JP2007280662A - Cylinder type thermal fuse - Google Patents
Cylinder type thermal fuse Download PDFInfo
- Publication number
- JP2007280662A JP2007280662A JP2006102774A JP2006102774A JP2007280662A JP 2007280662 A JP2007280662 A JP 2007280662A JP 2006102774 A JP2006102774 A JP 2006102774A JP 2006102774 A JP2006102774 A JP 2006102774A JP 2007280662 A JP2007280662 A JP 2007280662A
- Authority
- JP
- Japan
- Prior art keywords
- fuse element
- thermal fuse
- flux
- flange
- cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Fuses (AREA)
Abstract
Description
本発明は筒型温度ヒューズに関するものである。 The present invention relates to a cylindrical thermal fuse.
電子・電気機の熱的な保護素子として温度ヒューズが知られている。
温度ヒューズは、所定融点の可溶合金片にフラックスを塗布したものをヒューズエレメントとしている。使用にあたり保護対象である電子・電気機器に熱的に接触して取付けられ、電子・電気機器が過電流により異常に過熱されるとヒューズエレメントが溶融され、この溶融物が溶融活性化フラックスのバックアップを受けつつリード導体端部若しくは電極への濡れ拡がりにより分断され、電子・電気機器への給電が遮断される。
Thermal fuses are known as thermal protection elements for electronic and electric machines.
A thermal fuse is a fuse element in which a flux is applied to a soluble alloy piece having a predetermined melting point. It is installed in thermal contact with the electronic / electrical equipment that is to be protected in use. When the electronic / electrical equipment is abnormally overheated by overcurrent, the fuse element is melted and this melt is backed up by the melt activation flux. As a result, the lead conductor ends or the electrodes are divided by wetting and spreading, and the power supply to the electronic / electrical equipment is cut off.
温度ヒューズとして、図5に示すように、対向リード導体1’,1’間にヒューズエレメント2’を接続し、ヒューズエレメント2’にフラックス3’を塗布し、該フラックス塗布ヒューズエレメントを覆って筒状ケース4’を挿通し、筒状ケースの各端と各リード導体との間を封止材5’で封止してなる筒型温度ヒューズが汎用されており、フラックス塗布ヒューズエレメントと筒状ケース内面との接触を確実に防止して前記分断の円滑性を確保するために、図5の11’で示すようにリード導体1’の先端に鍔を設けることが知られている(特許文献1、特許文献2等を参照)。
As a thermal fuse, as shown in FIG. 5, a
しかしながら、本発明者の鋭意検討結果によれば、リード導体先端の鍔の角が実質的に直角であり、溶融ヒューズエレメントの濡れ拡がりがその角で阻害され、分断が生じ難くなって動作温度の範囲が拡がることが判明した。 However, according to the inventor's diligent study results, the corner of the lead conductor tip is substantially perpendicular, and the wetting and spreading of the molten fuse element is hindered by the corner, so that it is difficult for fragmentation to occur. It was found that the range expanded.
本発明の目的は、上記の知見に基づき、リード導体の先端に鍔を設けた筒型温度ヒューズの動作性能の向上を図ることにある。 An object of the present invention is to improve the operation performance of a cylindrical thermal fuse having a flange at the tip of a lead conductor based on the above knowledge.
請求項1に係る筒型温度ヒューズは、先端部に鍔を有する対向リード導体間にヒューズエレメントを接続し、ヒューズエレメントにフラックスを塗布し、該フラックス塗布ヒューズエレメントを覆って筒状ケースを挿通し、筒状ケースの各端と各リード導体との間を封止材で封止してなる温度ヒューズにおいて、鍔前面と鍔外周面との間のコーナ及び鍔後面と鍔外周面との間のコーナの少なくとも一方をアール面としたことを特徴とする。
請求項2に係る筒型温度ヒューズは、請求項1の筒型温度ヒューズにおいて、アール面の曲率半径を鍔厚みの1/2〜1/10としたことを特徴とする。
請求項3に係る筒型温度ヒューズは、請求項1または2記載の筒型温度ヒューズにおいて、フラックスを鍔部の後面にかかるように塗布したことを特徴とする。
The cylindrical thermal fuse according to claim 1 is configured such that a fuse element is connected between opposing lead conductors having a flange at the tip, a flux is applied to the fuse element, and the cylindrical case is inserted through the flux-applied fuse element. In the thermal fuse formed by sealing between each end of the cylindrical case and each lead conductor with a sealing material, the corner between the front surface and the outer peripheral surface of the heel and the rear surface of the heel and the outer peripheral surface of the heel It is characterized in that at least one of the corners is a rounded surface.
A cylindrical thermal fuse according to a second aspect is the cylindrical thermal fuse according to the first aspect, wherein the radius of curvature of the rounded surface is set to 1/2 to 1/10 of the thickness of the flange.
A cylindrical thermal fuse according to a third aspect is the cylindrical thermal fuse according to the first or second aspect, wherein a flux is applied so as to be applied to a rear surface of the flange portion.
リード線先端の鍔外周側のコーナをアール面としたから、直角コーナの場合に較べて溶融ヒューズエレメントの濡れ拡がりがコーナで阻害されるのをよく軽減できる。従って、分断動作性能を充分に保証できる。 Since the corner on the outer periphery side of the lead wire tip is a rounded surface, it is possible to well reduce the obstruction of the molten fuse element by the corner compared to the case of a right angle corner. Therefore, it is possible to sufficiently guarantee the dividing operation performance.
以下、図面を参照しつつ本発明の実施形態について説明する。
図1は本発明の一実施例を示している。
図1において、1は銅リード導体であり、先端に鍔11を備えている。この鍔はリード導体の先端部を圧縮塑性加工することにより形成できる。鍔前面と鍔外周面との間のコーナ12及び鍔後面と鍔外周面との間のコーナ12をアール面としてあり、そのアール面の曲率半径Rは、鍔の巾をWとして、w/2〜w/10としてある。2は温度ヒューズの設定動作温度に応じた融点のヒューズエレメント合金であり、その径をリード導体の径の0.8〜1.3倍とし、両リード導体の鍔前面間に溶接により接続してある。3はフラックスであり、ヒューズエレメント2上からリード導体の鍔後面120にかかるように塗布してある。
4は耐熱性の筒状絶縁体ケース、例えばセラミックス筒である。5は筒状ケースの各端と各リード導体との間を封止した封止材、例えばエポキシ樹脂である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of the present invention.
In FIG. 1, reference numeral 1 denotes a copper lead conductor, which is provided with a
Reference numeral 4 denotes a heat-resistant cylindrical insulator case, for example, a ceramic cylinder.
前記の筒状絶縁体ケースが前記フラックス塗布ヒューズエレメント上に治具を使用して同心位置で挿通され、この同心位置を保持して封止材による封止が行われる。この場合、鍔の外径が筒状絶縁体ケースの内径にほぼ等しくされているので(筒状絶縁体ケース内径の0.75倍〜0.95倍)、前記の同心位置をよく保証でき、前記フラックス塗布ヒューズエレメントと筒状絶縁体ケース内面との接触を確実に防止できる。 The cylindrical insulator case is inserted on the flux-applied fuse element at a concentric position using a jig, and the concentric position is maintained and sealing with a sealing material is performed. In this case, since the outer diameter of the flange is substantially equal to the inner diameter of the cylindrical insulator case (0.75 to 0.95 times the inner diameter of the cylindrical insulator case), the above concentric position can be well guaranteed, Contact between the flux-applied fuse element and the inner surface of the cylindrical insulator case can be reliably prevented.
上記ヒューズエレメントには、環境保全上、鉛、ガドミウム等の有害金属を含まない合金を使用することが好ましく、動作温度に応じて次の合金組成か選択できる。
[A](1)43%≦Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%≦Sn≦44%,55%≦In≦74%,1%≦Bi≦20%、(4)46%≦Sn≦70%,18%≦In≦48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In≦37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%≦Sn≦60%,20%≦In≦50%,12%≦Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%≦Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成(27)2%≦Zn≦15%,70%≦Sn≦95%,残Bi及びその合金100重量部にAu、In、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加した合金の組成。
For the environmental protection, it is preferable to use an alloy that does not contain harmful metals such as lead and cadmium, and the following alloy composition can be selected according to the operating temperature.
[A] (1) 43% ≦ Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, ( 3) 25% ≦ Sn ≦ 44%, 55% ≦ In ≦ 74%, 1% ≦ Bi ≦ 20%, (4) 46% ≦ Sn ≦ 70%, 18% ≦ In ≦ 48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In ≦ 37%, remaining Bi (Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, (Excluding ranges of Bi ± 2%, In and Sn ± 1% based on each of Sn 16.3%), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7 ) 25% ≦ Sn ≦ 60%, 20% ≦ In ≦ 50%, 12% ≦ Bi ≦ 33%, (8) Ag, Au, Cu, 100 parts by weight of any one of (1) to (7) Add one or more of i, Pd, Pt, Sb, Ga, Ge and P in a total of 0.01 to 7 parts by weight, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10 %, Remaining Bi, (10) 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53%, 100 parts by weight of Bi is added with 3 to 5 parts by weight of Bi, (11) 40% ≦ Sn ≦ 46%, 7 % ≦ Bi ≦ 12%, remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25 % ≦ Bi ≦ 35%, remaining In, (14) any one of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of any one of (14), (9) to (13) Add 2 or more kinds in total 0.01 to 7 parts by weight, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, 100 parts by weight of remaining Bi, Ag, Au, Cu Composition of In—Sn—Bi-based alloy such as 0.01 to 7 parts by weight in total of one or more of Ni, Pd, Pt, Sb, Ga, Ge, and P [B] (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, remaining Bi, (17) One type of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P in (17) (16) Or the composition of the Bi—Sn—Sb alloy, such as addition of two or more kinds in a total of 0.01 to 7 parts by weight, etc. [C] (18) 52% ≦ In ≦ 85%, remaining Sn, (19) (18) Composition of In-Sn based alloy such as one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P added to 100 parts by weight in a total of 0.01 to 7 parts by weight [D] (20) 45% ≦ Bi ≦ 55%, remaining In, (21) In 100 parts by weight of the composition of (20), Ag, Au, Cu, Ni, Pd, P Composition of In-Bi alloy such as total addition of 0.01 to 7 parts by weight of one or more of t, Sb, Ga, Ge and P, [E] (22) 50% ≦ Bi ≦ 56% , Remaining Sn, (23) Addition of 0.01 to 7 parts by weight of one or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge and P to 100 parts by weight of (22), Bi-Sn based alloy composition [F] (24) One or two or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P in a total of 0.01 parts by weight of In total 0.01 -7 parts by weight, (25) Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, 100 parts by weight of 90% ≦ In ≦ 99.9%, 0.1% ≦ Ag ≦ 10% Add one or more of P in a total of 0.01 to 7 parts by weight, (26) 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5% 10 Composition of In-based alloy in which one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P are added to 0 part by weight in a total of 0.01 to 7 parts by weight (27) 2% ≦ Zn ≦ 15%, 70% ≦ Sn ≦ 95%, remaining Bi and 100 parts by weight of its alloy are combined with one or more of Au, In, Cu, Ni, Pd, Pt, Ga, Ge, P in total 0 The composition of the alloy with 0.01 to 7 parts by weight added.
上記フラックスには、ロジンを主成分とするものを使用できる。ロジンの成分は、アビエチン酸16〜29%、ネオアビエチン酸15〜20%、パラストリン酸18〜20%、イソピマル酸16〜18%、ピマル酸3〜4%、サンダラコピマル酸1〜2%、コムン酸3〜4%、デヒドロアビエチン酸4〜7%、その他2〜3%であり、活性を高めるために有機酸、例えばモノまたはジカルボン酸、例えばアビエチン酸を添加できる。 As the flux, one containing rosin as a main component can be used. The components of rosin are 16 to 29% abietic acid, 15 to 20% neoabietic acid, 18 to 20% parastrinic acid, 16 to 18% isopimaric acid, 3 to 4% pimaric acid, 1 to 2% sandaracopimaric acid, Comnic acid 3-4%, dehydroabietic acid 4-7%, others 2-3%, organic acids such as mono- or dicarboxylic acids such as abietic acid can be added to increase activity.
本発明に係る温度ヒューズは、例えば電子機器(コンピュータ、テレビ、ビデオ、トランス、ソレノイド、アダプター、IC等)、電動機(扇風機、掃除機等の小型モータ使用機器)、電熱機器(ドライヤー、電気カーペット、ストーブ等)の保護に使用される。
その保護対象機器が過電流により発熱されると、まず、フラックスが溶融され、更に、ヒューズエレメントが溶融され、この溶融合金がフラックスの活性作用(主に酸化膜除去作用)のバックアップを受けつつ界面張力によりリード導体の鍔を越えて濡れ拡がり分断される。
Thermal fuses according to the present invention include, for example, electronic devices (computers, televisions, videos, transformers, solenoids, adapters, ICs, etc.), electric motors (devices using small motors such as electric fans and vacuum cleaners), electric heating devices (dryers, electric carpets, Used to protect stoves, etc.)
When the device to be protected generates heat due to overcurrent, the flux is first melted, the fuse element is melted, and the molten alloy is backed up by the flux active action (mainly oxide film removal action). Tension breaks and spreads over the lead conductor ridges.
本発明に係る温度ヒューズでは、リード導体の鍔外周のコーナをアール面としているから、当該コーナが実質的に直角である従来品に較べ前記の鍔を乗り越えての溶融ヒューズエレメントの濡れ拡がりをよく促進でき、良好な分断性能を得ることができる。
上記鍔のアール面の曲率半径を鍔の巾Wに対しW/10以上とした理由は、これ未満では前記分断性能の充分な向上を得ることが困難であるからである。同曲率半径をW/2以下とした理由は、これを越えると鍔外周面が山状に膨らみ、これが前記濡れ拡がりを阻害するようになるからである。
In the thermal fuse according to the present invention, the corner of the outer periphery of the lead conductor has a rounded surface, so that the melted fuse element is better spread over the aforementioned flange than the conventional product in which the corner is substantially perpendicular. It can be promoted and good cutting performance can be obtained.
The reason why the radius of curvature of the rounded surface of the ridge is set to W / 10 or more with respect to the width W of the ridge is that if it is less than this, it is difficult to obtain a sufficient improvement in the cutting performance. The reason why the radius of curvature is set to W / 2 or less is that if this radius is exceeded, the outer peripheral surface of the ridge swells in a mountain shape, which inhibits the wetting and spreading.
本発明に係る温度ヒューズにおいては、図2に示すように、リード導体1の鍔11が筒状ケース内面で支持されていてもよい。
また、フラックス層3は、図3に示すように、長手方向に連続されていれば、周方向に対し部分的であってもよい。また、鍔11は図4に示すように、リード導体先端10から0.4〜1.0mmの距離ΔLを隔てた位置に設けることもできる。
In the thermal fuse according to the present invention, as shown in FIG. 2, the
Moreover, as shown in FIG. 3, the
図1において、銅リード導体1の外径を0.6mmφ、鍔外径を1.2mmφ、鍔巾を0.2mm、鍔コーナの曲率半径を80μmとした。ヒューズエレメント2には、外径0.6mmφ、長さ3mmのBIS系合金線(Sn:3%,In:64%,Bi:33%、固相線温度:70℃)を使用し、フラックス3には天然ロジンにアジピン酸と融点降下剤としてのエステルを混合したものを使用した。筒状ケース4には、長さ10mm、内径1.5mmのセラミックス筒を使用し、封止材5にはエポキシ樹脂を使用した。
In FIG. 1, the outer diameter of the copper lead conductor 1 was 0.6 mmφ, the heel outer diameter was 1.2 mmφ, the heel width was 0.2 mm, and the curvature radius of the heel corner was 80 μm. For the
〔比較例〕
実施例に対し、リード導体に鍔無しのものを使用した以外、実施例に同じとした。
[Comparative example]
The example was the same as the example except that no lead conductor was used.
実施例及び比較例のそれぞれにつき(n=50)、オイルバス中に浸漬し、0.1Aの電流を通電し、5℃/1分の速度でオイルを昇温して分断温度を測定したところ、実施例品はすべて ℃〜 ℃で動作したが、比較例品でこの温度範囲で動作したものはなく、すべて3℃〜4℃高い温度で動作した。 For each of the examples and comparative examples (n = 50), the oil was immersed in an oil bath, a current of 0.1 A was applied, the oil was heated at a rate of 5 ° C./1 minute, and the cutting temperature was measured. All of the example products operated at a temperature of from ℃ to ℃, but none of the comparative products operated at this temperature range, and all of them operated at a temperature higher by 3 ℃ to 4 ℃.
1 リード導体
11 鍔
12 コーナ
120 鍔後面
2 ヒューズエレメント
3 フラックス
4 筒状ケース
5 封止材
1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006102774A JP4717686B2 (en) | 2006-04-04 | 2006-04-04 | Tubular thermal fuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006102774A JP4717686B2 (en) | 2006-04-04 | 2006-04-04 | Tubular thermal fuse |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007280662A true JP2007280662A (en) | 2007-10-25 |
JP4717686B2 JP4717686B2 (en) | 2011-07-06 |
Family
ID=38681907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006102774A Active JP4717686B2 (en) | 2006-04-04 | 2006-04-04 | Tubular thermal fuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4717686B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011527493A (en) * | 2008-07-11 | 2011-10-27 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Thermal fuse |
JP2014525310A (en) * | 2011-09-06 | 2014-09-29 | コーニンクレッカ フィリップス エヌ ヴェ | Invasive or non-invasive instruments for use in MR devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681447A (en) * | 1979-12-07 | 1981-07-03 | Doujin Kagaku Kenkyusho:Kk | Method and device for discriminating hard and soft water by using resin responsive to hard water |
JPS5857052A (en) * | 1981-09-29 | 1983-04-05 | Asahi Glass Co Ltd | Stirling engine |
JPS58147140A (en) * | 1982-02-26 | 1983-09-01 | Tamagawa Kikai Kinzoku Kk | Lead wire of semiconductor device |
JPH0463531A (en) * | 1990-06-29 | 1992-02-28 | Kiyoshi Yoshimura | Water tank for breeding animal and vegetable |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681447U (en) * | 1979-11-28 | 1981-07-01 | ||
JPS5857052U (en) * | 1981-10-15 | 1983-04-18 | 日本電気ホームエレクトロニクス株式会社 | temperature fuse |
JPS58147140U (en) * | 1982-03-29 | 1983-10-03 | 株式会社村田製作所 | temperature fuse |
JPH0463531U (en) * | 1990-10-09 | 1992-05-29 |
-
2006
- 2006-04-04 JP JP2006102774A patent/JP4717686B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5681447A (en) * | 1979-12-07 | 1981-07-03 | Doujin Kagaku Kenkyusho:Kk | Method and device for discriminating hard and soft water by using resin responsive to hard water |
JPS5857052A (en) * | 1981-09-29 | 1983-04-05 | Asahi Glass Co Ltd | Stirling engine |
JPS58147140A (en) * | 1982-02-26 | 1983-09-01 | Tamagawa Kikai Kinzoku Kk | Lead wire of semiconductor device |
JPH0463531A (en) * | 1990-06-29 | 1992-02-28 | Kiyoshi Yoshimura | Water tank for breeding animal and vegetable |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011527493A (en) * | 2008-07-11 | 2011-10-27 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Thermal fuse |
JP2014525310A (en) * | 2011-09-06 | 2014-09-29 | コーニンクレッカ フィリップス エヌ ヴェ | Invasive or non-invasive instruments for use in MR devices |
Also Published As
Publication number | Publication date |
---|---|
JP4717686B2 (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009259724A (en) | Protecting element and its manufacturing method | |
US20120112871A1 (en) | Protective device | |
JP3990169B2 (en) | Alloy type temperature fuse | |
JP4717686B2 (en) | Tubular thermal fuse | |
JP2819408B2 (en) | Alloy type temperature fuse | |
JP2001266724A (en) | Alloy-type thermal fuse | |
JPH06325670A (en) | Alloy type temperature fuse | |
JP2007294117A (en) | Protection element and operation method of protection element | |
TW201409518A (en) | Fuse | |
JP2007207558A (en) | Fusible alloy type thermal fuse and circuit protection element | |
KR101514956B1 (en) | Complex fuse for preventing over-heating and over-current | |
JP2011081924A (en) | Alloy type thermal fuse, method of manufacturing low-melting-point alloy piece with lead conductor for thermal fuse | |
JPH0412428A (en) | Fuse element | |
JP4409747B2 (en) | Alloy type thermal fuse | |
JP4387229B2 (en) | Method of using alloy-type thermal fuse and alloy-type thermal fuse | |
JP4717655B2 (en) | How to use an alloy-type thermal fuse | |
JP2003203720A (en) | Current breaker for outlet and outlet plug | |
JP4230313B2 (en) | Cylindrical case type alloy type thermal fuse | |
JP2001243863A (en) | Fuse with flux | |
JP4946419B2 (en) | Thermal fuse and manufacturing method thereof | |
JPH11339615A (en) | Substrate type resistor thermal fuse | |
JP2007031775A (en) | Lead-free fusible alloy type thermal fuse | |
JP2004213928A (en) | Alloy for thermal fuse | |
JP2003147461A (en) | Thermal fuse | |
JPH1012111A (en) | Thermal alloy fuse and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110330 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4717686 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |