JP2007278779A - Test method for thermal fatigue, test piece for thermal fatigue test, and test piece mounting joint for thermal fatigue test - Google Patents

Test method for thermal fatigue, test piece for thermal fatigue test, and test piece mounting joint for thermal fatigue test Download PDF

Info

Publication number
JP2007278779A
JP2007278779A JP2006103839A JP2006103839A JP2007278779A JP 2007278779 A JP2007278779 A JP 2007278779A JP 2006103839 A JP2006103839 A JP 2006103839A JP 2006103839 A JP2006103839 A JP 2006103839A JP 2007278779 A JP2007278779 A JP 2007278779A
Authority
JP
Japan
Prior art keywords
test piece
test
thermal fatigue
nut
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006103839A
Other languages
Japanese (ja)
Other versions
JP4688162B2 (en
Inventor
Jun Horikawa
純 堀川
Toshiaki Hayasaka
敏明 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Toyota Motor Corp
Original Assignee
Shimadzu Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Toyota Motor Corp filed Critical Shimadzu Corp
Priority to JP2006103839A priority Critical patent/JP4688162B2/en
Publication of JP2007278779A publication Critical patent/JP2007278779A/en
Application granted granted Critical
Publication of JP4688162B2 publication Critical patent/JP4688162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of performing an accurate thermal fatigue test without disturbing a temperature distribution between gage marks of a test piece by preventing induction heating of a gripper even in the case of a small-sized test piece, by using a hydraulic servo type material test machine capable of applying a constant repeated thermal strain to the test piece and a thermal fatigue test machine using a coil for high-frequency induction heating with a cooling nozzle. <P>SOLUTION: Each joint 1 made of a non-magnetic material comprising an adaptor 11 and a nut 12 is mounted and fixed on both ends of the test piece W, and the test piece W is gripped by grippers 21, 22 through each joint 1. As for the nut 12 of each joint 1, a chamfered part 12c having 60% or more of the thickness of the nut 12 is formed on a corner part between the end face 12a on the coil side for high-frequency induction heating and the outer circumferential surface 12b, to thereby suppress an influence exerted on a test caused by induction heating of the joint 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、材料の熱疲労試験方法と、その方法に用いる試験片、並びにその熱疲労試験において試験片を負荷機構に装着するための継手に関し、更に詳しくは、実部品から切り出したような小型の試験片の熱疲労試験方法とその試験片、並びに当該試験片を負荷機構に装着するための継手に関する。   The present invention relates to a thermal fatigue test method for materials, a test piece used in the method, and a joint for mounting the test piece on a load mechanism in the thermal fatigue test, and more specifically, a small size cut out from an actual part. The present invention relates to a thermal fatigue test method for the test piece, its test piece, and a joint for mounting the test piece on a load mechanism.

実部品から切り出したような小型の試験片に対して熱疲労試験を行う方法として、従来、試験温度範囲において試験片より熱膨張係数が小さく、かつ、熱膨張係数が急激に変化する温度特異点が存在しない低膨張材料からなり、両端部にそれぞれ刃を設けた2枚のホルダにより、試験片の両側を拘束するようにそれぞれの刃を試験片の両端部に圧入するとともに、その両端部を弾性部材を介してボルト等の結合手段により結合して試験片を拘束し、その拘束状態で加熱・冷却サイクルを繰り返し行うことで、試験片とホルダの熱膨張差により生じる熱歪みを試験片の評価部分に集中させるようにする方法が提案されている(例えば特許文献1参照)。   As a method of performing thermal fatigue tests on small test pieces cut out from actual parts, a temperature singularity where the coefficient of thermal expansion is smaller than that of the test piece and the coefficient of thermal expansion changes abruptly in the test temperature range. Each blade is press-fitted into both ends of the test piece so as to constrain both sides of the test piece with two holders each made of a low-expansion material and provided with blades at both ends. The test piece is constrained by a coupling means such as a bolt via an elastic member, and the heat distortion caused by the difference in thermal expansion between the test piece and the holder is repeated by repeating the heating / cooling cycle in the constrained state. A method of concentrating on the evaluation part has been proposed (see, for example, Patent Document 1).

また、従来から、油圧サーボ式材料試験機と、冷却ガスを直接試験片表面に吹きつけるためのノズルを備えた高周波誘導加熱用コイルを有している加熱・冷却装置を組み合わせた熱疲労試験機が知られている。この熱疲労試験機においては、試験片の熱歪みを伸び計によって常時計測し、油圧により機械的に試験片の歪みを制御することにより、試験片の熱歪みをあらかじめ設定されている目標値と一致させることができる。
特開2003−35644号公報
Conventionally, a thermal fatigue testing machine that combines a hydraulic servo type material testing machine and a heating / cooling device with a high frequency induction heating coil equipped with a nozzle for blowing cooling gas directly onto the surface of the test piece. It has been known. In this thermal fatigue testing machine, the thermal strain of the test piece is constantly measured by an extensometer, and the strain of the test piece is controlled mechanically by hydraulic pressure, so that the thermal strain of the test piece is set to a preset target value. Can be matched.
JP 2003-35644 A

ところで、上記した従来の熱疲労試験方法によると、比較的簡単な装置構成のもとに熱疲労試験を行うことが可能となるのであるが、試験片とホルダの熱膨張差によって繰り返し熱歪みを生じさせるため、試験片やホルダの冷熱の繰り返しによる経時変化に伴う寸法変化が発生し、意図する一定値の繰り返し熱歪みを付与することが困難となるという問題があった。   By the way, according to the conventional thermal fatigue test method described above, it is possible to perform a thermal fatigue test with a relatively simple apparatus configuration. However, repeated thermal strain is caused by a difference in thermal expansion between the test piece and the holder. For this reason, there is a problem that a dimensional change accompanying a change with the lapse of time due to repeated cooling and heating of the test piece and the holder occurs, and it becomes difficult to apply the intended repetitive thermal strain.

一方、従来から知られている油圧サーボ式材料試験機と冷却ノズル付きの高周波誘導加熱用コイルを組み合わせた熱疲労試験機によると、試験片の刻々の伸びが伸び計により計測され、その計測結果を用いたフィードバック制御により試験片の歪みを機械的に制御するため、一定値の繰り返し熱歪みを付与することが可能となる。   On the other hand, according to a thermal fatigue testing machine that combines a conventionally known hydraulic servo type material testing machine and a high frequency induction heating coil with a cooling nozzle, the elongation of each specimen is measured by an extensometer, and the measurement result Since the strain of the test piece is mechanically controlled by feedback control using the, it is possible to apply a constant thermal strain repeatedly.

しかしながら、油圧サーボ式材料試験機と冷却ノズル付きの高周波誘導加熱用コイルを組み合わせた従来の熱疲労試験機においては、試験片の両端部を直接的に掴み具で把持するため、実部品から切り出したような小型の試験片を用いて熱疲労試験を行う場合には、掴み具が高周波誘導加熱用コイルと近接するため、掴み具も誘導加熱されてしまい、試験片の標点部分の温度分布が崩れ、正確な冷熱を与えることが困難となるという問題があった。   However, in a conventional thermal fatigue testing machine that combines a hydraulic servo type material testing machine and a high-frequency induction heating coil with a cooling nozzle, both ends of the test piece are directly gripped by the gripping tool, and thus cut out from the actual part. When a thermal fatigue test is performed using such a small test piece, the grip is also inductively heated because the grip is close to the high-frequency induction heating coil, and the temperature distribution of the test mark portion of the test piece There is a problem that it becomes difficult to give accurate cooling heat.

本発明はこのような実情に鑑みてなされたもので、基本的には、試験片に対して一定値の繰り返し熱歪みを付与することのできる油圧サーボ式材料試験機と冷却ノズル付きの高周波誘導加熱用コイルを用いた熱疲労試験機を用いながら、上記のような小型の試験片であっても、掴み具の誘導加熱を防止して、試験片の標点間領域の温度分布を崩すことなく正確な試験を行うことのできる熱疲労試験方法と、その方法に用いるのに適した熱疲労試験用試験片、並びに同方法に用いるのに適した試験片装着用の継手の提供をその課題としている。   The present invention has been made in view of such a situation. Basically, a high-frequency induction with a hydraulic servo type material tester and a cooling nozzle that can repeatedly apply a constant thermal strain to a test piece. Using a thermal fatigue testing machine with a heating coil, even for small test pieces as described above, the induction heating of the gripper is prevented and the temperature distribution in the area between the test specimens is destroyed. It is an object of the present invention to provide a thermal fatigue test method capable of performing accurate and accurate tests, a test piece for thermal fatigue test suitable for use in the method, and a joint for mounting a test piece suitable for use in the method It is said.

上記の課題を解決するため、本発明の熱疲労試験方法は、試験片の両端部を一対の掴み具に把持した状態で、試験片の周囲に配置した高周波誘導加熱用コイルにより当該試験片を加熱する工程と、その高周波誘導加熱用コイルに設けたノズルを介して冷却ガスを吹き付けることにより試験片を冷却する工程を繰り返しつつ、伸び計の一対の検出棒を試験片の各標点にそれぞれ当接させてその伸びを計測するとともに、その計測結果が所要の値となるように上記一対の掴み具を介して試験片に負荷を加える熱疲労試験方法において、試験片の両端部に雄ねじを形成し、その各雄ねじを、それぞれに対応するアダプタに形成した雌ねじにねじ込んだ状態でナットにより当該各アダプタに対して締めつけ、上記一対の掴み具にはそれぞれアダプタを介して試験片を把持するとともに、上記アダプタおよびナットを非磁性体材料とし、かつ、ナットとして、その外周面と上記高周波誘導加熱用コイル側の端面との間のコーナー部分に、当該ナットの厚さの60%以上に及ぶ面取りを形成したものを用いることによって特徴づけられる(請求項1)。   In order to solve the above-described problems, the thermal fatigue test method of the present invention is configured such that the test piece is held by a high frequency induction heating coil disposed around the test piece in a state where both ends of the test piece are held by a pair of grippers. While repeating the step of heating and the step of cooling the test piece by blowing cooling gas through the nozzle provided in the high-frequency induction heating coil, each pair of detection rods of the extensometer is applied to each test point of the test piece. In the thermal fatigue test method in which a load is applied to the test piece through the pair of gripping tools so that the measurement result becomes a required value by contacting with each other, male screws are provided at both ends of the test piece. Then, each male screw is tightened to each adapter with a nut while being screwed into the female screw formed on the corresponding adapter, and the adapter is attached to each of the pair of grips. Then, the adapter and the nut are made of a non-magnetic material, and the nut has a thickness of the nut at the corner portion between the outer peripheral surface and the end surface on the high frequency induction heating coil side. It is characterized by using a chamfering of 60% or more of the thickness (Claim 1).

ここで、本発明方法においては、上記各ナットと試験片の両端部の雄ねじの関係を、各ナットを締めつけた状態で試験片の雄ねじのねじ山がナットで覆われて外部に露出しない関係とすること(請求項2)が望ましい。   Here, in the method of the present invention, the relationship between each nut and the male screw at both ends of the test piece is a relationship in which the thread of the male screw of the test piece is covered with the nut and not exposed to the outside with each nut tightened. (Claim 2) is desirable.

また、本発明方法においては、上記高周波誘導加熱用コイルに対する試験片表面の距離を9〜30mmとした状態で試験を行うこと(請求項3)が望ましい。更にまた、本発明方法においては、試験片に対する上記伸び計の検出棒の押し付け力を240gf以上とすること(請求項4)が望ましい。   In the method of the present invention, it is desirable to perform the test in a state in which the distance of the surface of the test piece with respect to the high frequency induction heating coil is 9 to 30 mm (Claim 3). Furthermore, in the method of the present invention, it is preferable that the pressing force of the extensometer detection rod against the test piece is 240 gf or more (Claim 4).

一方、本発明の熱疲労試験用試験片は、請求項1、2、3または4に記載の熱疲労試験方法に用いる試験片であって、上記アダプタに対する試験片の振れ量を0.1mm以下とすること(請求項5)が望ましい。   On the other hand, the test piece for thermal fatigue test of the present invention is a test piece used in the thermal fatigue test method according to claim 1, 2, 3 or 4, and the deflection of the test piece relative to the adapter is 0.1 mm or less. (Claim 5) is desirable.

また、請求項6に係る発明の熱疲労試験片は、同じく請求項1,2、3または4に記載の熱疲労試験方法に用いる試験片であって、標点間における表面粗さを、1.6z以下とすることによって特徴づけられる(請求項6)。   The thermal fatigue test piece of the invention according to claim 6 is also a test piece used in the thermal fatigue test method according to claim 1, 2, 3 or 4, and the surface roughness between the gauge points is 1 .6z or less (claim 6).

また、本発明の熱疲労試験の試験片装着用継手は、請求項1、2、3、4または5に記載の熱疲労試験方法に用いるアダプタおよびナットからなる継手であって、その材料が、熱伝導率が120W/m・K以上の材料であることによって特徴づけられる(請求項7)。   Moreover, the joint for mounting a test piece of the thermal fatigue test of the present invention is a joint comprising an adapter and a nut used in the thermal fatigue test method according to claim 1, 2, 3, 4 or 5, and the material thereof is: It is characterized by being a material having a thermal conductivity of 120 W / m · K or more.

また、請求項8に係る発明の熱疲労試験の試験片装着用継手は、同じく請求項1、2、3、4または5に記載の熱疲労試験方法に用いるアダプタおよびナットからなる継手であって、その材料が、引張強さ475MPa以上の材料であることによって特徴づけられる。   Further, the joint for mounting a test piece of the thermal fatigue test of the invention according to claim 8 is a joint comprising an adapter and a nut used in the thermal fatigue test method of claim 1, 2, 3, 4 or 5. The material is characterized by being a material having a tensile strength of 475 MPa or more.

更に、請求項9に係る発明の熱疲労試験の試験片装着用継手は、同じく請求項1、2、3、4またはまたは5に記載の熱疲労試験方法に用いるアダプタおよびナットからなる継手であって、その材質がベリリウム銅であることによって特徴づけられる。   Furthermore, the joint for mounting a test piece in the thermal fatigue test of the invention according to claim 9 is a joint comprising an adapter and a nut used in the thermal fatigue test method according to claim 1, 2, 3, 4 or 5. The material is characterized by beryllium copper.

本発明は、油圧サーボ式材料試験機と冷却ノズル付きの高周波誘導加熱用コイルを組み合わせた熱疲労試験機を用いて、小型の試験片の試験を行うに当たり、試験片の両端部を継手を介して掴み具に把持することにより、掴み具を高周波誘導加熱用コイルから極力遠ざけるとともに、その継手の材料を非磁性体の材料としたうえで、種々の実験を行った結果としてなされたものである。   The present invention employs a thermal fatigue testing machine that combines a hydraulic servo type material testing machine and a high-frequency induction heating coil with a cooling nozzle. The gripping tool is moved away from the high-frequency induction heating coil as much as possible, and the joint material is made of a non-magnetic material, and as a result of various experiments. .

