JP2007279183A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP2007279183A
JP2007279183A JP2006102735A JP2006102735A JP2007279183A JP 2007279183 A JP2007279183 A JP 2007279183A JP 2006102735 A JP2006102735 A JP 2006102735A JP 2006102735 A JP2006102735 A JP 2006102735A JP 2007279183 A JP2007279183 A JP 2007279183A
Authority
JP
Japan
Prior art keywords
lens
lens group
image
zoom
zoom lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006102735A
Other languages
Japanese (ja)
Other versions
JP4884054B2 (en
Inventor
Kouyuki Sabe
校之 左部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2006102735A priority Critical patent/JP4884054B2/en
Priority to US11/732,426 priority patent/US7450314B2/en
Publication of JP2007279183A publication Critical patent/JP2007279183A/en
Application granted granted Critical
Publication of JP4884054B2 publication Critical patent/JP4884054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Indication In Cameras, And Counting Of Exposures (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive zoom lens having a large zoom ratio, having a wide viewing angle at a wide angle end, suitable for an electronic imaging element, further improved in optical performance and suitable for the miniaturization of a lens barrel. <P>SOLUTION: The zoom lens has a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, a third lens group G3 having positive refractive power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power in order from an object side, and varies power by changing space between the respective lens groups. The first lens group G1 moves nearer to the object side at a telephoto end than at the wide angle end, and the fifth lens group G5 moves nearer to an image side at the telephoto end than at the wide angle end, then an axial space between the third lens group G3 and the fourth lens group G4 is increased from the wide angle end to an intermediate zoom position, and is decreased from the intermediate zoom position to the telephoto end. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ズームレンズに関し、特に、デジタルカメラやビデオカメラ等の電子撮像装置に用いたときの奥行き方向の薄型化を実現することができるズームレンズとそれを用いた電子撮像装置等の装置に関するものである。   The present invention relates to a zoom lens, and more particularly to a zoom lens that can be thinned in the depth direction when used in an electronic imaging apparatus such as a digital camera or a video camera, and an apparatus such as an electronic imaging apparatus using the zoom lens. Is.

近年、銀塩35mmフィルムカメラに代わる次世代カメラとしてデジタルカメラが注目されている。さらに、それは業務用高機能タイプからポータブルな普及タイプまで幅広い範囲でいくつものカテゴリーを有するようになってきている。本発明においては、特にポータブルな普及タイプのカテゴリーに注目し、高画質を確保しながら奥行きの薄いビデオカメラ、デジタルカメラを実現する技術を提供することをねらっている。   In recent years, digital cameras have attracted attention as next-generation cameras that replace silver salt 35 mm film cameras. Furthermore, it has come to have a number of categories in a wide range from a high-function type for business use to a portable popular type. In the present invention, focusing on the category of portable popular type, it is aimed to provide a technology for realizing a video camera and a digital camera with a small depth while ensuring a high image quality.

カメラの奥行き方向を薄くするのに最大のネックとなっているのは、光学系、特にズームレンズ系の最も物体側の面から撮像面までの厚みである。最近では、撮影時に光学系をカメラボディ内からせり出し、携帯時に光学系をカメラボディ内に収納するいわゆる沈胴式鏡筒を採用することが主流になっている。さらに、幅広い撮影領域を楽しみたいというユーザーの要求を満たすためには、広角端の画角が広くて、なおかつ、変倍比が大きなズームレンズが要求される。   The biggest bottleneck in reducing the depth direction of the camera is the thickness from the most object-side surface to the imaging surface of the optical system, particularly the zoom lens system. Recently, it has become a mainstream to employ a so-called collapsible lens barrel that projects an optical system from the camera body during shooting and stores the optical system in the camera body when carried. Furthermore, in order to satisfy the user's request to enjoy a wide imaging area, a zoom lens having a wide angle of view at the wide angle end and a large zoom ratio is required.

ズーム比が5倍程度と大きく、広角端での画角が60°程度と大きく、射出瞳位置が適切に設定された、電子撮像素子に適した、光学性能の比較的良好なズームレンズとして、特許文献1に開示されたものがある。
特開2003−255228号公報
As a zoom lens with a relatively good optical performance suitable for an electronic imaging device, with a zoom ratio as large as about 5 times, a field angle at a wide angle end as large as about 60 °, and an exit pupil position appropriately set, There exists what was disclosed by patent document 1. FIG.
JP 2003-255228 A

しかしながら、特許文献1に開示されている実施例では、ズームレンズを構成するレンズ枚数が多かったり、ズームレンズ全系の全長が長かったりするため、沈胴方式を採用したとしても鏡筒が十分にコンパクトにならないという問題があった。また、コストが高くなってしまうという問題があった。   However, in the embodiment disclosed in Patent Document 1, since the number of lenses constituting the zoom lens is large, or the entire length of the entire zoom lens system is long, the lens barrel is sufficiently compact even if the retractable method is adopted. There was a problem of not becoming. In addition, there is a problem that the cost becomes high.

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、ズーム比が大きく、広角端での画角が大きく、電子撮像素子に適しており、光学性能がさらに向上されていて、鏡筒のコンパクト化に好適で、安価なズームレンズを提供することである。   The present invention has been made in view of such problems of the prior art, and its objectives are a large zoom ratio, a large angle of view at the wide-angle end, suitable for an electronic imaging device, and further improved optical performance. An object of the present invention is to provide an inexpensive zoom lens that is improved and suitable for downsizing the lens barrel.

上記目的を達成するための本発明のズームレンズは、物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群を有し、各レンズ群の間隔を変化させることにより変倍を行い、前記第1レンズ群は広角端よりも望遠端で物体側にあるように移動し、前記第5レンズ群は広角端よりも望遠端で像側にあるように移動し、前記第3レンズ群と前記第4レンズ群の軸上間隔は広角端から中間ズーム位置にかけては増大し、中間のズーム位置から望遠端にかけては減少することを特徴とするものである。   In order to achieve the above object, a zoom lens according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens group. A fourth lens group having a refractive power of 5 and a fifth lens group having a positive refractive power, and zooming is performed by changing the interval between the lens groups, and the first lens group is at the telephoto end rather than at the wide-angle end. The fifth lens group moves so as to be closer to the image side at the telephoto end than the wide-angle end, and the axial interval between the third lens group and the fourth lens group is from the wide-angle end. It is characterized by an increase at the intermediate zoom position and a decrease from the intermediate zoom position to the telephoto end.

以下に、本発明のズームレンズにおいて、上記構成をとる理由と作用を説明する。   Hereinafter, the reason and operation of the zoom lens according to the present invention will be described.

以上のような構成を採用することによって、変倍の負担を各レンズ群に分担させることができるため、全長短縮が実現でき、鏡筒のコンパクト化を容易にすることができる。また、射出瞳位置を適切に保つことができるため、電子撮像素子のCCD等への入射光線の角度を適度な範囲にコントロールすることが可能になり、CCD等の電子撮像素子の受光面に効率良く光線を入射させることが可能になる。さらに、変倍時の収差変動を抑え、全変倍域において良好な光学性能を得ることができるようになる。   By adopting the configuration as described above, the burden of zooming can be shared by each lens group, so that the overall length can be shortened and the lens barrel can be easily made compact. In addition, since the exit pupil position can be maintained appropriately, the angle of incident light on the CCD of the electronic image sensor can be controlled within an appropriate range, and the light receiving surface of the electronic image sensor such as a CCD is efficient. It becomes possible to make the light incident well. Furthermore, aberration variation during zooming can be suppressed, and good optical performance can be obtained in the entire zooming range.

以下に、さらに詳細に説明する。   This will be described in more detail below.

広角端から望遠端への変倍において、第1レンズ群は、広角端よりも望遠端で物体側にあるように移動するとよい。このようにすると、最も物体側に位置するレンズの外径を小さく保ったまま、ズームレンズの広角化が可能となる。そのため、鏡筒の外径方向の小型化を達成することが容易になる。   In zooming from the wide-angle end to the telephoto end, the first lens group may move so that it is closer to the object side at the telephoto end than at the wide-angle end. This makes it possible to widen the zoom lens while keeping the outer diameter of the lens located closest to the object side small. Therefore, it becomes easy to achieve size reduction in the outer diameter direction of the lens barrel.

第5レンズ群は、広角端よりも望遠端で像側にあるように移動し、第3レンズ群と第4レンズ群の軸上間隔は、広角端から中間ズーム位置にかけては増大し、中間のズーム位置から望遠端にかけては減少するようにするとよい。一般的に、正の第1レンズ群、負の第2レンズ群、正の第3レンズ群、負の第4レンズ群、正の第5レンズ群からなるズームレンズでは、第2レンズ群と第3レンズ群の変倍の負担が大きくなりやすいため、変倍時の収差変動が大きくなりやすい。第5レンズ群を広角端よりも望遠端で像側にあるように移動させると、第5レンズ群に変倍の作用を担わせることができるため、他の変倍レンズ群の負担を軽減でき、変倍時の収差変動をより小さく抑えることが可能となる。   The fifth lens group moves so as to be closer to the image side at the telephoto end than at the wide-angle end, and the axial interval between the third lens group and the fourth lens group increases from the wide-angle end to the intermediate zoom position. It is preferable to decrease from the zoom position to the telephoto end. In general, in a zoom lens including a positive first lens group, a negative second lens group, a positive third lens group, a negative fourth lens group, and a positive fifth lens group, the second lens group and the second lens group Since the burden of zooming of the three lens groups is likely to increase, aberration fluctuations during zooming tend to increase. By moving the fifth lens group so that it is closer to the image side at the telephoto end than at the wide-angle end, the fifth lens group can be subjected to the zooming action, so the burden on the other zoom lens groups can be reduced. Thus, it is possible to further reduce aberration fluctuation during zooming.

しかしながら、第5レンズ群がこのような動きにすると、広角端と望遠端では軸外の像面がプラス側に、中間のズーム状態の付近ではマイナス側になりやすい。そこで、第3レンズ群と第4レンズ群の軸上間隔は広角端から中間ズーム状態にかけては増大し、中間のズーム状態から望遠端にかけては減少するようにすると、全変倍域において軸外の像面位置を良好に補正できるようになる。   However, when the fifth lens group moves in this manner, the off-axis image surface tends to be on the plus side at the wide-angle end and the telephoto end, and on the minus side in the vicinity of the intermediate zoom state. Therefore, if the axial distance between the third lens group and the fourth lens group increases from the wide-angle end to the intermediate zoom state and decreases from the intermediate zoom state to the telephoto end, it is off-axis in the entire zoom range. The image plane position can be corrected satisfactorily.

本発明では、上述のように光学系に工夫を施して、ズーム比が大きく、広角端での画角が大きく、電子撮像素子に適しており、光学性能が良好で、鏡筒のコンパクト化に好適であり、なおかつ、安価なズームレンズを実現している。   In the present invention, the optical system is devised as described above, and the zoom ratio is large, the angle of view at the wide-angle end is large, suitable for an electronic imaging device, good optical performance, and compact lens barrel. A zoom lens that is suitable and inexpensive is realized.

本発明では、コンパクト化と良好な光学性能確保を行うため、さらに種々の工夫に加えている。以下に詳細な説明をする。   In the present invention, in order to achieve compactness and secure good optical performance, various further improvements are added. Detailed description will be given below.

第2レンズ群は、広角端よりも望遠端で像側にあるように移動し、第3レンズ群は、広角端よりも望遠端で物体側にあるように移動するのがよい。このような構成にすると、各レンズ群の変倍の負担を小さくすることができ、変倍時の収差変動を小さく抑えることができる。   The second lens group may move so that it is closer to the image side at the telephoto end than the wide angle end, and the third lens group may be moved so as to be closer to the object side at the telephoto end than at the wide angle end. With such a configuration, it is possible to reduce the burden of zooming of each lens group, and it is possible to suppress aberration fluctuations during zooming.

物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群を有し、各レンズ群の間隔を変化させることにより変倍を行い、以下の何れかあるいは両方の条件式を満足するようにすると、なお好ましい。   In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power. It is more preferable to have a fifth lens group and perform zooming by changing the interval between the lens groups so that one or both of the following conditional expressions are satisfied.

4.00<Lw /fw <9.00 ・・・(1)
1.00<Lt /ft <1.80 ・・・(2)
ただし、Lw :広角端における全長、
t :望遠端における全長、
w :広角端での全系焦点距離、
t :望遠端での全系焦点距離、
である。
4.00 <L w / f w <9.00 (1)
1.00 <L t / f t <1.80 (2)
Where L w is the total length at the wide-angle end,
L t : total length at the telephoto end,
f w : the focal length of the entire system at the wide-angle end,
f t : Total focal length at the telephoto end,
It is.

これらはズームレンズの小型化と光学性能確保に関する条件式である。条件式(1)の上限の9.00、及び、条件式(2)の上限の1.80を越えると、レンズ系の全長が長くなりすぎるため、沈胴させたときの鏡筒のコンパクト化が難しくなる。条件式(1)の下限の4.00、及び、条件式(2)の下限の1.00を越えると、構成する各レンズ群のパワーが強くなりがちで、変倍時の収差変動が大きくなり、全変倍域で良好な光学性能を得ることが難しくなる。   These are conditional expressions relating to miniaturization of the zoom lens and securing of optical performance. If the upper limit of 9.00 of conditional expression (1) and 1.80 of the upper limit of conditional expression (2) are exceeded, the total length of the lens system becomes too long, so that the lens barrel can be made compact when retracted. It becomes difficult. If the lower limit of 4.00 of conditional expression (1) and 1.00 of the lower limit of conditional expression (2) is exceeded, the power of each lens group tends to increase, and aberration fluctuations during zooming are large. Therefore, it becomes difficult to obtain good optical performance in the entire zoom range.

条件式(1)について、以下を満足するようにするとなおよい。   Regarding conditional expression (1), it is better to satisfy the following.

4.70<Lw /fw <7.70 ・・・(1)’
さらに、以下を満足するとさらによい。
4.70 <L w / f w <7.70 (1) ′
Furthermore, it is better to satisfy the following.

5.30<Lw /fw <6.30 ・・・(1)”
条件式(2)について、以下を満足するようにするとなおよい。
5.30 <L w / f w <6.30 (1) ”
Regarding conditional expression (2), it is better to satisfy the following.

1.10<Lt /ft <1.75 ・・・(2)’
さらに、以下を満足するとさらによい。
1.10 <L t / f t <1.75 (2) ′
Furthermore, it is better to satisfy the following.

1.20<Lt /ft <1.65 ・・・(2)”
また、第1レンズ群が1枚の正レンズからなる構成とするとよい。第1レンズ群では軸外光線の光線高さが最も高くなるので、レンズの縁肉を必要な量確保しようとするとき、軸上肉厚が非常に厚くなりやすい。さらに、第1レンズ群のレンズ枚数を増やすと入射瞳位置が物体側から遠くになるため、第1レンズ群を通る光線高さはより高くなり、縁肉確保のための軸上肉厚はより厚みが必要となる。当然、レンズ枚数が増えた分の軸上肉厚も大きくなってしまう。したがって、レンズ枚数を増やすにつれてこのレンズ群の径方向の大きや光軸上肉厚も必要以上に大きくなってしまい、沈胴状態にしても鏡筒のコンパクト化が十分には行えなくなる。このような観点から、第1レンズ群は1枚のみからなる構成とすれば、コンパクト化に大きく貢献する。
1.20 <L t / f t < 1.65 ··· (2) "
In addition, the first lens group may be composed of one positive lens. In the first lens group, the height of the off-axis light beam is the highest, so that the on-axis thickness tends to be very large when it is necessary to secure a necessary amount of the lens edge. Further, when the number of lenses of the first lens group is increased, the entrance pupil position becomes farther from the object side, so that the height of the light beam passing through the first lens group becomes higher, and the axial thickness for securing the rim thickness is further increased. Thickness is required. Naturally, the axial thickness increases as the number of lenses increases. Accordingly, as the number of lenses is increased, the size in the radial direction of the lens group and the thickness on the optical axis become larger than necessary, and the lens barrel cannot be made compact even in the retracted state. From this point of view, if the first lens group is composed of only one lens, it greatly contributes to downsizing.

しかしながら、第1レンズ群を1枚の正レンズのみからなる構成とすると、このレンズで発生した収差を第1レンズ群内でキャンセルすることができなくなるため、変倍時に収差変動が大きくなり光学性能の劣化につながりやすい。そのため、撮影画像が鑑賞に耐え得る現実的な程度のレベルまで、第1レンズ群内での収差発生を極力抑える必要がある。本発明のズームレンズでは、以下に述べるような種々の工夫を施し、良好な光学性能を確保している。   However, if the first lens group is composed of only one positive lens, the aberration generated in this lens cannot be canceled in the first lens group, so that the aberration fluctuation becomes large at the time of zooming and the optical performance. It tends to lead to deterioration. For this reason, it is necessary to suppress the occurrence of aberration in the first lens group as much as possible to a practical level where the captured image can withstand viewing. In the zoom lens of the present invention, various devices as described below are applied to ensure good optical performance.

第1レンズ群の正レンズは以下の条件式を満足するのがよい。   The positive lens of the first lens group should satisfy the following conditional expression.

75.0<νd1p <105.0 ・・・(3)
ただし、νd1p :前記第1レンズ群の正レンズのアッベ数、
である。
75.0 <ν d1p <105.0 (3)
Where ν d1p is the Abbe number of the positive lens in the first lens group,
It is.

条件式(3)の上限の105.0を越えると、硝材の入手性や量産性が悪くなり、コストアップにつながる。下限の75.0を越えると、第1レンズ群で色収差の発生量が大きくなりすぎ、撮影画像に色にじみが発生してしまう。   If the upper limit of 105.0 of conditional expression (3) is exceeded, the availability and mass productivity of the glass material will deteriorate, leading to an increase in cost. If the lower limit of 75.0 is exceeded, the amount of chromatic aberration generated in the first lens group becomes too large, and color blurring occurs in the captured image.

さらに、以下を満足するとなおよい。   Furthermore, it is even better if the following is satisfied.

75.0<νd1p <101.0 ・・・(3)’
さらに、以下を満足するとさらによい。
75.0 <ν d1p <101.0 (3) ′
Furthermore, it is better to satisfy the following.

80.0<νd1p <97.0 ・・・(3)”
また、第1レンズ群の正レンズは以下の条件式を満足するのがよい。
80.0 <ν d1p <97.0 (3) ”
The positive lens in the first lens group should satisfy the following conditional expression.

−1.50<SF1p<−0.20 ・・・(4)
ただし、SF1p=(R1pf +R1pr )/(R1pf −R1pr )で定義され、R1pf 、R1pr はそれぞれ前記第1レンズ群の正レンズの物体側面、像側面の軸上曲率半径である。
−1.50 <SF 1p <−0.20 (4)
However, as defined in SF 1p = (R 1pf + R 1pr) / (R 1pf -R 1pr), R 1pf, the object side surface of the positive lens of each of R 1pr the first lens group, in axial radius of curvature of the image side surface is there.

条件式(4)の上限の−0.20を越えると、広角端での非点収差や球面収差の発生が大きくなりすぎる。下限の−1.50を越えると、広角端での歪曲収差の発生が大きくなりすぎる。何れにしても、良好な光学性能を得ることが難しくなってしまう。   If the upper limit of -0.20 in conditional expression (4) is exceeded, the generation of astigmatism and spherical aberration at the wide-angle end becomes too large. When the lower limit of −1.50 is exceeded, distortion at the wide-angle end becomes too large. In any case, it becomes difficult to obtain good optical performance.

さらに、以下を満足するとなおよい。   Furthermore, it is even better if the following is satisfied.

−1.10<SF1p<−0.32 ・・・(4)’
さらに、以下を満足するとさらによい。
−1.10 <SF 1p <−0.32 (4) ′
Furthermore, it is better to satisfy the following.

−0.70<SF1p<−0.54 ・・・(4)”
また、第1レンズ群の正レンズは両面非球面とするとよい。広角端の歪曲収差、非点収差、コマ収差の発生を効果的に抑えることができる。
−0.70 <SF 1p <−0.54 (4) ”
The positive lens in the first lens group is preferably a double-sided aspheric surface. Generation of distortion, astigmatism, and coma at the wide-angle end can be effectively suppressed.

また、第2レンズ群は、物体側から順に、負レンズL21、負レンズL22、正レンズL23からなる構成とするとよい。このようにすると、後側主点をより像側に出せるので、変倍時の移動量を小さくすることができる。また、後述するように、開口絞りは第2レンズ群の後に配置するのがよいが、そうしたときに、入射瞳をより物体側に位置させることができるので、前玉径を小さくでき、レンズ系のコンパクト化につながる。   The second lens group may be configured by a negative lens L21, a negative lens L22, and a positive lens L23 in order from the object side. In this way, the rear principal point can be brought closer to the image side, so that the amount of movement during zooming can be reduced. As will be described later, the aperture stop is preferably disposed after the second lens group. In such a case, the entrance pupil can be positioned closer to the object side. Leads to a more compact design.

さらに、第2レンズ群の負レンズL21は像側に凹面を向けており、負レンズL22は物体側に凹面を向けており、負レンズL22と正レンズL23は接合されている構成とするとよい。第2レンズ群は変倍を担うレンズ群であるため、強い負パワーが必要であるが、反面大きな収差が発生しやすい。負レンズL21は、像側に凹面を、負レンズL22は物体側に凹面を向けた形状とすると、第2レンズ群内で発生する非点収差やコマ収差等の軸外収差を打ち消し、小さく抑えることができる。また、第2レンズ群を通過する軸外光線の光軸に対する角度が小さくなるため、変倍時第2レンズ群の移動に伴う収差変動も小さく抑えることができる。さらに、負レンズL22と正レンズL23を接合とすることで、色収差を補正することができる。   Further, the negative lens L21 of the second lens group may have a concave surface facing the image side, the negative lens L22 may have a concave surface facing the object side, and the negative lens L22 and the positive lens L23 may be cemented. Since the second lens group is a lens group responsible for zooming, strong negative power is required, but large aberrations are likely to occur. When the negative lens L21 has a concave surface on the image side and the negative lens L22 has a concave surface on the object side, the off-axis aberrations such as astigmatism and coma generated in the second lens group are canceled out and suppressed to a small value. be able to. In addition, since the angle of the off-axis light beam passing through the second lens group with respect to the optical axis becomes small, the aberration fluctuation accompanying the movement of the second lens group at the time of zooming can be kept small. Furthermore, chromatic aberration can be corrected by joining the negative lens L22 and the positive lens L23 together.

また、負レンズL21の硝材は以下の条件式を満足するとよい。   The glass material of the negative lens L21 should satisfy the following conditional expression.

1.70<Nd21 <2.20 ・・・(5)
ただし、Nd21 は負レンズL21のd線に対する屈折率である。
1.70 <N d21 <2.20 (5)
N d21 is the refractive index of the negative lens L21 with respect to the d line.

条件式(5)の上限の2.20を越えると、硝材の入手性や量産性が悪くなるため、コストアップにつながる。下限の1.70を越えると、所望の屈折力を得るのにレンズ面の曲率を大きくしなければならず、非点収差やコマ収差が大きくなりやすい。   If the upper limit of 2.20 in conditional expression (5) is exceeded, the availability and mass productivity of the glass material will deteriorate, leading to an increase in cost. If the lower limit of 1.70 is exceeded, the curvature of the lens surface must be increased to obtain the desired refractive power, and astigmatism and coma tend to increase.

さらに、以下を満足するとなおよい。   Furthermore, it is even better if the following is satisfied.

1.75<Nd21 <2.05 ・・・(5)’
さらに、以下を満足するとさらによい。
1.75 <N d21 <2.05 (5) ′
Furthermore, it is better to satisfy the following.

1.80<Nd21 <1.90 ・・・(5)”
正レンズL23の硝材は以下の条件式を満足するようにするとよい。
1.80 <N d21 <1.90 (5) ”
The glass material of the positive lens L23 should satisfy the following conditional expression.

1.780<Nd23 <2.100 ・・・(6)
13.0<νd23 <32.0 ・・・(7)
ただし、Nd23 、νd23 は正レンズL23のd線に対するそれぞれ屈折率、アッベ数である。
1.780 <N d23 <2.100 (6)
13.0 <ν d23 <32.0 (7)
Here, N d23 and ν d23 are a refractive index and an Abbe number for the d line of the positive lens L23, respectively.

条件式(6)の上限の2.100を越えると、硝材の入手性や量産性が悪く、コストアップにつながる。下限の1.780を越えると、所望の屈折力を得るのにレンズ面の曲率を大きくしなければならず、非点収差やコマ収差が発生しやすい。   If the upper limit of 2.100 in conditional expression (6) is exceeded, the availability and mass productivity of the glass material are poor, leading to an increase in cost. If the lower limit of 1.780 is exceeded, the curvature of the lens surface must be increased to obtain the desired refractive power, and astigmatism and coma are likely to occur.

条件式(7)の上限の32.0を越えると、色収差の補正が不十分になる。下限の13.0を越えると、2次スペクトルの補正ができなくなり、撮影画像に色にじみが発生しやすくなる。   If the upper limit of 32.0 in conditional expression (7) is exceeded, correction of chromatic aberration will be insufficient. If the lower limit of 13.0 is exceeded, correction of the secondary spectrum becomes impossible and color blurring tends to occur in the captured image.

条件式(6)について、以下を満足するとなおよい。   Regarding conditional expression (6), it is more preferable that the following is satisfied.

1.840<Nd23 <2.020 ・・・(6)’
さらに、以下を満足するとさらによい。
1.840 <N d23 <2.020 (6) ′
Furthermore, it is better to satisfy the following.

1.900<Nd23 <1.950 ・・・(6)”
条件式(7)について、以下を満足するとなおよい。
1.900 <N d23 <1.950 (6) ”
Regarding conditional expression (7), it is better to satisfy the following.

15.0<νd23 <26.0 ・・・(7)’
さらに、以下を満足するとさらによい。
15.0 <ν d23 <26.0 (7) ′
Furthermore, it is better to satisfy the following.

17.0<νd23 <23.5 ・・・(7)”
第3レンズ群は、物体側から順に、正レンズ、負レンズからなる構成とするとよい。このような構成にすると、前側主点をより物体側に出せるので、変倍時の移動量を小さく抑えることができ、レンズ系の小型化につながる。また、これらを接合レンズとすることで、軸上色収差の補正を行うことができる。また、最も物体側に非球面を配置することで、球面収差補正の補正に効果がある。
17.0 <ν d23 <23.5 (7) ”
The third lens group may be composed of a positive lens and a negative lens in order from the object side. With such a configuration, the front principal point can be brought out closer to the object side, so that the amount of movement at the time of zooming can be kept small, leading to a reduction in the size of the lens system. Further, by using these as cemented lenses, axial chromatic aberration can be corrected. Further, by arranging the aspherical surface on the most object side, it is effective for correcting spherical aberration correction.

第4レンズ群は、物体側から順に、正レンズ、像側に凹面を向けた負レンズからなる構成とするとよい。このような構成にすると、前側主点をより物体側に出せるので、変倍時の移動量を小さく抑えることができ、レンズ系の小型化につながる。また、これらを接合とすることで、色収差の補正を行うことができる。第4レンズ群の最も像側の面は像側に凹面を向けた形状とするとよい。このように構成することで、第4レンズ群を射出する軸外光線を跳ね上げてCCD等の電子撮像素子への入射角を適正な角度にし、効率良く受光面に光線を入れることができる。   The fourth lens group may be composed of, in order from the object side, a positive lens and a negative lens with a concave surface facing the image side. With such a configuration, the front principal point can be brought out closer to the object side, so that the amount of movement at the time of zooming can be kept small, leading to a reduction in the size of the lens system. Moreover, chromatic aberration can be corrected by joining them. The most image side surface of the fourth lens group may have a concave surface facing the image side. With this configuration, the off-axis light beam emitted from the fourth lens group can be flipped up so that the incident angle to the electronic image pickup device such as a CCD becomes an appropriate angle, and the light beam can be efficiently put into the light receiving surface.

このとき、第4レンズ群の負レンズの硝材は以下の条件式を満足するとよい。   At this time, the glass material of the negative lens of the fourth lens group should satisfy the following conditional expression.

1.830<Nd4n <2.100 ・・・(8)
20.0<νd4n <38.0 ・・・(9)
ただし、Nd4n 、νd4n は第4レンズ群の負レンズのd線に対するそれぞれ屈折率、アッベ数である。
1.830 <N d4n <2.100 (8)
20.0 <ν d4n <38.0 (9)
Here, N d4n and ν d4n are the refractive index and Abbe number for the d-line of the negative lens in the fourth lens group, respectively.

条件式(7)の上限の2.100を越えると、硝材の入手性や量産性が悪く、コストアップにつながる。下限の1.830を越えると、所望の屈折力を得るのに面の曲率を大きくしなければならず、非点収差やコマ収差の発生が大きくなりやすい。   If the upper limit of 2.100 in conditional expression (7) is exceeded, the availability and mass productivity of the glass material are poor, leading to an increase in cost. If the lower limit of 1.830 is exceeded, the curvature of the surface must be increased in order to obtain the desired refractive power, and astigmatism and coma are likely to occur.

条件式(8)の上限の38.0を越えると、色収差の補正が不十分になる。下限の20.0を越えると、このレンズで発生する短波長側の色収差が大きくなりすぎ、色収差の2次スペクトルの補正ができなくなり、撮影画像に色にじみが発生しやすくなる。   If the upper limit of 38.0 in conditional expression (8) is exceeded, correction of chromatic aberration will be insufficient. If the lower limit of 20.0 is exceeded, chromatic aberration on the short wavelength side generated by this lens will be too large, and correction of the secondary spectrum of chromatic aberration will not be possible, and color blurring will tend to occur in the photographed image.

条件式(8)について、以下を満足するとなおよい。   Regarding conditional expression (8), it is better to satisfy the following.

1.890<Nd4n <2.060 ・・・(8)’
さらに、以下を満足するとさらによい。
1.890 <N d4n <2.060 (8) ′
Furthermore, it is better to satisfy the following.

1.970<Nd4n <2.020 ・・・(8)”
条件式(9)について、以下を満足するとなおよい。
1.970 <N d4n <2.020 (8) ”
Regarding conditional expression (9), it is better to satisfy the following.

23.0<νd4n <32.0 ・・・(9)’
さらに、以下を満足するとさらによい。
23.0 <ν d4n <32.0 (9) ′
Furthermore, it is better to satisfy the following.

25.0<νd4n <30.0 ・・・(9)”
第5レンズ群は1枚の正レンズのみからなる構成とするとよい。第5レンズ群は主に射出瞳を像面から遠ざける作用をするので、1枚で必要十分である。このとき、第5レンズ群の正レンズは、以下の条件式を満足するとよい。
25.0 <ν d4n <30.0 (9) ”
The fifth lens group is preferably composed of only one positive lens. Since the fifth lens group mainly acts to move the exit pupil away from the image plane, one lens is necessary and sufficient. At this time, the positive lens of the fifth lens group should satisfy the following conditional expression.

1.750<Nd5p <2.100 ・・・(10)
22.0<νd5p <38.0 ・・・(11)
ただし、Nd5p 、νd5p は第5レンズ群の正レンズのd線に対するそれぞれ屈折率、アッベ数である。
1.750 <N d5p <2.100 (10)
22.0 <ν d5p <38.0 (11)
Here, N d5p and ν d5p are the refractive index and Abbe number for the d-line of the positive lens in the fifth lens group, respectively.

条件式(10)はこのレンズで発生する軸外収差を適正範囲内に抑えるための条件式、条件式(11)は倍率色収差補正に関する条件式である。第1レンズ群を少ない枚数構成とすると、第1レンズ群で発生した倍率色収差が残存しやすいが、第5レンズ群を通過する軸外光線は光線高が高いため、第1レンズ群で残存した倍率色収差を補正するのに都合がよい。   Conditional expression (10) is a conditional expression for suppressing off-axis aberrations generated in this lens within an appropriate range, and conditional expression (11) is a conditional expression for correcting chromatic aberration of magnification. When the first lens group is configured in a small number, the lateral chromatic aberration generated in the first lens group tends to remain, but the off-axis light beam passing through the fifth lens group has a high ray height, and therefore remains in the first lens group. Convenient for correcting lateral chromatic aberration.

条件式(10)の上限の2.100を越えると、硝材の入手性や量産性が悪くなり、コストアップにつながる。下限の1.750を越えると、所望の屈折力を得るのに面の曲率を大きくしなければならず、非点収差やコマ収差の発生が大きくなりやすい。   If the upper limit of 2.100 in conditional expression (10) is exceeded, the availability and mass productivity of the glass material will deteriorate, leading to an increase in cost. If the lower limit of 1.750 is exceeded, the curvature of the surface must be increased in order to obtain the desired refractive power, and astigmatism and coma are likely to increase.

条件式(11)の上限の38.0を越えると、倍率色収差の補正が不十分になる。下限の22.0を越えると、このレンズで発生する短波長側の色収差が大きくなりすぎて2次スペクトル補正ができなくなり、撮影画像に色にじみが発生する。   If the upper limit of 38.0 in conditional expression (11) is exceeded, correction of lateral chromatic aberration will be insufficient. If the lower limit of 22.0 is exceeded, the chromatic aberration on the short wavelength side generated by this lens will be too large to perform secondary spectrum correction, and color blur will occur in the photographed image.

条件式(10)について、以下を満足するとなおよい。   Regarding conditional expression (10), it is more preferable that the following is satisfied.

1.780<Nd5p <2.060 ・・・(10)’
さらに、以下を満足するとさらによい。
1.780 <N d5p <2.060 (10) ′
Furthermore, it is better to satisfy the following.

1.800<Nd5p <2.020 ・・・(10)”
条件式(11)について、以下を満足するとなおよい。
1.800 <N d5p <2.020 (10) ”
Regarding conditional expression (11), it is better to satisfy the following.

23.0<νd5p <32.0 ・・・(11)’
さらに、以下を満足するとさらによい。
23.0 <ν d5p <32.0 (11) ′
Furthermore, it is better to satisfy the following.

24.0<νd5p <29.0 ・・・(11)”
次に、ズームレンズを構成する各レンズ群のパワーについて述べる。
24.0 <ν d5p <29.0 (11) ”
Next, the power of each lens group constituting the zoom lens will be described.

第1レンズ群は、以下の条件式を満足するのがよい。   The first lens group should satisfy the following conditional expression.

2.50<f1 /fw <8.00 ・・・(12)
ただし、f1 :第1レンズ群の焦点距離、
w :広角端での全系焦点距離、
である。
2.50 <f 1 / f w <8.00 (12)
Where f 1 is the focal length of the first lens group,
f w : the focal length of the entire system at the wide-angle end,
It is.

条件式(12)の上限の8.00を越えると、第1レンズ群のパワーが弱くなりすぎてレンズ系の全長が長くなりやすくなり、鏡筒のコンパクト化が難しくなる。下限の2.50を越えると、パワーが強くなりすぎて収差の発生が大きくなる。特に色収差の発生が大きくなり、撮影画像の色にじみが顕著になってしまう。   If the upper limit of 8.00 in conditional expression (12) is exceeded, the power of the first lens group becomes too weak, the overall length of the lens system tends to be long, and it is difficult to make the lens barrel compact. If the lower limit of 2.50 is exceeded, the power becomes too strong and aberrations increase. In particular, the occurrence of chromatic aberration increases, and the color blur of the captured image becomes noticeable.

さらに、以下を満足するとなおよい。   Furthermore, it is even better if the following is satisfied.

3.00<f1 /fw <5.00 ・・・(12)’
さらに、以下を満足するとさらによい。
3.00 <f 1 / f w <5.00 (12) ′
Furthermore, it is better to satisfy the following.

3.50<f1 /fw <4.20 ・・・(12)”
第2レンズ群は、以下の条件式を満足するのがよい。
3.50 <f 1 / f w <4.20 (12) ”
The second lens group should satisfy the following conditional expression.

−2.10<f2 /fw <−0.05 ・・・(13)
ただし、f2 :第2レンズ群の焦点距離、
w :広角端での全系焦点距離、
である。
-2.10 <f 2 / f w <−0.05 (13)
Where f 2 is the focal length of the second lens group,
f w : the focal length of the entire system at the wide-angle end,
It is.

条件式(13)の下限の−2.10を越えると、第2レンズ群のパワーが弱くなりすぎるため変倍のための移動量が大きくなり、鏡筒のコンパクト化が難しくなる。上限の−0.05を越えると、第2レンズ群の近軸結像倍率が小さくなり、やはり変倍のための移動量が大きくなるし、収差補正も困難になる。   If the lower limit of -2.10 of the conditional expression (13) is exceeded, the power of the second lens group becomes too weak, and the amount of movement for zooming becomes large, making it difficult to make the lens barrel compact. When the upper limit of −0.05 is exceeded, the paraxial imaging magnification of the second lens group decreases, the amount of movement for zooming also increases, and aberration correction becomes difficult.

さらに、以下を満足するとなおよい。   Furthermore, it is even better if the following is satisfied.

−1.70<f2 /fw <−0.07 ・・・(13)’
さらに、以下を満足するとさらによい。
−1.70 <f 2 / f w <−0.07 (13) ′
Furthermore, it is better to satisfy the following.

−1.30<f2 /fw <−0.09 ・・・(13)”
第3レンズ群は、以下の条件式を満足するのがよい。
−1.30 <f 2 / f w <−0.09 (13) ”
The third lens group should satisfy the following conditional expression.

1.40<f3 /fw <2.80 ・・・(14)
ただし、f3 :第3レンズ群の焦点距離、
w :広角端での全系焦点距離、
である。
1.40 <f 3 / f w <2.80 (14)
Where f 3 is the focal length of the third lens group,
f w : the focal length of the entire system at the wide-angle end,
It is.

条件式(14)の上限の2.80を越えると、第3レンズ群のパワーが弱くなりすぎるため変倍のための移動量が大きくなり、鏡筒のコンパクト化が難しくなる。下限の1.40を越えると、第3レンズ群の近軸結像倍率が小さくなり、やはり変倍のための移動量が大きくなるし、収差補正も困難になる。   If the upper limit of 2.80 in conditional expression (14) is exceeded, the power of the third lens group becomes too weak, and the amount of movement for zooming increases, making it difficult to make the lens barrel compact. When the lower limit of 1.40 is exceeded, the paraxial imaging magnification of the third lens group becomes small, the amount of movement for zooming also becomes large, and aberration correction becomes difficult.

さらに、以下を満足するとなおよい。   Furthermore, it is even better if the following is satisfied.

1.60<f3 /fw <2.30 ・・・(14)’
さらに、以下を満足するとさらによい。
1.60 <f 3 / f w <2.30 (14) ′
Furthermore, it is better to satisfy the following.

1.78<f3 /fw <1.93 ・・・(14)”
第4レンズ群は、以下の条件式を満足するのがよい。
1.78 <f 3 / f w <1.93 (14) ”
The fourth lens group should satisfy the following conditional expression.

−9.00<f4 /fw <−5.80 ・・・(15)
ただし、f4 :第4レンズ群の焦点距離、
w :広角端での全系焦点距離、
である。
−9.00 <f 4 / f w <−5.80 (15)
Where f 4 is the focal length of the fourth lens group,
f w : the focal length of the entire system at the wide-angle end,
It is.

条件式(15)の下限の−9.00を越えると、第4レンズ群のパワーが弱くなりすぎて、CCD等の電子撮像素子への光線入射角度が大きくなる。すると、画面周辺での明るさの陰り(シェーディング)が発生しやすくなり好ましくない。上限の−5.80を越えると、第4群のパワーが強くなりすぎ、収差発生が大きくなりやすい。   If the lower limit of −9.00 of conditional expression (15) is exceeded, the power of the fourth lens group becomes too weak, and the angle of incidence of light on an electronic imaging device such as a CCD becomes large. Then, the shading of the brightness around the screen tends to occur, which is not preferable. If the upper limit of −5.80 is exceeded, the power of the fourth group becomes too strong, and the occurrence of aberrations tends to increase.

さらに、以下を満足するとなおよい。   Furthermore, it is even better if the following is satisfied.

−8.00<f4 /fw <−6.20 ・・・(15)’
さらに、以下を満足するとさらによい。
−8.00 <f 4 / f w <−6.20 (15) ′
Furthermore, it is better to satisfy the following.

−7.30<f4 /fw <−6.60 ・・・(15)”
第5レンズ群は、以下の条件式を満足するのがよい。
−7.30 <f 4 / f w <−6.60 (15) ”
The fifth lens group should satisfy the following conditional expression:

1.10<f5 /fw <3.00 ・・・(16)
ただし、f5 :第5レンズ群の焦点距離、
w :広角端での全系焦点距離、
である。
1.10 <f 5 / f w <3.00 (16)
Where f 5 is the focal length of the fifth lens group,
f w : the focal length of the entire system at the wide-angle end,
It is.

条件式(16)の上限の3.00を越えると、第5レンズ群のパワーが弱くなりすぎて、CCD等の電子撮像素子への光線入射角度が大きくなる。すると、画面周辺での明るさの陰り(シェーディング)が発生しやすくなり好ましくない。下限の1.10を越えると、第5レンズ群のパワーが強くなりすぎ、第5レンズ群でフォーカシングを行うときの収差変動が大きくなり、至近撮影時に良好な画像を得ることが難しくなる。   If the upper limit of 3.00 to conditional expression (16) is exceeded, the power of the fifth lens group becomes too weak, and the angle of incidence of light on an electronic imaging device such as a CCD becomes large. Then, the shading of the brightness around the screen tends to occur, which is not preferable. If the lower limit of 1.10 is exceeded, the power of the fifth lens group becomes too strong, and the aberration fluctuations when focusing with the fifth lens group become large, making it difficult to obtain a good image during close-up shooting.

さらに、以下を満足するとなおよい。   Furthermore, it is even better if the following is satisfied.

1.40<f5 /fw <2.55 ・・・(16)’
さらに、以下を満足するとさらによい。
1.40 <f 5 / f w <2.55 (16) ′
Furthermore, it is better to satisfy the following.

1.70<f5 /fw <2.05 ・・・(16)”
次に、開口絞りとシャッターは、第2レンズ群と第3レンズ群の間に配置するのがよい。こうすると、第3レンズ群以降を通過する軸外光線高が必要以上に高くならずにすむため、第3レンズ群以降のレンズ群が変倍時に移動する際の軸外諸収差の変動を小さく抑えることができる。また、変倍時に第3レンズ群と一体で移動させるとよい。こうすると、入射瞳を物体側から見て浅くでき、射出瞳を像面から遠くできる。さらに、軸外光線の高さが低くなる場所であるので、シャッターユニットが大型化せずにすみ、開口絞り及びシャッターを移動させるときのデッドスペースが小さくてすむ。
1.70 <f 5 / f w <2.05 (16) ”
Next, the aperture stop and the shutter are preferably arranged between the second lens group and the third lens group. In this way, the height of the off-axis light beam passing through the third lens group and the subsequent lens does not need to be higher than necessary, so that the fluctuations in off-axis aberrations when the lens group after the third lens group moves during zooming are reduced. Can be suppressed. Further, it is preferable to move it together with the third lens group at the time of zooming. In this way, the entrance pupil can be made shallow when viewed from the object side, and the exit pupil can be made far from the image plane. Further, since the height of the off-axis light beam is lowered, the shutter unit does not need to be enlarged, and the dead space when moving the aperture stop and the shutter can be reduced.

至近物点に対するフォーカシングは、第4レンズ群又は第5レンズ群によるインナーフォーカスとするとよい。インナーフォーカス方式は、全体繰り出し方式や第1レンズ群繰り出しによるフォーカスと比べて、移動レンズ群が軽量なため、モータに掛かる負荷が少ない、全長が大きくならない、鏡枠内部に駆動モータを配置できるため鏡枠の径方向が大きくならない等、レイアウト上小型化に有利である。特に第5レンズ群によるフォーカシング方式とすれば、軸外像面の変動が小さくてすむため、至近距離の被写体の撮影の際にも、画面の周辺まで良好な光学性能を確保することができる。   Focusing on the closest object point may be an inner focus by the fourth lens group or the fifth lens group. The inner focus method has a lighter moving lens group compared to the entire extension method and the focus by the first lens group extension, so the load on the motor is less, the total length does not increase, and the drive motor can be placed inside the lens frame This is advantageous for downsizing because the radial direction of the lens frame does not increase. In particular, when the focusing method using the fifth lens group is used, fluctuations in the off-axis image plane can be reduced, so that good optical performance can be ensured up to the periphery of the screen even when shooting an object at a close distance.

本発明のズームレンズにおいて歪曲収差の発生を許容すると、画角の割に最も物体側の面の入射光線高が低くなるために、最も物体側に位置するレンズの外径を小さくすることが可能である。そこで、意図的に樽型歪曲収差を発生させ、そのズームレンズを通じて結像された像を電子撮像素子にて撮像して得られた画像データを加工して形状を変化させる機能を用いて、光学系で発生した歪曲収差による画像歪みを補正して観察できるようにするとよい。特に、カメラ等の電子撮像装置からすでに補正された形の画像データとして出力するのが理想的である。なお、光学系については、略無限遠物点合焦時にズームレンズの歪曲収差に関して、以下の条件式を満足するのがよい。   When distortion of the zoom lens according to the present invention is allowed to occur, the height of the incident light on the surface closest to the object side becomes lower for the angle of view, so the outer diameter of the lens positioned closest to the object side can be reduced. It is. Therefore, the function of changing the shape by intentionally generating barrel distortion and processing the image data obtained by picking up the image formed through the zoom lens with an electronic image pickup device is used. It is preferable that the image distortion due to distortion generated in the system is corrected so that the image can be observed. In particular, it is ideal to output image data that has already been corrected from an electronic imaging device such as a camera. Regarding the optical system, it is preferable that the following conditional expression is satisfied with respect to the distortion aberration of the zoom lens when focusing on an object point at approximately infinity.

0.850<y07/(fw ・ tanω07w )<0.970 ・・・(17)
ただし、電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10とすると、y07=0.7y10、ω07w は広角端における電子撮像素子の有効撮像面上の中心からy07 の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
0.850 <y 07 / (f w · tanω 07w) <0.970 ··· (17)
However, if the distance (maximum image height) from the center to the farthest point in the effective imaging plane (in the plane where imaging is possible) of the electronic imaging device is y 10 , y 07 = 0.7 y 10 and ω 07w are at the wide-angle end. Is an angle with respect to the optical axis in the object direction corresponding to the image point connected to the position of y07 from the center on the effective imaging surface of the electronic imaging device.

条件式(17)の上限の0.970を越えて1前後の値のとき、歪曲収差が光学的に良好に補正されたことに相当するが、光学系の小型化を維持しながら広い視野角にわたって像として取り込むことが困難になる。下限の0.850を越えると、光学系の歪曲収差による画像歪みを画像処理にて補正した場合、画角周辺部の放射方向への引き伸ばし倍率が高くなりすぎて画像周辺部の画像鮮鋭度の劣化が目立つようになる。   A value of around 1 exceeding the upper limit of 0.970 in conditional expression (17) is equivalent to a good correction of distortion aberration optically, but a wide viewing angle while maintaining a compact optical system. It becomes difficult to capture as an image. If the lower limit of 0.850 is exceeded, when image distortion due to distortion of the optical system is corrected by image processing, the enlargement magnification in the radial direction at the periphery of the angle of view becomes too high and the image sharpness at the periphery of the image becomes low. Deterioration becomes noticeable.

なお、以下を満足するとなおよい。   In addition, it is better to satisfy the following.

0.880<y07/(fw ・ tanω07w )<0.960 ・・・(17)’
さらに、以下を満たすと最もよい。
0.880 <y 07 / (f w tan ω 07w ) <0.960 (17) ′
Furthermore, it is best to satisfy the following.

0.910<y07/(fw ・ tanω07w )<0.950 ・・・(17)”
上述の各構成は任意に複数を同時に満足してもよく、それにより、より良好な効果を得ることができる。
0.910 <y 07 / (f w · tanω 07w) <0.950 ··· (17) "
Each of the above-described configurations may arbitrarily satisfy a plurality at the same time, whereby a better effect can be obtained.

また、各条件式についても任意に組み合わせて満足すれば、より良好な効果を得ることができる。   Further, if each conditional expression is satisfied by being arbitrarily combined, a better effect can be obtained.

以上の本発明のズームレンズは、そのズームレンズによって形成された物体像を受光する位置に配置された撮像素子を備えるようにして電子撮像装置として構成することができる。   The zoom lens of the present invention described above can be configured as an electronic image pickup apparatus by including an image pickup element disposed at a position for receiving an object image formed by the zoom lens.

また、以上の本発明のズームレンズは、そのズームレンズによって形成された物体像を受光する位置に配置された撮像素子と、その撮像素子によって光電変換された電子信号を処理するCPUと、操作者がCPUに入力したい情報信号を入力するための入力部と、CPUからの出力を表示装置(例えば、LCD)に表示する表示処理手段と、CPUからの出力を記録する記録媒体とを含み、CPUは、ズームレンズによって撮像素子で受光された物体像を表示装置に表示するように構成されている情報処理装置として構成することができる。   In addition, the zoom lens of the present invention described above includes an image sensor disposed at a position for receiving an object image formed by the zoom lens, a CPU that processes an electronic signal photoelectrically converted by the image sensor, and an operator. Including an input unit for inputting an information signal desired to be input to the CPU, display processing means for displaying an output from the CPU on a display device (for example, LCD), and a recording medium for recording the output from the CPU. Can be configured as an information processing apparatus configured to display an object image received by an image sensor with a zoom lens on a display device.

その場合の情報処理装置としては、携帯端末機器(例えば、携帯電話、PDA等)がある。   In this case, the information processing apparatus includes a mobile terminal device (for example, a mobile phone or a PDA).

また、以上の本発明のズームレンズは、そのズームレンズによって形成された物体像を受光する位置に配置された撮像素子と、その撮像素子によって光電変換された電子信号を処理するCPUと、その撮像素子で受光された物体像を観察可能に表示する表示素子とを有し、撮像素子で受光された物体像の像情報を記録するための記録媒体(例えば、メモリでメモリカードやDVD±RW等)を内蔵又は挿脱するように構成され、CPUが、撮像素子に受光された物体像を表示素子に表示する表示装置と、撮像素子に受光された物体像を記録媒体に記録する記録処理手段とを有する電子カメラ装置として構成することができる。   In addition, the zoom lens of the present invention described above includes an image sensor disposed at a position for receiving an object image formed by the zoom lens, a CPU that processes an electronic signal photoelectrically converted by the image sensor, and an image of the image sensor. A display element that displays the object image received by the element so as to be observable, and a recording medium for recording image information of the object image received by the image sensor (for example, a memory card or DVD ± RW in a memory) ), And a display processing unit that displays an object image received by the image sensor on the display element, and a recording processing unit that records the object image received by the image sensor on a recording medium Can be configured as an electronic camera device.

以上説明したように、本発明により、ズーム比が大きく、広角端での画角が大きく、電子撮像素子に適しており、光学性能がさらに向上されていて、鏡筒のコンパクト化に好適で、安価なズームレンズを提供することができる。   As described above, according to the present invention, the zoom ratio is large, the angle of view at the wide-angle end is large, suitable for an electronic imaging device, optical performance is further improved, and it is suitable for downsizing of the lens barrel, An inexpensive zoom lens can be provided.

以下、本発明のズームレンズの実施例1〜6について説明する。実施例1〜6の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜図6に示す。図中、第1レンズ群はG1、第2レンズ群はG2、開口絞りはS、第3レンズ群はG3、第4レンズ群はG4、第5レンズ群はG5、IRカットコートを施したローパスフィルター等を構成する平行平板はF、電子撮像素子(CCDやCMOS)のカバーガラスの平行平板はC、像面(電子撮像素子の受光面)はIで示してある。なお、カバーガラスCの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスCにローパスフィルター作用を持たせるようにしてもよい。   Examples 1 to 6 of the zoom lens according to the present invention will be described below. FIGS. 1 to 6 show lens cross-sectional views of the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 6, respectively. In the figure, the first lens group is G1, the second lens group is G2, the aperture stop is S, the third lens group is G3, the fourth lens group is G4, the fifth lens group is G5, and an IR cut coat is applied. A parallel plate constituting a filter or the like is indicated by F, a parallel plate of a cover glass of an electronic image sensor (CCD or CMOS) is indicated by C, and an image plane (light receiving surface of the electronic image sensor) is indicated by I. In addition, you may give the multilayer film for wavelength range limitation to the surface of the cover glass C. FIG. Further, the cover glass C may have a low-pass filter action.

実施例1のズーム光学系は、図1に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は広角端から中間状態にかけては物体側へ若干移動し、中間状態から望遠端にかけては像側へ移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に第1レンズ群G2との間隔を縮めながら物体側に単調に移動する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態にかけては広げながら、中間状態から望遠端にかけては狭めながら物体側に移動する。第5レンズ群G5は像側へ移動する。   As shown in FIG. 1, the zoom optical system according to the first embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a first lens unit having a positive refractive power. 3 lens group G3, 4th lens group G4 of negative refracting power, and 5th lens group G5 of positive refracting power, and when changing magnification from the wide angle end to the telephoto end, the first lens group G1 The second lens group G2 moves slightly toward the object side from the wide-angle end to the intermediate state, moves toward the image side from the intermediate state to the telephoto end, and moves toward the image side from the position of the wide-angle end at the telephoto end. To position. The aperture stop S and the third lens group G3 move monotonously to the object side while integrally reducing the distance between the first lens group G2. The fourth lens group G4 moves toward the object side while widening the distance from the third lens group G3 from the wide-angle end to the intermediate state and narrowing from the intermediate state to the telephoto end. The fifth lens group G5 moves to the image side.

物体側から順に、第1レンズ群G1は、両凸正レンズ1枚からなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと両凸正レンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズと像側に凸面を向けた負メニスカスレンズの接合レンズからなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。開口絞りSは第3レンズ群G3の物体側に一体に位置する。   In order from the object side, the first lens group G1 includes one biconvex positive lens, the second lens group G2 includes a biconcave negative lens, and a cemented lens of a biconcave negative lens and a biconvex positive lens. The third lens group G3 includes a cemented lens of a biconvex positive lens and a negative meniscus lens having a convex surface facing the image side, and the fourth lens group G4 has a positive meniscus lens having a convex surface facing the object side and a convex surface facing the object side. The fifth lens group G5 is composed of a single biconvex positive lens. The aperture stop S is integrally located on the object side of the third lens group G3.

非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凹負レンズの両面、第3レンズ群G3の接合レンズの最も物体側の面、第4レンズ群G4の接合レンズの最も物体側の面の6面に用いている。   The aspheric surfaces are both surfaces of the biconvex positive lens of the first lens group G1, both surfaces of the biconcave negative lens of the second lens group G2, the most object side surface of the cemented lens of the third lens group G3, and the fourth lens group G4. Are used on the six surfaces closest to the object side.

実施例2のズーム光学系は、図2に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は広角端から中間状態にかけては物体側へ若干移動し、中間状態から望遠端にかけては像側へ移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に第1レンズ群G2との間隔を縮めながら物体側に単調に移動する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態にかけては広げながら、中間状態から望遠端にかけては狭めながら物体側に移動する。第5レンズ群G5は像側へ移動する。   As shown in FIG. 2, the zoom optical system according to the second embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a first lens unit having a positive refractive power. 3 lens group G3, 4th lens group G4 of negative refracting power, and 5th lens group G5 of positive refracting power, and when changing magnification from the wide angle end to the telephoto end, the first lens group G1 The second lens group G2 moves slightly toward the object side from the wide-angle end to the intermediate state, moves toward the image side from the intermediate state to the telephoto end, and moves toward the image side from the position of the wide-angle end at the telephoto end. To position. The aperture stop S and the third lens group G3 move monotonously to the object side while integrally reducing the distance between the first lens group G2. The fourth lens group G4 moves toward the object side while widening the distance from the third lens group G3 from the wide-angle end to the intermediate state and narrowing from the intermediate state to the telephoto end. The fifth lens group G5 moves to the image side.

物体側から順に、第1レンズ群G1は、両凸正レンズ1枚からなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと両凸正レンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズと両凹負レンズの接合レンズからなり、第4レンズ群G4は、両凸正レンズと両凹負レンズの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。開口絞りSは第3レンズ群G3の物体側に一体に位置する。   In order from the object side, the first lens group G1 includes one biconvex positive lens, the second lens group G2 includes a biconcave negative lens, and a cemented lens of a biconcave negative lens and a biconvex positive lens. The third lens group G3 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, the fourth lens group G4 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, and the fifth lens group G5 is It consists of one biconvex positive lens. The aperture stop S is integrally located on the object side of the third lens group G3.

非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凹負レンズの両面、第3レンズ群G3の接合レンズの最も物体側の面と最も像側の面の6面に用いている。   The aspherical surfaces are both surfaces of the biconvex positive lens of the first lens group G1, both surfaces of the biconcave negative lens of the second lens group G2, and the most object side surface and the most image side surface of the cemented lens of the third lens group G3. It is used for 6 sides.

実施例3のズーム光学系は、図3に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は広角端から中間状態にかけては物体側へ若干移動し、中間状態から望遠端にかけては像側へ移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に第1レンズ群G2との間隔を縮めながら物体側に単調に移動する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態にかけては広げながら、中間状態から望遠端にかけては狭めながら物体側に移動する。第5レンズ群G5は像側へ移動する。   As shown in FIG. 3, the zoom optical system according to the third embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a first lens unit having a positive refractive power. 3 lens group G3, 4th lens group G4 of negative refracting power, and 5th lens group G5 of positive refracting power, and when changing magnification from the wide angle end to the telephoto end, the first lens group G1 The second lens group G2 moves slightly toward the object side from the wide-angle end to the intermediate state, moves toward the image side from the intermediate state to the telephoto end, and moves toward the image side from the position of the wide-angle end at the telephoto end. To position. The aperture stop S and the third lens group G3 move monotonously to the object side while integrally reducing the distance between the first lens group G2. The fourth lens group G4 moves toward the object side while widening the distance from the third lens group G3 from the wide-angle end to the intermediate state and narrowing from the intermediate state to the telephoto end. The fifth lens group G5 moves to the image side.

物体側から順に、第1レンズ群G1は、両凸正レンズ1枚からなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと両凸正レンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズと両凹負レンズの接合レンズからなり、第4レンズ群G4は、両凸正レンズと両凹負レンズの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。開口絞りSは第3レンズ群G3の物体側に一体に位置する。   In order from the object side, the first lens group G1 includes one biconvex positive lens, the second lens group G2 includes a biconcave negative lens, and a cemented lens of a biconcave negative lens and a biconvex positive lens. The third lens group G3 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, the fourth lens group G4 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, and the fifth lens group G5 is It consists of one biconvex positive lens. The aperture stop S is integrally located on the object side of the third lens group G3.

非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凹負レンズの両面、第3レンズ群G3の接合レンズの最も物体側の面と最も像側の面の6面に用いている。   The aspherical surfaces are both surfaces of the biconvex positive lens of the first lens group G1, both surfaces of the biconcave negative lens of the second lens group G2, and the most object side surface and the most image side surface of the cemented lens of the third lens group G3. It is used for 6 sides.

実施例4のズーム光学系は、図4に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は像側へ移動する。開口絞りSと第3レンズ群G3は一体に第1レンズ群G2との間隔を縮めながら物体側に単調に移動する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態にかけては広げながら、中間状態から望遠端にかけては狭めながら物体側に移動する。第5レンズ群G5は像側へ移動する。   As shown in FIG. 4, the zoom optical system according to the fourth embodiment includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a first lens unit having a positive refractive power. 3 lens group G3, 4th lens group G4 of negative refracting power, and 5th lens group G5 of positive refracting power, and when changing magnification from the wide angle end to the telephoto end, the first lens group G1 Moving to the object side, the second lens group G2 moves to the image side. The aperture stop S and the third lens group G3 move monotonously to the object side while integrally reducing the distance between the first lens group G2. The fourth lens group G4 moves toward the object side while widening the distance from the third lens group G3 from the wide-angle end to the intermediate state and narrowing from the intermediate state to the telephoto end. The fifth lens group G5 moves to the image side.

物体側から順に、第1レンズ群G1は、両凸正レンズ1枚からなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと両凸正レンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズと両凹負レンズの接合レンズからなり、第4レンズ群G4は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。開口絞りSは第3レンズ群G3の物体側に一体に位置する。   In order from the object side, the first lens group G1 includes one biconvex positive lens, the second lens group G2 includes a biconcave negative lens, and a cemented lens of a biconcave negative lens and a biconvex positive lens. The third lens group G3 includes a cemented lens of a biconvex positive lens and a biconcave negative lens. The fourth lens group G4 includes a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side. The fifth lens group G5 is composed of a cemented lens, and is composed of one biconvex positive lens. The aperture stop S is integrally located on the object side of the third lens group G3.

非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凹負レンズの両面、第3レンズ群G3の接合レンズの最も物体側の面と最も像側の面の6面に用いている。   The aspherical surfaces are both surfaces of the biconvex positive lens of the first lens group G1, both surfaces of the biconcave negative lens of the second lens group G2, and the most object side surface and the most image side surface of the cemented lens of the third lens group G3. It is used for 6 sides.

実施例5のズーム光学系は、図5に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は広角端から中間状態にかけては物体側へ若干移動し、中間状態から望遠端にかけては像側へ移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に第1レンズ群G2との間隔を縮めながら物体側に単調に移動する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態にかけては広げながら、中間状態から望遠端にかけては狭めながら物体側に移動する。第5レンズ群G5は像側へ移動する。   As shown in FIG. 5, the zoom optical system according to the fifth embodiment includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a first lens unit having a positive refractive power. 3 lens group G3, 4th lens group G4 of negative refracting power, and 5th lens group G5 of positive refracting power, and when changing magnification from the wide angle end to the telephoto end, the first lens group G1 The second lens group G2 moves slightly toward the object side from the wide-angle end to the intermediate state, moves toward the image side from the intermediate state to the telephoto end, and moves toward the image side from the position of the wide-angle end at the telephoto end. To position. The aperture stop S and the third lens group G3 move monotonously to the object side while integrally reducing the distance between the first lens group G2. The fourth lens group G4 moves toward the object side while widening the distance from the third lens group G3 from the wide-angle end to the intermediate state and narrowing from the intermediate state to the telephoto end. The fifth lens group G5 moves to the image side.

物体側から順に、第1レンズ群G1は、両凸正レンズ1枚からなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと両凸正レンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズと両凹負レンズの接合レンズからなり、第4レンズ群G4は、両凸正レンズと両凹負レンズの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。開口絞りSは第3レンズ群G3の物体側に一体に位置する。   In order from the object side, the first lens group G1 includes one biconvex positive lens, the second lens group G2 includes a biconcave negative lens, and a cemented lens of a biconcave negative lens and a biconvex positive lens. The third lens group G3 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, the fourth lens group G4 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, and the fifth lens group G5 is It consists of one biconvex positive lens. The aperture stop S is integrally located on the object side of the third lens group G3.

非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凹負レンズの両面、第3レンズ群G3の接合レンズの最も物体側の面と最も像側の面の6面に用いている。   The aspherical surfaces are both surfaces of the biconvex positive lens of the first lens group G1, both surfaces of the biconcave negative lens of the second lens group G2, and the most object side surface and the most image side surface of the cemented lens of the third lens group G3. It is used for 6 sides.

実施例6のズーム光学系は、図6に示すように、物体側から順に、正屈折力の第1レンズ群G1、負屈折力の第2レンズ群G2、開口絞りS、正屈折力の第3レンズ群G3、負屈折力の第4レンズ群G4、正屈折力の第5レンズ群G5から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、第2レンズ群G2は広角端から中間状態にかけては物体側へ若干移動し、中間状態から望遠端にかけては像側へ移動し、望遠端では広角端の位置より像側に位置する。開口絞りSと第3レンズ群G3は一体に第1レンズ群G2との間隔を縮めながら物体側に単調に移動する。第4レンズ群G4は第3レンズ群G3との間隔を広角端から中間状態にかけては広げながら、中間状態から望遠端にかけては狭めながら物体側に移動する。第5レンズ群G5は像側へ移動する。   As shown in FIG. 6, the zoom optical system according to the sixth embodiment includes, in order from the object side, a first lens unit G1 having a positive refractive power, a second lens unit G2 having a negative refractive power, an aperture stop S, and a first lens unit having a positive refractive power. 3 lens group G3, 4th lens group G4 of negative refracting power, and 5th lens group G5 of positive refracting power, and when changing magnification from the wide angle end to the telephoto end, the first lens group G1 The second lens group G2 moves slightly toward the object side from the wide-angle end to the intermediate state, moves toward the image side from the intermediate state to the telephoto end, and moves toward the image side from the position of the wide-angle end at the telephoto end. To position. The aperture stop S and the third lens group G3 move monotonously to the object side while integrally reducing the distance between the first lens group G2. The fourth lens group G4 moves toward the object side while widening the distance from the third lens group G3 from the wide-angle end to the intermediate state and narrowing from the intermediate state to the telephoto end. The fifth lens group G5 moves to the image side.

物体側から順に、第1レンズ群G1は、両凸正レンズ1枚からなり、第2レンズ群G2は、両凹負レンズと、両凹負レンズと両凸正レンズの接合レンズからなり、第3レンズ群G3は、両凸正レンズと両凹負レンズの接合レンズからなり、第4レンズ群G4は、両凸正レンズと両凹負レンズの接合レンズからなり、第5レンズ群G5は、両凸正レンズ1枚からなる。開口絞りSは第3レンズ群G3の物体側に一体に位置する。   In order from the object side, the first lens group G1 includes one biconvex positive lens, the second lens group G2 includes a biconcave negative lens, and a cemented lens of a biconcave negative lens and a biconvex positive lens. The third lens group G3 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, the fourth lens group G4 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, and the fifth lens group G5 is It consists of one biconvex positive lens. The aperture stop S is integrally located on the object side of the third lens group G3.

非球面は、第1レンズ群G1の両凸正レンズの両面、第2レンズ群G2の両凹負レンズの両面、第3レンズ群G3の接合レンズの最も物体側の面と最も像側の面の6面に用いている。   The aspherical surfaces are both surfaces of the biconvex positive lens of the first lens group G1, both surfaces of the biconcave negative lens of the second lens group G2, and the most object side surface and the most image side surface of the cemented lens of the third lens group G3. It is used for 6 sides.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、2ωは画角、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 Hereinafter, numerical data of each embodiment described above, but the symbols are outside the above, f is the focal length, F NO is the F-number, 2 [omega is field angle, WE denotes a wide angle end, ST intermediate state, TE is The telephoto end, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d 2 ... Are the distances between the lens surfaces, n d1 , n d2 are the refractive index of the d-line of each lens, ν d1 , ν d2 ... is the Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A4 4 +A6 6 +A8 8 +A1010
ただし、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10はそれぞれ4次、6次、8次、10次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10
Here, r is a paraxial radius of curvature, K is a conical coefficient, and A 4 , A 6 , A 8 , and A 10 are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively.


実施例1
1 = 13.131 (非球面) d1 = 3.17 nd1 =1.49700 νd1 =81.54
2 = -145.288 (非球面) d2 = (可変)
3 = -37.836 (非球面) d3 = 0.80 nd2 =1.80610 νd2 =40.92
4 = 9.350 (非球面) d4 = 2.19
5 = -8.965 d5 = 0.70 nd3 =1.58913 νd3 =61.14
6 = 29.209 d6 = 1.48 nd4 =1.92286 νd4 =18.90
7 = -28.126 d7 = (可変)
8 = ∞(絞り) d8 = 0.37
9 = 17.925 (非球面) d9 = 1.59 nd5 =1.77377 νd5 =47.17
10= -6.800 d10= 0.61 nd6 =1.78472 νd6 =25.68
11= -19.935 d11= (可変)
12= 4.410 (非球面) d12= 1.97 nd7 =1.76802 νd7 =49.24
13= 11.157 d13= 0.51 nd8 =2.00069 νd8 =25.46
14= 3.550 d14= (可変)
15= 41.001 d15= 2.35 nd9 =1.80518 νd9 =25.42
16= -14.105 d16= (可変)
17= ∞ d17= 0.50 nd10=1.54771 νd10=62.84
18= ∞ d18= 0.50
19= ∞ d19= 0.50 nd11=1.51633 νd11=64.14
20= ∞ d20= 0.60
21= ∞(像面)
非球面係数
第1面
K = 0.000
4 = -2.41125×10-5
6 = -3.21539×10-7
8 = 0
10= 0
第2面
K = 0.000
4 = -6.80953×10-6
6 = -3.70482×10-8
8 = 0
10= 0
第3面
K = 0.000
4 = 3.50640×10-4
6 = -4.49378×10-6
8 = 1.59282×10-7
10= -2.37981×10-9
第4面
K = -1.061
4 = 3.44906×10-4
6 = 1.17809×10-5
8 = -2.58210×10-7
10= 2.30813×10-8
第9面
K = 0.748
4 = -6.22558×10-5
6 = 2.61058×10-7
8 = 2.30167×10-7
10= -1.23545×10-7
第12面
K = -0.044
4 = -1.42650×10-4
6 = 1.82011×10-6
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.62 14.58 31.74
NO 3.31 4.38 5.16
2ω(°) 68.01 29.91 13.95
2 0.57 5.03 9.28
7 11.18 6.03 0.43
11 0.38 2.69 0.22
14 3.34 7.88 13.49
16 4.54 3.23 2.28 。

Example 1
r 1 = 13.131 (aspherical surface) d 1 = 3.17 n d1 = 1.49700 ν d1 = 81.54
r 2 = -145.288 (aspherical surface) d 2 = (variable)
r 3 = -37.836 (aspherical surface) d 3 = 0.80 n d2 = 1.80610 ν d2 = 40.92
r 4 = 9.350 (aspherical surface) d 4 = 2.19
r 5 = -8.965 d 5 = 0.70 n d3 = 1.58913 ν d3 = 61.14
r 6 = 29.209 d 6 = 1.48 n d4 = 1.92286 ν d4 = 18.90
r 7 = -28.126 d 7 = (variable)
r 8 = ∞ (aperture) d 8 = 0.37
r 9 = 17.925 (aspherical surface) d 9 = 1.59 n d5 = 1.77377 ν d5 = 47.17
r 10 = -6.800 d 10 = 0.61 n d6 = 1.78472 ν d6 = 25.68
r 11 = -19.935 d 11 = (variable)
r 12 = 4.410 (aspherical surface) d 12 = 1.97 n d7 = 1.76802 ν d7 = 49.24
r 13 = 11.157 d 13 = 0.51 n d8 = 2.00069 ν d8 = 25.46
r 14 = 3.550 d 14 = (variable)
r 15 = 41.001 d 15 = 2.35 n d9 = 1.80518 ν d9 = 25.42
r 16 = -14.105 d 16 = (variable)
r 17 = ∞ d 17 = 0.50 n d10 = 1.54771 ν d10 = 62.84
r 18 = ∞ d 18 = 0.50
r 19 = ∞ d 19 = 0.50 n d11 = 1.51633 ν d11 = 64.14
r 20 = ∞ d 20 = 0.60
r 21 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = -2.41125 × 10 -5
A 6 = -3.21539 × 10 -7
A 8 = 0
A 10 = 0
Second side K = 0.000
A 4 = -6.80953 × 10 -6
A 6 = -3.70482 × 10 -8
A 8 = 0
A 10 = 0
Third side K = 0.000
A 4 = 3.50640 × 10 -4
A 6 = -4.49378 × 10 -6
A 8 = 1.59282 × 10 -7
A 10 = -2.37981 × 10 -9
4th surface K = -1.061
A 4 = 3.44906 × 10 -4
A 6 = 1.17809 × 10 -5
A 8 = -2.58210 × 10 -7
A 10 = 2.30813 × 10 -8
9th surface K = 0.748
A 4 = -6.22558 × 10 -5
A 6 = 2.61058 × 10 -7
A 8 = 2.30167 × 10 -7
A 10 = -1.23545 × 10 -7
Surface 12 K = -0.044
A 4 = -1.42650 × 10 -4
A 6 = 1.82011 × 10 -6
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.62 14.58 31.74
F NO 3.31 4.38 5.16
2ω (°) 68.01 29.91 13.95
d 2 0.57 5.03 9.28
d 7 11.18 6.03 0.43
d 11 0.38 2.69 0.22
d 14 3.34 7.88 13.49
d 16 4.54 3.23 2.28.


実施例2
1 = 13.726 (非球面) d1 = 3.17 nd1 =1.49700 νd1 =81.54
2 = -85.837 (非球面) d2 = (可変)
3 = -38.043 (非球面) d3 = 0.80 nd2 =1.80610 νd2 =40.92
4 = 9.226 (非球面) d4 = 2.19
5 = -9.230 d5 = 0.70 nd3 =1.58913 νd3 =61.14
6 = 25.936 d6 = 1.48 nd4 =1.92286 νd4 =18.90
7 = -36.175 d7 = (可変)
8 = ∞(絞り) d8 = 0.37
9 = 7.800 (非球面) d9 = 2.22 nd5 =1.77377 νd5 =47.17
10= -6.800 d10= 0.61 nd6 =1.68893 νd6 =31.16
11= 20.470 (非球面) d11= (可変)
12= 5.311 d12= 2.07 nd7 =1.88300 νd7 =40.76
13= -1158.189 d13= 0.51 nd8 =2.00069 νd8 =25.46
14= 4.141 d14= (可変)
15= 30.007 d15= 2.35 nd9 =1.80518 νd9 =25.42
16= -14.743 d16= (可変)
17= ∞ d17= 0.50 nd10=1.54771 νd10=62.84
18= ∞ d18= 0.50
19= ∞ d19= 0.50 nd11=1.51633 νd11=64.14
20= ∞ d20= 0.60
21= ∞(像面)
非球面係数
第1面
K = 0.000
4 = -1.82405×10-5
6 = -2.53266×10-7
8 = 0
10= 0
第2面
K = 0.000
4 = 6.18637×10-6
6 = -6.21578×10-8
8 = 0
10= 0
第3面
K = 0.000
4 = 3.72444×10-4
6 = -4.17444×10-6
8 = 8.99176×10-8
10= -1.56083×10-9
第4面
K = -1.570
4 = 5.05344×10-4
6 = 1.07045×10-5
8 = 8.83402×10-9
10= 8.19063×10-9
第9面
K = -0.939
4 = 7.47118×10-4
6 = 1.87059×10-5
8 = -5.14211×10-7
10= -8.51175×10-8
第11面
K = 0.000
4 = 1.47264×10-3
6 = 4.28950×10-5
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.62 14.22 31.73
NO 3.41 4.35 5.02
2ω(°) 67.57 30.38 13.84
2 0.57 5.04 9.51
7 11.02 6.00 0.43
11 0.40 2.60 0.22
14 3.33 6.79 11.99
16 4.05 3.45 2.87 。

Example 2
r 1 = 13.726 (aspherical surface) d 1 = 3.17 n d1 = 1.49700 ν d1 = 81.54
r 2 = -85.837 (aspherical surface) d 2 = (variable)
r 3 = -38.043 (aspherical surface) d 3 = 0.80 n d2 = 1.80610 ν d2 = 40.92
r 4 = 9.226 (aspherical surface) d 4 = 2.19
r 5 = -9.230 d 5 = 0.70 n d3 = 1.58913 ν d3 = 61.14
r 6 = 25.936 d 6 = 1.48 n d4 = 1.92286 ν d4 = 18.90
r 7 = -36.175 d 7 = (variable)
r 8 = ∞ (aperture) d 8 = 0.37
r 9 = 7.800 (aspherical surface) d 9 = 2.22 n d5 = 1.77377 ν d5 = 47.17
r 10 = -6.800 d 10 = 0.61 n d6 = 1.68893 ν d6 = 31.16
r 11 = 20.470 (aspherical surface) d 11 = (variable)
r 12 = 5.311 d 12 = 2.07 n d7 = 1.88300 ν d7 = 40.76
r 13 = -1158.189 d 13 = 0.51 n d8 = 2.00069 ν d8 = 25.46
r 14 = 4.141 d 14 = (variable)
r 15 = 30.007 d 15 = 2.35 n d9 = 1.80518 ν d9 = 25.42
r 16 = -14.743 d 16 = (variable)
r 17 = ∞ d 17 = 0.50 n d10 = 1.54771 ν d10 = 62.84
r 18 = ∞ d 18 = 0.50
r 19 = ∞ d 19 = 0.50 n d11 = 1.51633 ν d11 = 64.14
r 20 = ∞ d 20 = 0.60
r 21 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = -1.82405 × 10 -5
A 6 = -2.53266 × 10 -7
A 8 = 0
A 10 = 0
Second side K = 0.000
A 4 = 6.18637 × 10 -6
A 6 = -6.21578 × 10 -8
A 8 = 0
A 10 = 0
Third side K = 0.000
A 4 = 3.72444 × 10 -4
A 6 = -4.17444 × 10 -6
A 8 = 8.99176 × 10 -8
A 10 = -1.56083 × 10 -9
4th surface K = -1.570
A 4 = 5.05344 × 10 -4
A 6 = 1.07045 × 10 -5
A 8 = 8.83402 × 10 -9
A 10 = 8.19063 × 10 -9
Surface 9 K = -0.939
A 4 = 7.47118 × 10 -4
A 6 = 1.87059 × 10 -5
A 8 = -5.14211 × 10 -7
A 10 = -8.51175 × 10 -8
11th surface K = 0.000
A 4 = 1.47264 × 10 -3
A 6 = 4.28950 × 10 -5
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.62 14.22 31.73
F NO 3.41 4.35 5.02
2ω (°) 67.57 30.38 13.84
d 2 0.57 5.04 9.51
d 7 11.02 6.00 0.43
d 11 0.40 2.60 0.22
d 14 3.33 6.79 11.99
d 16 4.05 3.45 2.87.


実施例3
1 = 12.998 (非球面) d1 = 3.45 nd1 =1.43875 νd1 =94.93
2 = -56.964 (非球面) d2 = (可変)
3 = -29.930 (非球面) d3 = 0.80 nd2 =1.80610 νd2 =40.92
4 = 9.186 (非球面) d4 = 2.19
5 = -9.158 d5 = 0.70 nd3 =1.58913 νd3 =61.14
6 = 27.313 d6 = 1.48 nd4 =1.92286 νd4 =18.90
7 = -29.143 d7 = (可変)
8 = ∞(絞り) d8 = 0.37
9 = 7.800 (非球面) d9 = 2.20 nd5 =1.77377 νd5 =47.17
10= -6.800 d10= 0.61 nd6 =1.68893 νd6 =31.16
11= 20.540 (非球面) d11= (可変)
12= 5.367 d12= 2.08 nd7 =1.88300 νd7 =40.76
13= -114.106 d13= 0.51 nd8 =2.00069 νd8 =25.46
14= 4.180 d14= (可変)
15= 28.481 d15= 2.35 nd9 =1.80518 νd9 =25.42
16= -14.752 d16= (可変)
17= ∞ d17= 0.50 nd10=1.54771 νd10=62.84
18= ∞ d18= 0.50
19= ∞ d19= 0.50 nd11=1.51633 νd11=64.14
20= ∞ d20= 0.62
21= ∞(像面)
非球面係数
第1面
K = 0.000
4 = -2.35458×10-5
6 = -2.41873×10-7
8 = 0
10= 0
第2面
K = 0.000
4 = 1.27194×10-5
6 = -1.28219×10-8
8 = 0
10= 0
第3面
K = 0.000
4 = 3.93377×10-4
6 = -4.71194×10-6
8 = 7.44028×10-8
10= -1.26789×10-9
第4面
K = -0.854
4 = 3.85073×10-4
6 = 1.09184×10-5
8 = -6.06903×10-9
10= 3.00577×10-9
第9面
K = -0.890
4 = 7.37916×10-4
6 = 1.63555×10-5
8 = -1.04707×10-7
10= -1.09038×10-7
第11面
K = 0.000
4 = 1.45721×10-3
6 = 4.23048×10-5
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.62 14.42 31.74
NO 3.41 4.35 4.88
2ω(°) 67.98 30.01 13.77
2 0.57 5.41 10.11
7 10.77 5.89 0.43
11 0.47 2.62 0.25
14 3.35 6.91 11.39
16 4.04 3.32 2.52 。

Example 3
r 1 = 12.998 (aspherical surface) d 1 = 3.45 n d1 = 1.43875 ν d1 = 94.93
r 2 = -56.964 (aspherical surface) d 2 = (variable)
r 3 = -29.930 (aspherical surface) d 3 = 0.80 n d2 = 1.80610 ν d2 = 40.92
r 4 = 9.186 (aspherical surface) d 4 = 2.19
r 5 = -9.158 d 5 = 0.70 n d3 = 1.58913 ν d3 = 61.14
r 6 = 27.313 d 6 = 1.48 n d4 = 1.92286 ν d4 = 18.90
r 7 = -29.143 d 7 = (variable)
r 8 = ∞ (aperture) d 8 = 0.37
r 9 = 7.800 (aspherical surface) d 9 = 2.20 n d5 = 1.77377 ν d5 = 47.17
r 10 = -6.800 d 10 = 0.61 n d6 = 1.68893 ν d6 = 31.16
r 11 = 20.540 (aspherical surface) d 11 = (variable)
r 12 = 5.367 d 12 = 2.08 n d7 = 1.88300 ν d7 = 40.76
r 13 = -114.106 d 13 = 0.51 n d8 = 2.00069 ν d8 = 25.46
r 14 = 4.180 d 14 = (variable)
r 15 = 28.481 d 15 = 2.35 n d9 = 1.80518 ν d9 = 25.42
r 16 = -14.752 d 16 = (variable)
r 17 = ∞ d 17 = 0.50 n d10 = 1.54771 ν d10 = 62.84
r 18 = ∞ d 18 = 0.50
r 19 = ∞ d 19 = 0.50 n d11 = 1.51633 ν d11 = 64.14
r 20 = ∞ d 20 = 0.62
r 21 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = -2.35458 × 10 -5
A 6 = -2.41873 × 10 -7
A 8 = 0
A 10 = 0
Second side K = 0.000
A 4 = 1.27194 × 10 -5
A 6 = -1.28219 × 10 -8
A 8 = 0
A 10 = 0
Third side K = 0.000
A 4 = 3.93377 × 10 -4
A 6 = -4.71194 × 10 -6
A 8 = 7.44028 × 10 -8
A 10 = -1.26789 × 10 -9
4th surface K = -0.854
A 4 = 3.85073 × 10 -4
A 6 = 1.09184 × 10 -5
A 8 = -6.06903 × 10 -9
A 10 = 3.00577 × 10 -9
The ninth side K = -0.890
A 4 = 7.37916 × 10 -4
A 6 = 1.63555 × 10 -5
A 8 = -1.04707 × 10 -7
A 10 = -1.09038 × 10 -7
11th surface K = 0.000
A 4 = 1.45721 × 10 -3
A 6 = 4.23048 × 10 -5
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.62 14.42 31.74
F NO 3.41 4.35 4.88
2ω (°) 67.98 30.01 13.77
d 2 0.57 5.41 10.11
d 7 10.77 5.89 0.43
d 11 0.47 2.62 0.25
d 14 3.35 6.91 11.39
d 16 4.04 3.32 2.52.


実施例4
1 = 14.006 (非球面) d1 = 3.21 nd1 =1.49700 νd1 =81.54
2 = -63.961 (非球面) d2 = (可変)
3 = -62.128 (非球面) d3 = 0.80 nd2 =1.80610 νd2 =40.92
4 = 8.732 (非球面) d4 = 2.19
5 = -9.634 d5 = 0.71 nd3 =1.69680 νd3 =55.53
6 = 27.040 d6 = 1.51 nd4 =1.92286 νd4 =18.90
7 = -27.632 d7 = (可変)
8 = ∞(絞り) d8 = 0.37
9 = 7.059 (非球面) d9 = 2.61 nd5 =1.77377 νd5 =47.17
10= -5.168 d10= 0.60 nd6 =1.68893 νd6 =31.16
11= 13.827 (非球面) d11= (可変)
12= 5.051 d12= 1.62 nd7 =1.81600 νd7 =46.62
13= 12.402 d13= 0.50 nd8 =2.00069 νd8 =25.46
14= 4.165 d14= (可変)
15= 38.360 d15= 2.35 nd9 =2.00069 νd9 =25.46
16= -17.347 d16= (可変)
17= ∞ d17= 0.50 nd10=1.54771 νd10=62.84
18= ∞ d18= 0.50
19= ∞ d19= 0.50 nd11=1.51633 νd11=64.14
20= ∞ d20= 0.61
21= ∞(像面)
非球面係数
第1面
K = 0.000
4 = -1.80006×10-5
6 = -1.32046×10-7
8 = 0
10= 0
第2面
K = 0.000
4 = 1.72341×10-5
6 = -4.04260×10-8
8 = 0
10= 0
第3面
K = 0.000
4 = 3.30809×10-4
6 = -6.93335×10-6
8 = 1.83679×10-7
10= -2.54736×10-9
第4面
K = -1.404
4 = 5.12084×10-4
6 = 2.34364×10-6
8 = 2.19326×10-7
10= 1.22205×10-9
第9面
K = -3.142
4 = 1.44837×10-3
6 = -1.26704×10-5
8 = 5.36646×10-7
10= -1.42543×10-7
第11面
K = 0.000
4 = 1.60777×10-3
6 = 4.12926×10-5
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.61 14.94 31.74
NO 3.37 4.23 5.00
2ω(°) 65.48 28.47 13.73
2 0.57 5.62 9.27
7 10.77 5.68 0.43
11 0.48 1.92 0.15
14 3.35 7.18 12.47
16 4.23 3.63 2.68 。

Example 4
r 1 = 14.006 (aspherical surface) d 1 = 3.21 n d1 = 1.49700 ν d1 = 81.54
r 2 = -63.961 (aspherical surface) d 2 = (variable)
r 3 = -62.128 (aspherical surface) d 3 = 0.80 n d2 = 1.80610 ν d2 = 40.92
r 4 = 8.732 (aspherical surface) d 4 = 2.19
r 5 = -9.634 d 5 = 0.71 n d3 = 1.69680 ν d3 = 55.53
r 6 = 27.040 d 6 = 1.51 n d4 = 1.92286 ν d4 = 18.90
r 7 = -27.632 d 7 = (variable)
r 8 = ∞ (aperture) d 8 = 0.37
r 9 = 7.059 (aspherical surface) d 9 = 2.61 n d5 = 1.77377 ν d5 = 47.17
r 10 = -5.168 d 10 = 0.60 n d6 = 1.68893 ν d6 = 31.16
r 11 = 13.827 (aspherical surface) d 11 = (variable)
r 12 = 5.051 d 12 = 1.62 n d7 = 1.81600 ν d7 = 46.62
r 13 = 12.402 d 13 = 0.50 n d8 = 2.00069 ν d8 = 25.46
r 14 = 4.165 d 14 = (variable)
r 15 = 38.360 d 15 = 2.35 n d9 = 2.00069 ν d9 = 25.46
r 16 = -17.347 d 16 = (variable)
r 17 = ∞ d 17 = 0.50 n d10 = 1.54771 ν d10 = 62.84
r 18 = ∞ d 18 = 0.50
r 19 = ∞ d 19 = 0.50 n d11 = 1.51633 ν d11 = 64.14
r 20 = ∞ d 20 = 0.61
r 21 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = -1.80006 × 10 -5
A 6 = -1.32046 × 10 -7
A 8 = 0
A 10 = 0
Second side K = 0.000
A 4 = 1.72341 × 10 -5
A 6 = -4.04260 × 10 -8
A 8 = 0
A 10 = 0
Third side K = 0.000
A 4 = 3.30809 × 10 -4
A 6 = -6.93335 × 10 -6
A 8 = 1.83679 × 10 -7
A 10 = -2.54736 × 10 -9
4th surface K = -1.404
A 4 = 5.12084 × 10 -4
A 6 = 2.34364 × 10 -6
A 8 = 2.19326 × 10 -7
A 10 = 1.22205 × 10 -9
Surface 9 K = -3.142
A 4 = 1.44837 × 10 -3
A 6 = -1.26704 × 10 -5
A 8 = 5.36646 × 10 -7
A 10 = -1.42543 × 10 -7
11th surface K = 0.000
A 4 = 1.60777 × 10 -3
A 6 = 4.12926 × 10 -5
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.61 14.94 31.74
F NO 3.37 4.23 5.00
2ω (°) 65.48 28.47 13.73
d 2 0.57 5.62 9.27
d 7 10.77 5.68 0.43
d 11 0.48 1.92 0.15
d 14 3.35 7.18 12.47
d 16 4.23 3.63 2.68.


実施例5
1 = 14.666 (非球面) d1 = 3.20 nd1 =1.43875 νd1 =94.93
2 = -54.521 (非球面) d2 = (可変)
3 = -38.229 (非球面) d3 = 0.80 nd2 =1.80610 νd2 =40.92
4 = 9.630 (非球面) d4 = 2.19
5 = -8.740 d5 = 0.70 nd3 =1.58913 νd3 =61.14
6 = 32.581 d6 = 1.48 nd4 =1.92286 νd4 =18.90
7 = -27.615 d7 = (可変)
8 = ∞(絞り) d8 = 0.37
9 = 7.800 (非球面) d9 = 2.57 nd5 =1.77377 νd5 =47.17
10= -6.800 d10= 0.61 nd6 =1.68893 νd6 =31.16
11= 19.246 (非球面) d11= (可変)
12= 5.370 d12= 2.06 nd7 =1.88300 νd7 =40.76
13= -129.784 d13= 0.51 nd8 =2.00069 νd8 =25.46
14= 4.191 d14= (可変)
15= 20.499 d15= 2.35 nd9 =1.80518 νd9 =25.42
16= -17.739 d16= (可変)
17= ∞ d17= 0.50 nd10=1.54771 νd10=62.84
18= ∞ d18= 0.50
19= ∞ d19= 0.50 nd11=1.51633 νd11=64.14
20= ∞ d20= 0.61
21= ∞(像面)
非球面係数
第1面
K = 0.000
4 = -1.81359×10-5
6 = -1.31494×10-7
8 = 0
10= 0
第2面
K = 0.000
4 = 1.01441×10-5
6 = -3.08880×10-9
8 = 0
10= 0
第3面
K = 0.000
4 = 2.78275×10-4
6 = -3.87019×10-6
8 = 1.47604×10-7
10= -2.32474×10-9
第4面
K = -0.584
4 = 2.50636×10-4
6 = 2.47399×10-6
8 = 2.47163×10-7
10= 4.96916×10-9
第9面
K = -0.811
4 = 5.56562×10-4
6 = 1.18629×10-5
8 = -2.52008×10-7
10= -2.82755×10-8
第11面
K = 0.000
4 = 1.25468×10-3
6 = 3.36566×10-5
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.61 14.27 31.75
NO 2.80 3.58 3.91
2ω(°) 67.73 29.93 13.57
2 0.57 6.16 11.61
7 10.77 6.27 0.43
11 0.38 2.63 0.28
14 3.32 6.97 11.00
16 4.04 3.21 2.75 。

Example 5
r 1 = 14.666 (aspherical surface) d 1 = 3.20 n d1 = 1.43875 ν d1 = 94.93
r 2 = -54.521 (aspherical surface) d 2 = (variable)
r 3 = -38.229 (Aspherical surface) d 3 = 0.80 n d2 = 1.80610 ν d2 = 40.92
r 4 = 9.630 (aspherical surface) d 4 = 2.19
r 5 = -8.740 d 5 = 0.70 n d3 = 1.58913 ν d3 = 61.14
r 6 = 32.581 d 6 = 1.48 n d4 = 1.92286 ν d4 = 18.90
r 7 = -27.615 d 7 = (variable)
r 8 = ∞ (aperture) d 8 = 0.37
r 9 = 7.800 (aspherical surface) d 9 = 2.57 n d5 = 1.77377 ν d5 = 47.17
r 10 = -6.800 d 10 = 0.61 n d6 = 1.68893 ν d6 = 31.16
r 11 = 19.246 (aspherical surface) d 11 = (variable)
r 12 = 5.370 d 12 = 2.06 n d7 = 1.88300 ν d7 = 40.76
r 13 = -129.784 d 13 = 0.51 n d8 = 2.00069 ν d8 = 25.46
r 14 = 4.191 d 14 = (variable)
r 15 = 20.499 d 15 = 2.35 n d9 = 1.80518 ν d9 = 25.42
r 16 = -17.739 d 16 = (variable)
r 17 = ∞ d 17 = 0.50 n d10 = 1.54771 ν d10 = 62.84
r 18 = ∞ d 18 = 0.50
r 19 = ∞ d 19 = 0.50 n d11 = 1.51633 ν d11 = 64.14
r 20 = ∞ d 20 = 0.61
r 21 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = -1.81359 × 10 -5
A 6 = -1.31494 × 10 -7
A 8 = 0
A 10 = 0
Second side K = 0.000
A 4 = 1.01441 × 10 -5
A 6 = -3.08880 × 10 -9
A 8 = 0
A 10 = 0
Third side K = 0.000
A 4 = 2.78275 × 10 -4
A 6 = -3.87019 × 10 -6
A 8 = 1.47604 × 10 -7
A 10 = -2.32474 × 10 -9
4th surface K = -0.584
A 4 = 2.50636 × 10 -4
A 6 = 2.47399 × 10 -6
A 8 = 2.47163 × 10 -7
A 10 = 4.96916 × 10 -9
Surface 9 K = -0.811
A 4 = 5.56562 × 10 -4
A 6 = 1.18629 × 10 -5
A 8 = -2.52008 × 10 -7
A 10 = -2.82755 × 10 -8
11th surface K = 0.000
A 4 = 1.25468 × 10 -3
A 6 = 3.36566 × 10 -5
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.61 14.27 31.75
F NO 2.80 3.58 3.91
2ω (°) 67.73 29.93 13.57
d 2 0.57 6.16 11.61
d 7 10.77 6.27 0.43
d 11 0.38 2.63 0.28
d 14 3.32 6.97 11.00
d 16 4.04 3.21 2.75.


