JP2007281431A - Method of manufacturing circuit board - Google Patents

Method of manufacturing circuit board Download PDF

Info

Publication number
JP2007281431A
JP2007281431A JP2007045868A JP2007045868A JP2007281431A JP 2007281431 A JP2007281431 A JP 2007281431A JP 2007045868 A JP2007045868 A JP 2007045868A JP 2007045868 A JP2007045868 A JP 2007045868A JP 2007281431 A JP2007281431 A JP 2007281431A
Authority
JP
Japan
Prior art keywords
substrate
manufacturing
heating
hole
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045868A
Other languages
Japanese (ja)
Inventor
Ikuo Sugawara
郁夫 菅原
Masakazu Ikeba
正和 池羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007045868A priority Critical patent/JP2007281431A/en
Publication of JP2007281431A publication Critical patent/JP2007281431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a circuit board which can prevent holes formed through a circuit board from being closed with machining chips. <P>SOLUTION: This method of manufacturing a circuit board comprises the processes of: a hole forming process in which a pass-through hole 18 is formed through an insulating substrate 10 which contains a resin composition; and then a heating process in which the insulating substrate 10 is heated to a temperature higher than the heat-softening temperature and lower than the heat-hardening temperature of the insulating substrate 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば回路基板等といった基板の製造方法に関する。   The present invention relates to a method for manufacturing a substrate such as a circuit board.

近年の電子機器の小型化・高密度化に伴って、電子部品を搭載する回路基板として、従来の片面基板に加えて両面基板及び多層基板の採用が進んでいる。このように、より多くの回路を基板上に集積可能な高密度回路基板の開発が行われている。   With recent downsizing and higher density of electronic devices, as a circuit board on which electronic components are mounted, a double-sided board and a multilayer board are being adopted in addition to the conventional single-sided board. As described above, development of a high-density circuit board capable of integrating a larger number of circuits on the board has been performed.

高密度回路基板においては、従来広く用いられてきたドリル加工による基板への接続用の穴(スルーホール)加工に代わって、より高速で微細な穴加工が可能なレーザ加工法の採用が検討されている。   For high-density circuit boards, the adoption of laser processing methods that enable finer hole processing at higher speeds instead of drilling holes (through-holes) for connecting to the substrate, which have been widely used in the past, has been considered. ing.

また、レーザによる微細な穴加工と、導電性ペースト等の接続手段とを用いて層間接続を行う回路基板も提案されている(例えば、特許文献1参照)。
特開平6−268345号公報
There has also been proposed a circuit board that performs interlayer connection using fine hole processing by a laser and connection means such as a conductive paste (see, for example, Patent Document 1).
JP-A-6-268345

微細な穴を形成し導電性ペーストを用いて層間接続を行う回路基板では、わずかな異物が接続不良の原因となる。この回路基板では、基板に張り付けたフィルムごと穴加工を行う。このフィルムは、導電性ペーストを微細な穴に充填するためのマスクとして用いられる。したがって、フィルムを含めて全てを清浄に保つ必要がある。   In a circuit board in which fine holes are formed and interlayer connection is made using a conductive paste, a slight amount of foreign matter causes connection failure. In this circuit board, holes are processed together with the film attached to the board. This film is used as a mask for filling the fine holes with the conductive paste. Therefore, it is necessary to keep everything including the film clean.

しかしながら、切断加工、ドリル加工、レーザ加工等の加工では、いずれも大量の加工屑(樹脂粉末)が発生する。この加工屑が穴に付着することにより、穴を塞ぐことがある。   However, in processing such as cutting, drilling, and laser processing, a large amount of processing waste (resin powder) is generated. When this processing waste adheres to the hole, the hole may be blocked.

ここで、切断加工、ドリル加工、レーザ加工等の加工後に、基板表面及び穴内をクリーニングロール、ブロア、回転ブラシ、吸引装置等でクリーニングすることが知られている。しかしながら、クリーニング後の搬送中に基板端部及び穴内の加工屑が脱落し、再び接続用の穴を塞いでしまう場合がある。このように、基板表面及び穴内をクリーニングするだけでは不十分である。   Here, after processing such as cutting, drilling, and laser processing, it is known that the substrate surface and the inside of the hole are cleaned with a cleaning roll, a blower, a rotating brush, a suction device, and the like. However, there is a case where processing waste in the substrate end and the hole falls off during conveyance after the cleaning, and the connection hole is closed again. Thus, it is not sufficient to clean the substrate surface and the inside of the hole.

本発明は、上記事情に鑑みて為されたものであり、基板に形成された穴を加工屑が塞ぐことを抑制できる基板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a substrate that can prevent processing scrapes from blocking holes formed in the substrate.

上述の課題を解決するため、本発明の基板の製造方法は、樹脂組成物を含む基板に穴を形成する穴形成工程と、前記穴形成工程の後に、前記基板の軟化温度以上かつ前記基板の硬化温度以下の温度で前記基板を加熱する加熱工程とを含む。   In order to solve the above-described problems, a substrate manufacturing method of the present invention includes a hole forming step of forming a hole in a substrate containing a resin composition, and a softening temperature of the substrate or higher after the hole forming step. Heating the substrate at a temperature not higher than the curing temperature.

本発明の基板の製造方法では、加熱工程において、穴形成工程で主に基板から発生する加工屑及び基板が軟化又は溶解するので、加工屑を基板と一体化させることができる。加熱温度が軟化温度未満であると、加工屑及び基板が軟化又は溶解しない。一方、加熱温度が硬化温度超であると、基板が硬化するため基板の成形性が低下する。したがって、本発明の基板の製造方法によれば、加工屑によって穴が塞がれることを抑制できる。   In the substrate manufacturing method of the present invention, in the heating step, the processing waste generated mainly from the substrate in the hole forming step and the substrate are softened or dissolved, so that the processing waste can be integrated with the substrate. When the heating temperature is lower than the softening temperature, the processing waste and the substrate are not softened or dissolved. On the other hand, if the heating temperature is higher than the curing temperature, the substrate is cured and the moldability of the substrate is lowered. Therefore, according to the manufacturing method of the board | substrate of this invention, it can suppress that a hole is plugged up with processing waste.

また、上記基板の製造方法は、前記加熱工程の前に、前記基板を所定の寸法に切断する切断工程を更に含むことが好ましい。なお、切断工程と穴形成工程との実施順序は特に限定されない。切断工程後に穴形成工程を実施してもよいし、穴形成工程後に切断工程を実施してもよいし、切断工程と穴形成工程とを同時に実施してもよい。この場合、切断工程において発生する加工屑を、加熱工程において基板と一体化させることができる。したがって、加工屑によって穴が塞がれることを更に抑制できる。   Moreover, it is preferable that the manufacturing method of the said board | substrate further includes the cutting process which cut | disconnects the said board | substrate to a predetermined dimension before the said heating process. In addition, the execution order of a cutting process and a hole formation process is not specifically limited. The hole forming step may be performed after the cutting step, the cutting step may be performed after the hole forming step, or the cutting step and the hole forming step may be performed simultaneously. In this case, the processing waste generated in the cutting process can be integrated with the substrate in the heating process. Therefore, it is possible to further suppress the hole from being blocked by the processing waste.

また、上記基板の製造方法は、前記穴形成工程と前記加熱工程との間に、前記基板をクリーニングするクリーニング工程を更に含むことが好ましい。この場合、基板をクリーニングすることによって、穴形成工程において基板に付着した加工屑を除去することができる。よって、加工屑によって穴が塞がれることを更に抑制できる。   The substrate manufacturing method preferably further includes a cleaning step of cleaning the substrate between the hole forming step and the heating step. In this case, by cleaning the substrate, it is possible to remove processing waste adhering to the substrate in the hole forming step. Therefore, it can further suppress that a hole is plugged up with processing waste.

また、前記基板が絶縁基板であり、前記穴が貫通孔であってもよい。さらに、前記絶縁基板が、ガラス織布又は不織布に熱硬化性樹脂組成物を含浸し、前記熱硬化性樹脂組成物をBステージ化してなるプリプレグであってもよい。   Further, the substrate may be an insulating substrate, and the hole may be a through hole. Further, the insulating substrate may be a prepreg formed by impregnating a glass woven fabric or a nonwoven fabric with a thermosetting resin composition and forming the thermosetting resin composition into a B-stage.

また、上記基板の製造方法は、前記加熱工程の後に、前記貫通孔に導電性ペーストを充填する充填工程を更に含むことが好ましい。この場合、加工屑によって貫通孔が塞がれることを抑制できるので、十分な導電性ペーストを貫通孔内に充填することができる。よって、スルーホールの接続不良を抑制できる。   Moreover, it is preferable that the manufacturing method of the said board | substrate further includes the filling process which fills the said through-hole with an electrically conductive paste after the said heating process. In this case, since it is possible to prevent the through hole from being blocked by the processing waste, a sufficient conductive paste can be filled in the through hole. Therefore, poor connection of through holes can be suppressed.

また、レーザを用いて前記絶縁基板に前記貫通孔を形成することが好ましい。この場合、貫通孔を形成する際に発生する加工屑の量を抑制することができるので、加工屑によって貫通孔が塞がれることを更に抑制できる。   Moreover, it is preferable to form the through hole in the insulating substrate using a laser. In this case, since the amount of processing waste generated when forming the through hole can be suppressed, it is possible to further suppress the through hole from being blocked by the processing waste.

また、前記絶縁基板の少なくとも一方の面には、剥離可能な樹脂フィルムがラミネートされていることが好ましい。この場合、穴形成工程において発生する加工屑の量が少なくなる。   Moreover, it is preferable that a peelable resin film is laminated on at least one surface of the insulating substrate. In this case, the amount of processing waste generated in the hole forming step is reduced.

また、上記基板の製造方法は、前記加熱工程の後に、前記プリプレグの両面に金属箔を積層したものを加熱加圧する第1の加熱加圧工程を更に含んでもよい。   Moreover, the manufacturing method of the said board | substrate may further include the 1st heating-pressing process of heating-pressing what laminated | stacked metal foil on both surfaces of the said prepreg after the said heating process.

また、上記基板の製造方法は、前記第1の加熱加圧工程の後に、前記金属箔をパターニングするパターニング工程を更に含むことが好ましい。これにより、回路基板を製造することができる。   The substrate manufacturing method preferably further includes a patterning step of patterning the metal foil after the first heating and pressing step. Thereby, a circuit board can be manufactured.

また、上記基板の製造方法は、上記基板の製造方法により得られる基板を内層回路基板とし、前記内層回路基板の両面にプリプレグ及び金属箔を積層したものを加熱加圧する第2の加熱加圧工程を更に含むことが好ましい。この場合、多層回路基板を製造することができる。   Moreover, the manufacturing method of the said board | substrate makes the board | substrate obtained by the manufacturing method of the said board | substrate an inner-layer circuit board, The 2nd heating-pressing process of heating and pressurizing what laminated | stacked the prepreg and metal foil on both surfaces of the said inner-layer circuit board is carried out. It is preferable that it is further included. In this case, a multilayer circuit board can be manufactured.

また、上記基板の製造方法は、上記基板の製造方法により得られる基板を内層回路基板とし、複数の前記内層回路基板とプリプレグとを交互に積層し、最外層に金属箔を積層したものを加熱加圧する第2の加熱加圧工程を更に含むことが好ましい。この場合、多層回路基板を製造することができる。   Further, the substrate manufacturing method comprises heating the substrate obtained by the substrate manufacturing method as an inner circuit board, a plurality of the inner circuit boards and prepregs being alternately stacked, and a metal foil being stacked on the outermost layer. It is preferable to further include a second heating and pressurizing step for applying pressure. In this case, a multilayer circuit board can be manufactured.

本発明によれば、基板に形成された穴を加工屑が塞ぐことを抑制できる基板の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the board | substrate which can suppress that a process waste block | closes the hole formed in the board | substrate is provided.

以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and duplicate descriptions are omitted.

図1及び図2は、実施形態に係る基板の製造方法の各工程を模式的に示す断面図である。以下、図2(C)に示される回路基板100の製造方法について説明する。   1 and 2 are cross-sectional views schematically showing each step of the substrate manufacturing method according to the embodiment. Hereinafter, a method for manufacturing the circuit board 100 shown in FIG. 2C will be described.

(切断工程)
まず、図1(A)に示されるように、切断ラインC1に沿って樹脂組成物を含む絶縁基板10(基板)を所定の寸法に切断する。絶縁基板10に含まれる樹脂組成物としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、シリコーン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、メラミン樹脂等が挙げられる。絶縁基板10の両面には、例えばポリエチレンテレフタレートシート(以下、「PETシート」という。)等の剥離可能な樹脂フィルム12,14がそれぞれラミネートされていてもよい。この場合、絶縁基板10と共に樹脂フィルム12,14も切断される。絶縁基板10は、ガラス織布又は不織布に熱硬化性樹脂組成物を含浸し、その熱硬化性樹脂組成物をBステージ化してなるプリプレグであることが好ましい。
(Cutting process)
First, as shown in FIG. 1A, an insulating substrate 10 (substrate) containing a resin composition is cut into a predetermined dimension along a cutting line C1. Examples of the resin composition contained in the insulating substrate 10 include an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, a silicone resin, a cyanate resin, a polyphenylene ether resin, a polyphenylene oxide resin, and a melamine resin. Removable resin films 12 and 14 such as a polyethylene terephthalate sheet (hereinafter referred to as “PET sheet”) may be laminated on both surfaces of the insulating substrate 10, respectively. In this case, the resin films 12 and 14 are also cut together with the insulating substrate 10. The insulating substrate 10 is preferably a prepreg formed by impregnating a glass woven fabric or a nonwoven fabric with a thermosetting resin composition and forming the thermosetting resin composition into a B-stage.

(穴形成工程)
次に、図1(B)に示されるように、絶縁基板10に貫通孔18(穴)を形成する。貫通孔18は、例えばレーザ光源16から出射されるレーザLを用いて形成される。なお、レーザL以外の切断手段(例えばドリル等)を用いてもよい。絶縁基板10の両面に樹脂フィルム12,14がラミネートされている場合、絶縁基板10と共に樹脂フィルム12,14にも貫通孔が形成される。貫通孔18の直径は150μm以下であることが好ましく、120μm以下であることがより好ましい。
(Hole formation process)
Next, as shown in FIG. 1B, a through hole 18 (hole) is formed in the insulating substrate 10. The through hole 18 is formed using, for example, a laser L emitted from the laser light source 16. Note that cutting means other than the laser L (for example, a drill or the like) may be used. When the resin films 12 and 14 are laminated on both surfaces of the insulating substrate 10, through holes are formed in the resin films 12 and 14 together with the insulating substrate 10. The diameter of the through hole 18 is preferably 150 μm or less, and more preferably 120 μm or less.

(クリーニング工程)
次に、図1(C)に示されるように、例えばクリーニング装置20を用いて絶縁基板10をクリーニングする。クリーニング装置20としては、例えば、クリーニングロール、ブロア、回転ブラシ、吸引装置、又はこれらの組み合わせ等が挙げられる。特に、貫通孔18内をクリーニングすることが好ましい。貫通孔18の直径が150μm以下の場合、クリーニング効果が特に高くなる。
(Cleaning process)
Next, as shown in FIG. 1C, the insulating substrate 10 is cleaned using, for example, a cleaning device 20. Examples of the cleaning device 20 include a cleaning roll, a blower, a rotating brush, a suction device, or a combination thereof. In particular, it is preferable to clean the inside of the through hole 18. When the diameter of the through hole 18 is 150 μm or less, the cleaning effect is particularly high.

(加熱工程)
次に、図1(D)に示されるように、例えば熱源22を用いて、絶縁基板10の軟化温度以上かつ絶縁基板10の硬化温度以下の温度で絶縁基板10を加熱する。例えば、絶縁基板10を50℃以上205℃以下で加熱することが好ましい。加熱の際には、貫通孔18の近傍部分を加熱することが好ましい。また、切断工程を実施する場合には、絶縁基板10の切断部分(切断ラインC1近傍部分)を加熱することが好ましい。
(Heating process)
Next, as shown in FIG. 1D, the insulating substrate 10 is heated at a temperature not lower than the softening temperature of the insulating substrate 10 and not higher than the curing temperature of the insulating substrate 10 using, for example, a heat source 22. For example, it is preferable to heat the insulating substrate 10 at 50 ° C. or higher and 205 ° C. or lower. When heating, it is preferable to heat the vicinity of the through hole 18. Moreover, when performing a cutting process, it is preferable to heat the cutting part (part near cutting line C1) of the insulating substrate 10.

軟化温度は、例えばDSC(Differential Scanning Calorimeter)等を用いて測定することができる。硬化温度は、DSCチャートの発熱ピークにおけるHeat Flowの最大値の温度とすることができる。軟化温度は、DSCチャートの吸熱ピークにおけるHeat Flowの最小値の温度とすることができる。   The softening temperature can be measured using, for example, a DSC (Differential Scanning Calorimeter). The curing temperature can be the maximum value of Heat Flow at the exothermic peak of the DSC chart. The softening temperature can be the temperature of the minimum value of Heat Flow at the endothermic peak of the DSC chart.

絶縁基板10を加熱するためには、例えば、加熱可能なロールを貫通孔18に通してもよいし、加熱可能な2枚のプレート間に絶縁基板10を挟んでもよいし、赤外線、熱風、高周波、又は磁力線を用いてもよい。また、これらの加熱方法を併用してもよい。   In order to heat the insulating substrate 10, for example, a heatable roll may be passed through the through hole 18, the insulating substrate 10 may be sandwiched between two heatable plates, infrared rays, hot air, high frequency Alternatively, magnetic field lines may be used. Moreover, you may use these heating methods together.

絶縁基板10の軟化温度未満の温度で絶縁基板10を加熱すると、絶縁基板10を構成する樹脂組成物が軟化又は溶解しなくなる。一方、絶縁基板10の硬化温度超の温度で絶縁基板10を加熱すると、絶縁基板10の性能が変化し、後述する加熱加圧工程においてかすれやボイドが発生し易くなる。   When the insulating substrate 10 is heated at a temperature lower than the softening temperature of the insulating substrate 10, the resin composition constituting the insulating substrate 10 is not softened or dissolved. On the other hand, when the insulating substrate 10 is heated at a temperature higher than the curing temperature of the insulating substrate 10, the performance of the insulating substrate 10 changes, and blurring and voids are likely to occur in the heating and pressurizing process described later.

絶縁基板10に樹脂フィルム12,14をラミネートする時にボイドの発生が確認されない温度をT1(℃)とすると、絶縁基板10の加熱温度は(T1+30)℃以下であることが好ましい。加熱温度が(T1+30)℃を超えると、絶縁基板10と樹脂フィルム12,14との接着性が低下することにより、ラミネート後に樹脂フィルム12,14が剥離し易くなる傾向にある。その結果、後述する充填工程において導電性ペースト24が絶縁基板10と樹脂フィルム12,14との間に染み込むことにより、ショート等が発生する可能性がある。   When the temperature at which voids are not confirmed when the resin films 12 and 14 are laminated on the insulating substrate 10 is T1 (° C.), the heating temperature of the insulating substrate 10 is preferably (T1 + 30) ° C. or less. When the heating temperature exceeds (T1 + 30) ° C., the adhesiveness between the insulating substrate 10 and the resin films 12 and 14 is lowered, and thus the resin films 12 and 14 tend to be easily peeled after lamination. As a result, the conductive paste 24 may penetrate between the insulating substrate 10 and the resin films 12 and 14 in a filling process described later, which may cause a short circuit or the like.

(充填工程)
次に、図2(A)に示されるように、例えば印刷法を用いて貫通孔18に導電性ペースト24を充填する。これにより、スルーホールが形成される。樹脂フィルム12,14は、充填工程においてマスクとして機能する。その後、必要に応じて樹脂フィルム12,14を剥離除去する。
(Filling process)
Next, as shown in FIG. 2A, the conductive paste 24 is filled into the through holes 18 by using, for example, a printing method. Thereby, a through hole is formed. The resin films 12 and 14 function as a mask in the filling process. Thereafter, the resin films 12 and 14 are peeled and removed as necessary.

(第1の加熱加圧工程)
次に、図2(B)に示されるように、絶縁基板10の両面に金属箔26,28を積層したものを加熱加圧する。金属箔26,28は例えば銅箔である。このようにして、金属箔26,28同士を導電性ペースト24により電気的に接続する。
(First heating and pressing step)
Next, as shown in FIG. 2B, the metal substrate 26 and 28 laminated on both sides of the insulating substrate 10 is heated and pressurized. The metal foils 26 and 28 are, for example, copper foils. In this way, the metal foils 26 and 28 are electrically connected by the conductive paste 24.

(パターニング工程)
次に、図2(C)に示されるように、例えばフォトリソグラフィー法を用いて金属箔26,28をパターニングすることによって、回路パターン26a,28aがそれぞれ形成される。回路パターン26a,28aは、導電性ペースト24によって電気的に接続されている。このようにして、回路基板100を製造することができる。
(Patterning process)
Next, as shown in FIG. 2C, circuit patterns 26a and 28a are formed by patterning the metal foils 26 and 28, for example, using a photolithography method. The circuit patterns 26 a and 28 a are electrically connected by the conductive paste 24. In this way, the circuit board 100 can be manufactured.

図3及び図4は、別の実施形態に係る基板の製造方法の一工程を模式的に示す断面図である。以下、図3及び図4に示される多層回路基板200,300の製造方法について説明する。上記実施形態と同様に、切断工程からパターニング工程までを実施する。パターニング工程の後、下記第2の加熱加圧工程を実施する。   3 and 4 are cross-sectional views schematically showing one step of the method for manufacturing a substrate according to another embodiment. Hereinafter, a method for manufacturing the multilayer circuit boards 200 and 300 shown in FIGS. 3 and 4 will be described. Similar to the above embodiment, the cutting process to the patterning process are performed. After the patterning step, the following second heating and pressing step is performed.

(第2の加熱加圧工程)
図3に示されるように、回路基板100を内層回路基板とし、その内層回路基板の両面にプリプレグ30及び金属箔32を積層したものを加熱加圧する。この場合、多層回路基板200を製造することができる。プリプレグ30としては、絶縁基板10と同様のものを用いることができる。金属箔32としては、金属箔26,28と同様のものを用いることができる。
(Second heating and pressing step)
As shown in FIG. 3, the circuit board 100 is an inner circuit board, and a laminate in which a prepreg 30 and a metal foil 32 are laminated on both surfaces of the inner circuit board is heated and pressed. In this case, the multilayer circuit board 200 can be manufactured. As the prepreg 30, the same thing as the insulating substrate 10 can be used. As the metal foil 32, the same metal foils 26 and 28 can be used.

また、図4に示されるように、回路基板100を内層回路基板とし、複数の内層回路基板とプリプレグ40とを交互に積層し、最外層に金属箔42を積層したものを加熱加圧する。この場合、多層回路基板300を製造することができる。プリプレグ40としては、絶縁基板10と同様のものを用いることができる。金属箔42としては、金属箔26,28と同様のものを用いることができる。   Further, as shown in FIG. 4, the circuit board 100 is used as an inner circuit board, a plurality of inner circuit boards and prepregs 40 are alternately stacked, and a metal foil 42 stacked on the outermost layer is heated and pressurized. In this case, the multilayer circuit board 300 can be manufactured. As the prepreg 40, the same material as the insulating substrate 10 can be used. As the metal foil 42, the same metal foils 26 and 28 can be used.

以上説明したように、実施形態に係る基板の製造方法では、加熱工程において、穴形成工程で主に絶縁基板10から発生する加工屑及び絶縁基板10が軟化又は溶解するので、加工屑を絶縁基板10と一体化させることができる。加熱温度が軟化温度未満であると、加工屑及び絶縁基板10が軟化又は溶解しない。一方、加熱温度が硬化温度超であると、絶縁基板10が硬化するため絶縁基板10の成形性が低下する。したがって、実施形態の基板の製造方法によれば、加工屑によって貫通孔18が塞がれることを抑制できる。その結果、絶縁基板10を搬送中に絶縁基板10の端部及び貫通孔18内から加工屑が脱落することを抑制できる。よって、スルーホールの接続不良の発生を抑制することができる。さらに、加熱温度が硬化温度以下であるので、絶縁基板10の成形性の低下を抑制することができる。よって、第1の加熱加圧工程において、絶縁基板10と金属箔26,28との間にボイド等が発生し難くなるので、絶縁基板10と金属箔26,28との密着性を向上することができる。   As described above, in the substrate manufacturing method according to the embodiment, in the heating process, the processing waste generated mainly from the insulating substrate 10 and the insulating substrate 10 in the hole forming step are softened or melted. 10 can be integrated. When the heating temperature is lower than the softening temperature, the processing waste and the insulating substrate 10 are not softened or dissolved. On the other hand, when the heating temperature is higher than the curing temperature, the insulating substrate 10 is cured, so that the moldability of the insulating substrate 10 is deteriorated. Therefore, according to the substrate manufacturing method of the embodiment, the through hole 18 can be prevented from being blocked by the processing waste. As a result, it is possible to prevent the processing waste from dropping from the end portion of the insulating substrate 10 and the inside of the through hole 18 while the insulating substrate 10 is being transported. Therefore, the occurrence of poor connection of through holes can be suppressed. Furthermore, since the heating temperature is equal to or lower than the curing temperature, it is possible to suppress a decrease in moldability of the insulating substrate 10. Therefore, in the first heating and pressurizing step, voids or the like are less likely to be generated between the insulating substrate 10 and the metal foils 26 and 28, so that the adhesion between the insulating substrate 10 and the metal foils 26 and 28 is improved. Can do.

また、切断工程を実施する場合、当該切断工程において発生する加工屑を、加熱工程において絶縁基板10と一体化させることができる。したがって、加工屑によって貫通孔18が塞がれることを更に抑制できる。   Moreover, when implementing a cutting process, the processing waste generated in the said cutting process can be integrated with the insulated substrate 10 in a heating process. Therefore, it is possible to further suppress the through hole 18 from being blocked by the processing waste.

また、クリーニング工程を実施する場合、穴形成工程において絶縁基板10に付着した加工屑を除去することができる。よって、加工屑によって貫通孔18が塞がれることを更に抑制できる。   Moreover, when performing a cleaning process, the processing waste adhering to the insulated substrate 10 in the hole formation process can be removed. Therefore, it can further suppress that the through-hole 18 is blocked by the processing waste.

また、充填工程を実施する場合、加工屑によって貫通孔18が塞がれることを抑制できるので、十分な導電性ペースト24を貫通孔18内に充填することができる。よって、スルーホールの接続不良を抑制できる。   Moreover, when performing a filling process, since it can suppress that the through-hole 18 is obstruct | occluded with a process waste, the sufficient electroconductive paste 24 can be filled in the through-hole 18. Therefore, poor connection of through holes can be suppressed.

また、レーザLを用いて貫通孔18を形成する場合、貫通孔18を形成する際に発生する加工屑の量を抑制することができるので、加工屑によって貫通孔18が塞がれることを更に抑制できる。   Moreover, when forming the through-hole 18 using the laser L, since the amount of processing waste generated when forming the through-hole 18 can be suppressed, it is further prevented that the through-hole 18 is blocked by the processing waste. Can be suppressed.

また、絶縁基板10の両面に樹脂フィルム12,14がラミネートされている場合、穴形成工程において発生する加工屑の量が少なくなる。   Moreover, when the resin films 12 and 14 are laminated on both surfaces of the insulating substrate 10, the amount of processing waste generated in the hole forming process is reduced.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。   As mentioned above, although preferred embodiment of this invention was described in detail, this invention is not limited to the said embodiment.

例えば、切断工程、クリーニング工程、充填工程、第1の加熱加圧工程、及び第2の加熱加圧工程のうち1以上の工程を実施してもよいし、全工程を実施しなくてもよい。   For example, one or more of the cutting process, the cleaning process, the filling process, the first heating and pressing process, and the second heating and pressing process may be performed, or the entire process may not be performed. .

また、絶縁基板10に代えて例えば半導体基板や導体基板等を用いてもよい。さらに、貫通孔18に代えて貫通していない穴を絶縁基板10に形成してもよい。   Further, for example, a semiconductor substrate or a conductor substrate may be used in place of the insulating substrate 10. Furthermore, instead of the through hole 18, a hole that does not penetrate may be formed in the insulating substrate 10.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
絶縁基板として、ガラス織布に熱硬化性樹脂組成物を含浸し、その熱硬化性樹脂組成物をBステージ化してなる500mm幅のロール状のプリプレグ(日立化成工業(株)製、商品名:GEA−67BE(t0.06))を準備した。プリプレグの軟化温度は50℃であり、硬化温度は205℃であった。続いて、プリプレグの両面に厚さ20μmのPETシートを140℃の加熱ロールでラミネートした。
Example 1
As an insulating substrate, a glass woven fabric is impregnated with a thermosetting resin composition, and a 500 mm width roll-shaped prepreg (made by Hitachi Chemical Co., Ltd., product name) is obtained by converting the thermosetting resin composition into a B-stage. GEA-67BE (t0.06)) was prepared. The softening temperature of the prepreg was 50 ° C. and the curing temperature was 205 ° C. Subsequently, a PET sheet having a thickness of 20 μm was laminated on both sides of the prepreg with a 140 ° C. heating roll.

次に、PETシートがラミネートされたプリプレグを400mm長に切断した(切断工程)。その後、レーザを用いて所定の位置に直径200μmの貫通孔を形成した(穴形成工程)。   Next, the prepreg laminated with the PET sheet was cut into a length of 400 mm (cutting step). Thereafter, a through hole having a diameter of 200 μm was formed at a predetermined position using a laser (hole forming step).

次に、赤外線ヒータを用いて、貫通孔が形成されたプリプレグを140℃で加熱した(加熱工程)。その後、印刷法を用いて導電性ペーストを貫通孔に充填した(充填工程)。   Next, the prepreg in which the through-hole was formed was heated at 140 degreeC using the infrared heater (heating process). Thereafter, the conductive paste was filled into the through holes using a printing method (filling step).

次に、プリプレグの両面にラミネートされたPETシートを剥離除去した。その後、熱プレスにより、プリプレグの両面に銅箔を積層したものを加熱加圧した(第1の加熱加圧工程)。このようにして、銅箔同士を導電性ペーストにより電気的に接続した。さらに、銅箔を所望の形状にパターニングした(パターニング工程)。このようにして、両面に回路パターンが形成された回路基板を得た。   Next, the PET sheet laminated on both sides of the prepreg was peeled and removed. Then, what laminated | stacked copper foil on both surfaces of the prepreg was heat-pressed with the hot press (1st heat-pressing process). In this way, the copper foils were electrically connected with the conductive paste. Furthermore, the copper foil was patterned into a desired shape (patterning step). In this way, a circuit board having circuit patterns formed on both sides was obtained.

(実施例2)
穴形成工程において直径120μmの貫通孔を形成し、穴形成工程と加熱工程との間に、クリーニングロール及びブロアを併用したクリーニング工程を実施したこと以外は実施例1と同様にして回路基板を得た。
(Example 2)
A circuit board was obtained in the same manner as in Example 1 except that a through hole having a diameter of 120 μm was formed in the hole forming process, and a cleaning process using a cleaning roll and a blower was performed between the hole forming process and the heating process. It was.

(実施例3)
穴形成工程において直径120μmの貫通孔を形成したこと以外は実施例1と同様にして回路基板を得た。
(Example 3)
A circuit board was obtained in the same manner as in Example 1 except that a through hole having a diameter of 120 μm was formed in the hole forming step.

(比較例1)
加熱工程において、貫通孔が形成されたプリプレグを40℃で加熱したこと以外は実施例1と同様にして回路基板を得た。
(Comparative Example 1)
In the heating step, a circuit board was obtained in the same manner as in Example 1 except that the prepreg in which the through holes were formed was heated at 40 ° C.

(比較例2)
加熱工程において、貫通孔が形成されたプリプレグを210℃で加熱したこと以外は実施例1と同様にして回路基板を得た。
(Comparative Example 2)
In the heating step, a circuit board was obtained in the same manner as in Example 1 except that the prepreg in which the through holes were formed was heated at 210 ° C.

(比較例3)
加熱工程を実施しなかったこと以外は実施例3と同様にして回路基板を得た。
(Comparative Example 3)
A circuit board was obtained in the same manner as in Example 3 except that the heating step was not performed.

(評価結果)
実施例1〜3及び比較例1〜3において得られた回路基板について、プリプレグとPETシートとの密着性、プリプレグの成形性、及び貫通孔の穴詰まり発生率を評価した。結果を表1に示す。なお、プリプレグとPETシートとの密着性は、プリプレグとPETシートとの間の剥がれを目視で確認して評価した。プリプレグの成形性については、回路基板の上下の銅箔を全てエッチングにより除去し、かすれ(ガラスクロス内に見られる空隙)の有無を目視で確認して評価した。貫通孔の穴詰まり発生率は、回路基板の抵抗を測定し、オープンのスルーホールを穴詰まりとして、「(穴詰まり数)÷(加工穴数)×100」として算出した。
(Evaluation results)
About the circuit board obtained in Examples 1-3 and Comparative Examples 1-3, the adhesiveness of a prepreg and a PET sheet, the moldability of a prepreg, and the clogging rate of a through-hole were evaluated. The results are shown in Table 1. The adhesion between the prepreg and the PET sheet was evaluated by visually confirming peeling between the prepreg and the PET sheet. The moldability of the prepreg was evaluated by removing all the upper and lower copper foils of the circuit board by etching and visually confirming the presence or absence of blur (voids found in the glass cloth). The occurrence rate of clogging of the through hole was calculated as “(number of clogged holes) ÷ (number of processed holes) × 100” by measuring the resistance of the circuit board and clogging open through holes.

Figure 2007281431
Figure 2007281431

実施形態に係る基板の製造方法の各工程を模式的に示す断面図である。It is sectional drawing which shows typically each process of the manufacturing method of the board | substrate which concerns on embodiment. 実施形態に係る基板の製造方法の各工程を模式的に示す断面図である。It is sectional drawing which shows typically each process of the manufacturing method of the board | substrate which concerns on embodiment. 別の実施形態に係る基板の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the board | substrate which concerns on another embodiment. 別の実施形態に係る基板の製造方法の一工程を模式的に示す断面図である。It is sectional drawing which shows typically 1 process of the manufacturing method of the board | substrate which concerns on another embodiment.

符号の説明Explanation of symbols

10…絶縁基板、2,14…樹脂フィルム、18…貫通孔、24…導電性ペースト、26,28,32,42…金属箔、30,40…プリプレグ、100…回路基板、200,300…多層回路基板、L…レーザ。   DESCRIPTION OF SYMBOLS 10 ... Insulating substrate, 2,14 ... Resin film, 18 ... Through-hole, 24 ... Conductive paste, 26, 28, 32, 42 ... Metal foil, 30, 40 ... Pre-preg, 100 ... Circuit board, 200, 300 ... Multilayer Circuit board, L ... Laser.

Claims (12)

樹脂組成物を含む基板に穴を形成する穴形成工程と、
前記穴形成工程の後に、前記基板の軟化温度以上かつ前記基板の硬化温度以下の温度で前記基板を加熱する加熱工程と、
を含む、基板の製造方法。
A hole forming step of forming a hole in the substrate containing the resin composition;
A heating step of heating the substrate at a temperature not lower than the softening temperature of the substrate and not higher than the curing temperature of the substrate after the hole forming step;
A method for manufacturing a substrate, comprising:
前記加熱工程の前に、前記基板を所定の寸法に切断する切断工程を更に含む、請求項1に記載の基板の製造方法。   The method for manufacturing a substrate according to claim 1, further comprising a cutting step of cutting the substrate into a predetermined dimension before the heating step. 前記穴形成工程と前記加熱工程との間に、前記基板をクリーニングするクリーニング工程を更に含む、請求項1又は2に記載の基板の製造方法。   The method for manufacturing a substrate according to claim 1, further comprising a cleaning step for cleaning the substrate between the hole forming step and the heating step. 前記基板が絶縁基板であり、
前記穴が貫通孔である、請求項1〜3のいずれか一項に記載の基板の製造方法。
The substrate is an insulating substrate;
The manufacturing method of the board | substrate as described in any one of Claims 1-3 whose said hole is a through-hole.
前記絶縁基板が、ガラス織布又は不織布に熱硬化性樹脂組成物を含浸し、前記熱硬化性樹脂組成物をBステージ化してなるプリプレグである、請求項4に記載の基板の製造方法。   The manufacturing method of the board | substrate of Claim 4 whose said insulating substrate is a prepreg formed by impregnating a glass woven fabric or a nonwoven fabric with a thermosetting resin composition, and making the said thermosetting resin composition into B stage. 前記加熱工程の後に、前記貫通孔に導電性ペーストを充填する充填工程を更に含む、請求項4〜5のいずれか一項に記載の基板の製造方法。   The method for manufacturing a substrate according to claim 4, further comprising a filling step of filling the through hole with a conductive paste after the heating step. レーザを用いて前記絶縁基板に前記貫通孔を形成する、請求項4〜6のいずれか一項に記載の基板の製造方法。   The manufacturing method of the board | substrate as described in any one of Claims 4-6 which forms the said through-hole in the said insulated substrate using a laser. 前記絶縁基板の少なくとも一方の面には、剥離可能な樹脂フィルムがラミネートされている、請求項4〜7のいずれか一項に記載の基板の製造方法。   The method for manufacturing a substrate according to any one of claims 4 to 7, wherein a peelable resin film is laminated on at least one surface of the insulating substrate. 前記加熱工程の後に、前記プリプレグの両面に金属箔を積層したものを加熱加圧する第1の加熱加圧工程を更に含む、請求項5〜8のいずれか一項に記載の基板の製造方法。   The manufacturing method of the board | substrate as described in any one of Claims 5-8 which further includes the 1st heating-pressing process of heating-pressing what laminated | stacked metal foil on both surfaces of the said prepreg after the said heating process. 前記第1の加熱加圧工程の後に、前記金属箔をパターニングするパターニング工程を更に含む、請求項9に記載の基板の製造方法。   The method for manufacturing a substrate according to claim 9, further comprising a patterning step of patterning the metal foil after the first heating and pressing step. 請求項10に記載の基板の製造方法により得られる基板を内層回路基板とし、前記内層回路基板の両面にプリプレグ及び金属箔を積層したものを加熱加圧する第2の加熱加圧工程を更に含む、基板の製造方法。   A substrate obtained by the method for producing a substrate according to claim 10 is an inner layer circuit substrate, and further includes a second heating and pressing step of heating and pressing a laminate of a prepreg and a metal foil on both surfaces of the inner layer circuit substrate. A method for manufacturing a substrate. 請求項10に記載の基板の製造方法により得られる基板を内層回路基板とし、複数の前記内層回路基板とプリプレグとを交互に積層し、最外層に金属箔を積層したものを加熱加圧する第2の加熱加圧工程を更に含む、基板の製造方法。   A substrate obtained by the substrate manufacturing method according to claim 10 is used as an inner circuit board, a plurality of the inner circuit boards and prepregs are alternately laminated, and a metal foil laminated on the outermost layer is heated and pressed. The manufacturing method of a board | substrate further including the heating-pressing process of these.
JP2007045868A 2006-03-17 2007-02-26 Method of manufacturing circuit board Pending JP2007281431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045868A JP2007281431A (en) 2006-03-17 2007-02-26 Method of manufacturing circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006074415 2006-03-17
JP2007045868A JP2007281431A (en) 2006-03-17 2007-02-26 Method of manufacturing circuit board

Publications (1)

Publication Number Publication Date
JP2007281431A true JP2007281431A (en) 2007-10-25

Family

ID=38682527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045868A Pending JP2007281431A (en) 2006-03-17 2007-02-26 Method of manufacturing circuit board

Country Status (1)

Country Link
JP (1) JP2007281431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076113A1 (en) * 2014-11-10 2016-05-19 株式会社村田製作所 Process for producing multilayered resin substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076113A1 (en) * 2014-11-10 2016-05-19 株式会社村田製作所 Process for producing multilayered resin substrate
JPWO2016076113A1 (en) * 2014-11-10 2017-04-27 株式会社村田製作所 Manufacturing method of resin multilayer substrate

Similar Documents

Publication Publication Date Title
CN111033690B (en) Multilayer circuit board using interposer layer and conductive paste
JP3815435B2 (en) Circuit board manufacturing method
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
JP2008277820A (en) Method for making multilayered circuitized substrate
JP5333623B2 (en) Recognition mark
JP2008103548A (en) Multilayer printed wiring board, and its manufacturing method
JP2004031682A (en) Method of manufacturing printed wiring board
JPH0590756A (en) Production of rigid/flexible board
JP2007288022A (en) Multilayer printed wiring board and its manufacturing method
JP5049803B2 (en) Multilayer printed wiring board manufacturing method, multilayer printed wiring board
JP2002324974A (en) Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
JP2006294666A (en) Flex rigid wiring board and manufacturing method thereof
WO2002056655A1 (en) Circuit board and production method therefor
JP2007281431A (en) Method of manufacturing circuit board
JP2013187458A (en) Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
JP2004055777A (en) Method for manufacturing compound multilayer wiring board
JP3173249B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP4683758B2 (en) Wiring board manufacturing method
TWI653920B (en) Method for manufacturing printed wiring board and protective film
JP2006140531A (en) Method of drying board material
JP6588844B2 (en) Method for manufacturing printed wiring board
KR101055571B1 (en) Carrier member for substrate manufacturing and method for manufacturing substrate using same
JPH10117068A (en) Conductive sheet and manufacture of multilayered printed wiring board using the same
JP2008181915A (en) Multilayer printed-wiring board and manufacturing method thereof
JP7430494B2 (en) Connection hole forming method for multilayer wiring board and method for manufacturing multilayer wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110602