すなわち、本発明の熱疲労試験方法においては、試験片の両端部に雄ねじを形成し、その両端部の雄ねじをそれぞれ、非磁性体の材料からなるアダプタに形成した雌ねじにねじ込むとともに、その雄ねじに同じく非磁性体の材料からなるナットをねじ込んでアダプタに対して締めつけることにより、試験片の両端部にアダプタとナットからなる継手を装着する。その状態で、各継手を一対の掴み具にそれぞれ把持する。つまり、非磁性体の材料からなる継手を介して試験片の両端部を掴み具に把持し、機械的な負荷を掛けるようにする。   That is, in the thermal fatigue test method of the present invention, male threads are formed at both ends of the test piece, and the male threads at both ends are screwed into female threads formed on an adapter made of a non-magnetic material, respectively. Similarly, a nut made of a non-magnetic material is screwed and fastened to the adapter, so that a joint made of the adapter and the nut is attached to both ends of the test piece. In this state, each joint is gripped by a pair of grippers. That is, both ends of the test piece are gripped by the gripper via a joint made of a non-magnetic material so that a mechanical load is applied.

そして、継手を非磁性体としても、高周波誘導加熱用コイルに向く突起が存在すれば継手温度が上昇してしまい、正確な試験を行うことができないことが判った。そこで、請求項1に係る発明においては、継手を構成するナットの形状を、高周波誘導加熱用コイル側の端面と外周面とが交叉するコーナー部分の突起(エッジ)をなくするべく、その部分に、ナットの厚みの60%以上に及ぶ面取りを形成したものを用いた。これにより、ナットの昇温が抑制され、ひいては試験片の温度分布を乱すことを防止することができる。   And even if the joint is made of a non-magnetic material, it has been found that if there is a protrusion facing the high frequency induction heating coil, the joint temperature rises and an accurate test cannot be performed. Therefore, in the invention according to claim 1, the shape of the nut constituting the joint is formed in that portion in order to eliminate the protrusion (edge) at the corner portion where the end surface on the high frequency induction heating coil side and the outer peripheral surface intersect. A nut having a chamfering of 60% or more of the nut thickness was used. As a result, the temperature rise of the nut is suppressed, and as a result, it is possible to prevent the temperature distribution of the test piece from being disturbed.

また、請求項2に係る発明においては、上記に加えて、ナットを試験片の雄ねじにねじ込んでアダプタに対して締めつけた状態で、試験片の雄ねじのねじ山がそのナットにより覆われる状態とする。つまり、上記のように面取りを施したナットにより試験片のねじ山を隠す。このような試験片のねじ山とナットとの関係を採用することにより、試験片の雄ねじのねじ山部分が局所的に昇温することを防止することができ、試験片の標点間以外の部位が加熱されにくくなる。   Further, in the invention according to claim 2, in addition to the above, in the state where the nut is screwed into the male screw of the test piece and tightened to the adapter, the thread of the male screw of the test piece is covered with the nut. . In other words, the thread of the test piece is hidden by the chamfered nut as described above. By adopting such a relationship between the thread and nut of the test piece, it is possible to prevent the temperature of the thread part of the male thread of the test piece from locally rising, and other than between the marks on the test piece. The part becomes difficult to be heated.

また、熱疲労試験においては、試験片の標点間内の温度が極力均一であることが必要であるが、小型の試験片ではその熱容量が小さく、試験片を加熱する高周波誘導加熱用コイルとの距離に対して敏感となる。すなわち、試験片とコイルとの距離が大きいと雰囲気温度のバラツキの影響を受けやすくなり、標点間内の温度差が大きくなる。逆にその距離が小さいと、試験片の高周波誘導加熱用コイルとの同軸の程度の影響を受けやすくなり、標点間内の温度差が大きくなる。請求項3に係る発明のように、試験片と高周波誘導加熱用コイルとの距離を9〜30mmとすると、標点間内の温度差が顕著に減少すること(図7参照)が判った。   In addition, in the thermal fatigue test, it is necessary that the temperature between the test marks of the test piece is as uniform as possible, but the small test piece has a small heat capacity, and a high frequency induction heating coil for heating the test piece and Sensitive to distance. That is, if the distance between the test piece and the coil is large, it is easy to be affected by variations in the ambient temperature, and the temperature difference between the gauge points becomes large. Conversely, when the distance is small, the test piece is easily affected by the degree of coaxiality with the high frequency induction heating coil, and the temperature difference between the gauge points becomes large. As in the invention according to claim 3, when the distance between the test piece and the high frequency induction heating coil is 9 to 30 mm, it has been found that the temperature difference between the gauge points is remarkably reduced (see FIG. 7).

更に、小型の試験片においては、その剛性が小さいため、伸び計の検出棒の押し付け力に対して敏感である。すなわち、検出棒の押し付け力が小さいと、試験片に熱歪みが発生したとき、検出棒が試験片表面ですべるため、熱歪みを正確に検知できない。請求項4に係る発明のように、試験片に対する伸び計の検出棒の押し付け力を240gf以上とすることにより、検出棒のすべり量が顕著に減少する(図8参照)。   Furthermore, since the small test piece has small rigidity, it is sensitive to the pressing force of the extensometer detection rod. That is, if the pressing force of the detection rod is small, the thermal strain cannot be accurately detected because the detection rod slides on the surface of the test piece when thermal strain occurs in the test piece. As in the invention according to claim 4, when the pressing force of the extensometer detection rod against the test piece is 240 gf or more, the amount of slip of the detection rod is remarkably reduced (see FIG. 8).

疲労試験においては、試験片の標点間内に発生する歪みが円周方向のどの位置で計っても極力均一であることが必要であるが、小型の試験片を継手を介して掴み具に把持する場合、試験片が敏感であるが故に曲げ応力が発生しやすく、標点間内に発生する歪みが不均一になりやすい。この把持状態で試験片に曲げ応力が発生する主たる原因の一つに、試験片の継手に対する振れがある。そこで、請求項5に係る発明では、継手に対する試験片の振れ量を0.1mm以下とする。このような装着の仕方により、標点間の歪み差が顕著に減少する(図6参照)。   In a fatigue test, it is necessary that the strain generated between the test points of the test piece is as uniform as possible regardless of the position in the circumferential direction, but a small test piece is attached to the gripper via a joint. When gripping, since the test piece is sensitive, bending stress is likely to occur, and the distortion generated between the gauge points tends to be uneven. One of the main causes of the occurrence of bending stress in the test piece in this gripping state is the shake of the test piece with respect to the joint. Therefore, in the invention according to claim 5, the deflection amount of the test piece with respect to the joint is set to 0.1 mm or less. Such a mounting method significantly reduces the distortion difference between the gauge points (see FIG. 6).

試験片を高温に加熱する熱疲労試験において、試験片の表面に伸び計の検出棒を接触させてその刻々の伸びを検出する場合、加熱により試験片が軟化し、伸び計の検出棒が次第に試験片に食い込んでいく場合がある。これによって生じた切欠きを起点として、試験片の本来の寿命よりも早期に熱疲労破壊が生じてしまうことがある。これは、小型の試験片を用いる場合に特に生じやすい。請求項6に係る発明のように、この種の熱疲労試験に用いる試験片として、その標点間の表面粗さを1.6z以下にすると、試験片表面の粗さに起因する凸部への高周波加熱の集中が抑制される結果、伸び計の検出棒の試験片表面への食い込み量が顕著に減少し、食い込み部からの破壊を抑制することができる(図9参照)。   In a thermal fatigue test in which a test piece is heated to a high temperature, when the extensometer detection rod is brought into contact with the surface of the test piece to detect the momentary elongation, the test piece softens due to heating, and the extensometer detection rod gradually increases. It may bite into the specimen. Starting from the notch generated by this, thermal fatigue failure may occur earlier than the original life of the test piece. This is particularly likely to occur when using small test pieces. As in the invention according to claim 6, as a test piece used for this type of thermal fatigue test, when the surface roughness between the gauge points is 1.6 z or less, to the convex portion due to the roughness of the test piece surface As a result, the amount of biting into the test piece surface of the detection rod of the extensometer is remarkably reduced, and breakage from the biting portion can be suppressed (see FIG. 9).

本発明のように小型の試験片を継手に装着した状態で掴み具に把持して熱疲労試験を行う場合、試験片の熱容量が小さいため、その降温速度が継手の熱伝達率に敏感となる。継手の材料として、請求項7に係る発明のように、熱伝導率が120W/m・K以上の材料を採用すると、試験片の冷却時における降温速度が顕著に増大する(図4参照)。   When a thermal fatigue test is performed by gripping a small test piece attached to a joint as in the present invention and performing a thermal fatigue test, the temperature drop rate becomes sensitive to the heat transfer coefficient of the joint because the heat capacity of the test piece is small. . When a material having a thermal conductivity of 120 W / m · K or more is used as the joint material as in the invention according to claim 7, the temperature drop rate during cooling of the test piece is remarkably increased (see FIG. 4).

本発明においては、試験片の両端部に雄ねじを形成して、その各雄ねじを各アダプタに形成された雌ねじにねじ込み、更に雄ねじにナットをねじ込むことによって各アダプタに締めつけ、そのアダプタ並びにナットからなる継手を介して試験片の両端部を掴み具に把持するのであるが、試験中の加熱・冷却の繰り返しに伴い、ナットの締結トルクが初期の値から低下し、ナットの緩みが生じる。この結果、試験片の機械的歪みを付与するクロスヘッドのストロークが長くなり、試験条件の1サイクル当たりの時間に追従できないと、正確に機械的歪みを与えることができなくなる。請求項8に係るのように、アダプタおよびナットとして、引張強さが475MPa以上の材料を用いると、締結トルクの低下率が顕著に減少し、試験片に初期に設定した機械的歪みを継続的に付与することが可能となる(図5参照)。   In the present invention, male screws are formed at both ends of the test piece, each male screw is screwed into a female screw formed in each adapter, and further, a nut is screwed into the male screw to fasten each adapter. The both ends of the test piece are gripped by the gripper via the joint, but with repeated heating and cooling during the test, the nut fastening torque decreases from the initial value, and the nut loosens. As a result, the stroke of the crosshead that imparts mechanical strain to the test piece becomes long, and if the time per cycle of the test conditions cannot be followed, the mechanical strain cannot be accurately applied. As described in claim 8, when a material having a tensile strength of 475 MPa or more is used as the adapter and the nut, the decrease rate of the fastening torque is remarkably reduced, and the mechanical strain initially set on the test piece is continuously increased. (See FIG. 5).

ここで、本発明において用いる継手は、上記から明らかなように、その形状ばかりでなく材質も、正確な試験を行ううえで重要なポイントとなる。継手の材質は、請求項9に係る発明のようにベリリウム銅とすることがよい。ベリリウム銅は非磁性体であり、熱伝導度が大きく、かつ、相応の引張強さを有しており、この種の熱疲労試験を行う際の継手の材料として適している。   Here, as is apparent from the above, the joint used in the present invention is not only the shape but also the material of which is an important point in conducting an accurate test. The material of the joint is preferably beryllium copper as in the invention according to claim 9. Beryllium copper is a non-magnetic material, has a high thermal conductivity, and has a corresponding tensile strength, and is suitable as a joint material when performing this type of thermal fatigue test.

本発明によれば、実部品から切り出したような小型の試験片であっても、その両端部を非磁性体からなる継手を介して一対の掴み具に把持した状態で、高周波誘導加熱用コイルによる加熱と、そのコイルに設けた冷却用ノズルからの冷却ガスの吹きつけによる冷却を繰り返しつつ、各標点に伸び計の検出棒を当接させて歪みを検出し、その検出値が目標値に一致するように油圧サーボ機構により試験片に負荷を加える正確な熱疲労試験を行うことが可能となった。   According to the present invention, even a small test piece cut out from an actual part is held in a state where both ends thereof are gripped by a pair of grippers via a joint made of a nonmagnetic material, and the high frequency induction heating coil is used. While repeating heating by cooling and cooling by blowing cooling gas from the cooling nozzle provided on the coil, the strain is detected by bringing the extensometer detection rod into contact with each gauge point, and the detected value is the target value. It became possible to perform an accurate thermal fatigue test that applied a load to the test piece by a hydraulic servo mechanism so that

また、試験片に形成した雄ねじのねじ山をナットで覆った状態で試験を行うことで、試験片の局所的な昇温を防止して主として標点間の温度分布を均一なものとすることができるとともに、アダプタに対する試験片の振れ量を0.1mm以下とすることで標点間の歪み差が少なくなり、正確な試験を行うことが可能となる。   In addition, by conducting the test with the male screw thread formed on the test piece covered with a nut, the temperature of the test piece is prevented from locally rising and the temperature distribution between the gauge points is made uniform. In addition, when the amount of deflection of the test piece with respect to the adapter is 0.1 mm or less, the distortion difference between the gauge points is reduced, and an accurate test can be performed.

更に、高周波誘導加熱用コイルに対する試験片表面の距離を9〜30mmとして試験を行うことにより、標点間における温度差を小さくすることができ、また、試験片に対する伸び計の検出棒の押し付け力を240g以下とすることで、検出棒が試験片の表面に対してすべることを抑制することができ、正確な歪みの付与が可能となる。   Furthermore, by performing the test with the distance of the test piece surface from 9 to 30 mm with respect to the high frequency induction heating coil, the temperature difference between the gauge points can be reduced, and the pressing force of the extensometer detection rod against the test piece By setting the value to 240 g or less, the detection rod can be prevented from sliding against the surface of the test piece, and accurate distortion can be imparted.

更にまた、このような試験に供する試験片としては、標点間における表面粗さを1.6z以下とすることによって、粗さの山部に高周波加熱が集中することを抑制でき、検出棒の試験片表面への食い込みに起因する試験片の早期破壊の発生を防止することができる。   Furthermore, as a test piece to be used for such a test, by setting the surface roughness between the gauge points to 1.6 z or less, it is possible to suppress the high-frequency heating from being concentrated on the peak portion of the roughness, The occurrence of premature destruction of the test piece due to the biting into the test piece surface can be prevented.

そして、試験片の両端部に装着されるアダプタとナットからなる継手としては、熱伝導率が120w/m・K以上の材料を採用することで、特に試験片の冷却時における降温速度が向上し、また、これらのアダプタおよびナットの引張強さを475MPa以上とすると、加熱・冷却を繰り返し行ったときのナットの締結トルクの低下を抑制して正確な歪みを与えることができる。そして、このような継手の材料としてベリリウム銅を用いることにより、上記の各条件を満足して再現性よく正確な試験を行うことができる。   And, as a joint consisting of an adapter and nuts attached to both ends of the test piece, by using a material having a thermal conductivity of 120 w / m · K or more, the temperature drop rate is improved particularly when the test piece is cooled. Moreover, when the tensile strength of these adapters and nuts is set to 475 MPa or more, it is possible to suppress a decrease in the fastening torque of the nuts when heating and cooling are repeated, and to give an accurate distortion. By using beryllium copper as a material for such a joint, it is possible to perform an accurate test with high reproducibility that satisfies the above-mentioned conditions.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の要部構成図であり、図2はその高周波誘導加熱用コイル2の1ターン分の部分断面図で、図3は試験片Wに継手1を装着した状態を示す部分断面正面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a main part of an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of the high-frequency induction heating coil 2 for one turn, and FIG. FIG.

試験片Wは、その全長が約60mm程度であって、標点間距離は20mmである。この試験片Wは、その両端部にそれぞれ後述する継手1が装着された状態で、各継手1を介して上下一対の掴み具21,22に把持されている。各掴み具21,22は油圧サーボ式の材料試験機に取り付けられており、そのうち下方の掴み具21はテーブルに、上方の掴み具22はクロスヘッドに取り付けられている。クロスヘッドは油圧サーボ機構によりテーブルに対して上下方向に接近/離隔し、これにより試験片Wに負荷が加えられる。   The test piece W has a total length of about 60 mm, and the distance between the gauge points is 20 mm. The test piece W is held by a pair of upper and lower grips 21 and 22 via each joint 1 with joints 1 to be described later attached to both ends thereof. Each of the grips 21 and 22 is attached to a hydraulic servo type material testing machine, of which a lower grip 21 is attached to a table and an upper grip 22 is attached to a crosshead. The cross head is moved up and down in the vertical direction with respect to the table by a hydraulic servo mechanism, and a load is applied to the test piece W.

試験片Wの周囲には、3ターンの高周波誘導加熱用コイル3が配置されている。この各ターンは接続部(図示せず)により相互に直列に接続されており、その接続部の両端は高周波電源に接続され、その高周波電源からコイル3に高周波電圧が流され、これによって試験片Wが誘導加熱される。   Around the test piece W, a three-turn high-frequency induction heating coil 3 is arranged. Each turn is connected to each other in series by a connection portion (not shown), and both ends of the connection portion are connected to a high-frequency power source, and a high-frequency voltage is passed from the high-frequency power source to the coil 3, whereby a test piece is obtained. W is heated by induction.

高周波誘導加熱用コイル3は、その1ターン分の部分断面図を図2に示すように2つの角パイプ31,32を内外に配置した二重のパイプ構造となっており、内側の角パイプ31内には冷却ガスが流されるとともに、その内側の壁体には周方向に多数のノズル31aが形成されており、この各ノズル31aから内側の試験片Wに向けて冷却ガスを吹きつけることによって試験片Wを冷却することができる。外側の各パイプ32には、コイル自体を冷却するための冷却水が流される。   The high frequency induction heating coil 3 has a double pipe structure in which two square pipes 31 and 32 are arranged inside and outside as shown in FIG. A cooling gas is flowed inside, and a number of nozzles 31a are formed in the circumferential direction on the inner wall body. By blowing the cooling gas from each nozzle 31a toward the inner test piece W, The test piece W can be cooled. Cooling water for cooling the coils themselves flows through each outer pipe 32.

試験片Wは、図3に示すように、その両端部に継手1が装着された状態で、その各継手1が掴み具21,22に把持される。すなわち、継手1はアダプタ11とナット12によって構成され、アダプタ11にはその一端面に雌ねじ11aが形成されている。試験片Wにはその両端部に雄ねじWaが形成されており、この雄ねじWaがアダプタ11の雌ねじ11aにねじ込まれ、かつ、中心側からナット12により締めつけることにより、試験片Wの両端部に継手1が装着固定された状態となる。その状態で両側の継手1のアダプタ11を掴み具21,22に把持し、試験を行う。   As shown in FIG. 3, the test piece W is gripped by the grips 21 and 22 with the joints 1 attached to both ends thereof. That is, the joint 1 is constituted by an adapter 11 and a nut 12, and the adapter 11 is formed with a female screw 11 a at one end surface thereof. A male thread Wa is formed at both ends of the test piece W. The male thread Wa is screwed into the female thread 11a of the adapter 11 and is tightened with a nut 12 from the center side, so that a joint is formed at both ends of the test piece W. 1 is attached and fixed. In this state, the adapters 11 of the joints 1 on both sides are gripped by the grips 21 and 22, and the test is performed.

ナット12は、その高周波誘導加熱用コイル3側の端面(アダプタ11と反対側の端面)12aと外周面12bとの間のコーナー部分に、その厚み(軸方向寸法)の60%以上に及ぶ面取り12cが形成されている。また、このナット12は、継手1を試験片Wに装着固定した状態で、試験片Wに形成されている雄ねじWaのねじ山を覆った状態とされている。そして、これらのアダプタ11およびナット12は、いずれもベリリウム銅によって形成されている。   The nut 12 is chamfered to 60% or more of its thickness (axial dimension) at the corner portion between the end surface (end surface opposite to the adapter 11) 12a and the outer peripheral surface 12b on the high frequency induction heating coil 3 side. 12c is formed. The nut 12 is in a state in which the thread 1 of the male screw Wa formed on the test piece W is covered with the joint 1 mounted and fixed to the test piece W. The adapter 11 and the nut 12 are both made of beryllium copper.

試験片Wの2箇所の標点には、伸び計4の2本の検出棒41,42が高周波誘導加熱用コイル3の間を通るようにして当接しており、この伸び計4により試験中における試験片Wの標点間の刻々の伸びが計測される。   The two detection bars 41 and 42 of the extensometer 4 are in contact with the two test points of the test piece W so as to pass between the high frequency induction heating coils 3. The momentary elongation between the test marks of the test piece W is measured.

さて、以上の構成において、試験片Wは高周波誘導加熱用コイル3により加熱と、ノズル31aからの冷却ガスの吹きつけによる冷却が繰り返され、その間、伸び計4による試験片Wの標点間の刻々の伸びの計測結果を目標値にフィードバックすることにより、試験片Wにあらかじめ設定されている伸びが加わるように、上方の掴み具22が取り付けられているクロスヘッドが上下動する。   In the above configuration, the test piece W is repeatedly heated by the high-frequency induction heating coil 3 and cooled by blowing a cooling gas from the nozzle 31a. The crosshead to which the upper gripping tool 22 is attached moves up and down so that the preset elongation is applied to the test piece W by feeding back the measurement result of the momentary elongation to the target value.

このような熱疲労試験において、継手1は非磁性体であり、かつ、そのナット12の面取りの存在により、ナット12に凸部が存在しないため、局所的に誘導加熱されることがない。また、ナット12により試験片Wの雄ねじWaのねじ山が全て覆われているため、試験片Wの雄ねじWaのねじ山に高周波加熱が集中することもない。   In such a thermal fatigue test, the joint 1 is a non-magnetic material, and the nut 12 is not chamfered due to the chamfering of the nut 12, so that it is not locally induction heated. In addition, since all the threads of the male thread Wa of the test piece W are covered by the nut 12, high-frequency heating does not concentrate on the thread of the male thread Wa of the test piece W.

また、ベリリウム銅はその熱伝導率が120〜130W/m・Kであり、試験片Wの冷却時における降温速度が速いという利点があり、試験時間を短縮することができる。継手1の材料を種々に変更して、その熱伝導率と試験片Wの標点間の降温速度、具体的には250℃から50℃にまで降温する際の速度との関係を調査した結果を図4にグラフで示す。このグラフから明らかなように、継手1の材料として、熱伝導率が120W/m・K以上の材料を用いることにより、試験片Wの冷却過程における降温速度が顕著に増大することが判った。   Beryllium copper has an advantage of 120 to 130 W / m · K in thermal conductivity, and has an advantage that the temperature drop rate when the test piece W is cooled is fast, and the test time can be shortened. The result of investigating the relationship between the thermal conductivity and the rate of temperature decrease between the test points of the test piece W, specifically the rate at which the temperature decreases from 250 ° C. to 50 ° C., by changing the material of the joint 1 in various ways Is shown graphically in FIG. As is apparent from this graph, it was found that the use of a material having a thermal conductivity of 120 W / m · K or more as the material of the joint 1 markedly increases the cooling rate in the cooling process of the test piece W.

また、ベリリウム銅はその引張強さが500MPa以上であり、繰り返しサイクルの後にもアダプタ11とナット12との締結トルクの低下率が少なく、機械的歪みを継続的に付与することができる。継手1の材料を種々に変更して、その引張強さと一定の冷・熱サイクルの経過後のアダプタ11とナット12との締結トルクの低下率との関係を調査した。すなわち、50〜250℃で100サイクル経過後のアダプタ11とナット12との締結トルクの低下率を調査した結果を図5にグラフで示す。このグラフから明らかなように、引張強さが475MPa以上の材料を用いることにより、締結トルクの低下率が顕著に減少し、試験片Wに初期に設定した機械的歪みを継続して付与できることが判った。   Moreover, the tensile strength of beryllium copper is 500 MPa or more, and the decrease rate of the fastening torque between the adapter 11 and the nut 12 is small even after repeated cycles, and mechanical strain can be continuously applied. The material of the joint 1 was changed in various ways, and the relationship between the tensile strength and the decrease rate of the fastening torque between the adapter 11 and the nut 12 after a certain cold / heat cycle elapsed was investigated. That is, the result of investigating the decrease rate of the fastening torque between the adapter 11 and the nut 12 after 100 cycles at 50 to 250 ° C. is shown in a graph in FIG. As is apparent from this graph, by using a material having a tensile strength of 475 MPa or more, the reduction rate of the fastening torque is remarkably reduced, and the mechanical strain set initially can be continuously applied to the test piece W. understood.

また、継手1に対して試験片Wを取り付ける際、これら相互の振れ量が大きくなると試験片Wに曲げ応力が発生し、標点間内の歪み差が生じることが判った。すなわち、この振れ量を種々に変更して試験片Wの標点間内の全歪み範囲差を測定した結果を図6にグラフで示す。このグラフに示されるように、振れ量を0.1mm以下にすることにより、標点間内の歪み差が顕著に減少することが明らかになった。   Moreover, when attaching the test piece W with respect to the coupling 1, it turned out that a bending stress will generate | occur | produce in the test piece W and the distortion difference within a gauge will arise if these mutual deflection | deviation amounts become large. That is, FIG. 6 is a graph showing the result of measuring the total strain range difference between the test points of the test piece W by changing the shake amount in various ways. As shown in this graph, it has been clarified that the distortion difference between the gauge points is remarkably reduced by setting the shake amount to 0.1 mm or less.

更に、試験片Wの表面と高周波誘導加熱コイル3との距離を種々に変更して、試験片Wの標点間内の温度差を計測した結果、その距離は9〜30mmとすることがよいことが判った。図7にその結果を示す。試験片Wの表面と高周波誘導加熱コイル3との距離を9〜30mmとすることで、標点間内の温度差が顕著に減少する。熱疲労試験においては、試験片の標点間内での温度が極力均一あることが望ましく、9mm以下では試験片と高周波誘導加熱用コイル3との同軸度の影響を受けやすくなり、標点間の温度差が大きくなり、30mm以上では雰囲気温度のバラツキの影響を受けやすいことが判った。   Furthermore, as a result of changing the distance between the surface of the test piece W and the high frequency induction heating coil 3 in various ways and measuring the temperature difference between the gauge points of the test piece W, the distance is preferably 9 to 30 mm. I found out. FIG. 7 shows the result. By setting the distance between the surface of the test piece W and the high-frequency induction heating coil 3 to 9 to 30 mm, the temperature difference between the gauge points is significantly reduced. In the thermal fatigue test, it is desirable that the temperature between the marks of the test pieces is as uniform as possible. If the temperature is 9 mm or less, the test piece and the high frequency induction heating coil 3 are easily affected by the coaxiality. It has been found that the temperature difference is large, and when it is 30 mm or more, it is easily affected by variations in the ambient temperature.

小型の試験片の試験に際しては、その剛性が小さいため、伸び計4の検出棒41,42の試験片Wの表面への押し付け力をある程度以上大きくしなければ、試験片Wに熱歪みが発生したとき、検出棒41,42が試験片Wの表面で滑ってしまい、熱歪みを正確に計測できないということが判明した。押し付け力を種々に変更して、伸び計4の検出棒41,42の試験片Wの表面に対するすべり量を測定した結果を図8に示す。このグラフから明らかなように、押し付け力を240gf以上とすることにより、そのすべり量が顕著に減少することが判った。   Since the rigidity of the small test piece is small, thermal strain occurs in the test piece W unless the pressing force of the detection rods 41 and 42 of the extensometer 4 on the surface of the test piece W is increased to some extent. As a result, it was found that the detection rods 41 and 42 slipped on the surface of the test piece W, and the thermal strain cannot be measured accurately. FIG. 8 shows the results of measuring the amount of slip of the detection rods 41 and 42 of the extensometer 4 with respect to the surface of the test piece W by variously changing the pressing force. As is clear from this graph, it has been found that the slip amount is remarkably reduced by setting the pressing force to 240 gf or more.

そして、試験片Wの加熱状態で伸び計4の検出棒41,42をある程度以上の力で押し付けると、加熱による試験片の軟化により検出棒41,42が次第に試験片Wに食い込んでいき、それを起点に試験片が熱疲労破壊することがあり、正確な試験結果が得られないという問題が生じる。この問題は特に試験片の平行部の径が小さい小型の試験片において生じやすい。試験片Wの誘導加熱による軟化は、試験片Wの表面粗さを小さくすることによって抑制することができる。すなわち、試験片Wの表面粗さに起因する微小な凸部への高周波誘導加熱の集中を抑制することにより、試験片Wの軟化に起因する検出棒41,42の食い込みを防止できることが判った。図9に試験片Wの表面粗さを種々に変えて熱疲労試験を行い、試験片Wの表面粗さと検出棒41,42の試験片Wへの食い込み深さとの関係を計測した結果をグラフで示す。このグラフに示されるように、試験片Wの表面粗さ(標点間)を1.6z以下とすると、検出棒41,42の食い込み深さが顕著に減少し、食い込み部を起点とした試験片Wの破壊を抑制することができる。   When the detection rods 41 and 42 of the extensometer 4 are pressed with a certain level of force while the test piece W is heated, the detection rods 41 and 42 gradually bite into the test piece W due to softening of the test piece due to heating. As a result, the test piece may be subject to thermal fatigue failure, and an accurate test result cannot be obtained. This problem is likely to occur particularly in a small test piece in which the diameter of the parallel part of the test piece is small. Softening due to induction heating of the test piece W can be suppressed by reducing the surface roughness of the test piece W. That is, it has been found that by suppressing the concentration of high-frequency induction heating on the minute convex portions caused by the surface roughness of the test piece W, the detection rods 41 and 42 caused by softening of the test piece W can be prevented. . FIG. 9 is a graph showing the results of performing a thermal fatigue test with various changes in the surface roughness of the test piece W, and measuring the relationship between the surface roughness of the test piece W and the penetration depth of the detection rods 41 and 42 into the test piece W. It shows with. As shown in this graph, when the surface roughness (between marks) of the test piece W is 1.6 z or less, the biting depth of the detection rods 41 and 42 is remarkably reduced, and the test starting from the biting portion is performed. Breakage of the piece W can be suppressed.

本発明の実施の形態の要部構成を示す部分断面図である。It is a fragmentary sectional view which shows the principal part structure of embodiment of this invention. 図1における高周波誘導加熱用コイル3の1ターン分の部分断面図である。It is a fragmentary sectional view for 1 turn of the high frequency induction heating coil 3 in FIG. 図1で用いている試験片Wに継手1を装着した状態を示す部分断面正面図である。FIG. 2 is a partial cross-sectional front view showing a state in which a joint 1 is mounted on a test piece W used in FIG. 1. 継手1の熱伝導率と試験片Wの標点間の降温速度との関係の調査結果を示すグラフである。4 is a graph showing the results of investigation on the relationship between the thermal conductivity of the joint 1 and the temperature drop rate between the test marks of the test piece W. 継手1を構成するアダプタ11とナット12の引張強さと、熱サイクルを付与後のこれら両者間の締結トルクの低下率を調査した結果を示すグラフである。It is a graph which shows the result of having investigated the tensile strength of the adapter 11 and the nut 12 which comprise the coupling 1, and the decreasing rate of the fastening torque between these after giving a heat cycle. 継手1に対する試験片Wの振れ量と、標点間内の歪み差の関係の調査結果を示すグラフである。4 is a graph showing the results of investigating the relationship between the amount of deflection of a test piece W relative to a joint 1 and the strain difference between gauge points. 試験片Wの表面と高周波誘導加熱コイル3との距離と、試験片Wの標点間内の温度差との関係の調査結果を示すグラフである。It is a graph which shows the investigation result of the relationship between the distance of the surface of the test piece W and the high frequency induction heating coil 3, and the temperature difference between the test marks of the test piece W. 試験片Wの表面に対する伸び計4の検出棒41,42の押し付け力と、試験片Wの表面に対するすべり量の関係の調査結果を示すグラフである。4 is a graph showing the results of an investigation of the relationship between the pressing force of the detection rods 41 and 42 of the extensometer 4 on the surface of the test piece W and the amount of slip on the surface of the test piece W. 試験片Wの表面粗さと伸び計4の検出棒の食い込み量との関係の調査結果を示すグラフである。4 is a graph showing the results of an investigation of the relationship between the surface roughness of a test piece W and the amount of biting of a detection rod of an extensometer 4;

符号の説明Explanation of symbols

1 継手
11 アダプタ
11a 雌ねじ
12 ナット
12c 面取り
21,22 掴み具
3 高周波誘導加熱用コイル
31a 冷却用ノズル
4 伸び計
41,42 検出棒
W 試験片
Wa 雄ねじ
DESCRIPTION OF SYMBOLS 1 Joint 11 Adapter 11a Female thread 12 Nut 12c Chamfering 21, 22 Grasping tool 3 High frequency induction heating coil 31a Cooling nozzle 4 Extensometer 41, 42 Detection rod W Test piece Wa Male thread

Claims (9)

試験片の両端部を一対の掴み具に把持した状態で、試験片の周囲に配置した高周波誘導加熱用コイルにより当該試験片を加熱する工程と、その高周波誘導加熱用コイルに設けたノズルを介して冷却ガスを吹き付けることにより試験片を冷却する工程を繰り返しつつ、伸び計の一対の検出棒を試験片の各標点にそれぞれ当接させてその伸びを計測するとともに、その計測結果が所要の値となるように上記一対の掴み具を介して試験片に負荷を加える熱疲労試験方法において、
試験片の両端部に雄ねじを形成し、その各雄ねじを、それぞれに対応するアダプタに形成した雌ねじにねじ込んだ状態でナットにより当該各アダプタに対して締めつけ、上記一対の掴み具にはそれぞれアダプタを介して試験片を把持するとともに、上記アダプタおよびナットを非磁性体材料とし、かつ、ナットとして、その外周面と上記高周波誘導加熱用コイル側の端面との間のコーナー部分に、当該ナットの厚さの60%以上に及ぶ面取りを形成したものを用いることを特徴とする熱疲労試験方法。
With both ends of the test piece held by a pair of grippers, the test piece is heated by a high frequency induction heating coil arranged around the test piece, and a nozzle provided in the high frequency induction heating coil is used. While repeating the process of cooling the test piece by blowing a cooling gas, the pair of detection rods of the extensometer is brought into contact with each test point of the test piece and the elongation is measured. In the thermal fatigue test method of applying a load to the test piece through the pair of grips so as to be a value,
Male screws are formed at both ends of the test piece, and each male screw is tightened to each adapter with a nut in a state of being screwed into a female screw formed on the corresponding adapter, and the adapter is attached to each of the pair of grips. The adapter and the nut are made of a non-magnetic material, and the nut has a thickness of the nut at the corner portion between the outer peripheral surface and the end surface on the high frequency induction heating coil side. A thermal fatigue test method characterized by using a chamfering of 60% or more of the thickness.
上記各ナットと試験片の両端部の雄ねじの関係を、各ナットを締めつけた状態で試験片の雄ねじのねじ山がナットで覆われて外部に露出しない関係とすることを特徴とする請求項1に記載の熱疲労試験方法。   2. The relationship between the nuts and the male screws at both ends of the test piece is such that the thread of the male screw of the test piece is covered with the nut and not exposed to the outside when the nuts are tightened. The thermal fatigue test method described in 1. 上記高周波誘導加熱用コイルに対する試験片表面の距離を9〜30mmとした状態で試験を行うことを特徴とする請求項1または2に記載の熱疲労試験方法。   The thermal fatigue test method according to claim 1 or 2, wherein the test is performed in a state where the distance of the surface of the test piece with respect to the high frequency induction heating coil is 9 to 30 mm. 試験片に対する上記伸び計の検出棒の押し付け力を240gf以上とすることを特徴とする請求項1、2または3に記載の熱疲労試験方法。   The thermal fatigue test method according to claim 1, 2 or 3, wherein a pressing force of the extensometer detection rod against the test piece is 240 gf or more. 請求項1、2、3または4に記載の熱疲労試験方法に用いる試験片であって、
上記アダプタに対する試験片の振れ量を0.1mm以下とすることを特徴とする熱疲労試験用試験片。
A test piece used in the thermal fatigue test method according to claim 1, 2, 3, or 4,
A test piece for a thermal fatigue test, characterized in that the amount of deflection of the test piece relative to the adapter is 0.1 mm or less.
請求項1、2、3または4に記載の熱疲労試験方法に用いる試験片であって、
標点間における表面粗さを、1.6z以下とすることを特徴とする熱疲労試験用試験片。
A test piece used in the thermal fatigue test method according to claim 1, 2, 3, or 4,
A test piece for thermal fatigue testing, characterized in that the surface roughness between the gauge points is 1.6 z or less.
請求項1、2、3または4に記載の熱疲労試験方法に用いるアダプタおよびナットからなる継手であって、
その材料が、熱伝導率が120W/m・K以上の材料であることを特徴とする熱疲労試験の試験片装着用継手。
A joint comprising an adapter and a nut used in the thermal fatigue test method according to claim 1, 2, 3 or 4,
A joint for mounting a test piece in a thermal fatigue test, characterized in that the material is a material having a thermal conductivity of 120 W / m · K or more.
請求項1、2、3または4に記載の熱疲労試験方法に用いるアダプタおよびナットからなる継手であって、
その材料が、引張強さ475MPa以上の材料であることを特徴とする熱疲労試験の試験片装着用継手。
A joint comprising an adapter and a nut used in the thermal fatigue test method according to claim 1, 2, 3 or 4,
A joint for mounting a test piece in a thermal fatigue test, characterized in that the material is a material having a tensile strength of 475 MPa or more.
請求項1、2、3または45に記載の熱疲労試験方法に用いるアダプタおよびナットからなる継手であって、
その材質がベリリウム銅であることを特徴とする熱疲労試験の試験片装着用継手。
A joint comprising an adapter and a nut used in the thermal fatigue test method according to claim 1, 2, 3 or 45,
A joint for mounting a test piece for a thermal fatigue test, characterized in that the material is beryllium copper.
JP2006103839A 2006-04-05 2006-04-05 Test method for thermal fatigue, test piece for thermal fatigue test, and joint for mounting test piece for thermal fatigue test Expired - Fee Related JP4688162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103839A JP4688162B2 (en) 2006-04-05 2006-04-05 Test method for thermal fatigue, test piece for thermal fatigue test, and joint for mounting test piece for thermal fatigue test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103839A JP4688162B2 (en) 2006-04-05 2006-04-05 Test method for thermal fatigue, test piece for thermal fatigue test, and joint for mounting test piece for thermal fatigue test

Publications (2)

Publication Number Publication Date
JP2007278779A true JP2007278779A (en) 2007-10-25
JP4688162B2 JP4688162B2 (en) 2011-05-25

Family

ID=38680374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103839A Expired - Fee Related JP4688162B2 (en) 2006-04-05 2006-04-05 Test method for thermal fatigue, test piece for thermal fatigue test, and joint for mounting test piece for thermal fatigue test

Country Status (1)

Country Link
JP (1) JP4688162B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228685A (en) * 2008-03-19 2009-10-08 Teikoku Piston Ring Co Ltd Piston ring with plate spring, and combination of piston and piston ring
JP2010249803A (en) * 2009-03-24 2010-11-04 Toyota Central R&D Labs Inc Thermal fatigue testing device and program
JP2010271271A (en) * 2009-05-25 2010-12-02 Shimadzu Corp Material testing machine
ES2361349A1 (en) * 2008-12-24 2011-06-16 Asociacion De Investigacion Metalurgica Del Noroeste Procedure for testing materials to predict their behavior in a conformed by fast warming in progressive processes. (Machine-translation by Google Translate, not legally binding)
CN103528883A (en) * 2013-10-16 2014-01-22 长安大学 Cam quantitative repeated loading device
CN104237044A (en) * 2013-06-18 2014-12-24 山东科技大学 Testing machine for quantitatively measuring thermal fatigue performance of alloy and forecasting life span of alloy
CN106769597A (en) * 2017-01-16 2017-05-31 西南交通大学 A kind of disc material thermal fatigue tester and test method
CN108896420A (en) * 2018-05-11 2018-11-27 首钢集团有限公司 A kind of experimental rig inhibiting the fever of pipe line steel high-cycle fatigue
KR101956349B1 (en) 2017-01-26 2019-03-11 동아대학교 산학협력단 Fatigue Life Prediction Method by High Frequency Heat Treatment of Automobile Drive Shaft Using Specimen and Specimen and Induction Heating Coil for Heat the Specimen
CN111220462A (en) * 2020-01-20 2020-06-02 中国特种设备检测研究院 Creep testing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198203B (en) * 2016-08-01 2018-10-23 西北工业大学 One kind being used for thin-walled flat test piece high frequency fatigue test hydraulic clamping device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587540A (en) * 1981-07-07 1983-01-17 Nippon Telegr & Teleph Corp <Ntt> Sample crasping member for material tester
JPS6372544U (en) * 1986-10-28 1988-05-14
JPH0519803U (en) * 1991-08-23 1993-03-12 株式会社日立ホームテツク High frequency heating device
JPH0688778A (en) * 1992-09-08 1994-03-29 Shimadzu Corp Thermal fatigue testing machine
JP2003106964A (en) * 2001-10-01 2003-04-09 Ishikawajima Harima Heavy Ind Co Ltd Test piece fixing adapter for tension type material testing machine
JP2004069659A (en) * 2002-08-09 2004-03-04 Shimadzu Corp Thermal fatigue testing machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587540A (en) * 1981-07-07 1983-01-17 Nippon Telegr & Teleph Corp <Ntt> Sample crasping member for material tester
JPS6372544U (en) * 1986-10-28 1988-05-14
JPH0519803U (en) * 1991-08-23 1993-03-12 株式会社日立ホームテツク High frequency heating device
JPH0688778A (en) * 1992-09-08 1994-03-29 Shimadzu Corp Thermal fatigue testing machine
JP2003106964A (en) * 2001-10-01 2003-04-09 Ishikawajima Harima Heavy Ind Co Ltd Test piece fixing adapter for tension type material testing machine
JP2004069659A (en) * 2002-08-09 2004-03-04 Shimadzu Corp Thermal fatigue testing machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228685A (en) * 2008-03-19 2009-10-08 Teikoku Piston Ring Co Ltd Piston ring with plate spring, and combination of piston and piston ring
ES2361349A1 (en) * 2008-12-24 2011-06-16 Asociacion De Investigacion Metalurgica Del Noroeste Procedure for testing materials to predict their behavior in a conformed by fast warming in progressive processes. (Machine-translation by Google Translate, not legally binding)
JP2010249803A (en) * 2009-03-24 2010-11-04 Toyota Central R&D Labs Inc Thermal fatigue testing device and program
JP2010271271A (en) * 2009-05-25 2010-12-02 Shimadzu Corp Material testing machine
CN104237044A (en) * 2013-06-18 2014-12-24 山东科技大学 Testing machine for quantitatively measuring thermal fatigue performance of alloy and forecasting life span of alloy
CN103528883A (en) * 2013-10-16 2014-01-22 长安大学 Cam quantitative repeated loading device
CN106769597A (en) * 2017-01-16 2017-05-31 西南交通大学 A kind of disc material thermal fatigue tester and test method
CN106769597B (en) * 2017-01-16 2023-05-30 西南交通大学 Brake disc material thermal fatigue testing machine and testing method
KR101956349B1 (en) 2017-01-26 2019-03-11 동아대학교 산학협력단 Fatigue Life Prediction Method by High Frequency Heat Treatment of Automobile Drive Shaft Using Specimen and Specimen and Induction Heating Coil for Heat the Specimen
CN108896420A (en) * 2018-05-11 2018-11-27 首钢集团有限公司 A kind of experimental rig inhibiting the fever of pipe line steel high-cycle fatigue
CN111220462A (en) * 2020-01-20 2020-06-02 中国特种设备检测研究院 Creep testing system

Also Published As

Publication number Publication date
JP4688162B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP4688162B2 (en) Test method for thermal fatigue, test piece for thermal fatigue test, and joint for mounting test piece for thermal fatigue test
JP6649559B2 (en) Fasteners, systems including fasteners, and methods of forming fasteners
EP3460465A1 (en) Jig for ultrasonic fatigue testing machine
CN107421807A (en) A kind of compression clamp and method of the measurement of small size plastic material high temperature compressive yield strength
CN203148582U (en) Non-adhibition type surface temperature-measuring thermocouple
US9849630B2 (en) Ultrasonic processing device having a force sensor
US20130036828A1 (en) Fixing jig fatigue testing test piece, and fatigue testing device
JP2007132759A (en) Relaxation test method, testing device and testing tool
CN108362193A (en) A kind of pipe fitting measurement straightening all-in-one machine
JP2009128171A (en) Heat resistant material testing device, heat resistant material test method, and test piece
CN111093879B (en) Method and device for measuring electrode pressure of welding tongs
CN104374361A (en) Plate creep extensometer
JP2004125555A (en) Tension test method and outer diameter measuring device
JP2006266964A (en) Strain control type super-high cycle fatigue testing method and fatigue testing apparatus
JP2021071485A (en) Weld seam inspection chain
JP3422524B2 (en) Thermal fatigue test method and thermal fatigue test device
JP2008309543A (en) Friction coefficient measuring device for inner surface of tube
CN205403983U (en) A inside temperature measurement anchor clamps that is used for major diameter welded tube intermediate frequency to handle
CN102243116B (en) Method and device for quickly detecting thermoelectric properties of polycrystalline diamond (PCD) blade
CN114112660A (en) Sample suitable for testing dynamic fracture toughness of explosive welding interface
JP2020106381A (en) Jig for measuring linear expansion coefficient, device for measuring linear expansion coefficient, and method for measuring linear expansion
CN207248620U (en) A kind of compression clamp of small size plastic material high temperature compressive yield strength measurement
JP5176848B2 (en) Measuring method of elastic modulus of refractory and selecting method of refractory
JPWO2019082889A1 (en) Manual tools, bits and torque sensors used for them
JP3005735B2 (en) Tube processing apparatus and tube processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees