JP2007277040A - Iridium oxide powder, its manufacturing method, and paste for forming thick film resistor using the same - Google Patents

Iridium oxide powder, its manufacturing method, and paste for forming thick film resistor using the same Download PDF

Info

Publication number
JP2007277040A
JP2007277040A JP2006104944A JP2006104944A JP2007277040A JP 2007277040 A JP2007277040 A JP 2007277040A JP 2006104944 A JP2006104944 A JP 2006104944A JP 2006104944 A JP2006104944 A JP 2006104944A JP 2007277040 A JP2007277040 A JP 2007277040A
Authority
JP
Japan
Prior art keywords
iridium oxide
potassium
oxide powder
paste
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006104944A
Other languages
Japanese (ja)
Other versions
JP5098203B2 (en
Inventor
Toshiteru Maeda
俊輝 前田
Fujio Makuta
富士雄 幕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006104944A priority Critical patent/JP5098203B2/en
Publication of JP2007277040A publication Critical patent/JP2007277040A/en
Application granted granted Critical
Publication of JP5098203B2 publication Critical patent/JP5098203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iridium oxide powder having an excellent dispersibility in a paste and being capable of forming a resistor having excellent electric characteristics when a paste is obtained by using the iridium oxide powder as a conductive powder of a thick film resistor and fired to form a resistor, a method for manufacturing it industrially at a low cost, and a paste for forming a thick film resistor using it. <P>SOLUTION: The iridium oxide powder is used as a conductive powder for a paste for a thick film resistor excellent in electric characteristics, which has an average particle diameter of 30-100 nm, a structure consisting of a single phase of iridium oxide represented by chemical formula: IrO<SB>2</SB>and having a half-value width of (110) plane of 0.20-0.40° in its X-ray diffraction, and a chlorine concentration of 0.01-0.4 wt.%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸化イリジウム粉、その製造方法及びそれを用いた厚膜抵抗体形成用ペーストに関し、さらに詳しくは、厚膜抵抗体形成用の導電粉として用いてペーストを得て、該ペーストを焼成して抵抗体としたときに、ペースト中での分散性が良好であり、さらに良好な電気的特性を有する抵抗体を形成することができる酸化イリジウム粉と、その工業的に安価な製造方法及びそれを用いた厚膜抵抗体形成用ペーストに関する。   The present invention relates to an iridium oxide powder, a method for producing the same, and a thick film resistor forming paste using the iridium oxide powder. More specifically, the paste is obtained as a conductive powder for forming a thick film resistor, and the paste is fired. When the resistor is used, the dispersibility in the paste is good, and the iridium oxide powder capable of forming a resistor having further excellent electrical characteristics, and its industrially inexpensive manufacturing method and The present invention relates to a thick film resistor forming paste using the same.

厚膜抵抗体は、チップ抵抗器、厚膜ハイブリッドIC及び抵抗ネットワーク等に広く用いられている。厚膜抵抗体の製造方法としては、通常、絶縁体基板の表面に形成された導電体回路パターン又は電極の上に、導電粉を均一に分散させたペーストを印刷し、これを焼成する工程が用いられる。   Thick film resistors are widely used in chip resistors, thick film hybrid ICs, resistor networks, and the like. As a method for manufacturing a thick film resistor, there is usually a process in which a paste in which conductive powder is uniformly dispersed is printed on a conductor circuit pattern or an electrode formed on the surface of an insulating substrate, and this is fired. Used.

上記厚膜抵抗体の製造に用いるペーストは、導電粉とガラスフリット等のガラス結合剤をビヒクルと呼ばれる有機媒体中に均一に分散させることにより製造されている。このうち、導電粉は厚膜抵抗体の電気的特性を決定する最も重要な役割を担い、酸化ルテニウム(RuO)又はルテニウム酸鉛(PbRu)の微粉末が広く用いられている。一般に、酸化ルテニウムは低抵抗値から高抵抗値まで広範囲の導電物として使用され、高抵抗領域では導電物濃度に対する抵抗値の変動がより小さいルテニウム酸鉛が用いられることが多い。 The paste used for manufacturing the thick film resistor is manufactured by uniformly dispersing conductive powder and a glass binder such as glass frit in an organic medium called a vehicle. Of these, conductive powder plays the most important role in determining the electrical characteristics of thick film resistors, and fine powders of ruthenium oxide (RuO 2 ) or lead ruthenate (Pb 2 Ru 2 O 7 ) are widely used. Yes. In general, ruthenium oxide is used as a conductor in a wide range from a low resistance value to a high resistance value, and in the high resistance region, lead ruthenate having a smaller variation in the resistance value with respect to the conductor concentration is often used.

ところが、近年、電子機器から毒性のある鉛の使用を排除することが求められることにより、高抵抗領域の厚膜抵抗体用の導電粉としてルテニウム酸鉛粉に代わる鉛を含有しない導電粉が望まれている。また、厚膜抵抗体から完全に鉛を排除するためには、同時に用いられるガラス結合剤からも鉛を排除する必要があり、ペーストから鉛を全て排除した状態でも厚膜抵抗体として良好な電気特性が得られる導電粉が必要である。この解決策として、BiRu、CaRuO、SrRuO、BaRuO、LaRuO等の化学式で表わされる種々の導電粉用ルテニウム複合酸化物が提案されているが、十分な電気特性が得られず実用化されるには至っていない。 However, in recent years, there has been a demand for the elimination of the use of toxic lead from electronic devices, and as a conductive powder for thick film resistors in the high resistance region, conductive powder containing no lead instead of lead ruthenate powder is desired. It is rare. In addition, in order to completely remove lead from the thick film resistor, it is necessary to exclude lead from the glass binder used at the same time. A conductive powder that can provide the properties is required. As a solution for this, various ruthenium composite oxides for conductive powders represented by chemical formulas such as Bi 2 Ru 2 O 7 , CaRuO 3 , SrRuO 3 , BaRuO 3 , LaRuO 3 have been proposed. It has not been obtained and has not been put to practical use.

ところで、一般に、酸化イリジウム(IrO)はその粉末を用いたペーストで抵抗体を形成したとき、酸化ルテニウム粉を用いた場合に比べて高抵抗の抵抗体が得られることが知られており、高抵抗領域の厚膜抵抗体用導電粉としてルテニウム酸鉛粉の代替材として期待されている。例えば、電気抵抗組成物として、酸化イリジウムと細粉状ガラスフリットからなる厚膜抵抗体用ペーストが開示されている(例えば、特許文献1参照。)。しかしながら、この提案では、鉛を含むガラスをガラス結合剤として用いることで抵抗体としての特性が向上しやすいことから、鉛を含むガラス結合剤が使用されており、完全に鉛を排除した状態で良好な特性が得られていなかった。しかも、酸化イリジウム粉を厚膜抵抗体用導電粉として用いる際の望ましい物質特性についての開示がなされていなかった。 By the way, in general, when iridium oxide (IrO 2 ) is used to form a resistor with a paste using the powder, it is known that a resistor having a high resistance can be obtained as compared with the case of using ruthenium oxide powder. It is expected as a substitute for lead ruthenate powder as conductive powder for thick film resistors in the high resistance region. For example, a thick film resistor paste made of iridium oxide and fine glass frit is disclosed as an electrical resistance composition (see, for example, Patent Document 1). However, in this proposal, since glass containing lead is used as a glass binder and the characteristics as a resistor are easily improved, a glass binder containing lead is used, and lead is completely excluded. Good characteristics were not obtained. In addition, there has been no disclosure of desirable material properties when using iridium oxide powder as conductive powder for thick film resistors.

しかしながら、上述のように、酸化イリジウム粉の物質特性と、それを用いて得られる厚膜抵抗体の電気的特性、例えば、抵抗値、抵抗温度係数(以下、TCRと呼称する場合がある。)及びノイズに及ぼす影響についての知見が十分でなかったため、酸化イリジウム粉を導電粉として用いた厚膜抵抗体では、優れた特性が発揮されず、ルテニウム酸鉛粉に代わる導電粉として用いられることには至っていなかった。   However, as described above, the material properties of iridium oxide powder and the electrical properties of the thick film resistor obtained by using the material, for example, the resistance value and the temperature coefficient of resistance (hereinafter sometimes referred to as TCR). In addition, the thick film resistor using iridium oxide powder as a conductive powder does not exhibit excellent characteristics because it has not enough knowledge about the effect on noise and noise, and is used as a conductive powder in place of lead ruthenate powder. Was not reached.

以上の状況から、厚膜抵抗体形成用ペーストに用いるルテニウム酸鉛粉に代わる導電粉として、導電粉自体に鉛を含まず、さらに、ペーストから鉛を全て排除した状態でも厚膜抵抗体として良好な電気的特性が得られる導電粉が求められている。   From the above situation, as a conductive powder that replaces the lead ruthenate powder used in the thick film resistor forming paste, the conductive powder itself does not contain lead, and it is good as a thick film resistor even when all lead is excluded from the paste There is a need for conductive powders that can provide excellent electrical characteristics.

特公昭54−1917号公報(第6頁)Japanese Examined Patent Publication No. 54-1917 (Page 6)

本発明の目的は、上記の従来技術の問題点に鑑み、厚膜抵抗体用の導電粉として用いてペーストを得て、該ペーストを焼成して抵抗体としたときに、ペースト中での分散性が良好であり、さらに良好な電気的特性を有する抵抗体を形成することができる酸化イリジウム粉と、その工業的に安価な製造方法及びそれを用いた厚膜抵抗体形成用ペーストを提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to obtain a paste as a conductive powder for a thick film resistor, and to disperse the paste in the paste when the paste is fired into a resistor. The present invention provides an iridium oxide powder capable of forming a resistor having good electrical properties and further excellent electrical characteristics, an industrially inexpensive manufacturing method thereof, and a thick film resistor forming paste using the same. There is.

本発明者らは、上記目的を達成するために、厚膜抵抗体用の導電粉に用いる酸化イリジウム粉とその製造方法、及びそれを用いた厚膜抵抗体形成用ペーストについて、鋭意研究を重ねた結果、酸化イリジウム粉の物質特性として、組織、粒径、結晶性、及び塩素含有量がペースト中での分散性と抵抗体の電気的特性に大きな影響を及ぼすこと、また、これらの代表特性として、組織が化学式:IrOで表される酸化イリジウム単相であるとともに、それぞれ平均粒径、X線回折での酸化イリジウム相の(110)面の半価幅、及び塩素濃度を特定の範囲に制御することにより、酸化イリジウム粉の分散性が良好なペースト、さらに抵抗値、抵抗温度係数及びノイズ等の電気的特性に優れる抵抗体を形成することができることを見出した。
また、これらが特定の範囲に制御された酸化イリジウム粉を得るためには、特定の原料を用いるとともに、酸化性雰囲気下で焙焼する際に焙焼温度を特定の温度に調整することにより好適に実施されることを見出した。そして、これらにより本発明を完成した。
In order to achieve the above object, the present inventors have conducted extensive research on iridium oxide powder used for conductive powder for thick film resistors, a method for producing the same, and paste for forming thick film resistors using the same. As a result, as the material properties of iridium oxide powder, the structure, particle size, crystallinity, and chlorine content have a great influence on the dispersibility in the paste and the electrical properties of the resistor. The structure is a single phase of iridium oxide represented by the chemical formula: IrO 2 , and the average particle diameter, the half width of the (110) plane of the iridium oxide phase in X-ray diffraction, and the chlorine concentration are in a specific range. It has been found that a paste having good dispersibility of the iridium oxide powder and a resistor excellent in electrical characteristics such as a resistance value, a resistance temperature coefficient, and noise can be formed.
Moreover, in order to obtain iridium oxide powders in which these are controlled within a specific range, it is preferable to use specific raw materials and adjust the roasting temperature to a specific temperature when roasting in an oxidizing atmosphere. Found to be implemented. And these completed the present invention.

すなわち、本発明の第1の発明によれば、電気的特性に優れる厚膜抵抗体形成用ペーストの導電粉として用いられる酸化イリジウム粉であって、
平均粒径が30〜100nmであり、組織がX線回折で化学式:IrOで表される酸化イリジウム単相であるとともに、そのX線回折での(110)面の半価幅が0.20〜0.40°であり、かつ塩素濃度が0.01〜0.4重量%であることを特徴とする酸化イリジウム粉が提供される。
That is, according to the first invention of the present invention, the iridium oxide powder used as the conductive powder of the thick film resistor forming paste having excellent electrical characteristics,
The average particle size is 30 to 100 nm, the structure is a single phase of iridium oxide represented by the chemical formula: IrO 2 by X-ray diffraction, and the half width of the (110) plane in the X-ray diffraction is 0.20. An iridium oxide powder characterized by having a chlorine concentration of 0.01 to 0.4% by weight and a chlorine concentration of ˜0.40 ° is provided.

また、本発明の第2の発明によれば、ヘキサクロロイリジウム(IV)酸アンモニウム又はイリジウム水酸化物とカリウム化合物との混合物、カリウムを含むヘキサクロロイリジウム(IV)酸アンモニウム、或いはヘキサクロロイリジウム(IV)酸カリウムを酸化性雰囲気下に焙焼する際に、焙焼温度を840〜980℃の範囲で調整することにより、平均粒径、X線回折での(110)面の半価幅、及び塩素濃度を所定値に制御することを特徴とする第1の発明の酸化イリジウム粉の製造方法が提供される。   According to the second invention of the present invention, ammonium hexachloroiridium (IV) or a mixture of iridium hydroxide and potassium compound, ammonium hexachloroiridium (IV) containing potassium, or hexachloroiridium (IV) acid When potassium is roasted in an oxidizing atmosphere, by adjusting the roasting temperature in the range of 840 to 980 ° C., the average particle diameter, the half width of the (110) plane in X-ray diffraction, and the chlorine concentration The iridium oxide powder production method according to the first aspect of the present invention is characterized in that is controlled to a predetermined value.

また、本発明の第3の発明によれば、第2の発明において、前記カリウム化合物は、ヘキサクロロイリジウム(IV)酸カリウム、塩化カリウム、水酸化カリウム又はカリウムの炭酸塩から選ばれる少なくとも1種であることを特徴とする酸化イリジウム粉の製造方法が提供される。   According to a third aspect of the present invention, in the second aspect, the potassium compound is at least one selected from potassium hexachloroiridium (IV), potassium chloride, potassium hydroxide or potassium carbonate. There is provided a method of producing iridium oxide powder characterized in that

また、本発明の第4の発明によれば、第2の発明において、前記混合物又はカリウムを含むヘキサクロロイリジウム(IV)酸アンモニウム中のカリウム含有量は、カリウム成分を全量に対し0.02〜9.9重量%含有することを特徴とする酸化イリジウム粉の製造方法が提供される。   According to a fourth invention of the present invention, in the second invention, the potassium content in the mixture or ammonium hexachloroiridium (IV) containing potassium is 0.02-9 with respect to the total amount of potassium component. The manufacturing method of iridium oxide powder characterized by containing .9 weight% is provided.

また、本発明の第5の発明によれば、第2〜4いずれかの発明において、前記酸化性雰囲気は、酸素ガス気流により形成されることを特徴とする酸化イリジウム粉の製造方法。   According to a fifth aspect of the present invention, in any one of the second to fourth aspects, the oxidizing atmosphere is formed by an oxygen gas stream.

また、本発明の第6の発明によれば、第1の発明の酸化イリジウム粉を用いてなる厚膜抵抗体用ペーストが提供される。   According to the sixth aspect of the present invention, there is provided a thick film resistor paste using the iridium oxide powder of the first aspect.

本発明の酸化イリジウム粉は、厚膜抵抗体用の導電粉として好適な物質特性を有しているので、導電粉として用いてガラス結合剤と共に有機ビヒクルに混練してペーストを得て、該ペーストを焼成して抵抗体としたときに、ペースト中での分散性が良好であり、さらに抵抗値、抵抗温度係数及びノイズ等の電気的特性に優れる抵抗体を形成することができるものであり、また、その製造方法は、焙焼温度を調整することにより、物質特性を所定値に制御した酸化イリジウム粉を工業的に安価に製造することができるので、その工業的価値は極めて大きい。さらに、高抵抗領域の厚膜抵抗体用ペーストとして、ルテニウム酸鉛粉の代替品として使用して全く鉛を含まない厚膜抵抗体を形成することができるので、より有利である。   Since the iridium oxide powder of the present invention has material characteristics suitable as a conductive powder for thick film resistors, the paste is obtained by kneading into an organic vehicle together with a glass binder using the conductive powder. When the resistor is baked, the dispersibility in the paste is good, and further, it is possible to form a resistor excellent in electrical characteristics such as resistance value, resistance temperature coefficient and noise, Moreover, the manufacturing method can manufacture the iridium oxide powder which controlled the substance characteristic to the predetermined value by adjusting roasting temperature industrially cheaply, and its industrial value is very large. Furthermore, as a thick film resistor paste in a high resistance region, it can be used as a substitute for lead ruthenate powder to form a thick film resistor containing no lead at all, which is more advantageous.

以下、本発明の酸化イリジウム粉、その製造方法、及びそれを用いた厚膜抵抗体用ペーストを詳細に説明する。
本発明の酸化イリジウム粉は、電気的特性に優れる厚膜抵抗体形成用ペーストの導電粉として用いられる酸化イリジウム粉であって、平均粒径が30〜100nmであり、組織がX線回折で化学式:IrOで表される酸化イリジウム単相であるとともに、そのX線回折での(110)面の半価幅が0.20〜0.40°であり、かつ塩素濃度が0.01〜0.4重量%であることを特徴とする。これにより、抵抗値、抵抗温度係数及びノイズ等の電気的特性に優れる厚膜抵抗体用の導電粉として望ましい粒径、結晶性、及び塩素含有量である物質特性が保持される。
Hereinafter, the iridium oxide powder of the present invention, its production method, and the thick film resistor paste using the same will be described in detail.
The iridium oxide powder of the present invention is an iridium oxide powder used as a conductive powder of a thick film resistor forming paste having excellent electrical characteristics, and has an average particle size of 30 to 100 nm and a structure represented by a chemical formula by X-ray diffraction. : The iridium oxide single phase represented by IrO 2 , the half width of the (110) plane in the X-ray diffraction is 0.20 to 0.40 °, and the chlorine concentration is 0.01 to 0 4% by weight. As a result, the material characteristics such as the desired particle size, crystallinity, and chlorine content as the conductive powder for the thick film resistor having excellent electrical characteristics such as resistance value, resistance temperature coefficient and noise are maintained.

すなわち、酸化イリジウム粉が金属イリジウム又はカリウム塩等の異相を含有していると、ペーストを生成する際にペースト中での分散性が不良となり、また良好な電気的特性の抵抗体を形成することができないので、その製造に際しては異相の残留を防止することが肝要である。これは、X線回折により組織が化学式:IrOで表される酸化イリジウム単相であることを同定することにより行なわれる。 That is, if the iridium oxide powder contains a foreign phase such as metallic iridium or potassium salt, the dispersibility in the paste becomes poor when forming the paste, and a resistor having good electrical characteristics is formed. Therefore, it is important to prevent the remaining of different phases during the production. This is done by identifying by X-ray diffraction that the tissue is a single phase of iridium oxide represented by the chemical formula: IrO 2 .

また、酸化イリジウムの粒径は抵抗温度係数に影響を及ぼし、平均粒径が30nm未満では、これを用いて得た厚膜抵抗体のTCRが低くなり好ましくない。一方、平均粒径が100nmを超えると、これを用いて得た厚膜抵抗体のノイズが高くなり好ましくない。   Further, the particle diameter of iridium oxide affects the temperature coefficient of resistance. If the average particle diameter is less than 30 nm, the TCR of the thick film resistor obtained by using this is not preferable. On the other hand, if the average particle diameter exceeds 100 nm, the noise of the thick film resistor obtained by using this becomes undesirably high.

また、酸化イリジウムの結晶性はTCRに影響を及ぼし、結晶性が高いほどTCRが高くなる。したがって、酸化イリジウム相のX線回折での(110)面の半価幅が0.40°を超えると、結晶性が悪化し、これを用いて得た厚膜抵抗体のTCRが低くなり好ましくない。一方、前記半価幅が小さいほど、結晶性が向上することを表すので、より望ましいが、前記半価幅が0.20°まで低下すれば十分である。   The crystallinity of iridium oxide affects the TCR, and the higher the crystallinity, the higher the TCR. Therefore, when the half width of the (110) plane in the X-ray diffraction of the iridium oxide phase exceeds 0.40 °, the crystallinity deteriorates, and the TCR of the thick film resistor obtained by using this is preferably low. Absent. On the other hand, the smaller the half width, the better the crystallinity, so it is more desirable, but it is sufficient if the half width is reduced to 0.20 °.

さらに、酸化イリジウムの塩素含有量は酸化イリジウム粉のTCRに影響を及ぼし、塩素含有量が低いほどTCRが高くなるので望ましい。したがって、塩素濃度が0.4重量%を超えると、これを用いて得た厚膜抵抗体のTCRが低くなり好ましくない。一方、TCRはペースト調整時に加えられる各種添加剤により通常は低下する傾向にあるため、酸化イリジウム単独の場合でのTCRは適度に高い方が望ましいので、塩素濃度が不可避的に低濃度まで低下しても、TCRが高くなりすぎることはなく問題ない。しかしながら、塩素濃度が少なくとも0.1重量%まで、さらに好ましくは0.01重量%まで低下すれば十分である。   Furthermore, the chlorine content of iridium oxide affects the TCR of iridium oxide powder, and the lower the chlorine content, the higher the TCR, which is desirable. Therefore, if the chlorine concentration exceeds 0.4% by weight, the TCR of the thick film resistor obtained by using this is undesirably low. On the other hand, since TCR tends to decrease normally due to various additives added at the time of paste adjustment, it is desirable that the TCR in the case of iridium oxide alone is appropriately high, so the chlorine concentration inevitably decreases to a low concentration. However, the TCR is not too high and there is no problem. However, it is sufficient if the chlorine concentration is reduced to at least 0.1% by weight, more preferably to 0.01% by weight.

本発明の酸化イリジウム粉の製造方法は、ヘキサクロロイリジウム(IV)酸アンモニウム又はイリジウム水酸化物とカリウム化合物との混合物、カリウムを含むヘキサクロロイリジウム(IV)酸アンモニウム、或いはヘキサクロロイリジウム(IV)酸カリウムを酸化性雰囲気下に焙焼する際に、焙焼温度を840〜980℃の範囲で調整することにより、平均粒径、X線回折での(110)面の半価幅、及び塩素濃度を所定値に制御することを特徴とする。   The method for producing iridium oxide powder of the present invention comprises ammonium hexachloroiridium (IV) or a mixture of iridium hydroxide and potassium compound, ammonium hexachloroiridium (IV) containing potassium, or potassium hexachloroiridium (IV). When roasting in an oxidizing atmosphere, by adjusting the roasting temperature within a range of 840 to 980 ° C., the average particle diameter, the half width of the (110) plane in X-ray diffraction, and the chlorine concentration are predetermined. It is characterized by being controlled to a value.

本発明の方法において、特定の原料を用いることとともに、酸化性雰囲気下で焙焼する際に焙焼温度を特定の温度に調整することが重要である。すなわち、原料面では、イリジウム原料として、ヘキサクロロイリジウム(IV)酸カリウム(KIrCl)、ヘキサクロロイリジウム(IV)酸アンモニウム((NHIrCl)等の塩化イリジウム(IV)酸塩、或いはこれらを溶解した水溶液を中和して得られたイリジウム水酸化物(Ir(OH))を用いること、しかもヘキサクロロイリジウム(IV)酸アンモニウム又はイリジウム水酸化物を用いる場合には、得られる酸化イリジウムの粒径を制御するためにヘキサクロロイリジウム(IV)酸アンモニウムに含有されるカリウム濃度を調整するか、ヘキサクロロイリジウム(IV)酸アンモニウム又はイリジウム水酸化物に添加剤としてカリウム化合物を添加する。このとき、カリウム含有量としては厚膜抵抗体の電気特性に影響を及ぼさない濃度範囲とする。
さらに、焙焼条件では、酸化性雰囲気下に焙焼する際に、酸化イリジウム粉の平均粒径、X線回折での(110)面の半価幅、及び塩素濃度を所定値に制御するため、焙焼温度を調整する。これらによって、厚膜抵抗体用として好適な酸化イリジウム粉を工業的に安価に製造することができる。
In the method of the present invention, it is important to use a specific raw material and adjust the roasting temperature to a specific temperature when roasting in an oxidizing atmosphere. That is, on the raw material side, iridium (IV) chloride salts such as potassium hexachloroiridium (IV) (K 2 IrCl 6 ), ammonium hexachloroiridium (IV) ((NH 4 ) 2 IrCl 6 ), Alternatively, it can be obtained when iridium hydroxide (Ir (OH) 4 ) obtained by neutralizing an aqueous solution in which these are dissolved is used, and when ammonium hexachloroiridium (IV) or iridium hydroxide is used. In order to control the particle diameter of iridium oxide, the potassium concentration contained in ammonium hexachloroiridium (IV) is adjusted, or a potassium compound is added as an additive to ammonium hexachloroiridium (IV) or iridium hydroxide. At this time, the potassium content is in a concentration range that does not affect the electrical characteristics of the thick film resistor.
Furthermore, under roasting conditions, when roasting in an oxidizing atmosphere, the average particle diameter of the iridium oxide powder, the half width of the (110) plane in X-ray diffraction, and the chlorine concentration are controlled to predetermined values. Adjust the roasting temperature. By these, iridium oxide powder suitable for thick film resistors can be produced industrially at low cost.

これに対して、従来、酸化イリジウム粉の製造方法としては、金属イリジウム箔を原料として用いて、管状炉内で酸化性雰囲気下に加熱して酸化イリジウム粉を得る方法(イ)、塩化イリジウムを原料として用いて、酸素雰囲気下で焙焼する方法(ロ)、塩化イリジウム、塩化イリジウム酸、あるいは塩化イリジウム塩を溶解した水溶液を原料として用いて、これを中和し得られた水酸化イリジウムを焙焼する方法(ハ)等が行なわれているが、いずれの方法においても、厚膜抵抗体用の酸化イリジウム粉の製造方法としては問題があった。   On the other hand, as a conventional method for producing iridium oxide powder, a method of obtaining iridium oxide powder by heating in an oxidizing atmosphere in a tubular furnace using a metal iridium foil as a raw material (I), iridium chloride A method of roasting in an oxygen atmosphere using as a raw material (b), iridium hydroxide obtained by neutralizing the iridium chloride, iridium chloride acid, or an aqueous solution in which an iridium chloride salt is dissolved as a raw material. Although the method (c) of roasting is performed, any method has a problem as a method for producing iridium oxide powder for thick film resistors.

すなわち、上記(イ)の方法では、酸化イリジウムの生成速度が極めて遅いので、工業的に利用することはできないという問題があり、また、上記(ロ)の方法では、出発原料である塩化イリジウムが高価であるため、工業的には極めてコスト高となるという問題があり、また、上記(ハ)の方法では、適度な粒径の酸化イリジウム粉を得るために焙焼温度を高めると、部分的に粗粒の酸化イリジウム粉が発生するので、これを用いたペーストで形成した抵抗体では、その電気的特性が低下するという問題があり、これらによって、厚膜抵抗体用として好適な酸化イリジウム粉を工業的に安価に製造することができなかった。   That is, the method (b) has a problem that the production rate of iridium oxide is extremely slow and cannot be used industrially. In the method (b), iridium chloride as a starting material is not used. Since it is expensive, there is a problem that it is very expensive industrially, and in the method (c), if the roasting temperature is increased in order to obtain iridium oxide powder having an appropriate particle size, it is partially Coarse-grained iridium oxide powder is generated in the resistor, so that there is a problem that the electrical characteristics of the resistor formed with the paste using this powder deteriorate, and as a result, the iridium oxide powder suitable for thick film resistors is used. Could not be produced industrially at low cost.

本発明の方法において、酸化性雰囲気下に焙焼することにより、以下の作用機構により酸化イリジウム粉が生成される。
原料としてヘキサクロロイリジウム(IV)酸アンモニウム又はイリジウム水酸化物とカリウム化合物との混合物を用いる場合には、まず、該イリジウム化合物の加熱分解により、金属イリジウム相と酸化イリジウム相が生成される。600℃以上の温度で金属イリジウム相は酸化され、酸化イリジウム相主体に生成される。800℃以上の温度でカリウム化合物として添加された塩化カリウムが熔融され蒸発され、最終的に酸化イリジウム単相となる。また、ヘキサクロロイリジウム(IV)酸カリウムを用いる場合には、600℃付近から、酸化イリジウム相と塩化カリウム相が生成し、800℃以上の温度で塩化カリウムは熔融し蒸発されて、最終的に酸化イリジウム単相となる。
ここで、焙焼温度が上昇すると生成する酸化イリジウムの粒成長は進むが、塩化カリウム相は、酸化イリジウム粉の粒成長を制御する作用を担う。つまり、カリウムは酸化イリジウムの結晶粒界に偏析することで、酸化イリジウム粒の成長を抑制する。
In the method of the present invention, iridium oxide powder is produced by the following action mechanism by baking in an oxidizing atmosphere.
When a mixture of ammonium hexachloroiridium (IV) or iridium hydroxide and a potassium compound is used as a raw material, first, a metal iridium phase and an iridium oxide phase are generated by thermal decomposition of the iridium compound. The metal iridium phase is oxidized at a temperature of 600 ° C. or higher, and is produced mainly by the iridium oxide phase. Potassium chloride added as a potassium compound at a temperature of 800 ° C. or higher is melted and evaporated to finally become an iridium oxide single phase. In addition, when potassium hexachloroiridium (IV) is used, an iridium oxide phase and a potassium chloride phase are generated from around 600 ° C., and potassium chloride is melted and evaporated at a temperature of 800 ° C. or higher, and finally oxidized. It becomes an iridium single phase.
Here, when the roasting temperature rises, the grain growth of the produced iridium oxide proceeds, but the potassium chloride phase plays a role of controlling the grain growth of the iridium oxide powder. That is, potassium segregates at the grain boundary of iridium oxide, thereby suppressing the growth of iridium oxide grains.

上記方法に用いる前記混合物又はカリウムを含むヘキサクロロイリジウム(IV)酸アンモニウム中のカリウム含有量は、特に限定されるものではないが、カリウム化合物による異相の残留を防止するため揮発に影響する焙焼温度も考慮して選ばれる。例えば、イリジウム原料中のカリウム含有量が0.02〜9.9重量%が好ましい。すなわち、カリウム含有量が0.02重量%未満では、粒成長抑制効果が弱く、酸化イリジウムが急激に粒成長してしまう。その結果、所望の粒径を有する酸化イリジウム粉が得られないため、ペースト中に均一に分散させることができない。なお、カリウム含有量が9.9重量%とは、ヘキサクロロイリジウム(IV)酸カリウム中のカリウム含有量に相当するものであり、これを超えて添加すると、カリウム塩による異相が残留する。   The potassium content in the mixture or potassium hexachloroiridium (IV) acid containing potassium used in the above method is not particularly limited, but the roasting temperature affects volatilization in order to prevent the residual of the heterogeneous phase due to the potassium compound. Is also taken into account. For example, the potassium content in the iridium raw material is preferably 0.02 to 9.9% by weight. That is, when the potassium content is less than 0.02% by weight, the effect of suppressing grain growth is weak, and iridium oxide grows rapidly. As a result, iridium oxide powder having a desired particle size cannot be obtained, so that it cannot be uniformly dispersed in the paste. The potassium content of 9.9% by weight corresponds to the potassium content in potassium hexachloroiridium (IV), and when added in excess of this, a heterogeneous phase due to the potassium salt remains.

上記方法において用いるカリウム化合物としては、特に限定されるものではなく、ヘキサクロロイリジウム(IV)酸カリウム、塩化カリウム、水酸化カリウム、又は炭酸カリウム、重炭酸カリウム、塩基性炭酸カリウム等のカリウムの炭酸塩から選ばれる少なくとも1種を用いることが好ましく、ヘキサクロロイリジウム(IV)酸カリウム又は塩化カリウムがより好ましい。   The potassium compound used in the above method is not particularly limited, and potassium carbonate such as potassium hexachloroiridium (IV), potassium chloride, potassium hydroxide, or potassium carbonate, potassium bicarbonate, basic potassium carbonate. It is preferable to use at least one selected from the group consisting of potassium hexachloroiridium (IV) and potassium chloride.

上記方法に用いるイリジウム原料及びカリウム化合物はいずれも乾燥粉末が望ましく、水分を含む場合は乾燥処理して使用することが好ましい。   Both the iridium raw material and the potassium compound used in the above method are desirably dry powder, and when it contains moisture, it is preferably used after being dried.

上記方法に用いる焙焼方法としては、特に限定されるものではなく、上記原料をアルミナなどの耐熱容器に入れ、管状炉、マッフル炉等の一般的な焼成装置を用いて行うことができる。
上記焙焼雰囲気としては、酸化性雰囲気であれば、特に限定されるものではなく、酸素等の酸化性ガスを含有する雰囲気が用いられるが、特に、酸素ガス気流下で行うことが好ましい。また、焙焼後の降温中も酸化性ガスを装入することが好ましい。
The roasting method used in the above method is not particularly limited, and the raw material can be put in a heat-resistant container such as alumina and can be performed using a general baking apparatus such as a tubular furnace or a muffle furnace.
The roasting atmosphere is not particularly limited as long as it is an oxidizing atmosphere, and an atmosphere containing an oxidizing gas such as oxygen is used. In particular, it is preferably performed in an oxygen gas stream. In addition, it is preferable to charge the oxidizing gas during the temperature drop after roasting.

上記焙焼温度としては、得られる酸化イリジウム粉中に異相の混入防止を図りながら、平均粒径、X線回折での(110)面の半価幅、及び塩素濃度を所定値に制御することができる所望の温度が適宜選定されるが、840〜980℃の範囲で調整することが好ましい。すなわち、酸化イリジウム相は600℃以上の温度で生成するが、焙焼温度が840℃未満では、酸化イリジウム粉の粒径が小さく、酸化イリジウム相以外の異相としてイリジウム金属相又はカリウム塩の相が残りやすく、望ましい組織である酸化イリジウム単相が得られない。一方、焙焼温度が980℃を超えると、酸化イリジウム粉の粒子が粗大になり、ペースト調製時に分散性が悪化する。   As the roasting temperature, the average particle diameter, the half-value width of the (110) plane in X-ray diffraction, and the chlorine concentration are controlled to predetermined values while preventing mixing of foreign phases in the obtained iridium oxide powder. Although the desired temperature which can do is selected suitably, it is preferable to adjust in the range of 840-980 degreeC. That is, the iridium oxide phase is generated at a temperature of 600 ° C. or higher, but when the roasting temperature is less than 840 ° C., the particle size of the iridium oxide powder is small, and the iridium metal phase or potassium salt phase is a different phase other than the iridium oxide phase. The iridium oxide single phase which is easy to remain and is a desirable structure cannot be obtained. On the other hand, if the roasting temperature exceeds 980 ° C., the particles of iridium oxide powder become coarse, and the dispersibility deteriorates during paste preparation.

上記焙焼時間としては、特に限定されるものではなく、上記焙焼温度に応じて、得られる酸化イリジウム粉中に異相の混入防止を図りながら、平均粒径、X線回折での(110)面の半価幅、及び塩素濃度を所定値に制御することができる所望の時間を適宜選定することができる。すなわち、焙焼時間が短いと、酸化イリジウム相以外の異相が残りやすく、望ましい組織である酸化イリジウム相の単相が得られない。逆に、焙焼時間が長くなると、得られる酸化イリジウム粉の粒子が粗大になり、ペースト調製時に分散性が悪化する。   The roasting time is not particularly limited, and according to the roasting temperature, the average particle diameter and X-ray diffraction (110) are obtained while preventing mixing of foreign phases in the obtained iridium oxide powder. A desired time during which the half width of the surface and the chlorine concentration can be controlled to predetermined values can be selected as appropriate. That is, if the roasting time is short, a different phase other than the iridium oxide phase tends to remain, and a single phase of the iridium oxide phase which is a desirable structure cannot be obtained. Conversely, if the roasting time is long, the resulting iridium oxide powder particles become coarse, and the dispersibility deteriorates during paste preparation.

本発明の厚膜抵抗体用ペーストは、上記酸化イリジウム粉を用いたものであり、鉛を含まないガラス結合剤とともに有機ビヒクル中に均一に分散させてペーストとしたものである。そして、通常の方法にしたがって本発明のペーストを塗布し、その後焼成することにより、電気特性が優れた鉛を含まない厚膜抵抗体を得ることができる。   The thick film resistor paste of the present invention uses the above-mentioned iridium oxide powder, and is a paste that is uniformly dispersed in an organic vehicle together with a glass binder not containing lead. And the paste of this invention is apply | coated in accordance with a normal method, and it bakes after that, The lead-free thick film resistor excellent in the electrical property can be obtained.

上記厚膜抵抗体形成用ペーストの調製方法としては、従来のルテニウム酸鉛粉を用いたペーストを製造するときに用いるような通常の方法が用いられる。例えば、酸化イリジウム粉とガラス結合剤及び有機ビヒクルを混合した後、スリーロールミルなどにより混練して調製する。ここで、ガラス結合剤としては、ペーストを用いる対象部品や使用条件などに応じて選定され、例えば、BaO、SrO、CaO、SiO、B、Alなどを含むガラスフリットが用いられる。また、有機ビヒクルとしては、ペーストを用いる対象部品や使用条件などに応じて選定することができ、例えば、セルロース系樹脂などの有機バインダーをターピネオールなどの溶剤に溶解させたものが用いられる。 As a method for preparing the thick film resistor forming paste, a conventional method used when producing a paste using conventional lead ruthenate powder is used. For example, iridium oxide powder, a glass binder, and an organic vehicle are mixed and then kneaded with a three-roll mill or the like. Here, the glass binder is selected according to the target part using the paste, the use conditions, and the like. For example, a glass frit containing BaO, SrO, CaO, SiO 2 , B 2 O 3 , Al 2 O 3 and the like is used. Used. Further, the organic vehicle can be selected according to the target part using the paste, the use conditions, and the like. For example, an organic vehicle in which an organic binder such as a cellulose resin is dissolved in a solvent such as terpineol is used.

ここで、上記酸化イリジウム粉は、上記の製造方法により得られるものであり、平均粒径が30〜100nmであり、組織が酸化イリジウム単相であるとともに、そのX線回折での(110)面の半価幅が0.20〜0.40°であり、かつ塩素濃度が0.01〜0.4重量%である。したがって、上記酸化イリジウム粉は、ペースト調製時にガラス結合剤とともに有機ビヒクル中に均一に分散させることができる。そして、得られたペーストを用い、通常の方法にしたがって塗布し、その後焼成することにより、例えば、抵抗体の面積抵抗値が10〜1000kΩ/□の範囲であり、面積抵抗値が100kΩ/□のときに、TCRが−40〜30ppm/℃、又ノイズが−5〜10dBである優れた電気的特性を有し、かつ鉛を含まない厚膜抵抗体を形成することができる。   Here, the iridium oxide powder is obtained by the production method described above, has an average particle size of 30 to 100 nm, has a structure of iridium oxide single phase, and has a (110) plane in X-ray diffraction. The half-value width is 0.20 to 0.40 °, and the chlorine concentration is 0.01 to 0.4% by weight. Therefore, the iridium oxide powder can be uniformly dispersed in the organic vehicle together with the glass binder during paste preparation. And by applying according to a normal method using the obtained paste, and baking after that, for example, the sheet resistance value of the resistor is in the range of 10 to 1000 kΩ / □, and the sheet resistance value is 100 kΩ / □. Sometimes, it is possible to form a thick film resistor having excellent electrical characteristics with a TCR of −40 to 30 ppm / ° C. and a noise of −5 to 10 dB and not containing lead.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた酸化イリジウム粉の平均粒径、組織及び結晶性の測定方法と塩素濃度分析方法、並びに抵抗体の電気的特性の評価方法は、以下の通りである。
(1)酸化イリジウム粉の平均粒径の測定:BET法で比表面積(ユアサアイオニクス(株)製、カウンターソーブQS−10)を求め、それから算出した。
(2)焙焼物の組織の同定:X線回折装置((株)リガク製、RINT−1400)を用いて行った。
(3)酸化イリジウム粉の結晶性:X線回折装置((株)リガク製、RINT−1400)を用いて酸化イリジウムの(110)面の半価幅を求めた。
(4)酸化イリジウム粉の塩素濃度:PANalytical社製、Maqixを用いて蛍光X線検量線法で分析した。
(5)抵抗体の電気的特性の測定:電気的特性として面積抵抗値、抵抗温度係数(TCR)、及びノイズを測定した。ここで、面積抵抗値は、デジタルマルチメーター(KEITHLEY社製、Model2001Multimeter)を用いて4端子法で測定した。抵抗温度係数は、25℃、125℃の抵抗値を測定して求めた。ノイズは、ノイズメーター(Quan−Tech社製、Model315C)を用いて1/10W印加時の電圧変動を測定することにより求めた。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the average particle diameter of the iridium oxide powder used by the Example and the comparative example, the structure | tissue, the measuring method of crystallinity, the chlorine concentration analysis method, and the evaluation method of the electrical property of a resistor are as follows.
(1) Measurement of the average particle diameter of iridium oxide powder: The specific surface area (manufactured by Yuasa Ionics Co., Ltd., Countersorb QS-10) was determined by the BET method, and was calculated therefrom.
(2) Identification of the structure of the roasted product: It was performed using an X-ray diffractometer (manufactured by Rigaku Corporation, RINT-1400).
(3) Crystallinity of iridium oxide powder: The half-value width of the (110) plane of iridium oxide was determined using an X-ray diffractometer (manufactured by Rigaku Corporation, RINT-1400).
(4) Chlorine concentration of iridium oxide powder: Analyzed by fluorescent X-ray calibration curve method using Macix manufactured by PANalytical.
(5) Measurement of electrical characteristics of resistor: Area resistance, resistance temperature coefficient (TCR), and noise were measured as electrical characteristics. Here, the sheet resistance value was measured by a four-terminal method using a digital multimeter (Model 2001 Multimeter manufactured by KEITHLEY). The temperature coefficient of resistance was obtained by measuring resistance values at 25 ° C. and 125 ° C. Noise was determined by measuring voltage fluctuation when 1/10 W was applied using a noise meter (Model 315C, manufactured by Quan-Tech).

(実施例1)
(1)酸化イリジウム粉の調製
出発原料としてカリウム濃度が0.01重量%未満のヘキサクロロイリジウム(IV)酸アンモニウム(フルヤ金属(株)製)6gと添加剤として塩化カリウム(試薬特級、和光純薬工業(株)製)0.02gとをメノウ乳鉢を用いて混合したものをアルミナ製容器に入れ、これを3リットル/分の流量で酸素ガスを流した小型管状炉に装入し、焙焼した。焙焼条件としては、室温から10℃/分の速度で883℃まで昇温して、この温度で4時間保持した。次に、炉内で冷却して焙焼物を得た。なお、この間、炉内温度が300℃以下になるまで酸素ガスを流し続けた。その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅及びCl濃度を測定した。結果を表1に示す。なお、組織はX線回折で化学式:IrOで表される酸化イリジウム単相であった。
Example 1
(1) Preparation of iridium oxide powder 6 g of ammonium hexachloroiridium (IV) (manufactured by Furuya Metal Co., Ltd.) having a potassium concentration of less than 0.01% by weight as a starting material and potassium chloride (reagent special grade, Wako Pure Chemical) as an additive Kogyo Co., Ltd.) (0.02 g) mixed with an agate mortar is placed in an alumina container, and this is charged into a small tubular furnace in which oxygen gas is flowed at a flow rate of 3 liters / minute and roasted. did. As roasting conditions, the temperature was raised from room temperature to 883 ° C. at a rate of 10 ° C./min, and kept at this temperature for 4 hours. Next, it was cooled in a furnace to obtain a roasted product. During this period, oxygen gas was kept flowing until the furnace temperature reached 300 ° C. or lower. Then, the average particle diameter, the structure | tissue in X-ray diffraction, (110) half value width, and Cl density | concentration of the obtained roasted material were measured. The results are shown in Table 1. The structure was an iridium oxide single phase represented by the chemical formula: IrO 2 by X-ray diffraction.

(2)ペーストと抵抗体の調製
次いで、得られた酸化イリジウム粉を導電粉として用いて、ガラス結合剤及び有機ビヒクルと混練してペーストを調製した。ここで、ガラス結合剤としては、10重量%SrO−43重量%SiO−16重量%B−4重量%Al−20重量%ZnO−NaOの組成を有する鉛フリーのガラスフリットを使用した。また、有機ビヒクルとしては、エチルセルロースとターピネオールが主成分のものを使用した。なおペーストの配合は、酸化イリジウム粉とガラス結合剤を合計6g、そして有機ビヒクルを4gとした。ここで、酸化イリジウム粉とガラス結合剤の合計に対する酸化イリジウムの重量比率を15〜25%の範囲内で調整して、面積抵抗値が100kΩ/□になるようにした。
最後に、得られたペーストを、アルミナ基板上に金属スキージとスクリーンを用いて膜状に塗布し、150℃で10分間乾燥後、次いで大気雰囲気中850℃で30分間焼成して厚膜抵抗体(1mm×1mm)を形成した。その後、得られた抵抗体の電気的特性としてTCRとノイズを測定した。なお、面積抵抗値は100kΩ/□になるように調整されていることを確認した。結果を表1に示す。
(2) Preparation of paste and resistor Next, the obtained iridium oxide powder was used as a conductive powder and kneaded with a glass binder and an organic vehicle to prepare a paste. Here, as a glass binder, lead-free having a composition of 10 wt% SrO-43 wt% SiO 2 -16 wt% B 2 O 3 -4 wt% Al 2 O 3 -20 wt% ZnO—Na 2 O Glass frit was used. As the organic vehicle, ethyl cellulose and terpineol were used as main components. The paste was mixed in a total of 6 g of iridium oxide powder and glass binder, and 4 g of organic vehicle. Here, the weight ratio of iridium oxide to the total of the iridium oxide powder and the glass binder was adjusted within a range of 15 to 25% so that the sheet resistance was 100 kΩ / □.
Finally, the obtained paste was applied in the form of a film on an alumina substrate using a metal squeegee and a screen, dried at 150 ° C. for 10 minutes, and then baked at 850 ° C. for 30 minutes in an air atmosphere to form a thick film resistor (1 mm × 1 mm) was formed. Thereafter, TCR and noise were measured as electrical characteristics of the obtained resistor. In addition, it was confirmed that the sheet resistance value was adjusted to be 100 kΩ / □. The results are shown in Table 1.

(実施例2)
酸化イリジウム粉の調製において、焙焼温度が905℃であったこと以外は、実施例1と同様に行ない、その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅、及びCl濃度、また、得られた抵抗体の電気的特性を評価した。結果を表1に示す。なお、組織は化学式:IrOで表される酸化イリジウム単相であった。
(Example 2)
Preparation of iridium oxide powder was performed in the same manner as in Example 1 except that the roasting temperature was 905 ° C., and then the average particle diameter of the obtained roasted product, the structure by X-ray diffraction, and (110) The half width, Cl concentration, and electrical characteristics of the obtained resistor were evaluated. The results are shown in Table 1. The structure was a single phase of iridium oxide represented by the chemical formula: IrO 2 .

(実施例3)
酸化イリジウム粉の調製において、焙焼温度が951℃であったこと以外は、実施例1と同様に行ない、その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅、及びCl濃度、また、得られた抵抗体の電気的特性を評価した。結果を表1に示す。なお、組織は化学式:IrOで表される酸化イリジウム単相であった。
(Example 3)
Preparation of iridium oxide powder was performed in the same manner as in Example 1 except that the roasting temperature was 951 ° C., and then the average particle diameter of the obtained roasted product, the structure by X-ray diffraction, and (110) The half width, Cl concentration, and electrical characteristics of the obtained resistor were evaluated. The results are shown in Table 1. The structure was a single phase of iridium oxide represented by the chemical formula: IrO 2 .

(実施例4)
出発原料としてカリウム濃度が0.02重量%であるヘキサクロロイリジウム(IV)酸アンモニウム(住友金属鉱山(株)製)6gをアルミナ製容器に入れ、これを3リットル/分の流量で酸素ガスを流した小型管状炉に装入し、焙焼した。焙焼条件としては、室温から10℃/分の速度で841℃まで昇温して、この温度で4時間保持した。次に、炉内で冷却して焙焼物を得た。なお、この間、炉内温度が300℃以下になるまで酸素ガスを流し続けた。その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅及びCl濃度を測定した。結果を表1に示す。なお、組織はX線回折で化学式:IrOで表される酸化イリジウム単相であった。
Example 4
6 g of ammonium hexachloroiridium (IV) (manufactured by Sumitomo Metal Mining Co., Ltd.) having a potassium concentration of 0.02% by weight as a starting material is placed in an alumina container, and oxygen gas is flowed at a flow rate of 3 liters / minute. The small tubular furnace was charged and roasted. As roasting conditions, the temperature was raised from room temperature to 841 ° C. at a rate of 10 ° C./min, and kept at this temperature for 4 hours. Next, it was cooled in a furnace to obtain a roasted product. During this period, oxygen gas was kept flowing until the furnace temperature reached 300 ° C. or lower. Then, the average particle diameter, the structure | tissue in X-ray diffraction, (110) half value width, and Cl density | concentration of the obtained roasted material were measured. The results are shown in Table 1. The structure was an iridium oxide single phase represented by the chemical formula: IrO 2 by X-ray diffraction.

(実施例5)
出発原料としてヘキサクロロイリジウム(IV)酸カリウム(フルヤ金属(株)製)6gをアルミナ製容器に入れ、これを3リットル/分の流量で酸素ガスを流した小型管状炉に装入し、焙焼した。焙焼条件としては、室温から10℃/分の速度で944℃まで昇温して、この温度で4時間保持した。次に、炉内で冷却して焙焼物を得た。なお、この間、炉内温度が300℃以下になるまで酸素ガスを流し続けた。その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅、及びCl濃度、また、得られた抵抗体の電気的特性を評価した。結果を表1に示す。なお、組織は化学式:IrOで表される酸化イリジウム単相であった。
(Example 5)
As a starting material, 6 g of potassium hexachloroiridium (IV) (manufactured by Furuya Metal Co., Ltd.) is placed in an alumina container, and this is charged into a small tube furnace in which oxygen gas is flowed at a flow rate of 3 liters / minute and roasted. did. As roasting conditions, the temperature was raised from room temperature to 944 ° C. at a rate of 10 ° C./min, and kept at this temperature for 4 hours. Next, it was cooled in a furnace to obtain a roasted product. During this period, oxygen gas was kept flowing until the furnace temperature reached 300 ° C. or lower. Then, the average particle diameter of the obtained baked product, the structure and X-ray diffraction structure (110) half width, Cl concentration, and the electrical characteristics of the obtained resistor were evaluated. The results are shown in Table 1. The structure was a single phase of iridium oxide represented by the chemical formula: IrO 2 .

(比較例1)
酸化イリジウム粉の調製において、焙焼温度が989℃であったこと以外は、実施例1と同様に行ない、その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅、及びCl濃度、また、得られた抵抗体の電気的特性を評価した。結果を表1に示す。なお、組織は化学式:IrOで表される酸化イリジウム単相であった。
(Comparative Example 1)
The preparation of iridium oxide powder was performed in the same manner as in Example 1 except that the roasting temperature was 989 ° C., and then the average particle diameter of the obtained roasted product, the structure by X-ray diffraction, and (110) The half width, Cl concentration, and electrical characteristics of the obtained resistor were evaluated. The results are shown in Table 1. The structure was a single phase of iridium oxide represented by the chemical formula: IrO 2 .

(比較例2)
出発原料としてカリウム濃度が0.01重量%未満のヘキサクロロイリジウム(IV)酸アンモニウム(フルヤ金属(株)製)6gをアルミナ製容器に入れ、これを3リットル/分の流量で酸素ガスを流した小型管状炉に装入し、焙焼した。焙焼条件としては、室温から10℃/分の速度で681℃まで昇温して、この温度で4時間保持した。次に、炉内で冷却して焙焼物を得た。なお、この間、炉内温度が300℃以下になるまで酸素ガスを流し続けた。その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅、及びCl濃度、また、得られた抵抗体の電気的特性を評価した。結果を表1に示す。なお、組織は化学式:IrOで表される酸化イリジウム単相であった。
(Comparative Example 2)
As a starting material, 6 g of ammonium hexachloroiridium (IV) having a potassium concentration of less than 0.01% by weight (manufactured by Furuya Metal Co., Ltd.) was placed in an alumina container, and oxygen gas was allowed to flow at a flow rate of 3 liters / minute. It was charged in a small tubular furnace and baked. As roasting conditions, the temperature was raised from room temperature to 681 ° C. at a rate of 10 ° C./min, and kept at this temperature for 4 hours. Next, it was cooled in a furnace to obtain a roasted product. During this period, oxygen gas was kept flowing until the furnace temperature reached 300 ° C. or lower. Then, the average particle diameter of the obtained baked product, the structure and X-ray diffraction structure (110) half width, Cl concentration, and the electrical characteristics of the obtained resistor were evaluated. The results are shown in Table 1. The structure was a single phase of iridium oxide represented by the chemical formula: IrO 2 .

(比較例3)
酸化イリジウム粉の調製において、焙焼温度が831℃であったこと以外は、実施例1と同様に行ない、その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅、及びCl濃度、また、得られた抵抗体の電気的特性を評価した。結果を表1に示す。なお、組織は化学式:IrOで表される酸化イリジウム単相であった。
(Comparative Example 3)
Preparation of iridium oxide powder was performed in the same manner as in Example 1 except that the roasting temperature was 831 ° C., and then the average particle diameter of the obtained roasted product, the structure by X-ray diffraction, and (110) The half width, Cl concentration, and electrical characteristics of the obtained resistor were evaluated. The results are shown in Table 1. The structure was a single phase of iridium oxide represented by the chemical formula: IrO 2 .

(比較例4)
イリジウム濃度37.3重量%のヘキサクロロイリジウム(IV)酸六水和物(HIrCl・6HO)を純水に溶解し、このイリジウム水溶液に水酸化カリウム水溶液を滴下して中和した。このとき、水溶液のpHは7付近に維持された。その後、濾過して水酸化イリジウム(Ir(OH))の沈殿を回収した。得られた沈殿物を純水に投入して撹拌して、これを数回繰り返して洗浄した後、乾燥した。
得られた水酸化イリジウム粉を、マッフル型電気炉を用いて大気雰囲気で焙焼した。焙焼条件は、保持温度750℃で保持時間2時間とした。その後、焙焼物を炉から取り出して急冷して焙焼物を得た。その後、得られた焙焼物の平均粒径、X線回折での組織と(110)半価幅、及びCl濃度、また、得られた抵抗体の電気的特性を評価した。結果を表1に示す。なお、組織は化学式:IrOで表される酸化イリジウム単相であった。
(Comparative Example 4)
Iridium concentration 37.3% by weight of hexachloroiridate (IV) acid hexahydrate and (H 2 IrCl 6 · 6H 2 O) was dissolved in pure water, and neutralized by dropwise addition of aqueous potassium hydroxide solution to the iridium solution . At this time, the pH of the aqueous solution was maintained at around 7. Thereafter, filtration was performed to collect a precipitate of iridium hydroxide (Ir (OH) 4 ). The obtained precipitate was put into pure water and stirred, and this was repeatedly washed several times and then dried.
The obtained iridium hydroxide powder was roasted in an air atmosphere using a muffle type electric furnace. The roasting conditions were a holding temperature of 750 ° C. and a holding time of 2 hours. Thereafter, the roasted product was taken out of the furnace and rapidly cooled to obtain a roasted product. Then, the average particle diameter of the obtained baked product, the structure and X-ray diffraction structure (110) half width, Cl concentration, and the electrical characteristics of the obtained resistor were evaluated. The results are shown in Table 1. The structure was a single phase of iridium oxide represented by the chemical formula: IrO 2 .

Figure 2007277040
Figure 2007277040

表1より、実施例1〜5では、得られた酸化イリジウム粉の平均粒径、(110)面の半価幅、及びCl濃度は、本発明の酸化イリジウム粉で規定された範囲内に制御され、さらにこれらを用いて得られた抵抗体の電気的特性は、面積抵抗値が100kΩ/□のときに、TCRが−40〜30ppm/℃、又ノイズが−5〜10dBという所望値を達成することが分かる。これより、本発明の酸化イリジウム粉は厚膜抵抗体形成用ペーストに用いる導電粉として好適であり、得られる抵抗体は高抵抗領域の厚膜抵抗体として優れた電気的特性を有しているといえる。これに対して、比較例1〜4では、酸化イリジウム粉の平均粒径、(110)面の半価幅、又はCl濃度のいずれかにおいて本発明の酸化イリジウム粉で規定された範囲外になっており、これを用いて得られた抵抗体の面積抵抗値が100kΩ/□での電気的特性はTCR又はノイズ特性のいずれかにおいて満足すべき結果が得られないことが分かる。   From Table 1, in Examples 1-5, the average particle diameter of the obtained iridium oxide powder, the half-value width of the (110) plane, and the Cl concentration are controlled within the range defined by the iridium oxide powder of the present invention. Furthermore, the electrical characteristics of the resistors obtained by using them achieve the desired values of TCR of −40 to 30 ppm / ° C. and noise of −5 to 10 dB when the area resistance value is 100 kΩ / □. I understand that Thus, the iridium oxide powder of the present invention is suitable as a conductive powder for use in a thick film resistor forming paste, and the resulting resistor has excellent electrical characteristics as a thick film resistor in a high resistance region. It can be said. On the other hand, in Comparative Examples 1 to 4, the average particle diameter of the iridium oxide powder, the half-value width of the (110) plane, or the Cl concentration is outside the range defined by the iridium oxide powder of the present invention. It can be seen that the electrical characteristics when the area resistance value of the resistor obtained by using this is 100 kΩ / □ cannot obtain satisfactory results in either TCR or noise characteristics.

以上より明らかなように、本発明の酸化イリジウム粉、その製造方法及びそれを用いた厚膜抵抗体用ペーストは、特にチップ抵抗器、厚膜ハイブリッドIC及び抵抗ネットワーク等に広く用いられている厚膜抵抗体分野で利用されるペースト用の導電粉とその製造方法として好適であり、これを用いたペーストは特にルテニウム酸鉛粉に代わる鉛を含まない高抵抗領域の厚膜抵抗体用ペーストとして有用である。   As is clear from the above, the iridium oxide powder of the present invention, the manufacturing method thereof, and the thick film resistor paste using the same are particularly widely used for chip resistors, thick film hybrid ICs, resistor networks, and the like. It is suitable as a conductive powder for paste used in the field of film resistors and a method for producing the same, and a paste using this is particularly suitable as a paste for thick film resistors in a high resistance region that does not contain lead in place of lead ruthenate powder. Useful.

Claims (6)

電気的特性に優れる厚膜抵抗体形成用ペーストの導電粉として用いられる酸化イリジウム粉であって、
平均粒径が30〜100nmであり、組織がX線回折で化学式:IrOで表される酸化イリジウム単相であるとともに、そのX線回折での(110)面の半価幅が0.20〜0.40°であり、かつ塩素濃度が0.01〜0.4重量%であることを特徴とする酸化イリジウム粉。
An iridium oxide powder used as a conductive powder of a thick film resistor forming paste having excellent electrical characteristics,
The average particle size is 30 to 100 nm, the structure is a single phase of iridium oxide represented by the chemical formula: IrO 2 by X-ray diffraction, and the half width of the (110) plane in the X-ray diffraction is 0.20. An iridium oxide powder characterized by being -0.40 ° and having a chlorine concentration of 0.01-0.4% by weight.
ヘキサクロロイリジウム(IV)酸アンモニウム又はイリジウム水酸化物とカリウム化合物との混合物、カリウムを含むヘキサクロロイリジウム(IV)酸アンモニウム、或いはヘキサクロロイリジウム(IV)酸カリウムを酸化性雰囲気下に焙焼する際に、焙焼温度を840〜980℃の範囲で調整することにより、平均粒径、X線回折での(110)面の半価幅、及び塩素濃度を所定値に制御することを特徴とする請求項1に記載の酸化イリジウム粉の製造方法。   When roasting ammonium hexachloroiridium (IV) or a mixture of iridium hydroxide and potassium compound, ammonium hexachloroiridium (IV) containing potassium, or potassium hexachloroiridium (IV) in an oxidizing atmosphere, The average particle diameter, the half width of the (110) plane in X-ray diffraction, and the chlorine concentration are controlled to predetermined values by adjusting the roasting temperature within a range of 840 to 980 ° C. A method for producing the iridium oxide powder according to 1. 前記カリウム化合物は、ヘキサクロロイリジウム(IV)酸カリウム、塩化カリウム、水酸化カリウム又はカリウムの炭酸塩から選ばれる少なくとも1種であることを特徴とする請求項2に記載の酸化イリジウム粉の製造方法。   The method for producing iridium oxide powder according to claim 2, wherein the potassium compound is at least one selected from potassium hexachloroiridium (IV), potassium chloride, potassium hydroxide, or potassium carbonate. 前記混合物又はカリウムを含むヘキサクロロイリジウム(IV)酸アンモニウム中のカリウム含有量は、カリウム成分を全量に対し0.02〜9.9重量%含有することを特徴とする請求項2に記載の酸化イリジウム粉の製造方法。   3. The iridium oxide according to claim 2, wherein the potassium content in the mixture or ammonium hexachloroiridium (IV) containing potassium is 0.02 to 9.9 wt% of the potassium component with respect to the total amount. Powder manufacturing method. 前記酸化性雰囲気は、酸素ガス気流により形成されることを特徴とする請求項2〜4のいずれかに記載の酸化イリジウム粉の製造方法。   The method for producing iridium oxide powder according to claim 2, wherein the oxidizing atmosphere is formed by an oxygen gas stream. 請求項1に記載の酸化イリジウム粉を用いてなる厚膜抵抗体形成用ペースト。   A thick film resistor-forming paste using the iridium oxide powder according to claim 1.
JP2006104944A 2006-04-06 2006-04-06 Iridium oxide powder, method for producing the same, and thick film resistor forming paste using the same Active JP5098203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104944A JP5098203B2 (en) 2006-04-06 2006-04-06 Iridium oxide powder, method for producing the same, and thick film resistor forming paste using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104944A JP5098203B2 (en) 2006-04-06 2006-04-06 Iridium oxide powder, method for producing the same, and thick film resistor forming paste using the same

Publications (2)

Publication Number Publication Date
JP2007277040A true JP2007277040A (en) 2007-10-25
JP5098203B2 JP5098203B2 (en) 2012-12-12

Family

ID=38678893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104944A Active JP5098203B2 (en) 2006-04-06 2006-04-06 Iridium oxide powder, method for producing the same, and thick film resistor forming paste using the same

Country Status (1)

Country Link
JP (1) JP5098203B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092986A (en) * 2016-11-30 2018-06-14 住友金属鉱山株式会社 Resistor composition, and resistor paste including the composition, and thick film resistor using the same
CN115872466A (en) * 2022-12-15 2023-03-31 苏州擎动动力科技有限公司 Iridium oxide and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674647A (en) * 1979-11-26 1981-06-20 Fuji Electric Co Ltd Gas detector
US4286251A (en) * 1979-03-05 1981-08-25 Trw, Inc. Vitreous enamel resistor and method of making the same
JP2001262064A (en) * 2000-03-15 2001-09-26 Sumitomo Metal Mining Co Ltd Coating liquid for forming cold-setting solar radiation- screening film, solar radiation-screening film using the same base material having solar radiation-screening function
JP2002322456A (en) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd Anisotropic electroconductive paste
JP2005135824A (en) * 2003-10-31 2005-05-26 Furuya Kinzoku:Kk Transparent electrode and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286251A (en) * 1979-03-05 1981-08-25 Trw, Inc. Vitreous enamel resistor and method of making the same
JPS5674647A (en) * 1979-11-26 1981-06-20 Fuji Electric Co Ltd Gas detector
JP2001262064A (en) * 2000-03-15 2001-09-26 Sumitomo Metal Mining Co Ltd Coating liquid for forming cold-setting solar radiation- screening film, solar radiation-screening film using the same base material having solar radiation-screening function
JP2002322456A (en) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd Anisotropic electroconductive paste
JP2005135824A (en) * 2003-10-31 2005-05-26 Furuya Kinzoku:Kk Transparent electrode and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092986A (en) * 2016-11-30 2018-06-14 住友金属鉱山株式会社 Resistor composition, and resistor paste including the composition, and thick film resistor using the same
CN115872466A (en) * 2022-12-15 2023-03-31 苏州擎动动力科技有限公司 Iridium oxide and preparation method thereof
CN115872466B (en) * 2022-12-15 2023-09-08 苏州擎动动力科技有限公司 Iridium oxide and preparation method thereof

Also Published As

Publication number Publication date
JP5098203B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP6256636B2 (en) Method for producing ruthenium oxide powder
TWI327324B (en) Resistor composition and thick film resistor
CN110461771B (en) Ruthenium oxide powder, composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP5831055B2 (en) Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same
CN110291599B (en) Composition for resistor, paste for resistor, and thick film resistor
JP5098203B2 (en) Iridium oxide powder, method for producing the same, and thick film resistor forming paste using the same
JP2006273636A (en) Iridium oxide powder and method for manufacturing the same
JP4475330B2 (en) Iridium oxide powder, method for producing the same, and thick film resistor paste using the same
JP7251068B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2018092730A (en) Composition for resistor and resistor paste containing the same furthermore thick film resistor therewith
JP2006248815A (en) Ru-Mn-O FINE POWDER, ITS MANUFACTURING METHOD AND THICK FILM RESISTOR COMPOSITION USING THE SAME
JP7279492B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP4068598B2 (en) Method for producing thick film thermistor composition
JP5045615B2 (en) Conductive powder and method for producing the same
JP6804044B2 (en) A composition for a resistor, a resistor paste containing the same, and a thick film resistor using the same.
JP2007302498A (en) Ruthenium oxide powder and its production method
JP2018165222A (en) Ruthenium acid bismuth particle containing glass, method for manufacturing the same, thick film resistor composition and thick film resistor paste
JP7183507B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7297409B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2007302497A (en) Ruthenium oxide powder and its production method
JP2006202613A (en) Thick-film resistive element paste, thick-film resistive element, and electronic component
JP2004259718A (en) Ru-Ti-O FINE POWDER, ITS MANUFACTURING METHOD, AND THICK-FILM RESISTOR COMPOSITION USING IT
JP2009012991A (en) Conductive powder and its production method
JP2022052973A (en) Lead ruthenate powder and method for producing lead ruthenate powder
JP2005209740A (en) Thick film resistor and its production process, thick film resistor paste and its production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150