JP2007277353A - Biodegradable resin composition and biodegradable film - Google Patents

Biodegradable resin composition and biodegradable film Download PDF

Info

Publication number
JP2007277353A
JP2007277353A JP2006103449A JP2006103449A JP2007277353A JP 2007277353 A JP2007277353 A JP 2007277353A JP 2006103449 A JP2006103449 A JP 2006103449A JP 2006103449 A JP2006103449 A JP 2006103449A JP 2007277353 A JP2007277353 A JP 2007277353A
Authority
JP
Japan
Prior art keywords
biodegradable resin
resin composition
biodegradable
starch
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006103449A
Other languages
Japanese (ja)
Other versions
JP5021228B2 (en
Inventor
Akira Ishii
明 石井
Takashi Nogami
尚 野上
Yasushi Ichikawa
靖 市川
Hiroshi Uda
浩 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2006103449A priority Critical patent/JP5021228B2/en
Publication of JP2007277353A publication Critical patent/JP2007277353A/en
Application granted granted Critical
Publication of JP5021228B2 publication Critical patent/JP5021228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable resin composition with an improved moldability, and a biodegradable film suitable for a biodegradable compost bag, an agricultural film, a packaging material, etc. <P>SOLUTION: The biodegradable resin composition contains a gelatinized product of oxidized starch and a biodegradable resin, provided that the oxidized starch has a structure wherein a bond between C-2 and C-3 is cut and carboxyl groups are formed at C-2 and C-3 in some glucose units in the starch. The biodegradable film is obtained by molding the biodegradable resin composition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生分解性樹脂組成物および生分解性フィルムに関するものである。さ
らに詳しくは、成形性が改良された生分解性樹脂組成物および機械的特性が改良さ
れた生分解性を有するコンポストバッグ、農業用フィルムおよび包装材料などに好
適な生分解性フィルムに関するものである。
The present invention relates to a biodegradable resin composition and a biodegradable film. More specifically, the present invention relates to a biodegradable resin composition with improved moldability and a biodegradable film suitable for compost bags, agricultural films, packaging materials, and the like having biodegradability with improved mechanical properties. .

生分解性樹脂は、水中や土中で有害物を生成することなく比較的容易に分解することが知られている。そのため、ゴミ処理問題などの環境保全の面から世界的に注目されている。これらの中でも、脂肪族ポリエステル樹脂は、ポリエチレンに近い物性を有することもあって、該樹脂を成形して得られるフィルムは、農業資材、土木資材、植生資材、包装材等のフィルム用途として将来が期待されている(例えば、特許文献1および2参照)。
しかしながら、従来の生分解性フィルムは、いずれも引裂き強度、特にフィルムの機械(延伸)方向の引裂き強度が充分ではなく実用上問題があった。
一方、枯渇資源から再生可能資源への転換による循環型社会の構築が注目を集めるようになり、生分解性だけでなく、原料として石油から合成される材料でなく、天然物に由来する材料への関心が高まっている。現在、天然物として実用化されている材料は澱粉である。
フィルムとしての成形性や物性を付与された澱粉として、エステル化ビニルエステルグラフト重合澱粉(特許文献3)や澱粉エステル(特許文献4)、さらに、ポリエステルグラフト重合澱粉とポリエステルのアロイ(特許文献5)が提案されている。さらに澱粉を高度に変性すれば、フィルムとしての成形性や物性をさらに向上させることができると考えられるが、コスト的に現実的ではない。
また、澱粉の糊化物と熱可塑性樹脂を複合することも提案されている(例えば、特許文献6及び7参照)。さらに、化工澱粉を添加した系についても種々の提案がなされている(例えば、特許文献8、9、10および11参照)。
しかし、これらの組成物は、いずれも、加熱溶融時の流動性が不十分であった。そのため、押出成形により、簡単な形状の成形物、例えば、シート等を得ることはある程度可能であったが、射出成形により複雑な形状の物品を成形しようとする場合、流動性不良により、所望の形状の成形物を得ることは困難であり、薄肉のフィルムを成形することが困難であり、たとえ成形できたとしても、フィルム物性が実用的ではなかった。また、澱粉の糊化工程とブレンド工程が別々に必要となり、製造コスト的に高くなる問題があった。
これらの問題を解決する方法として、酸化処理した糊化澱粉と生分解性樹脂の組成物が提案されている(特許文献12)。これは、糊化と酸化を同時に行う方法であるが、実際には、糊化のための水と可塑剤共存下での酸化剤による澱粉分解の制御および樹脂との十分なブレンドのためには、事実上製造コストが高くなるという問題がある。つまり、糊化と酸化とコンパウンドを同時に行えば、生分解性樹脂の分子量も低下し、フィルム成形性、および物性を実現することは困難であり、例示されているように、成形時に酸化処理された糊化澱粉ペレットと生分解性樹脂ペレットをドライブレンドで成形した場合、射出成形では問題にならないかもしれないが、薄肉のフィルム成形では、通常使用される、インフレーションフィルム成形における溶融押出機では混練りが不十分なため成形性、物性に問題が生じるという問題がある。また、使用されている酸化剤は過酸化物であり、糊化澱粉と生分解性樹脂の相溶性が不十分なことから樹脂組成物をフィルムに加工する際の成形性は充分には改善されない。
Biodegradable resins are known to decompose relatively easily without producing harmful substances in water or soil. For this reason, it is attracting worldwide attention from the viewpoint of environmental conservation such as the problem of waste disposal. Among these, the aliphatic polyester resin may have physical properties close to that of polyethylene, and the film obtained by molding the resin may be used for films such as agricultural materials, civil engineering materials, vegetation materials, and packaging materials. It is expected (see, for example, Patent Documents 1 and 2).
However, all of the conventional biodegradable films have a problem in practical use because the tear strength, particularly the tear strength in the machine (stretching) direction of the film is not sufficient.
On the other hand, building a recycling-oriented society by switching from depleted resources to renewable resources has attracted attention, not only biodegradability but also materials derived from natural products, not materials synthesized from petroleum. There is growing interest. At present, starch is a material that is put into practical use as a natural product.
Starch to which moldability and physical properties as a film are imparted are esterified vinyl ester graft polymerized starch (Patent Document 3) and starch ester (Patent Document 4), and polyester graft polymerized starch and polyester alloy (Patent Document 5). Has been proposed. Further, it is considered that if the starch is highly modified, the moldability and physical properties as a film can be further improved, but this is not practical in terms of cost.
It has also been proposed to combine starch gelatinized material with a thermoplastic resin (see, for example, Patent Documents 6 and 7). Furthermore, various proposals have been made for systems to which modified starch is added (for example, see Patent Documents 8, 9, 10 and 11).
However, all of these compositions have insufficient fluidity when heated and melted. For this reason, it was possible to obtain a molded product having a simple shape, such as a sheet, by extrusion molding to some extent. It is difficult to obtain a molded product having a shape, and it is difficult to form a thin film, and even if it can be formed, the film properties are not practical. Moreover, the gelatinization process and the blending process of starch are needed separately, and there was a problem that the manufacturing cost becomes high.
As a method for solving these problems, a composition of oxidized gelatinized starch and biodegradable resin has been proposed (Patent Document 12). This is a method in which gelatinization and oxidation are performed simultaneously, but in practice, it is necessary to control starch degradation by an oxidizing agent in the presence of water and a plasticizer for gelatinization and to sufficiently blend with a resin. However, there is a problem that the manufacturing cost becomes high. In other words, if gelatinization, oxidation, and compounding are performed simultaneously, the molecular weight of the biodegradable resin also decreases, and it is difficult to achieve film moldability and physical properties. As illustrated, it is oxidized during molding. When gelatinized starch pellets and biodegradable resin pellets are molded by dry blending, it may not be a problem in injection molding, but in thin film molding, it is usually mixed in a melt extruder in inflation film molding. Insufficient kneading causes a problem in moldability and physical properties. In addition, the oxidizing agent used is a peroxide, and since the compatibility of gelatinized starch and biodegradable resin is insufficient, the moldability when processing the resin composition into a film is not sufficiently improved. .

特開平5−271377号公報Japanese Patent Laid-Open No. 5-271377 特開平6−170941号公報Japanese Patent Laid-Open No. 6-170941 特開平8−239402号公報JP-A-8-239402 特許第2939586号公報Japanese Patent No. 2939586 特開平9−31308号公報JP-A-9-31308 特開平1−217002号公報JP-A-1-217002 特開平2−14228号公報Japanese Patent Laid-Open No. 2-14228 特開平3−56543号公報Japanese Patent Laid-Open No. 3-56543 特開平3−70752号公報JP-A-3-70752 特開平3−74445号公報Japanese Patent Laid-Open No. 3-74445 特開平3−74446号公報Japanese Patent Laid-Open No. 3-74446 特許第3078478号公報Japanese Patent No. 3078478

上記従来技術の問題点に鑑み、本発明の目的は引裂き強度、特に機械(延伸)方向の引裂き強度が改善され、天然物由来の成分を導入して、かつコンポストバッグ、農業用フィルムおよび包装材料などに好適で、経済性にも優れた生分解性樹脂組成物および生分解性フィルムを提供することにある。   In view of the above problems of the prior art, the object of the present invention is to improve the tear strength, particularly the tear strength in the machine (stretching) direction, introduce components derived from natural products, and compost bags, agricultural films and packaging materials. It is desirable to provide a biodegradable resin composition and a biodegradable film that are suitable for the above-mentioned and excellent in economy.

本発明者等は、前記課題を解決するため、鋭意検討を重ねた結果、特定の位置の炭素原子の結合を切断して同炭素原子にカルボキシル基が形成された酸化澱粉を使用することにより、上記問題を解決することができることを見いだし、本発明を完成するに至った。
すなわち、本発明は、以下、
(1) 酸化澱粉の糊化物と生分解性樹脂を含み、かつ前記酸化澱粉が澱粉中の一部のグルコース単位におけるC-2とC-3の間が切断され、C-2およびC-3にカルボキシル基が形成されている構造を有することを特徴とする生分解性樹脂組成物、
(2) 酸化澱粉の糊化物と生分解性樹脂との合計量に基づき、酸化澱粉の糊化物を20〜50質量%および生分解性樹脂を80〜50質量%の割合で含む上記(1)に記載の生分解性樹脂組成物、
(3) 生分解性樹脂がエチレングリコールおよび/または1,4−ブタンジオールとコハク酸および/またはアジピン酸の縮合重合体である上記(1)または(2)に記載の生分解性樹脂組成物、
(4) 生分解性樹脂がさらにポリ乳酸を含む上記(3)に記載の生分解性樹脂組成物、
(5) 酸化澱粉の糊化物が次亜塩素酸ナトリウムを用いて製造されたものである上記(1)〜(4)のいずれかに記載の生分解性樹脂組成物、
(6) 酸化澱粉の糊化を生分解性樹脂の混合と同時にベント付き押出機を用いて行なう上記(1)〜(5)のいずれかに記載の生分解性樹脂組成物、
(7) さらに高沸点の溶媒を含む上記(1)〜(6)のいずれかに記載の生分解性樹脂組成物、
(8) さらに可塑剤を含む上記(1)〜(7)のいずれかに記載の生分解性樹脂組成物、
(9) 可塑剤がポリグリセリン酢酸エステル、その誘導体、およびアジピン酸ジエステルから選ばれる少なくとも一種である上記(8)の生分解性樹脂組成物、
(10) 上記(1)〜(9)のいずれかに記載の生分解性樹脂組成物を成形してなる生分解性フィルムを提供するものである。
As a result of intensive studies to solve the above problems, the present inventors have used an oxidized starch in which a carboxyl group is formed on the carbon atom by cutting the bond of a carbon atom at a specific position. It has been found that the above problems can be solved, and the present invention has been completed.
That is, the present invention includes the following:
(1) It contains a gelatinized product of oxidized starch and a biodegradable resin, and the oxidized starch is cleaved between C-2 and C-3 in some glucose units in the starch, and C-2 and C-3 A biodegradable resin composition characterized by having a structure in which a carboxyl group is formed in
(2) The above-mentioned (1) containing 20-50% by mass of gelatinized starch of oxidized starch and 80-50% by mass of biodegradable resin based on the total amount of gelatinized product of oxidized starch and biodegradable resin A biodegradable resin composition according to claim 1,
(3) The biodegradable resin composition according to the above (1) or (2), wherein the biodegradable resin is a condensation polymer of ethylene glycol and / or 1,4-butanediol and succinic acid and / or adipic acid ,
(4) The biodegradable resin composition according to (3), wherein the biodegradable resin further contains polylactic acid,
(5) The biodegradable resin composition according to any one of (1) to (4) above, wherein the gelatinized product of oxidized starch is produced using sodium hypochlorite,
(6) The biodegradable resin composition according to any one of the above (1) to (5), wherein gelatinization of oxidized starch is performed using a vented extruder simultaneously with mixing of the biodegradable resin,
(7) The biodegradable resin composition according to any one of (1) to (6), further comprising a solvent having a high boiling point,
(8) The biodegradable resin composition according to any one of (1) to (7), further comprising a plasticizer,
(9) The biodegradable resin composition according to (8), wherein the plasticizer is at least one selected from polyglycerin acetate, derivatives thereof, and adipic acid diesters,
(10) Provided is a biodegradable film obtained by molding the biodegradable resin composition according to any one of (1) to (9).

本発明によれば、成形性(相溶性)を向上させることにより、製造の際の負荷を低減した生分解性樹脂組成物および同樹脂組成物を用いて成形され物性が改善された生分解性フィルムが提供される。   According to the present invention, by improving moldability (compatibility), a biodegradable resin composition having a reduced load during production and biodegradability with improved physical properties molded using the resin composition A film is provided.

本発明について、以下具体的に説明する。
本発明の生分解性樹脂組成物における一方の樹脂成分である酸化澱粉の糊化物を得るためには、まず、下記のような構造、すなわち、澱粉中の一部のグルコース単位におけるC-2とC-3間が切断され、C-2およびC-3にカルボキシル基が形成されている構造を有する酸化澱粉を製造する必要がある。
The present invention will be specifically described below.
In order to obtain a gelatinized product of oxidized starch which is one resin component in the biodegradable resin composition of the present invention, first, the following structure, that is, C-2 in some glucose units in starch It is necessary to produce an oxidized starch having a structure in which C-3 is cleaved and carboxyl groups are formed in C-2 and C-3.

Figure 2007277353
Figure 2007277353

澱粉中のグルコース単位を上記のような構造に変換するには、例えば、通常は、澱粉を次亜塩素酸ナトリウムで酸化することにより行う。過酸化物のような酸化剤で澱粉を酸化処理した場合、C-C結合およびグリコシド結合の切断による開重合が生じて、C-2とC-3間の切断が充分行なわれず、カルボキシル基の形成量が不十分となる。
次亜塩素酸ナトリウムによる澱粉の酸化は、澱粉濃度40〜50質量%、好ましくは、45質量%程度の水懸濁液をpH8〜11に調整し、塩素濃度8〜12質量%、好ましくは、10質量%程度の次亜塩素酸ナトリウム水溶液を添加して40〜50℃程度で1〜2時間程度反応させることにより行なう。反応は常圧下、耐腐食性の反応容器中で撹拌しながら行なうのが好ましい。反応終了後、目的物は、遠心脱水機等を用いて分離し、充分に水洗して乾燥させることにより得られる。
カルボキシル基の量はカルボキシル基置換度で表され、通常のものはカルボキシル基置換度(中和滴定法)、の数値が0.001〜0.100、程度、好ましくは、0.01〜0.035である。
酸化澱粉としては、市販のものを使用することができる。
なお、澱粉を次亜塩素酸ナトリウムで酸化する方法は、たとえば、不破英次、「澱粉科学の辞典」、株式会社朝倉書店、2003年3月20日、p408および二国二郎、「澱粉科学ハンドブック」株式会社朝倉書店、1977年7月20日、p501等に記載されている。
In order to convert the glucose unit in the starch into the structure as described above, for example, it is usually performed by oxidizing the starch with sodium hypochlorite. When starch is oxidized with an oxidizing agent such as a peroxide, open polymerization occurs due to the cleavage of C—C bonds and glycosidic bonds, and the cleavage between C-2 and C-3 is not sufficiently performed. The amount formed is insufficient.
The oxidation of starch with sodium hypochlorite adjusts the aqueous suspension with a starch concentration of 40 to 50% by mass, preferably about 45% by mass, to a pH of 8 to 11, and a chlorine concentration of 8 to 12% by mass, preferably, About 10 mass% sodium hypochlorite aqueous solution is added, and it is made to react at about 40-50 degreeC for about 1 to 2 hours. The reaction is preferably carried out with stirring in a corrosion-resistant reaction vessel under normal pressure. After completion of the reaction, the desired product can be obtained by separating using a centrifugal dehydrator or the like, thoroughly washing with water and drying.
The amount of the carboxyl group is represented by the degree of carboxyl group substitution, and the ordinary one has a degree of carboxyl group substitution (neutralization titration) of 0.001 to 0.100, preferably 0.01 to 0.00. 035.
Commercially available starch can be used as the oxidized starch.
In addition, the method of oxidizing starch with sodium hypochlorite is, for example, Eiji Fuwa, “Dictionary of Starch Science”, Asakura Shoten Co., Ltd., March 20, 2003, p408 and Jiro Jikuni, “Starch Science Handbook” "Asakura Shoten Co., Ltd., July 20, 1977, p501".

本発明で使用される澱粉については特に制限が無く、いずれの澱粉も用いることができる。例えば、馬鈴薯澱粉、コーンスターチ、甘薯澱粉、タピオカ澱粉、サゴヤシ澱粉、米澱粉、小麦澱粉などの未化工澱粉、さらには、各種エステル化澱粉、エーテル化澱粉等の化工澱粉等を挙げることができる。   There is no restriction | limiting in particular about the starch used by this invention, Any starch can be used. For example, potato starch, corn starch, sweet potato starch, tapioca starch, sago palm starch, rice starch, wheat starch, and other unmodified starches, and various esterified starches, etherified starches, and the like can be exemplified.

本発明の生分解性樹脂組成物におけるもう一方の樹脂成分である生分解性樹にも特に制限はない。それ自身生分解性を有する樹脂であれば良く、成形性を考慮すると熱可塑性であることが好ましい。化学合成系樹脂、微生物系樹脂、天然物利用系樹脂等のいずれに属する樹脂でも良い。例えば、脂肪族ポリエステル(例えば、ポリブチレンサクシネート、ポリブチレンサクシネート−アジペート、ポリエチレンサクシネート、ポリカプロラクトン、ポリ乳酸、ポリヒドロキシブチレート・バリレート共重合体など)、ポリビニルアルコール、アセチルセルロース等を挙げることができる。これらは一種を用いてもよく、二種以上を組み合わせて用いても良い。
中でも、フィルム成形性、物性を考えた場合、脂肪族ポリエステルが好ましい。さらに脂肪族ポリエステルとしては、融点が50〜180℃であり、かつ重量平均分子量が50000以上であることが良好な成形品を得るうえで好ましく、それらは通常、グリコール類と脂肪族二塩基酸とを脱水共縮合させることにより得られる。
グリコールとしては、例えば、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、デカメチレングリコール、ネオペンチルグリコール等が挙げられる。脂肪族二塩基酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸並びにこれらの無水物等が挙げられる。
また、その他成分として、3官能または4官能を有する多価アルコール、オキシカルボン酸または多価カルボン酸を少量添加したものでもよい。
脂肪族ポリエステルとしては、市販品があり、例えば、昭和高分子(株)製の"ビオノーレ"シリーズがよく知られている。
最終的に得られる生分解性フィルムの軟化温度やフィルムの柔軟性を調整するためにポリ乳酸を併用することもできる。
The biodegradable tree that is the other resin component in the biodegradable resin composition of the present invention is not particularly limited. The resin itself may be a biodegradable resin, and is preferably thermoplastic considering moldability. Resins belonging to any of chemically synthesized resins, microbial resins, natural product utilizing resins, and the like may be used. For example, aliphatic polyester (for example, polybutylene succinate, polybutylene succinate-adipate, polyethylene succinate, polycaprolactone, polylactic acid, polyhydroxybutyrate / valerate copolymer, etc.), polyvinyl alcohol, acetylcellulose, etc. be able to. These may be used alone or in combination of two or more.
Among these, aliphatic polyester is preferable in view of film moldability and physical properties. Further, the aliphatic polyester preferably has a melting point of 50 to 180 ° C. and a weight average molecular weight of 50000 or more in order to obtain a good molded product, and these are usually glycols and aliphatic dibasic acids. Is obtained by dehydration cocondensation.
Examples of the glycol include ethylene glycol, 1,4-butanediol, 1,6-hexanediol, decamethylene glycol, neopentyl glycol and the like. Examples of the aliphatic dibasic acid include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and anhydrides thereof.
Moreover, what added a small amount of trihydric or tetrafunctional polyhydric alcohol, oxycarboxylic acid, or polyhydric carboxylic acid as another component may be used.
As the aliphatic polyester, there are commercially available products, for example, “Bionore” series manufactured by Showa Polymer Co., Ltd. is well known.
Polylactic acid can also be used in combination to adjust the softening temperature of the biodegradable film finally obtained and the flexibility of the film.

本発明生分解性樹脂組成物における酸化澱粉の糊化物(糊化反応については、酸化澱粉の糊化物と生分解性樹脂を混合して生分解性樹脂組成物を調製する際に合わせて記載する)と生分解性樹脂の含有割合としては、特に、同樹脂組成物を成形して生分解性フィルムを製造する際の成形性と得られる生分解性フィルムの物性の観点から、酸化澱粉の糊化物と生分解性樹脂との合計量に基づき、酸化澱粉の糊化物を20〜50質量%(生分解性樹脂が80〜50質量%)含有させることが好ましく、さらに好ましくは30〜50質量%(生分解性樹脂が70〜50質量%)である。酸化澱粉の糊化物を20質量%以上とすることにより、経済性が発揮され、かつ、生分解性フィルムを製造する際の成形性の向上および得られるフィルムの引き裂き強度の向上効果が得られる。また、酸化澱粉の糊化物を50質量%以下とすることにより、フィルム物性が低下するのを防ぐ。   Oxidized starch gelatinized product in the biodegradable resin composition of the present invention (The gelatinization reaction is described together with preparing the biodegradable resin composition by mixing the gelatinized gelatinized starch and the biodegradable resin. ) And the biodegradable resin content, in particular, from the viewpoint of moldability when the resin composition is molded to produce a biodegradable film and the physical properties of the resulting biodegradable film, the starch starch paste Based on the total amount of the chemical compound and the biodegradable resin, it is preferable to contain 20-50% by mass of the gelatinized starch starch (80-50% by mass of the biodegradable resin), more preferably 30-50% by mass. (The biodegradable resin is 70 to 50% by mass). By making the gelatinized product of oxidized starch 20% by mass or more, economic efficiency is exhibited, and an improvement in formability when producing a biodegradable film and an improvement in the tear strength of the resulting film are obtained. Moreover, it is prevented that the physical property of a film falls by making gelatinized material of an oxidized starch into 50 mass% or less.

本発明の生分解性樹脂組成物を製造する方法としては、通常、熱可塑性樹脂を溶融混合する場合に用いられる押出機を使用することが好ましい。
具体的には、酸化澱粉の糊化、脱水、糊化された酸化澱粉と生分解性樹脂との溶融混合を同時に行うために、二軸スクリュー方式で、脱水のためのベントを備えていることが重要である。さらに、十分な製造量を確保するためには、十分なL/Dが重要なファクターであり、通常、L/Dは32以上である。脱水と混合のより効率の良い方法としては、第一工程において、加熱混合による酸化澱粉の糊化完了時に開放式のベントで押出機内の圧力上昇による逆流を防止し、さらに第二工程において酸化澱粉の糊化物と生分解性樹脂をさらに混合しながら、真空ベントで脱水を行うことである。
As a method for producing the biodegradable resin composition of the present invention, it is usually preferable to use an extruder used when melt-mixing a thermoplastic resin.
Specifically, it is equipped with a vent for dehydration with a twin screw system in order to simultaneously gelatinize, dehydrate, and melt-mix the gelatinized oxidized starch and biodegradable resin. is important. Furthermore, in order to ensure a sufficient production amount, sufficient L / D is an important factor, and usually L / D is 32 or more. As a more efficient method of dehydration and mixing, in the first step, the backflow due to pressure rise in the extruder is prevented with an open vent at the completion of gelatinization of the oxidized starch by heating and mixing, and in the second step, oxidized starch is further processed. The dehydration is performed with a vacuum vent while further mixing the gelatinized product and the biodegradable resin.

この二つの工程を一台の押出機で完結するためには、最低でもL/Dは32であることが肝要であり、よりL/Dの大きな装置では吐出量を多くすることが可能であり、製造コストを下げることが可能となる。第一工程では、生分解性樹脂の軟化温度(または融点)に合わせて設定温度を60〜130℃程度、好ましくは、80〜140℃とする。多くの生分解性樹脂はこの温度範囲で軟化(溶融)するため、酸化澱粉の糊化と同時に糊化した酸化澱粉と生分解性樹脂の溶融状態での混合も行われる。第一工程での滞留時間は通常、30〜180秒、好ましくは60〜120秒である。滞留時間を30秒以上とすることにより、酸化澱粉の糊化を充分進行させ、180秒以下とすることにより、分解を抑制し、生産性を確保することができる。
第二工程では設定温度を130〜180℃程度、好ましくは、150〜170℃とする。これにより酸化澱粉の糊化物と生分解性樹脂組成物が完全に溶融混合される。第二工程での滞留時間は通常、30〜120秒、好ましくは60〜90秒である。滞留時間を30秒以上とすることにより、糊化された酸化澱粉と性分解性樹脂との混合を充分に行ない、120秒以下とすることにより、分解を抑制し、生産性を確保することができる。
In order to complete these two steps with a single extruder, it is important that the L / D is 32 at the minimum, and it is possible to increase the discharge amount with an apparatus having a larger L / D. The manufacturing cost can be reduced. In the first step, the set temperature is set to about 60 to 130 ° C., preferably 80 to 140 ° C. according to the softening temperature (or melting point) of the biodegradable resin. Since many biodegradable resins soften (melt) in this temperature range, gelatinized oxidized starch and biodegradable resin are mixed in a molten state simultaneously with gelatinization of the oxidized starch. The residence time in the first step is usually 30 to 180 seconds, preferably 60 to 120 seconds. By setting the residence time to 30 seconds or longer, gelatinization of the oxidized starch proceeds sufficiently, and by setting it to 180 seconds or shorter, decomposition can be suppressed and productivity can be ensured.
In the second step, the set temperature is about 130 to 180 ° C, preferably 150 to 170 ° C. Thereby, the gelatinized product of oxidized starch and the biodegradable resin composition are completely melt-mixed. The residence time in the second step is usually 30 to 120 seconds, preferably 60 to 90 seconds. By setting the residence time to 30 seconds or more, the gelatinized oxidized starch and the sexolytic resin can be sufficiently mixed, and by setting it to 120 seconds or less, decomposition can be suppressed and productivity can be secured. it can.

第一工程における酸化澱粉の糊化のためには、酸化澱粉自身が保持している水分のみでも、温度および滞留時間、せん弾力などにより可能な場合もあるが、糊化を完了させるために必要な水および/または極性を有する高沸点の溶媒を添加することができる。高沸点の極性溶媒としては、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、ポリエチレングリコール、ポリプロピレングリコール等を挙げることができる。
中でも澱粉および生分解性樹脂との相溶性、糊化能力およびコストのバランスの観点から、グリセンリを用いることが好ましい。
以上のような手順で本発明の生分解性樹脂組成物が得られる。
For the gelatinization of oxidized starch in the first step, it may be possible only with the moisture retained by the oxidized starch itself, depending on the temperature, residence time, resilience, etc., but necessary to complete gelatinization Water and / or polar high-boiling solvents can be added. Examples of the high boiling polar solvent include ethylene glycol, propylene glycol, glycerin, sorbitol, polyethylene glycol, and polypropylene glycol.
Among these, glycerin is preferably used from the viewpoints of compatibility with starch and biodegradable resin, a balance between pasting ability and cost.
The biodegradable resin composition of the present invention is obtained by the procedure as described above.

次に上記本発明の生分解性樹脂組成物を成形してなる生分解性フィルムについて説明する。
本発明の生分解性フィルムの製造方法としては、例えば、上記のように酸化澱粉の糊化物と生分解性樹脂を押出機を用いて溶融混合して生分解性樹脂組成物とし、押出機出口を公知の水冷または空冷インフレーション成形、Tダイ式フィルム成形機に連結して連続して製造してもよいし、一旦ペレット化またはフレーク化して、その後、公知の水冷または空冷インフレーション成形、Tダイ式フィルム押出成形機を用いて成形しても良い。
本発明の生分解性樹脂組成物をフィルムに成形する際、さらに可塑剤を含んでいてもよい。生分解性樹脂がさらにポリ乳酸を含む場合に可塑剤を添加する効果が発揮される。用いられる可塑剤としては、グリセリン誘導体が好ましく、特にポリグリセリン酢酸エステルあるいはその誘導体あるいはアジピン酸ジエステルが好ましい。添加量は通常1〜10質量%程度、好ましくは2〜8質量%である。1質量%以上とすることにより、フィルム物性、特に引張伸度、フィルムインパクト強度が改良され、10質量%未満とすることにより可塑剤がブリードして、外観不良となるのを防ぐ。
Next, a biodegradable film formed by molding the biodegradable resin composition of the present invention will be described.
As a method for producing the biodegradable film of the present invention, for example, as described above, the gelatinized product of oxidized starch and the biodegradable resin are melt-mixed using an extruder to obtain a biodegradable resin composition, and the exit of the extruder May be continuously produced by connecting to a known water-cooled or air-cooled inflation molding, T-die type film molding machine, or once pelletized or flaked, then known water-cooling or air-cooled inflation molding, T-die type You may shape | mold using a film extrusion molding machine.
When the biodegradable resin composition of the present invention is formed into a film, it may further contain a plasticizer. The effect of adding a plasticizer is exhibited when the biodegradable resin further contains polylactic acid. As the plasticizer to be used, a glycerin derivative is preferable, and polyglycerin acetate or a derivative thereof or adipic acid diester is particularly preferable. The addition amount is usually about 1 to 10% by mass, preferably 2 to 8% by mass. By setting the content to 1% by mass or more, film properties, particularly tensile elongation and film impact strength are improved, and by setting the content to less than 10% by mass, the plasticizer bleeds to prevent appearance defects.

また、本発明の生分解性フィルムは、所望により当該技術分野において通常用いられている添加剤、例えば、酸化防止剤、熱安定剤、紫外線防止剤、帯電防止剤、難燃剤、結晶化促進剤などを本発明の特性を損なわない範囲で添加してもよい。
具体的には、酸化防止剤としてはp−t−ブチルヒドロキシトルエン、p−t−ブチルヒドロキシアニソール等のヒンダードフェノール系酸化防止剤;熱安定剤としてはトリフェニルホスファイト、トリスノニルフェニルホスファイト等;紫外線吸収剤としてはp−t−ブチルフェニルサリシレート、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2,−カルボキシベンゾフェノン、2,4,5−トリヒドロキシブチロフェノン等;帯電防止剤としてはN,N−ビス(ヒドロキシエチル)アルキルアミン、アルキルアミン、アルキルアリールスルホネート、アルキルスルホネート等;難燃剤としてはヘキサブロモシクロドデカン、トリス−(2,3−ジクロロプロピル)ホスフェート、ペンタブロモフェニルアリルエーテル等;結晶化促進剤としてはタルク、ホロンナイトライト、ポリエチレンテレフタレート、ポリ−トランスシクロヘキサンジメタノールテレフタレート等が挙げられる。
In addition, the biodegradable film of the present invention may contain additives that are usually used in the technical field as desired, for example, antioxidants, heat stabilizers, UV inhibitors, antistatic agents, flame retardants, and crystallization accelerators. Etc. may be added within a range not impairing the characteristics of the present invention.
Specifically, hindered phenolic antioxidants such as pt-butylhydroxytoluene and pt-butylhydroxyanisole as antioxidants; triphenyl phosphite, trisnonylphenyl phosphite as thermal stabilizers Etc .; Examples of ultraviolet absorbers include pt-butylphenyl salicylate, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2 , -carboxybenzophenone, 2,4,5-trihydroxybutyrophenone, etc. N, N-bis (hydroxyethyl) alkylamines, alkylamines, alkylarylsulfonates, alkylsulfonates etc. as inhibitors; hexabromocyclododecane, tris- (2,3-dichloropropyl) phosphate, pentabromo as flame retardants Feni Allyl ether; the crystallization promoter talc, Holon nitrite, polyethylene terephthalate, poly - trans cyclohexanedimethanol terephthalate and the like.

上記のように、生分解性樹脂組成物の調製に引き続いて連続してフィルムの製造を行うのでなく、一旦ペレット化またはフレーク化された生分解性樹脂組成物を用いてフィルムの製造を行う場合、インフレーション成形、Tダイ式フィルム押出成形機の設定温度は上記第二工程と同じ設定温度、すなわち、130〜180℃程度、好ましくは、145〜170℃とする。
本発明の生分解性フィルムは、前記フィルムを、さらに一軸又は二軸延伸したものであってもよい。
本発明の生分解性樹脂組成物は、それを生分解性フィルムに成形する際の成形性
が改良されているので、生産性が向上し、かつ、得られた生分解性フィルムは機械
的特性、特にフィルムのインパクト強度が改良されているので、生分解性を有する
コンポストバッグ、農業用フィルムおよび包装材料などに好適に用いられる。
As described above, when the film is produced using the biodegradable resin composition once pelletized or flaked, instead of continuously producing the film following the preparation of the biodegradable resin composition The preset temperature of the inflation molding and T-die type film extrusion molding machine is the same preset temperature as in the second step, that is, about 130 to 180 ° C, preferably 145 to 170 ° C.
The biodegradable film of the present invention may be obtained by further uniaxially or biaxially stretching the film.
Since the biodegradable resin composition of the present invention has improved moldability when it is formed into a biodegradable film, the productivity is improved, and the obtained biodegradable film has mechanical properties. In particular, since the impact strength of the film is improved, it is suitably used for compost bags having biodegradability, agricultural films, packaging materials, and the like.

以下に実施例および比較例を示し、本発明をさらに詳細に説明するが、本発明は下記の例になんら限定されるものではない。   The present invention will be described in more detail with reference to examples and comparative examples below, but the present invention is not limited to the following examples.

[実施例1〜5および比較例1〜4]
表1に澱粉および生分解性樹脂の種類、各配合量(質量%)を示す。各例における原料や添加剤をスーパーミキサーを用いて混合し、脱水のためのベントを備えたスクリュー径80mmの同方向二軸押出機(L/Dは32)を用いて溶融混練し、生分解性樹脂組成物のペレットを得た。設定温度は第一工程80〜140℃、第二工程150〜180℃、滞留時間は第一工程60〜90秒、第二工程60〜90秒である。
得られた各ペレットを温度70℃で3時間除湿空気循環式乾燥機で乾燥後、吉井鉄工社製インフレーション成形機を用いて厚さ30μm、折幅300mm(ブローアップ比=3相当)のフィルムを成形した。
各特性の測定方法を以下に示す。
[Examples 1 to 5 and Comparative Examples 1 to 4]
Table 1 shows the types of starch and biodegradable resin, and the respective amounts (% by mass). The raw materials and additives in each example are mixed using a super mixer, melt-kneaded using a 80 mm screw twin screw extruder (L / D is 32) equipped with a vent for dehydration, and biodegraded. Pellets of the conductive resin composition were obtained. The set temperature is 80 to 140 ° C for the first step, 150 to 180 ° C for the second step, the residence time is 60 to 90 seconds for the first step, and 60 to 90 seconds for the second step.
Each pellet obtained was dried with a dehumidifying air circulation dryer at a temperature of 70 ° C. for 3 hours, and then a film having a thickness of 30 μm and a folding width of 300 mm (equivalent to a blow-up ratio = 3) was formed using an inflation molding machine manufactured by Yoshii Tekko. Molded.
The measuring method of each characteristic is shown below.

<MFR>
JIS K7210に準拠し、温度190℃、荷重21.18MPaの条件で測定した。
<生分解性>
昭和高分子(株)竜野工場内の地面から約10cmの深さのところに10cm角に裁断したフィルムをナイロンメッシュに挟んで1ヶ月埋設した後、質量減少量を測定し、その減少割合を次の4段階で評価した。
◎:80%以上
○:50〜80%未満
△:10〜50%未満
<フィルム成形性>
2段階評価で、所定の寸法のフィルムが得られた場合○、成形できなかった場合を×とした。
<引張破断強度>
JIS Z−1702に準じて測定した。
<引張破断伸度>
JIS Z−1702に準じて測定した。
<ヤング率>
ASTM D−822に準じて測定した。
<引裂き強度>
JIS P−8116に準じて測定した。
<インパクト強度>
JIS P−8134に準じて測定した。
上記の機械的特性はフィルム成形性の評価が○で、フィルムが得られた場合のみ各フィルムについて測定した。インパクト強度以外の機械的特性は、いずれも縦方向(フィルム引き取り方向、MD)と横方向(TD)の両者について測定した。
<MFR>
Based on JIS K7210, the measurement was performed under conditions of a temperature of 190 ° C. and a load of 21.18 MPa.
<Biodegradability>
A 10cm square film was cut into a 10cm square from the ground in Showa Polymer Co., Ltd.'s Tatsuno Plant, and embedded in a nylon mesh for 1 month. The four grades were evaluated.
A: 80% or more B: 50 to less than 80% B: 10 to less than 50% <Film formability>
In a two-stage evaluation, the case where a film having a predetermined size was obtained was evaluated as ◯, and the case where the film could not be formed was evaluated as x.
<Tensile breaking strength>
It measured according to JIS Z-1702.
<Tensile rupture elongation>
It measured according to JIS Z-1702.
<Young's modulus>
Measured according to ASTM D-822.
<Tear strength>
It measured according to JIS P-8116.
<Impact strength>
It measured according to JIS P-8134.
The above-mentioned mechanical properties were measured for each film only when the film formability was evaluated as ◯ and a film was obtained. Mechanical properties other than impact strength were measured in both the vertical direction (film take-up direction, MD) and the horizontal direction (TD).

<使用材料>
(1) 生分解性樹脂A:昭和高分子(株)製脱水縮合型脂肪族ポリエステル[ビオ
ノーレ3001G(融点;95℃、MFR;1.2g/10分)]
(2) 生分解性樹脂B:BASF(株)製脱水縮合型脂肪族・芳香族ポリエステ
ル[Ecoflex(融点;120℃、MFR;4.0g/10分)]
(3) 生分解性樹脂C:ダイセル化学工業(株)製のポリカプロラクトン[プラク
セルH−7(融点;60℃、MFR;3.5g/10分)]
(4) 澱粉A:王子コーンスターチ(株)製酸化澱粉[エースA;カルボキシル基置換度0.01、粘 度300±50BU(ブラベンダー粘度、濃度20%、50℃1時間後測定)、水分12%(常圧 加熱法105℃、4時間)
(5) 澱粉B:王子コーンスターチ(株)製コーンスターチ[生澱粉;カルボキシル基置換度0、粘度1 100±50BU(ブラベンダー粘度、濃度8%、50℃1時間後測定)、水分12%(常圧加熱 法105℃、4時間)
(6) 澱粉C:王子コーンスターチ(株)製酸化澱粉[エースC;カルボキシル基置換度0.03、粘度 200±50BU(ブラベンダー粘度、濃度30%、50℃1時間後測定)、水分12%(常圧加 熱法105℃、4時間)
(7) 水:脱イオン水
(8) 高沸点の極性溶媒:グリセリン
(9) 可塑剤A:理研ビタミン(株)製ポリグリセリン酢酸エステル[リケマールPL−710]
(10) 可塑剤B:旭電化(株)製アジピン酸ジエステル[アデカサイザーRS−107]
<Materials used>
(1) Biodegradable resin A: dehydration condensation type aliphatic polyester manufactured by Showa Polymer Co., Ltd. [Bionore 3001G (melting point: 95 ° C., MFR; 1.2 g / 10 min)]
(2) Biodegradable resin B: dehydrated condensed aliphatic / aromatic polyester [Ecoflex (melting point: 120 ° C., MFR: 4.0 g / 10 min)] manufactured by BASF Corporation
(3) Biodegradable resin C: polycaprolactone manufactured by Daicel Chemical Industries, Ltd. [Placcel H-7 (melting point: 60 ° C., MFR; 3.5 g / 10 min)]
(4) Starch A: Oxidized starch manufactured by Oji Cornstarch Co., Ltd. [Ace A; carboxyl group substitution degree 0.01, viscosity 300 ± 50 BU (Brabender viscosity, concentration 20%, measured after 1 hour at 50 ° C.), moisture 12 % (Normal pressure heating method 105 ° C, 4 hours)
(5) Starch B: Corn starch manufactured by Oji Corn Starch Co., Ltd. [Raw starch; Carboxyl group substitution degree 0, Viscosity 1 100 ± 50 BU (Brabender viscosity, concentration 8%, measured after 1 hour at 50 ° C.), moisture 12% (normally Pressure heating method 105 ° C, 4 hours)
(6) Starch C: Oxidized starch manufactured by Oji Cornstarch Co., Ltd. [Ace C; degree of carboxyl group substitution 0.03, viscosity 200 ± 50 BU (Brabender viscosity, concentration 30%, measured after 50 ° C. after 1 hour), moisture 12% (Normal pressure heating method 105 ° C, 4 hours)
(7) Water: Deionized water
(8) High boiling polar solvent: Glycerin
(9) Plasticizer A: Polyglycerin acetate [Riquemar PL-710] manufactured by Riken Vitamin Co., Ltd.
(10) Plasticizer B: Adipic acid diester [Adekasizer RS-107] manufactured by Asahi Denka Co., Ltd.

Figure 2007277353
Figure 2007277353

表1における実施例番号、比較例番号以外の数値は全て質量%を表わす。測定結果を表2に示す。   All numerical values other than the example number and the comparative example number in Table 1 represent mass%. The measurement results are shown in Table 2.

Figure 2007277353
Figure 2007277353

表2に示されている結果から、本発明の生分解性樹脂組成物は比較例のものと比べて機械的強度およびフィルム成形性において優れていることがわかる。

From the results shown in Table 2, it can be seen that the biodegradable resin composition of the present invention is superior in mechanical strength and film moldability as compared with the comparative example.

Claims (10)

酸化澱粉の糊化物と生分解性樹脂を含み、かつ前記酸化澱粉が澱粉中の一部のグルコース単位におけるC-2とC-3の間が切断され、C-2およびC-3にカルボキシル基が形成されている構造を有することを特徴とする生分解性樹脂組成物。   A gelatinized product of oxidized starch and a biodegradable resin, and the oxidized starch is cleaved between C-2 and C-3 in some glucose units in the starch, and carboxyl groups are present in C-2 and C-3. A biodegradable resin composition having a structure in which is formed. 酸化澱粉の糊化物と生分解性樹脂との合計量に基づき、酸化澱粉の糊化物を20〜50質量%および生分解性樹脂を80〜50質量%の割合で含む請求項1に記載の生分解性樹脂組成物。   The raw material according to claim 1, comprising a gelatinized product of oxidized starch in a proportion of 20 to 50% by mass and a biodegradable resin in a proportion of 80 to 50% by mass based on the total amount of the gelatinized product of oxidized starch and the biodegradable resin. Degradable resin composition. 生分解性樹脂がエチレングリコールおよび/または1,4−ブタンジオールとコハク酸および/またはアジピン酸の縮合重合体である請求項1または2に記載の生分解性樹脂組成物。   The biodegradable resin composition according to claim 1 or 2, wherein the biodegradable resin is a condensation polymer of ethylene glycol and / or 1,4-butanediol and succinic acid and / or adipic acid. 生分解性樹脂がさらにポリ乳酸を含む請求項3に記載の生分解性樹脂組成物。   The biodegradable resin composition according to claim 3, wherein the biodegradable resin further contains polylactic acid. 酸化澱粉の糊化物が次亜塩素酸ナトリウムを用いて製造されたものである請求項1〜4のいずれかに記載の生分解性樹脂組成物。   The biodegradable resin composition according to any one of claims 1 to 4, wherein the gelatinized product of oxidized starch is produced using sodium hypochlorite. 酸化澱粉の糊化を生分解性樹脂の混合と同時にベント付き押出機を用いて行なう請求項1〜5のいずれかに記載の生分解性樹脂組成物。   The biodegradable resin composition according to any one of claims 1 to 5, wherein gelatinization of oxidized starch is performed using an extruder with a vent simultaneously with mixing of the biodegradable resin. さらに高沸点の溶媒を含む請求項1〜6のいずれかに記載の生分解性樹脂組成物。   Furthermore, the biodegradable resin composition in any one of Claims 1-6 containing a high boiling point solvent. さらに可塑剤を含む請求項1〜7のいずれかに記載の生分解性樹脂組成物。   Furthermore, the biodegradable resin composition in any one of Claims 1-7 containing a plasticizer. 可塑剤がポリグリセリン酢酸エステル、その誘導体、およびアジピン酸ジエステルから選ばれる少なくとも一種である請求項8の生分解性樹脂組成物。   The biodegradable resin composition according to claim 8, wherein the plasticizer is at least one selected from polyglycerin acetate, derivatives thereof, and adipic acid diester. 請求項1〜9のいずれかに記載の生分解性樹脂組成物を成形してなる生分解性フィルム。

The biodegradable film formed by shape | molding the biodegradable resin composition in any one of Claims 1-9.

JP2006103449A 2006-04-04 2006-04-04 Biodegradable resin composition and biodegradable film Active JP5021228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103449A JP5021228B2 (en) 2006-04-04 2006-04-04 Biodegradable resin composition and biodegradable film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103449A JP5021228B2 (en) 2006-04-04 2006-04-04 Biodegradable resin composition and biodegradable film

Publications (2)

Publication Number Publication Date
JP2007277353A true JP2007277353A (en) 2007-10-25
JP5021228B2 JP5021228B2 (en) 2012-09-05

Family

ID=38679139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103449A Active JP5021228B2 (en) 2006-04-04 2006-04-04 Biodegradable resin composition and biodegradable film

Country Status (1)

Country Link
JP (1) JP5021228B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013602A (en) * 2006-07-03 2008-01-24 Showa Highpolymer Co Ltd Biodegradable resin composition and biodegradable film
WO2013073402A1 (en) 2011-11-15 2013-05-23 昭和電工株式会社 Biodegradable resin composition, and biodegradable film
WO2013073403A1 (en) 2011-11-15 2013-05-23 昭和電工株式会社 Biodegradable resin composition, and biodegradable film
WO2016158331A1 (en) 2015-04-02 2016-10-06 Showa Denko K.K. Resin composition and its film
CN113913001A (en) * 2021-11-25 2022-01-11 杭州人民环保科技有限公司 Thermal insulation material, preparation method thereof, anti-scald layer and degradable anti-scald paper cup
CN115651337A (en) * 2022-11-23 2023-01-31 济南中科广源环保科技有限公司 Degradable plastic film material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306960A (en) * 2004-04-20 2005-11-04 Matsutani Chem Ind Ltd Edible film
JP2006016446A (en) * 2004-06-30 2006-01-19 Toray Ind Inc Resin composition and molded article comprised of the same
JP2006052338A (en) * 2004-08-12 2006-02-23 Kansai Paint Co Ltd Water dispersion of modified starch-containing resin and method for producing the water dispersion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005306960A (en) * 2004-04-20 2005-11-04 Matsutani Chem Ind Ltd Edible film
JP2006016446A (en) * 2004-06-30 2006-01-19 Toray Ind Inc Resin composition and molded article comprised of the same
JP2006052338A (en) * 2004-08-12 2006-02-23 Kansai Paint Co Ltd Water dispersion of modified starch-containing resin and method for producing the water dispersion

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013602A (en) * 2006-07-03 2008-01-24 Showa Highpolymer Co Ltd Biodegradable resin composition and biodegradable film
JP4553875B2 (en) * 2006-07-03 2010-09-29 昭和高分子株式会社 Biodegradable resin composition and biodegradable film
WO2013073402A1 (en) 2011-11-15 2013-05-23 昭和電工株式会社 Biodegradable resin composition, and biodegradable film
WO2013073403A1 (en) 2011-11-15 2013-05-23 昭和電工株式会社 Biodegradable resin composition, and biodegradable film
CN103906805A (en) * 2011-11-15 2014-07-02 昭和电工株式会社 Biodegradable resin composition, and biodegradable film
JPWO2013073402A1 (en) * 2011-11-15 2015-04-02 昭和電工株式会社 Biodegradable resin composition and biodegradable film
US9441105B2 (en) 2011-11-15 2016-09-13 Showa Denko K.K. Biodegradable resin composition, and biodegradable film
WO2016158331A1 (en) 2015-04-02 2016-10-06 Showa Denko K.K. Resin composition and its film
CN113913001A (en) * 2021-11-25 2022-01-11 杭州人民环保科技有限公司 Thermal insulation material, preparation method thereof, anti-scald layer and degradable anti-scald paper cup
CN113913001B (en) * 2021-11-25 2023-01-31 杭州人民环保科技有限公司 Thermal insulation material, preparation method thereof, anti-scald layer and degradable anti-scald paper cup
CN115651337A (en) * 2022-11-23 2023-01-31 济南中科广源环保科技有限公司 Degradable plastic film material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5021228B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4553875B2 (en) Biodegradable resin composition and biodegradable film
JP4687129B2 (en) Aliphatic polyester resin composition and molded article thereof
JP6002147B2 (en) Biodegradable resin composition and biodegradable film
JP5128595B2 (en) Masterbatch and polymer composition
TWI551643B (en) Biodegradable resin composition and biodegradable film
JP4414415B2 (en) Biodegradable resin composition and biodegradable film
JP5021228B2 (en) Biodegradable resin composition and biodegradable film
JP2010260923A (en) Foaming resin composition and foam
WO2012010401A2 (en) Plastic compounding
JP5053716B2 (en) Multilayer film
JP2005281678A (en) Aliphatic polyester resin composition and its molded product
JP5656543B2 (en) Multi-layer film with biodegradability
IT201900006282A1 (en) BIODEGRADABLE FILMS WITH IMPROVED MECHANICAL PROPERTIES
JP2002060545A (en) Biodegradable film or sheet, and molded article
JP3265184B2 (en) Biodegradable films or sheets and processed products of these films or sheets
JPWO2009078309A1 (en) Foamable resin composition and foam
US20110077313A1 (en) Foamable resin composition and foamed body
JP6102314B2 (en) Polyester resin composition and film formed by molding the polyester resin composition
WO2016158331A1 (en) Resin composition and its film
JPH09137069A (en) Biodegradable composition
JP2011127132A (en) Aliphatic polyester resin composition and molded product thereof
JP2010254859A (en) Foamed resin sheet, foamed resin sheet molding, and process for producing the same
JP2011122008A (en) Foamable resin composition and foam
JP2009120651A (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Ref document number: 5021228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250