JP2007278719A - Metal detector - Google Patents

Metal detector Download PDF

Info

Publication number
JP2007278719A
JP2007278719A JP2006101724A JP2006101724A JP2007278719A JP 2007278719 A JP2007278719 A JP 2007278719A JP 2006101724 A JP2006101724 A JP 2006101724A JP 2006101724 A JP2006101724 A JP 2006101724A JP 2007278719 A JP2007278719 A JP 2007278719A
Authority
JP
Japan
Prior art keywords
frequency
component
detection
low frequency
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006101724A
Other languages
Japanese (ja)
Inventor
Shinichi Kanazawa
進一 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006101724A priority Critical patent/JP2007278719A/en
Publication of JP2007278719A publication Critical patent/JP2007278719A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the reduction in metal detection sensitivity of an object to be inspected itself, with respect to either iron or nonferrous metal. <P>SOLUTION: The metal detector comprises a driving coil 5 used for occurrence of a magnetic field, one pair of detecting coils for detecting the magnetic field varied by the metal in the object to be inspected, and a differential amplifying circuit for outputting a differential component by the detecting coils. An electric power conversion transformer 3, for supplying driving power to the drive coil 5, is provided with primary winding having an input tap, secondary winding for output, and winding connected to a tuning capacitor 9. For responding to two frequencies of high frequency and low frequency, the metal detector has an insulation gate drive circuit 4 and a power MOSFET switch 2 for changing the input tap and changing the capacity of the tuning capacitor, inputs the alternating current signals of high frequency or low frequency into the electric power conversion transformer 3, while repeating two frequency switching, and outputs them to the drive coil 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被検査物内の金属異物を検出する金属検出機に関し、特に食品等の検査ラインで被検査物を搬送しながら金属異物混入の有無を検査する用途に適した金属検出装置に関する。   The present invention relates to a metal detector that detects a metal foreign object in an object to be inspected, and more particularly to a metal detection apparatus suitable for an application for inspecting the presence or absence of metal foreign object while conveying the object to be inspected on an inspection line such as food.

従来例の金属検出機を図4に示す。図4(a)はその構成を示す模式図、図4(b)はその電気回路図である。図4のように、駆動コイル7を中心に配置し、その両側に検出コイル6,8を配置し、全体でサーチコイル41を形成している。駆動コイル7は交流磁界を発生させ、2つの検出コイル6,8には交流磁界によって起電力が発生するが、2つの検出コイル6,8は差動結合し、無信号状態では互いに打消し合っている。   A conventional metal detector is shown in FIG. FIG. 4A is a schematic diagram showing the configuration, and FIG. 4B is an electric circuit diagram thereof. As shown in FIG. 4, the drive coil 7 is arranged at the center, the detection coils 6 and 8 are arranged on both sides thereof, and the search coil 41 is formed as a whole. The drive coil 7 generates an alternating magnetic field, and an electromotive force is generated in the two detection coils 6 and 8 by the alternating magnetic field, but the two detection coils 6 and 8 are differentially coupled and cancel each other in a no-signal state. ing.

金属片を搬送することによりサーチコイル41内を通過させた場合、鉄系金属であれば誘導磁界によって、非鉄系であれば渦電流磁界によって磁束が変化し、2つの検出コイル6,8の間に磁束の変化が起きる。これによって生じた起電力を差動増幅器42から出力するように金属検出機は動作する。   When the metal piece is passed through the search coil 41, the magnetic flux is changed by an induced magnetic field if it is an iron-based metal and by an eddy current magnetic field if it is a non-ferrous metal. Magnetic flux changes. The metal detector operates so as to output the electromotive force generated thereby from the differential amplifier 42.

また、被検査物としての食品などは金属ではなく、磁気的変化は起こらないと通常考えられるが、水分や原材料に含まれる塩分等によって導電性となり、金属同様検出信号に変化が現われ、金属異物検出の妨げになっている。このため金属検出機は位相検波の方法を用いている。被検査物をX,Y軸方向で位相検波した場合、その位相角に対して被検査物の影響を検出することができる。被検査物ごとに、ある固有の極座標(位相角θ)が存在しており、被検査物に固有の極座標に直交した位相角で検波することで、被検査物の影響を低減でき、金属異物を高感度検出することができる(例えば特許文献1)。図5に位相検波での被検査物に固有の方向に直交する方向の鉄感度及び非鉄感度を示す。   In addition, food as an object to be inspected is not a metal, and it is usually considered that no magnetic change occurs, but it becomes conductive due to moisture and salt contained in the raw materials, and the detection signal changes like metal, and foreign metal This hinders detection. For this reason, the metal detector uses a phase detection method. When the phase of the inspection object is detected in the X and Y axis directions, the influence of the inspection object can be detected with respect to the phase angle. There is a specific polar coordinate (phase angle θ) for each inspection object. By detecting at a phase angle orthogonal to the polar coordinates specific to the inspection object, the influence of the inspection object can be reduced, and the metallic foreign object Can be detected with high sensitivity (for example, Patent Document 1). FIG. 5 shows the iron sensitivity and the non-ferrous sensitivity in the direction orthogonal to the direction specific to the inspection object in phase detection.

特開平5−100047号公報JP-A-5-100047

被検査物自体の金属異物検出への影響は、駆動コイルの周波数を下げることで低減できることがある。この場合、高周波、低周波で前述のようにX,Y軸の位相検波を行い、被検査物自体の影響、及び金属感度を測定し、測定データを比較する必要がある。その測定の結果、金属感度の最適値が高周波又は低周波のどちらかにあればよいが、被検査物によっては、金属感度の被検査物感度(被検査物自体の感度)に対する比率が、鉄感度については高周波で大きく、非鉄感度(非鉄金属感度)については低周波で大きいという様に分かれることがある。   The influence of the object to be inspected on the detection of metallic foreign objects may be reduced by reducing the frequency of the drive coil. In this case, it is necessary to perform phase detection on the X and Y axes as described above at high and low frequencies, measure the influence of the object to be inspected and the metal sensitivity, and compare the measurement data. As a result of the measurement, the optimal value of the metal sensitivity should be either high frequency or low frequency. However, depending on the inspection object, the ratio of the metal sensitivity to the inspection object sensitivity (sensitivity of the inspection object itself) Sensitivity may be large at high frequencies and non-ferrous sensitivity (non-ferrous metal sensitivity) may be large at low frequencies.

図6に金属感度の被検査物感度に対する比率の例を示す。図6(a)は鉄感度と被検査物感度を示し、図6(b)は非鉄感度と被検査物感度を示す。この例では、鉄感度の被検査物感度に対する比率が高周波で大きく、非鉄感度の被検査物感度に対する比率が低周波で大きくなっている。このような場合、固定周波数でしか検出できない場合は、鉄又は非鉄の検出感度のどちらか一方が優先され、他方は犠牲になるという欠点があった。   FIG. 6 shows an example of the ratio of the metal sensitivity to the inspection object sensitivity. FIG. 6A shows the iron sensitivity and the inspection object sensitivity, and FIG. 6B shows the non-ferrous sensitivity and the inspection object sensitivity. In this example, the ratio of the iron sensitivity to the inspection object sensitivity is large at high frequencies, and the ratio of the non-ferrous sensitivity to the inspection object sensitivity is large at low frequencies. In such a case, when detection is possible only at a fixed frequency, either the ferrous or non-ferrous detection sensitivity is given priority, and the other is sacrificed.

このような状況にあって、本発明の課題は、鉄又は非鉄金属のいずれに対しても被検査物自体による金属検出感度の低下を抑制した金属検出機を提供することにある。   Under such circumstances, an object of the present invention is to provide a metal detector that suppresses a decrease in metal detection sensitivity due to an object to be inspected for both ferrous and non-ferrous metals.

これまで、高周波、低周波のどちらか一方を選択していた検出方法を、同時に2周波検出することで、前述の課題を解決する。   The above-described problem is solved by simultaneously detecting two frequencies in the detection method in which one of the high frequency and the low frequency has been selected.

その手段として、駆動コイルの電力変換トランスの入力タップ位置の切替、及び同調コンデンサの容量の切替を、絶縁ゲートドライブとパワーMOSFETスイッチで構成し、高周波、低周波の2周波切替を高速に行って、駆動コイルに交流電力が印加できるようにする。   As the means, switching of the input tap position of the power conversion transformer of the drive coil and switching of the capacitance of the tuning capacitor are configured by an insulated gate drive and a power MOSFET switch, and high-frequency and low-frequency two-frequency switching is performed at high speed. The AC power can be applied to the drive coil.

また、検出信号は、4個の位相検波器に入力されて処理されるが、それぞれの位相検波器は制御信号の論理Hで位相検波できるものとし、このとき、高周波磁界に対応する制御信号は、高周波X成分又はそれと位相が90°異なるY成分の位相検波クロックと2周波切替クロックとのAND演算により生成され、2周波切替クロックの論理Hの時間中、検波クロックは動作状態になる。同様に、低周波磁界に対しては、低周波X成分又はそれと位相が90°異なるY成分の位相検波クロックと2周波切替クロックの反転とのAND演算により制御信号が生成され、2周波切替クロックの論理Lの時間中、検波クロックは動作状態になる。このようにして高周波、低周波の位相検波信号を分離し、高周波X,Y成分、低周波X,Y成分の4成分を同時に検出できるようにする。   The detection signals are input to four phase detectors and processed. Each phase detector is capable of phase detection with the logic H of the control signal. At this time, the control signal corresponding to the high frequency magnetic field is The high-frequency X component or the Y-component phase detection clock whose phase is 90 ° different from that of the high-frequency X component and the two-frequency switching clock are generated by AND operation. Similarly, for a low-frequency magnetic field, a control signal is generated by an AND operation of a low-frequency X component or a Y-component phase detection clock whose phase is 90 ° different from that of the low-frequency magnetic field and the inversion of the two-frequency switching clock. During the logic L period, the detection clock is in an operating state. In this way, the high frequency and low frequency phase detection signals are separated so that the four components of the high frequency X and Y components and the low frequency X and Y components can be detected simultaneously.

以上のように本発明による金属検出機は、高周波磁界及び低周波磁界をほぼ同時に2周波検出することで、被検査物自体による金属検出感度の低下を抑制し、金属検出感度を向上することが可能となる。   As described above, the metal detector according to the present invention can detect a high-frequency magnetic field and a low-frequency magnetic field almost simultaneously at two frequencies, thereby suppressing a decrease in metal detection sensitivity due to the inspected object itself and improving the metal detection sensitivity. It becomes possible.

図1は本発明の一実施の形態での金属検出機の駆動回路図である。また、図3は本発明の一実施の形態での金属検出機各部の電圧波形を示すタイミング図であり、図3(a)は周波数切替クロック、図3(b)は駆動コイルの駆動波形、図3(c)は高周波検波クロック、図3(d)は低周波検波クロックを示す。   FIG. 1 is a drive circuit diagram of a metal detector according to an embodiment of the present invention. FIG. 3 is a timing diagram showing voltage waveforms at various parts of the metal detector according to one embodiment of the present invention. FIG. 3 (a) is a frequency switching clock, FIG. 3 (b) is a drive waveform of a drive coil, FIG. 3C shows a high frequency detection clock, and FIG. 3D shows a low frequency detection clock.

図1に示すように、高周波、低周波の正弦波信号は周波数選択器に入力され、周波数選択器は2周波切替クロックの論理H(Hレベル)で高周波に、論理L(Lレベル)で低周波に切替わる。2周波切替クロックの論理レベルで切替わった正弦波(図3(b))はパワーアンプ1に入力され、電力変換トランス3を駆動する。   As shown in FIG. 1, high frequency and low frequency sine wave signals are input to a frequency selector, and the frequency selector is high at a logic H (H level) of a two-frequency switching clock and low at a logic L (L level). Switch to frequency. The sine wave (FIG. 3B) switched at the logic level of the two-frequency switching clock is input to the power amplifier 1 and drives the power conversion transformer 3.

このとき電力変換トランス3の入力タップは2周波切替クロックの論理Hで高周波用タップに、論理Lで低周波用タップに切替わる。同様に同調コンデンサ容量も2周波切替クロックの論理Hで高周波用の同調コンデンサに、論理Lで低周波用の同調コンデンサに切替わり、最適な入力タップと同調が得られ、低消費電力で駆動コイル5に交流電力が印加できる。   At this time, the input tap of the power conversion transformer 3 is switched to the high frequency tap by the logic H of the two-frequency switching clock and to the low frequency tap by the logic L. Similarly, the tuning capacitor capacity is switched to a high frequency tuning capacitor with a logic H of a two-frequency switching clock, and a low frequency tuning capacitor is switched with a logic L to obtain an optimum input tap and tuning, and a drive coil with low power consumption. AC power can be applied to 5.

また、絶縁ゲートドライブ回路4は制御系電源と高耐圧な駆動系電源を分離するために用いてあり、絶縁ゲートドライブ回路4の入力論理Hで、パワーMOSFETスイッチ2がONする。従って、2周波切替クロックの論理Hで電力変換トランス3の高周波用の入力タップがONし、低周波用の同調コンデンサ両端のスイッチがON(ショート)状態になり、高周波用の同調コンデンサ両端のスイッチはOFF(オープン)状態となる。   The insulated gate drive circuit 4 is used to separate the control system power supply and the high breakdown voltage drive system power supply, and the power MOSFET switch 2 is turned ON by the input logic H of the insulated gate drive circuit 4. Accordingly, the high frequency input tap of the power conversion transformer 3 is turned ON by the logic H of the two frequency switching clock, the switches at both ends of the low frequency tuning capacitor are turned on (shorted), and the switches at both ends of the high frequency tuning capacitor are switched on. Is in an OFF (open) state.

なお同調コンデンサのスイッチ設定は、通常コンデンサを並列接続し、コンデンサの片側にパワーMOSFETスイッチを用いることが一般に考えられるが、パワーMOSFETのOFF時の容量は数千pFと大きく、スイッチがOFFでも同調コンデンサと直列接続の関係になり、コンデンサ容量を無視することができない。従って、スイッチがOFF状態であるにも関わらず、OFF側に接続の同調コンデンサの容量を変更すると、ON側の同調がずれてしまうことになる。つまり一方の同調コンデンサ容量を調整し、もう一方を調整すると、先に調整したコンデンサの値では、同調がずれてしまっている。このように容量調整が複雑になるため、図1のように直列にコンデンサを接続している。なお、高周波とは数百kHz〜1MHz程度とし、低周波とは数十kHz〜数百kHz程度とする。   It is generally considered that the tuning capacitor is normally connected in parallel and a power MOSFET switch is used on one side of the capacitor. However, the power MOSFET has a large capacitance of several thousand pF when it is off, and it can be tuned even when the switch is off. The capacitor is connected in series and the capacitor capacity cannot be ignored. Accordingly, if the capacitance of the tuning capacitor connected to the OFF side is changed even though the switch is in the OFF state, the tuning on the ON side is shifted. In other words, if one tuning capacitor capacity is adjusted and the other is adjusted, the value of the previously adjusted capacitor shifts the tuning. Since the capacity adjustment is complicated as described above, capacitors are connected in series as shown in FIG. The high frequency is about several hundred kHz to 1 MHz, and the low frequency is about several tens kHz to several hundred kHz.

図2は本発明の一実施の形態での検出回路図である。21は高周波X成分位相検波器、22は高周波Y成分位相検波器、23は低周波X成分位相検波器、24は低周波Y成分位相検波器、25、26、27及び28はAND回路である。   FIG. 2 is a detection circuit diagram in an embodiment of the present invention. 21 is a high frequency X component phase detector, 22 is a high frequency Y component phase detector, 23 is a low frequency X component phase detector, 24 is a low frequency Y component phase detector, and 25, 26, 27 and 28 are AND circuits. .

本実施の形態での高周波磁界及び低周波磁界を発生させる駆動コイル及び2つの検出コイルは、従来例として説明した図4(a)の構成と同様である。差動結合した2つの検出コイルによる検出信号は、図2のように、4個の位相検波器(高周波X成分位相検波器21、 高周波Y成分位相検波器22、低周波X成分位相検波器23、低周波Y成分位相検波器24)に入力される。このとき、位相検波器はそれぞれの制御信号の論理H(Hレベル)で位相検波できる回路とする。この制御信号は、高周波X成分又はそれに直交するY成分の位相検波クロックと2周波切替クロック(周波数切替クロック)とをAND回路に入力することで得られる。この制御信号は、図3(c)に高周波検波クロックとして示したように、2周波切替クロック(周波数切替クロック)の論理Hの時間中に、動作状態になる。   The drive coil and the two detection coils that generate the high-frequency magnetic field and the low-frequency magnetic field in the present embodiment are the same as the configuration of FIG. 4A described as the conventional example. As shown in FIG. 2, the detection signals from the two differentially coupled detection coils are divided into four phase detectors (high frequency X component phase detector 21, high frequency Y component phase detector 22, low frequency X component phase detector 23). The low frequency Y component phase detector 24). At this time, the phase detector is a circuit capable of phase detection with the logic H (H level) of each control signal. This control signal is obtained by inputting a phase detection clock of a high frequency X component or a Y component orthogonal thereto and a two frequency switching clock (frequency switching clock) to the AND circuit. This control signal is in an operating state during the logic H time of the two-frequency switching clock (frequency switching clock), as shown as the high-frequency detection clock in FIG.

同様に、低周波X成分又はY成分の位相検波クロックと2周波切替クロックの反転とをAND回路に入力し得られた制御信号は、図3(d)に低周波検波クロックとして示したように、2周波切替クロック(周波数切替クロック)の論理L(Lレベル)の時間中に、動作状態になる。   Similarly, the control signal obtained by inputting the low frequency X component or Y component phase detection clock and the inversion of the two frequency switching clock to the AND circuit is as shown in FIG. 3D as the low frequency detection clock. The operation state is entered during the logic L (L level) time of the two-frequency switching clock (frequency switching clock).

図2に基づき、細部の説明を行う。(1)高周波X成分検波クロックと、Hレベル及びLレベルをとる周波数切替クロックとはAND回路25によってAND演算を施され高周波X成分位相検波器21の制御信号となる。(2)高周波Y成分検波クロック(X成分と位相が90°異なる)と、前記の周波数切替クロックとはAND回路26によってAND演算を施され高周波Y成分位相検波器22の制御信号となる。また、(3)低周波X成分検波クロックと、前記の周波数切替クロックの反転信号とは、AND回路27によってAND演算を施され低周波X成分位相検波器23の制御信号となる。(4)低周波Y成分検波クロック(X成分と位相が90°異なる)と、前記の周波数切替クロックの反転信号とはAND回路28によってAND演算を施され低周波Y成分位相検波器24の制御信号となる。このように、Hレベル及びLレベルをとる周波数切替クロック(2周波切替クロック)のHレベルで高周波X成分位相検波器及び高周波Y成分位相検波器が動作し、2周波切替クロックのLレベルで低周波X成分位相検波器及び低周波Y成分位相検波器が動作する。   Details will be described with reference to FIG. (1) The high frequency X component detection clock and the frequency switching clock that takes the H level and the L level are ANDed by the AND circuit 25 to become a control signal for the high frequency X component phase detector 21. (2) The high frequency Y component detection clock (with a phase difference of 90 ° from the X component) and the frequency switching clock are subjected to AND operation by the AND circuit 26 and become a control signal for the high frequency Y component phase detector 22. Further, (3) the low frequency X component detection clock and the inverted signal of the frequency switching clock are subjected to an AND operation by the AND circuit 27 and become a control signal for the low frequency X component phase detector 23. (4) The AND circuit 28 performs AND operation on the low frequency Y component detection clock (the phase is 90 ° different from the X component) and the inverted signal of the frequency switching clock, and the low frequency Y component phase detector 24 is controlled. Signal. As described above, the high frequency X component phase detector and the high frequency Y component phase detector operate at the H level of the frequency switching clock (two frequency switching clock) that takes the H level and the L level, and low at the L level of the two frequency switching clock. The frequency X component phase detector and the low frequency Y component phase detector operate.

このようにして高周波、低周波の位相検波信号を分離し、2周波でのX,Y位相検波を行うことができる。得られた4個の検波出力は、それぞれ、積分器、実効値回路を通り、直流出力にすることができる。   In this way, high-frequency and low-frequency phase detection signals can be separated and X and Y phase detection at two frequencies can be performed. The obtained four detection outputs can pass through an integrator and an effective value circuit, respectively, and be converted into a DC output.

以上から高周波X,Y出力、低周波X,Y出力を同時に並行して取り出すこが可能になり、同時2周波検出が行えるようになる。   As described above, the high frequency X and Y outputs and the low frequency X and Y outputs can be taken out simultaneously in parallel, and simultaneous dual frequency detection can be performed.

なお、2周波切替による検波は、検出信号に切替ノイズを発生させるため、ローパスフィルタ(LPF)でノイズをカットする必要があるが、そのノイズ帯域はLPFで十分減衰できる2周波切替クロック周波数に設定すれば、全く問題なく検出が可能になる。従って2周波切替クロックの周波数は数百Hz〜数kHz程度とする。   Note that detection by switching between two frequencies generates switching noise in the detection signal, so it is necessary to cut the noise with a low-pass filter (LPF), but the noise band is set to a two-frequency switching clock frequency that can be sufficiently attenuated by the LPF. Then, detection becomes possible without any problem. Therefore, the frequency of the two-frequency switching clock is about several hundred Hz to several kHz.

以上のように、高周波磁界及び低周波磁界に応答する検出コイルによる差動信号を並行して2周波検出することで、被検査物自体による金属検出感度の低下を抑制し、金属検出感度を向上することができる。   As described above, by detecting the differential signal by the detection coil that responds to the high frequency magnetic field and the low frequency magnetic field in two frequencies in parallel, the metal detection sensitivity is prevented from being lowered by the object to be inspected, and the metal detection sensitivity is improved. can do.

本発明の一実施の形態での金属検出機の駆動回路図。The drive circuit diagram of the metal detector in one embodiment of this invention. 本発明の一実施の形態での検出回路図。The detection circuit diagram in one embodiment of this invention. 本発明の一実施の形態での金属検出機の各部での電圧波形を示すタイミング図であり、図3(a)は周波数切替クロック、図3(b)は駆動コイルの駆動波形、図3(c)は高周波検波クロック、図3(d)は低周波検波クロックを示す。FIG. 3 is a timing chart showing voltage waveforms at various parts of the metal detector in one embodiment of the present invention, FIG. 3A is a frequency switching clock, FIG. 3B is a drive waveform of a drive coil, and FIG. FIG. 3C shows a high frequency detection clock, and FIG. 3D shows a low frequency detection clock. 従来例の金属検出機を示し、図4(a)はその構成を示す模式図、図4(b)はその電気回路図。The metal detector of a prior art example is shown, Fig.4 (a) is a schematic diagram which shows the structure, FIG.4 (b) is the electrical circuit diagram. 被検査物に固有の方向に直交する方向での位相検波の鉄感度及び非鉄感度を示す図。The figure which shows the iron sensitivity and non-ferrous sensitivity of a phase detection in the direction orthogonal to the direction intrinsic | native to a to-be-inspected object. 金属感度の被検査物感度に対する比率の例を示し、図6(a)は鉄感度と被検査物感度を示す図、図6(b)は非鉄感度と被検査物感度を示す図。FIG. 6A shows an example of the ratio of metal sensitivity to inspection object sensitivity, FIG. 6A shows iron sensitivity and inspection object sensitivity, and FIG. 6B shows non-ferrous sensitivity and inspection object sensitivity.

符号の説明Explanation of symbols

1 パワーアンプ
2 パワーMOSFETスイッチ
3 電力変換トランス
4 絶縁ゲートドライブ回路
5,7 駆動コイル
6,8 検出コイル
9 同調コンデンサ
21 高周波X成分位相検波器
22 高周波Y成分位相検波器
23 低周波X成分位相検波器
24 低周波Y成分位相検波器
25,26,27,28 AND回路
41 サーチコイル
42 差動増幅器
DESCRIPTION OF SYMBOLS 1 Power amplifier 2 Power MOSFET switch 3 Power conversion transformer 4 Insulated gate drive circuit 5, 7 Drive coil 6, 8 Detection coil 9 Tuning capacitor 21 High frequency X component phase detector 22 High frequency Y component phase detector 23 Low frequency X component phase detection 24 Low frequency Y component phase detector 25, 26, 27, 28 AND circuit 41 Search coil 42 Differential amplifier

Claims (2)

磁界の発生に用いられる駆動コイルと、被検査物中の金属によって変化した前記磁界を検出する1対の検出コイルと、前記検出コイルによる差動成分を出力する差動増幅回路とを有する金属検出器であって、
前記駆動コイルに駆動電力を供給する電力変換トランスには入力タップを持つ一次巻線と出力用の二次巻線と同調コンデンサに接続する巻線とが設けられ、
高周波及び低周波の2周波数に対応するために前記入力タップの切替及び前記同調コンデンサの容量の切替を行う絶縁ゲートドライブ回路とMOSFETスイッチとが設けられ、
2周波数切替を繰り返しながら高周波又は低周波の交流信号を前記電力変換トランスに入力し、前記駆動コイルに出力することを特徴とする金属検出機。
Metal detection having a drive coil used for generating a magnetic field, a pair of detection coils for detecting the magnetic field changed by the metal in the inspection object, and a differential amplifier circuit for outputting a differential component by the detection coil A vessel,
The power conversion transformer for supplying drive power to the drive coil is provided with a primary winding having an input tap, a secondary winding for output, and a winding connected to a tuning capacitor,
An insulated gate drive circuit and a MOSFET switch for switching the input tap and switching the capacitance of the tuning capacitor are provided to correspond to two frequencies of high frequency and low frequency,
A metal detector, wherein a high frequency or low frequency AC signal is input to the power conversion transformer and output to the drive coil while repeating two-frequency switching.
前記駆動コイルによって生成された高周波磁界及び低周波磁界に応答した前記検出コイルによる差動成分の信号に対し、
高周波X成分検波クロック及びこれと位相が90°異なる高周波Y成分検波クロックの各々と、Hレベル及びLレベルをとる周波数切替クロックとのAND演算によって生成された制御信号によって、前記Hレベルの持続時間中に位相検波を行う、高周波X成分位相検波器及び高周波Y成分位相検波器を備えると共に、
低周波X成分検波クロック及びこれと位相が90°異なる低周波Y成分検波クロックの各々と、反転した前記周波数切替クロックとのAND演算によって生成された制御信号によって前記Lレベルの持続時間中に位相検波を行う、低周波X成分位相検波器及び低周波Y成分位相検波器を備えることで、
前記高周波磁界及び低周波磁界での位相検波信号を分離し、高周波X成分、高周波Y成分、低周波X成分、低周波Y成分の4成分をほぼ同時に並行して検出することを特徴とする請求項1記載の金属検出機。
For the differential component signal by the detection coil in response to the high frequency magnetic field and low frequency magnetic field generated by the drive coil,
The duration of the H level by a control signal generated by AND operation of each of the high frequency X component detection clock and the high frequency Y component detection clock whose phase is 90 ° different from the high frequency X component detection clock and the frequency switching clock taking H level and L level. A high-frequency X-component phase detector and a high-frequency Y-component phase detector that perform phase detection therein,
The phase of the low frequency X component detection clock and the low frequency Y component detection clock whose phase is 90 ° different from that of the low frequency X component detection clock and the inverted frequency switching clock during the duration of the L level by the control signal generated by the AND operation. By providing a low frequency X component phase detector and a low frequency Y component phase detector that perform detection,
The phase detection signal in the high frequency magnetic field and the low frequency magnetic field is separated, and the four components of the high frequency X component, the high frequency Y component, the low frequency X component, and the low frequency Y component are detected almost simultaneously in parallel. Item 1. A metal detector according to Item 1.
JP2006101724A 2006-04-03 2006-04-03 Metal detector Pending JP2007278719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101724A JP2007278719A (en) 2006-04-03 2006-04-03 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101724A JP2007278719A (en) 2006-04-03 2006-04-03 Metal detector

Publications (1)

Publication Number Publication Date
JP2007278719A true JP2007278719A (en) 2007-10-25

Family

ID=38680320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101724A Pending JP2007278719A (en) 2006-04-03 2006-04-03 Metal detector

Country Status (1)

Country Link
JP (1) JP2007278719A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562565A1 (en) 2011-08-24 2013-02-27 Mettler-Toledo Safeline Limited Metal Detection Apparatus
CN105607142A (en) * 2015-12-17 2016-05-25 无锡信大气象传感网科技有限公司 Differential frequency processing-based handheld metal detector
CN110161568A (en) * 2018-02-01 2019-08-23 梅特勒-托利多安全线有限公司 For operating the method and multifrequency metal detector of multifrequency metal detector
WO2023055903A1 (en) * 2021-09-29 2023-04-06 Halliburton Energy Services, Inc. Solid state tuning with coupled inductors for downhole systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562565A1 (en) 2011-08-24 2013-02-27 Mettler-Toledo Safeline Limited Metal Detection Apparatus
JP2013044749A (en) * 2011-08-24 2013-03-04 Mettler-Toledo Safeline Ltd Metal detection apparatus
US8841903B2 (en) 2011-08-24 2014-09-23 Mettler-Toledo Safeline Limited Metal detection apparatus
CN105607142A (en) * 2015-12-17 2016-05-25 无锡信大气象传感网科技有限公司 Differential frequency processing-based handheld metal detector
CN110161568A (en) * 2018-02-01 2019-08-23 梅特勒-托利多安全线有限公司 For operating the method and multifrequency metal detector of multifrequency metal detector
CN110161568B (en) * 2018-02-01 2024-01-09 梅特勒-托利多安全线有限公司 Method for operating a multi-frequency metal detector and multi-frequency metal detector
WO2023055903A1 (en) * 2021-09-29 2023-04-06 Halliburton Energy Services, Inc. Solid state tuning with coupled inductors for downhole systems

Similar Documents

Publication Publication Date Title
JP5952677B2 (en) Metal detector
US10804748B2 (en) Wireless power system with foreign object detection
EP2625551B1 (en) Method for operating a metal detection system and metal detection system
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
KR900005621B1 (en) Inspecting instrument for iron mixed in materials
JP2007278719A (en) Metal detector
CN105466999A (en) Apparatus and circuit
US20130249539A1 (en) Detection of a Metal or Magnetic Object
JP5576226B2 (en) Metal detector
JPS5940287A (en) Apparatus for detecting metal
JPS6341502B2 (en)
US20200333497A1 (en) Method for operating a metal detector and metal detector
US20210381853A1 (en) Position Sensing Apparatus and Method
JP3819903B2 (en) Metal detector
JP4389033B2 (en) Phase monitoring metal detector
JP2000056032A (en) Metal detecting device
JP3764460B2 (en) Metal detector
CN108028648B (en) Sensor device for detecting a target object and method for operating a sensor device for detecting a target object
RU2663250C1 (en) Metal detector and the metal objects detection method
KR20150145462A (en) Metal detecting apparatus generating variable frequency according to digital switching
KR100438211B1 (en) Apparatus for searching pieces of metal and method thereof
JP2005214936A (en) Device for detecting metal
JPS6332157B2 (en)
JPS6168582A (en) Metal detector
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method