実施例6
1 = 14.558 (非球面) d1 = 3.24 nd1 =1.43875 νd1 =94.93
2 = -52.051 (非球面) d2 = (可変)
3 = -44.850 (非球面) d3 = 0.80 nd2 =1.88300 νd2 =40.76
4 = 9.992 (非球面) d4 = 2.19
5 = -8.538 d5 = 0.70 nd3 =1.58913 νd3 =61.14
6 = 35.581 d6 = 1.47 nd4 =1.92286 νd4 =18.90
7 = -25.525 d7 = (可変)
8 = ∞(絞り) d8 = 0.37
9 = 7.800 (非球面) d9 = 2.60 nd5 =1.77377 νd5 =47.17
10= -6.800 d10= 0.60 nd6 =1.68893 νd6 =31.16
11= 19.250 (非球面) d11= (可変)
12= 5.360 d12= 2.10 nd7 =1.88300 νd7 =40.76
13= -93.009 d13= 0.50 nd8 =2.00069 νd8 =25.46
14= 4.176 d14= (可変)
15= 20.185 d15= 2.35 nd9 =1.80518 νd9 =25.42
16= -18.062 d16= (可変)
17= ∞ d17= 0.50 nd10=1.54771 νd10=62.84
18= ∞ d18= 0.50
19= ∞ d19= 0.50 nd11=1.51633 νd11=64.14
20= ∞ d20= 0.60
21= ∞(像面)
非球面係数
第1面
K = 0.000
4 = -1.83244×10-5
6 = -1.28024×10-7
8 = 0
10= 0
第2面
K = 0.000
4 = 1.21730×10-5
6 = -3.83119×10-9
8 = 0
10= 0
第3面
K = 0.000
4 = 2.39553×10-4
6 = -2.82074×10-6
8 = 1.20596×10-7
10= -2.14299×10-9
第4面
K = -0.619
4 = 2.24098×10-4
6 = 1.75073×10-6
8 = 3.08030×10-7
10= -6.71731×10-10
第9面
K = -0.785
4 = 5.49617×10-4
6 = 1.15403×10-5
8 = -2.60160×10-7
10= -2.62162×10-8
第11面
K = 0.000
4 = 1.25458×10-3
6 = 3.33752×10-5
8 = 0
10= 0
ズームデータ(∞)
WE ST TE
f (mm) 6.61 14.22 31.76
NO 2.80 3.57 3.89
2ω(°) 67.64 29.95 13.54
2 0.57 6.12 11.47
7 10.66 6.30 0.43
11 0.39 2.63 0.29
14 3.32 6.96 10.94
16 4.06 3.22 2.83 。

Example 6
r 1 = 14.558 (aspherical surface) d 1 = 3.24 n d1 = 1.43875 ν d1 = 94.93
r 2 = -52.051 (aspherical surface) d 2 = (variable)
r 3 = -44.850 (aspherical surface) d 3 = 0.80 n d2 = 1.88300 ν d2 = 40.76
r 4 = 9.992 (aspherical surface) d 4 = 2.19
r 5 = -8.538 d 5 = 0.70 n d3 = 1.58913 ν d3 = 61.14
r 6 = 35.581 d 6 = 1.47 n d4 = 1.92286 ν d4 = 18.90
r 7 = -25.525 d 7 = (variable)
r 8 = ∞ (aperture) d 8 = 0.37
r 9 = 7.800 (aspherical surface) d 9 = 2.60 n d5 = 1.77377 ν d5 = 47.17
r 10 = -6.800 d 10 = 0.60 n d6 = 1.68893 ν d6 = 31.16
r 11 = 19.250 (aspherical surface) d 11 = (variable)
r 12 = 5.360 d 12 = 2.10 n d7 = 1.88300 ν d7 = 40.76
r 13 = -93.009 d 13 = 0.50 n d8 = 2.00069 ν d8 = 25.46
r 14 = 4.176 d 14 = (variable)
r 15 = 20.185 d 15 = 2.35 n d9 = 1.80518 ν d9 = 25.42
r 16 = -18.062 d 16 = (variable)
r 17 = ∞ d 17 = 0.50 n d10 = 1.54771 ν d10 = 62.84
r 18 = ∞ d 18 = 0.50
r 19 = ∞ d 19 = 0.50 n d11 = 1.51633 ν d11 = 64.14
r 20 = ∞ d 20 = 0.60
r 21 = ∞ (image plane)
Aspheric coefficient 1st surface K = 0.000
A 4 = -1.83244 × 10 -5
A 6 = -1.28024 × 10 -7
A 8 = 0
A 10 = 0
Second side K = 0.000
A 4 = 1.21730 × 10 -5
A 6 = -3.83119 × 10 -9
A 8 = 0
A 10 = 0
Third side K = 0.000
A 4 = 2.39553 × 10 -4
A 6 = -2.82074 × 10 -6
A 8 = 1.20596 × 10 -7
A 10 = -2.14299 × 10 -9
4th surface K = -0.619
A 4 = 2.24098 × 10 -4
A 6 = 1.75073 × 10 -6
A 8 = 3.08030 × 10 -7
A 10 = -6.71731 × 10 -10
Surface 9 K = -0.785
A 4 = 5.49617 × 10 -4
A 6 = 1.15403 × 10 -5
A 8 = -2.60160 × 10 -7
A 10 = -2.62162 × 10 -8
11th surface K = 0.000
A 4 = 1.25458 × 10 -3
A 6 = 3.33752 × 10 -5
A 8 = 0
A 10 = 0
Zoom data (∞)
WE ST TE
f (mm) 6.61 14.22 31.76
F NO 2.80 3.57 3.89
2ω (°) 67.64 29.95 13.54
d 2 0.57 6.12 11.47
d 7 10.66 6.30 0.43
d 11 0.39 2.63 0.29
d 14 3.32 6.96 10.94
d 16 4.06 3.22 2.83.

以上の実施例1〜6の無限遠物点合焦時の収差図をそれぞれ図7〜図12に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端における球面収差、非点収差、歪曲収差、倍率色収差を示す。各図中、“FIY”は最大像高を示す。   Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 6 are shown in FIGS. In these aberration diagrams, (a) is a wide-angle end, (b) is an intermediate state, and (c) is spherical aberration, astigmatism, distortion, and lateral chromatic aberration at a telephoto end. In each figure, “FIY” indicates the maximum image height.

次に、上記各実施例における条件式(1)〜(17)の値を示す。   Next, the values of conditional expressions (1) to (17) in the above-described embodiments will be shown.

条件式 実施例1 実施例2 実施例3 実施例4 実施例5 実施例6 (1) 5.720 5.727 5.752 5.745 5.750 5.753
(2) 1.371 1.373 1.372 1.373 1.418 1.416
(3) 81.540 81.540 94.930 81.540 94.930 94.930
(4) -0.834 -0.724 -0.628 -0.641 -0.576 -0.563
(5) 1.806 1.806 1.806 1.806 1.806 1.883
(6) 1.923 1.923 1.923 1.923 1.923 1.923
(7) 40.920 40.920 40.920 40.920 40.920 40.760
(8) 2.001 2.001 2.001 2.001 2.001 2.001
(9) 25.458 25.458 25.458 25.458 25.458 25.458
(10) 1.805 1.805 1.805 2.001 1.805 1.805
(11) 25.420 25.420 25.420 25.458 25.420 25.420
(12) 3.686 3.633 3.702 3.546 4.040 3.983
(13) -1.190 -1.122 -1.133 -1.117 -1.192 -1.172
(14) 1.915 1.842 1.842 1.806 1.875 1.876
(15) -6.712 -7.112 -6.768 -7.246 -6.814 -6.850
(16) 2.008 1.898 1.870 1.845 1.836 1.842
(17) 0.923 0.926 0.924 0.943 0.928 0.929
さて、以上のような本発明のズームレンズは、ズームレンズの結像光学系で物体像を形成しその像をCCDや銀塩フィルムといった撮像素子に受光させて撮影を行う撮影装置に用いることができる。上記撮影装置は、具体的な製品としては、例えば、デジタルカメラ、カメラが組み込まれた、パソコン、携帯電話やPDA(Personal Digital Assistant)等のデジタル端末機器として広く適用することができる。以下に、その実施形態の1つを例示する。
Conditional Example Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 (1) 5.720 5.727 5.752 5.745 5.750 5.753
(2) 1.371 1.373 1.372 1.373 1.418 1.416
(3) 81.540 81.540 94.930 81.540 94.930 94.930
(4) -0.834 -0.724 -0.628 -0.641 -0.576 -0.563
(5) 1.806 1.806 1.806 1.806 1.806 1.883
(6) 1.923 1.923 1.923 1.923 1.923 1.923
(7) 40.920 40.920 40.920 40.920 40.920 40.760
(8) 2.001 2.001 2.001 2.001 2.001 2.001
(9) 25.458 25.458 25.458 25.458 25.458 25.458
(10) 1.805 1.805 1.805 2.001 1.805 1.805
(11) 25.420 25.420 25.420 25.458 25.420 25.420
(12) 3.686 3.633 3.702 3.546 4.040 3.983
(13) -1.190 -1.122 -1.133 -1.117 -1.192 -1.172
(14) 1.915 1.842 1.842 1.806 1.875 1.876
(15) -6.712 -7.112 -6.768 -7.246 -6.814 -6.850
(16) 2.008 1.898 1.870 1.845 1.836 1.842
(17) 0.923 0.926 0.924 0.943 0.928 0.929
The zoom lens according to the present invention as described above is used in an imaging apparatus that forms an object image with the imaging optical system of the zoom lens and receives the image with an image sensor such as a CCD or a silver salt film to perform imaging. it can. As a specific product, for example, the photographing apparatus can be widely applied as a digital terminal device such as a digital camera, a personal computer, a mobile phone, or a PDA (Personal Digital Assistant) incorporating a camera. Hereinafter, one of the embodiments will be exemplified.

図13〜図15は、以上のようなズームレンズを撮影光学系41に組み込んだ本発明によるデジタルカメラの構成の概念図を示す。図13はデジタルカメラ40の外観を示す前方斜視図、図14は同後方正面図、図15はデジタルカメラ40の構成を示す模式的な断面図である。ただし、図13と図15においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42上に位置する撮影光学系41、ファインダー用光路44上に位置するファインダー光学系43、シャッターボタン45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図15の非沈胴状態になり、カメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。撮影光学系41によって形成された物体像が、波長域制限コートを施したローパスフィルターFとカバーガラスCを介してCCD49の撮像面(光電変換面)上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   13 to 15 are conceptual diagrams of the configuration of the digital camera according to the present invention in which the zoom lens as described above is incorporated in the photographing optical system 41. FIG. 13 is a front perspective view showing the external appearance of the digital camera 40, FIG. 14 is a rear front view thereof, and FIG. 15 is a schematic cross-sectional view showing the configuration of the digital camera 40. However, FIGS. 13 and 15 show a state in which the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 located on the photographing optical path 42, a finder optical system 43 located on the finder optical path 44, a shutter button 45, a flash 46, a liquid crystal display monitor 47, a focal length. When the photographic optical system 41 is retracted, the photographic optical system 41, the finder optical system 43, and the flash 46 are covered with the cover 60, including the change button 61, the setting change switch 62, and the like. Then, when the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 is brought into the non-collapsed state of FIG. 15, and when the shutter button 45 disposed on the upper part of the camera 40 is pressed, photographing is performed in conjunction therewith. Photographing is performed through the optical system 41, for example, the zoom lens of the first embodiment. An object image formed by the photographic optical system 41 is formed on the imaging surface (photoelectric conversion surface) of the CCD 49 via a low-pass filter F and a cover glass C that are provided with a wavelength band limiting coat. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は3群)と正立プリズム55a、55b、55cからなる正立プリズム系55とから構成され、撮影光学系41のズームレンズに連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム系55の視野枠57上に形成される。この正立プリズム系55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a plurality of lens groups (three groups in the figure) and an erecting prism system 55 including erecting prisms 55a, 55b, and 55c, and is linked to the zoom lens of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on a field frame 57 of an erecting prism system 55 that is an image erecting member. Behind the erecting prism system 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.

図16に上記デジタルカメラ40の主要部の内部構成の概略ブロック図を示す。なお、シャッターボタン45に代表される操作部は符号500で示されており、処理手段はCPU51で、撮像素子はCCD49で構成されているものとし、記録手段はメモリーカード521と外部記憶装置(光ディスクやHDD等)522とで構成されているものとしている。CPU51が操作部500のシャッターボタン45が押圧されたと判断すると、露光制御による最適シャッター制御値や絞り制御の演算を行い、その演算後にこれら制御値に基づいてシャッター及び絞り制御を行う。その他の制御動作は上記の通りである。   FIG. 16 shows a schematic block diagram of the internal configuration of the main part of the digital camera 40. Note that the operation unit represented by the shutter button 45 is denoted by reference numeral 500, the processing means is a CPU 51, the imaging element is a CCD 49, and the recording means is a memory card 521 and an external storage device (optical disk). , HDD, etc.) 522. When the CPU 51 determines that the shutter button 45 of the operation unit 500 has been pressed, the optimal shutter control value and aperture control are calculated by exposure control, and the shutter and aperture control are performed based on these control values after the calculation. Other control operations are as described above.

このように構成されたデジタルカメラ40は、撮影光学系41の光学性能が向上されていて、鏡筒のコンパクト化が可能であるので、カメラ全体の高級化、小型化が図れる。   The digital camera 40 configured in this manner has improved optical performance of the photographing optical system 41 and can be made compact in size, so that the entire camera can be upgraded and downsized.

本発明のズームレンズの実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)でのレンズ断面図である。FIG. 2 is a lens cross-sectional view at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity according to the first exemplary embodiment of the zoom lens of the present invention. 本発明のズームレンズの実施例2の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of Embodiment 2 of the zoom lens according to the present invention. 本発明のズームレンズの実施例3の図1と同様のレンズ断面図である。FIG. 5 is a lens cross-sectional view similar to FIG. 1 of Embodiment 3 of the zoom lens according to the present invention. 本発明のズームレンズの実施例4の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of Embodiment 4 of the zoom lens according to the present invention. 本発明のズームレンズの実施例5の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of Embodiment 5 of the zoom lens according to the present invention. 本発明のズームレンズの実施例6の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of Embodiment 6 of the zoom lens according to the present invention. 実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)での収差図である。FIG. 6 is an aberration diagram at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity according to Example 1. 実施例2の図7と同様の収差図である。FIG. 10 is an aberration diagram similar to FIG. 7 of Example 2. 実施例3の図7と同様の収差図である。FIG. 10 is an aberration diagram similar to FIG. 7 of Example 3. 実施例4の図7と同様の収差図である。FIG. 10 is an aberration diagram similar to FIG. 7 of Example 4. 実施例5の図7と同様の収差図である。FIG. 10 is an aberration diagram similar to FIG. 7 of Example 5. 実施例6の図7と同様の収差図である。FIG. 10 is an aberration diagram similar to FIG. 7 of Example 6. 本発明によるデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera by this invention. 図13のデジタルカメラの後方斜視図である。FIG. 14 is a rear perspective view of the digital camera of FIG. 13. 図13のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG. 図13のデジタルカメラの主要部の内部構成の概略ブロック図である。It is a schematic block diagram of the internal structure of the principal part of the digital camera of FIG.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
G4…第2レンズ群
G5…第3レンズ群
S…開口絞り
F…ローパスフィルター
C…カバーガラス
I…像面
E…観察者眼球
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッターボタン
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
500…操作部
521…メモリーカード
522…外部記憶装置(光ディスク、HDD)
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group G4 ... 2nd lens group G5 ... 3rd lens group S ... Aperture stop F ... Low pass filter C ... Cover glass I ... Image plane E ... Observer Eyeball 40 ... Digital camera 41 ... Shooting optical system 42 ... Shooting optical path 43 ... Viewfinder optical system 44 ... Viewfinder optical path 45 ... Shutter button 46 ... Flash 47 ... Liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Viewfinder objective optical system 55 ... Erect prism 57 ... Field frame 59 ... Eyepiece optical system 60 ... Cover 61 ... Focal length change button 62 ... Setting change switch 500 ... Operation Unit 521 ... Memory card 522 ... External storage device (optical disk, HDD)

Claims (13)

物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群を有し、各レンズ群の間隔を変化させることにより変倍を行い、前記第1レンズ群は広角端よりも望遠端で物体側にあるように移動し、前記第5レンズ群は広角端よりも望遠端で像側にあるように移動し、前記第3レンズ群と前記第4レンズ群の軸上間隔は広角端から中間ズーム位置にかけては増大し、中間のズーム位置から望遠端にかけては減少することを特徴とするズームレンズ。 In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power. A fifth lens unit that performs zooming by changing an interval between the lens units, and the first lens unit moves to be closer to the object side at the telephoto end than at the wide-angle end; Moves so that it is closer to the image side at the telephoto end than at the wide-angle end, and the axial distance between the third lens group and the fourth lens group increases from the wide-angle end to the intermediate zoom position, and from the intermediate zoom position to the telephoto position. A zoom lens characterized by decreasing toward the end. 以下の条件式を満足することを請求項1記載のズームレンズ。
4.00<Lw /fw <9.00 ・・・(1)
ただし、Lw :広角端における全長、
w :広角端での全系焦点距離、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
4.00 <L w / f w <9.00 (1)
Where L w is the total length at the wide-angle end,
f w : the focal length of the entire system at the wide-angle end,
It is.
以下の条件式を満足することを特徴とする請求項1又は2記載のズームレンズ。
1.00<Lt /ft <1.80 ・・・(2)
ただし、Lt :望遠端における全長、
t :望遠端での全系焦点距離、
である。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
1.00 <L t / f t <1.80 (2)
Where L t is the total length at the telephoto end,
f t : Total focal length at the telephoto end,
It is.
前記第1レンズ群が1枚の正レンズからなることを特徴とする請求項1から3の何れか1項記載のズームレンズ。 4. The zoom lens according to claim 1, wherein the first lens group includes one positive lens. 5. 前記第1レンズ群の正レンズが以下の条件式を満足することを特徴とする請求項4記載のズームレンズ。
75.0<νd1p <105.0 ・・・(3)
ただし、νd1p :前記第1レンズ群の正レンズのアッベ数、
である。
The zoom lens according to claim 4, wherein the positive lens of the first lens group satisfies the following conditional expression.
75.0 <ν d1p <105.0 (3)
Where ν d1p is the Abbe number of the positive lens in the first lens group,
It is.
前記第1レンズ群の正レンズが以下の条件式を満足することを特徴とする請求項4又は5記載のズームレンズ。
−1.50<SF1p<−0.20 ・・・(4)
ただし、SF1p=(R1pf +R1pr )/(R1pf −R1pr )で定義され、R1pf 、R1pr はそれぞれ前記第1レンズ群の正レンズの物体側面、像側面の軸上曲率半径である。
The zoom lens according to claim 4 or 5, wherein the positive lens of the first lens group satisfies the following conditional expression.
−1.50 <SF 1p <−0.20 (4)
However, as defined in SF 1p = (R 1pf + R 1pr) / (R 1pf -R 1pr), R 1pf, the object side surface of the positive lens of each of R 1pr the first lens group, in axial radius of curvature of the image side surface is there.
前記第2レンズ群が、物体側から順に、負レンズL21、負レンズL22、正レンズL23からなることを特徴とする請求項1から6の何れか1項記載のズームレンズ。 The zoom lens according to any one of claims 1 to 6, wherein the second lens group includes a negative lens L21, a negative lens L22, and a positive lens L23 in order from the object side. 前記負レンズL21は像側に凹面を向けており、前記負レンズL22は物体側に凹面を向けており、前記負レンズL22と前記正レンズL23は接合されていることを特徴とする請求項7記載のズームレンズ。 The negative lens L21 has a concave surface facing the image side, the negative lens L22 has a concave surface facing the object side, and the negative lens L22 and the positive lens L23 are cemented. The described zoom lens. 請求項1から8の何れか1項記載のズームレンズと、電子撮像素子とを有し、前記ズームレンズを通じて結像された像を前記電子撮像素子にて撮像して得られた画像データを加工して形状を変化させた画像データとして出力することが可能な電子撮像装置において、
前記結像光学系が略無限遠物点合焦時に以下の条件を満足することを特徴とする電子撮像装置。
0.850<y07/(fw ・ tanω07w )<0.970 ・・・(17)
ただし、電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10とすると、y07=0.7y10、ω07w は広角端における電子撮像素子の有効撮像面上の中心からy07 の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
A zoom lens according to any one of claims 1 to 8 and an electronic image sensor, wherein image data obtained by imaging an image formed through the zoom lens with the electronic image sensor is processed. In an electronic imaging device capable of outputting as image data with a changed shape,
An electronic imaging apparatus, wherein the imaging optical system satisfies the following conditions when focusing on an object point at approximately infinity.
0.850 <y 07 / (f w · tanω 07w) <0.970 ··· (17)
However, if the distance (maximum image height) from the center to the farthest point in the effective imaging plane (in the plane where imaging is possible) of the electronic imaging device is y 10 , y 07 = 0.7 y 10 and ω 07w are at the wide-angle end. Is an angle with respect to the optical axis in the object direction corresponding to the image point connected to the position of y07 from the center on the effective imaging surface of the electronic imaging device.
請求項1から8の何れか1項記載のズームレンズと、前記ズームレンズによって形成された物体像を受光する位置に配置された撮像素子とを備えたことを特徴とする電子撮像装置。 9. An electronic imaging apparatus comprising: the zoom lens according to claim 1; and an imaging element disposed at a position for receiving an object image formed by the zoom lens. 請求項1から8の何れか1項記載のズームレンズと、前記ズームレンズによって形成された物体像を受光する位置に配置された撮像素子と、前記撮像素子によって光電変換された電子信号を処理するCPUと、操作者が前記CPUに入力したい情報信号を入力するための入力部と、前記CPUからの出力を表示装置に表示する表示処理手段と、前記CPUからの出力を記録する記録媒体とを含み、前記CPUは、前記ズームレンズによって前記撮像素子で受光された物体像を前記表示装置に表示するように構成されていることを特徴とする情報処理装置。 The zoom lens according to any one of claims 1 to 8, an image sensor disposed at a position for receiving an object image formed by the zoom lens, and an electronic signal photoelectrically converted by the image sensor A CPU; an input unit for inputting an information signal that an operator wants to input to the CPU; display processing means for displaying an output from the CPU on a display device; and a recording medium for recording the output from the CPU. And the CPU is configured to display an object image received by the imaging device by the zoom lens on the display device. 前記情報処理装置は携帯端末機器であることを特徴とする請求項11記載の情報処理装置。 The information processing apparatus according to claim 11, wherein the information processing apparatus is a mobile terminal device. 請求項1から8の何れか1項記載のズームレンズと、前記ズームレンズによって形成された物体像を受光する位置に配置された撮像素子と、前記撮像素子によって光電変換された電子信号を処理するCPUと、前記撮像素子で受光された物体像を観察可能に表示する表示素子とを有し、前記撮像素子で受光された物体像の像情報を記録するための記録媒体を内蔵又は挿脱するように構成され、前記CPUが、前記撮像素子に受光された物体像を前記表示素子に表示する表示装置と、前記撮像素子に受光された物体像を前記記録媒体に記録する記録処理手段とを有することを特徴とする電子カメラ装置。 The zoom lens according to any one of claims 1 to 8, an image sensor disposed at a position for receiving an object image formed by the zoom lens, and an electronic signal photoelectrically converted by the image sensor A CPU and a display element that displays the object image received by the image sensor so as to be observable, and a recording medium for recording image information of the object image received by the image sensor is built in or removed. Configured such that the CPU displays on the display element the object image received by the image sensor, and recording processing means for recording the object image received by the image sensor on the recording medium. An electronic camera device comprising:
JP2006102735A 2006-04-04 2006-04-04 Zoom lens Active JP4884054B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006102735A JP4884054B2 (en) 2006-04-04 2006-04-04 Zoom lens
US11/732,426 US7450314B2 (en) 2006-04-04 2007-04-02 Zoom lens system and image pickup apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102735A JP4884054B2 (en) 2006-04-04 2006-04-04 Zoom lens

Publications (2)

Publication Number Publication Date
JP2007279183A true JP2007279183A (en) 2007-10-25
JP4884054B2 JP4884054B2 (en) 2012-02-22

Family

ID=38680724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102735A Active JP4884054B2 (en) 2006-04-04 2006-04-04 Zoom lens

Country Status (1)

Country Link
JP (1) JP4884054B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256608A (en) * 2009-04-24 2010-11-11 Konica Minolta Opto Inc Imaging lens, imaging optical device and digital apparatus
JP2014102526A (en) * 2014-03-07 2014-06-05 Tamron Co Ltd Zoom lens unit
JP2017156428A (en) * 2016-02-29 2017-09-07 株式会社ニコン Variable power optical system, optical apparatus and method for manufacturing variable power optical system
CN108369328A (en) * 2015-12-09 2018-08-03 株式会社尼康 The manufacturing method of zoom lens, optical device and zoom lens
CN115561881A (en) * 2022-08-29 2023-01-03 华为技术有限公司 Camera module and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148523A (en) * 1992-11-06 1994-05-27 Canon Inc Rear focus type zoom lens
JP2001350093A (en) * 2000-04-07 2001-12-21 Minolta Co Ltd Image pickup lens device
JP2001356270A (en) * 2000-06-15 2001-12-26 Canon Inc Variable power optical system having vibration-proof function and optical equipment using the same
JP2003215452A (en) * 2002-01-25 2003-07-30 Canon Inc Zoom lens and optical equipment having the same
JP2003255228A (en) * 2001-12-28 2003-09-10 Olympus Optical Co Ltd Wide-angle high-power zoom lens
JP2004264343A (en) * 2003-01-10 2004-09-24 Olympus Corp Electronic image pickup device equipped with zoom lens
JP2005352183A (en) * 2004-06-10 2005-12-22 Sony Corp Variable-focal-length lens system and imaging unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148523A (en) * 1992-11-06 1994-05-27 Canon Inc Rear focus type zoom lens
JP2001350093A (en) * 2000-04-07 2001-12-21 Minolta Co Ltd Image pickup lens device
JP2001356270A (en) * 2000-06-15 2001-12-26 Canon Inc Variable power optical system having vibration-proof function and optical equipment using the same
JP2003255228A (en) * 2001-12-28 2003-09-10 Olympus Optical Co Ltd Wide-angle high-power zoom lens
JP2003215452A (en) * 2002-01-25 2003-07-30 Canon Inc Zoom lens and optical equipment having the same
JP2004264343A (en) * 2003-01-10 2004-09-24 Olympus Corp Electronic image pickup device equipped with zoom lens
JP2005352183A (en) * 2004-06-10 2005-12-22 Sony Corp Variable-focal-length lens system and imaging unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256608A (en) * 2009-04-24 2010-11-11 Konica Minolta Opto Inc Imaging lens, imaging optical device and digital apparatus
JP2014102526A (en) * 2014-03-07 2014-06-05 Tamron Co Ltd Zoom lens unit
CN108369328A (en) * 2015-12-09 2018-08-03 株式会社尼康 The manufacturing method of zoom lens, optical device and zoom lens
JPWO2017099243A1 (en) * 2015-12-09 2018-10-04 株式会社ニコン Zoom lens, optical device, and method of manufacturing zoom lens
US11099366B2 (en) 2015-12-09 2021-08-24 Nikon Corporation Zoom lens, optical apparatus and method for manufacturing the zoom lens
JP2017156428A (en) * 2016-02-29 2017-09-07 株式会社ニコン Variable power optical system, optical apparatus and method for manufacturing variable power optical system
JP2021096485A (en) * 2016-02-29 2021-06-24 株式会社ニコン Variable power optical system, optical apparatus and method for manufacturing variable power optical system
JP7144765B2 (en) 2016-02-29 2022-09-30 株式会社ニコン Variable magnification optical system and optical equipment
CN115561881A (en) * 2022-08-29 2023-01-03 华为技术有限公司 Camera module and electronic equipment

Also Published As

Publication number Publication date
JP4884054B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4901270B2 (en) Zoom lens
JP4942091B2 (en) Wide-angle high-magnification zoom lens and imaging apparatus using the same
JP2006098686A (en) Zoom lens and electronic imaging apparatus using the same
JP5062734B2 (en) Image pickup apparatus provided with optical path reflection type zoom lens
JP2006235062A (en) Zoom lens and information apparatus
JP2007327991A (en) Zoom lens and imaging apparatus with the same
JP2008129238A (en) Zoom lens and imaging device using the same
JP2007328178A (en) Zoom lens and electronic imaging apparatus with the same
JP2007248952A (en) Bending variable power optical system
JP2012208378A (en) Zoom lens and imaging apparatus using the same
JP2008083125A (en) Zoom lens and imaging apparatus using the same
JP2008052113A (en) Zoom lens and electronic imaging apparatus using the same
JP4911679B2 (en) Zoom lens and image pickup apparatus including the same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP2009037125A (en) Three-group zoom lens system and image pickup apparatus using the same
JP2006301154A (en) Zoom lens and electronic imaging apparatus using the same
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP2008122879A (en) Zoom lens and electronic imaging apparatus using the same
JP2008083503A (en) Zoom lens equipped with reflection surface for reflecting optical path, and imaging apparatus equipped with same
JP2009133993A (en) Zoom lens and imaging apparatus having the same
JP2011232620A (en) Imaging optical system and electronic imaging apparatus equipped with the same
JP2006343622A (en) Optical path bending type zoom lens and imaging apparatus having the same
JP2006308649A (en) Imaging apparatus
JP4605698B2 (en) Zoom lens and image pickup apparatus equipped with the same
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4884054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250