垂直軸回転機構部
51 水平軸回転駆動回路
52 水平軸回転機構部
61 遠隔監視装置
62 通信ケーブル
DESCRIPTION OF SYMBOLS 1 Measurement object 10 Laser distance measuring device 12 Reflector 13 Cube mirror 22 Laser diode 23 Laser drive circuit 25 Light projection part 26 Light receiving element 28 Light reception part 30 Microprocessor 32 Recognition part 34 Operation processing part 36 Drive control part 38 Communication interface 40 Transit mechanism 41 Vertical axis rotation drive circuit 42 Vertical axis rotation mechanism 51 Horizontal axis rotation drive circuit 52 Horizontal axis rotation mechanism 61 Remote monitoring device 62 Communication cable

Claims (4)

測定対象物の観測点に、所定の広さの反射領域を有するとともに該反射領域に入射したレーザ光をその入射方向と略同一方向に反射する板状の反射体を取り付ける一方、前記測定対象物から離間した位置に、前記反射体の反射領域に向けてレーザ光を投射する投光手段と、前記反射体で反射されたレーザ光を受光可能とした受光手段と、前記投光手段及び受光手段の光軸を回転移動させる駆動手段と、前記受光手段に受光したレーザ光が前記投光手段から投射されて前記反射体の反射領域で反射されたものであるか、すなわち、前記測定対象物の観測点が前記反射体の反射領域に対応する測定範囲から外れているかどうかを判別する認識手段と、前記認識手段により前記測定対象物の観測点が前記測定範囲から外れていないと認識されるとき、前記駆動手段により前記投光手段及び受光手段の光軸を所定の範囲内で回転移動させながら、前記投光手段からのレーザ光の投射時点から前記反射体で反射されて前記受光手段に受光される時点までの時間を測定するとともに該測定時間に基づいて前記測定対象物の観測点までの最短距離を算定する演算処理手段とを備えたレーザ距離計測手段を配置し、
前記レーザ距離計測手段により、逐次、前記測定対象物の観測点の距離を計測して前記演算処理手段により前記計測距離Dの変化量ΔDを算定し、該変化量ΔDに基づき前記測定対象物の変位又は形状変化を監視するように構成したことを特徴とするレーザ距離監視システム。
At the observation point of the measurement object, a plate-like reflector that has a reflection area of a predetermined width and reflects the laser light incident on the reflection area in a direction substantially the same as the incident direction is attached. A light projecting means for projecting a laser beam toward the reflection area of the reflector, a light receiving means capable of receiving the laser light reflected by the reflector, and the light projecting means and the light receiving means. Driving means for rotating the optical axis of the laser beam, and whether the laser light received by the light receiving means is projected from the light projecting means and reflected by the reflection region of the reflector, that is, the measurement object Recognizing means for determining whether or not the observation point is out of the measurement range corresponding to the reflection region of the reflector, and when the observation point of the measurement object is recognized as not out of the measurement range by the recognition means While rotating movement within a predetermined range of the optical axis of said light projecting means and light receiving means by said driving means, is received by the photodetection means is reflected by the reflector from the projection point of the laser light from said light projecting means a laser distance measuring means and a processing means to calculate the shortest distance to the observation point of the object to be measured based on the measuring time arranged with measuring the time up to the point that,
The laser distance measuring means sequentially measures the distance of the observation point of the measurement object, and the calculation processing means calculates the amount of change ΔD of the measurement distance D. Based on the change amount ΔD, the measurement object A laser distance monitoring system configured to monitor displacement or shape change.
前記レーザ距離計測手段により測定対象物の観測点の距離計測を定期的に行い、各距離計測の開始時に、前記レーザ距離計測手段における認識手段により前記測定対象物の観測点が当該レーザ距離計測手段の測定範囲から外れていると認識されたとき、前記駆動手段により前記投光手段及び受光手段の光軸を回転移動させて前記測定対象物の観測点が前記測定範囲内に含まれるように自動的に調整することを特徴とする請求項1記載のレーザ距離監視システム。 The laser distance measuring means periodically measures the distance of the observation point of the measurement object, and at the start of each distance measurement, the laser distance measurement means recognizes the observation point of the measurement object by the laser distance measurement means. When the driving means rotates the optical axes of the light projecting means and the light receiving means so that the observation point of the measurement object is included in the measurement range. 2. The laser distance monitoring system according to claim 1, wherein the laser distance monitoring system is adjusted automatically. 前記投光手段及び受光手段の光軸の回転移動は、縦方向回転移動と横方向回転移動を組み合わせることにより前回の距離計測時の位置を含む所定範囲内を走査することを特徴とする請求項2記載のレーザ距離監視システム。 The rotation movement of the optical axes of the light projecting means and the light receiving means is performed by scanning within a predetermined range including the position at the time of the previous distance measurement by combining vertical rotation movement and horizontal rotation movement. 2. The laser distance monitoring system according to 2. 前記投光手段及び受光手段の光軸の回転移動は、縦方向回転移動と横方向回転移動を組み合わせることにより前回の距離計測時の位置を起点として渦巻状に回転移動させることを特徴とする請求項2記載のレーザ距離監視システム。 The rotational movement of the optical axes of the light projecting means and the light receiving means is characterized by rotating in a spiral shape starting from the position at the previous distance measurement by combining vertical rotational movement and horizontal rotational movement. Item 3. The laser distance monitoring system according to Item 2.
JP2004311436A 2004-10-26 2004-10-26 Laser distance monitoring system Expired - Fee Related JP4506408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311436A JP4506408B2 (en) 2004-10-26 2004-10-26 Laser distance monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311436A JP4506408B2 (en) 2004-10-26 2004-10-26 Laser distance monitoring system

Publications (2)

Publication Number Publication Date
JP2006125885A JP2006125885A (en) 2006-05-18
JP4506408B2 true JP4506408B2 (en) 2010-07-21

Family

ID=36720785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311436A Expired - Fee Related JP4506408B2 (en) 2004-10-26 2004-10-26 Laser distance monitoring system

Country Status (1)

Country Link
JP (1) JP4506408B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702524B2 (en) * 2009-02-17 2015-04-15 株式会社ミツトヨ Tracking laser interferometer
CN103987643B (en) 2011-12-15 2016-02-17 德凯达协会 For testing method and the configuration of the inherent function of elevator
JP6148053B2 (en) * 2013-03-29 2017-06-14 日本信号株式会社 Object detection system
JP2014224765A (en) * 2013-05-16 2014-12-04 三菱電機株式会社 Laser length measuring device and laser length measuring method
JP7085888B2 (en) 2018-05-10 2022-06-17 株式会社トプコン Surveying system
CN115218809B (en) * 2022-07-22 2023-05-12 中国船舶科学研究中心 Creep detection device for observation window of manned deep submersible vehicle and use method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149882A (en) * 1984-12-25 1986-07-08 Taisei Corp Light wave system surveying method
JPH0378212U (en) * 1989-11-30 1991-08-07
JPH0571960A (en) * 1991-09-12 1993-03-23 Kajima Corp Measuring method for ground surface behavior such as slope slip
JPH0650075A (en) * 1992-07-31 1994-02-22 Akabira Boring Service Kk Automatic monitoring system for curving of hole
JPH06241799A (en) * 1993-02-12 1994-09-02 Topcon Corp Surveying device
JPH11183165A (en) * 1997-12-25 1999-07-09 Fuji Electric Co Ltd Displacement-measuring device and method for controlling its light scan

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149882A (en) * 1984-12-25 1986-07-08 Taisei Corp Light wave system surveying method
JPH0378212U (en) * 1989-11-30 1991-08-07
JPH0571960A (en) * 1991-09-12 1993-03-23 Kajima Corp Measuring method for ground surface behavior such as slope slip
JPH0650075A (en) * 1992-07-31 1994-02-22 Akabira Boring Service Kk Automatic monitoring system for curving of hole
JPH06241799A (en) * 1993-02-12 1994-09-02 Topcon Corp Surveying device
JPH11183165A (en) * 1997-12-25 1999-07-09 Fuji Electric Co Ltd Displacement-measuring device and method for controlling its light scan

Also Published As

Publication number Publication date
JP2006125885A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
US6462810B1 (en) Surveying system
JP5124319B2 (en) Surveying instrument, surveying system, measuring object detection method, and measuring object detection program
JP4228131B2 (en) Position measuring device
JP7139052B2 (en) surveying system
EP2083245B1 (en) Surveying system
JP7163085B2 (en) Surveying method, surveying device and program
JP4177784B2 (en) Surveying system
EP1001250A2 (en) Laser survey instrument
WO1997016703A1 (en) Rotary laser system
JP2005237012A (en) Method and apparatus for transmitting energy through coherent electromagnetic line
JP6095911B2 (en) Laser displacement measuring device
US11598854B2 (en) Surveying system
EP1061335A2 (en) Position detecting apparatus
JP2010190634A (en) Tracking-type laser interferometer
JP6753961B2 (en) A method for comparing the received beam incident on the laser receiver with the rotating laser beam
JP4506408B2 (en) Laser distance monitoring system
FR3038987A1 (en) LASER MEASURING DEVICE
EP3633315B1 (en) Angle detection system
CN110658527A (en) Laser radar, autonomous mobile robot and intelligent vehicle
EP0987517B1 (en) Automatic survey instrument
EP0722079B1 (en) Reciprocating laser
JP2010151788A (en) Laser radar device
US7266897B2 (en) Self-aligning, self plumbing baseline instrument
JP4315860B2 (en) Construction machine control system
JP4647240B2 (en) Planar actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees