JP2007275022A - Method for promoting plant growth and plant growth promoter - Google Patents

Method for promoting plant growth and plant growth promoter Download PDF

Info

Publication number
JP2007275022A
JP2007275022A JP2006109119A JP2006109119A JP2007275022A JP 2007275022 A JP2007275022 A JP 2007275022A JP 2006109119 A JP2006109119 A JP 2006109119A JP 2006109119 A JP2006109119 A JP 2006109119A JP 2007275022 A JP2007275022 A JP 2007275022A
Authority
JP
Japan
Prior art keywords
methane
carbon dioxide
plant growth
soil
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006109119A
Other languages
Japanese (ja)
Other versions
JP4820201B2 (en
Inventor
Hisashi Shimogaki
久 下垣
Hitoshi Terazoe
斉 寺添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006109119A priority Critical patent/JP4820201B2/en
Publication of JP2007275022A publication Critical patent/JP2007275022A/en
Application granted granted Critical
Publication of JP4820201B2 publication Critical patent/JP4820201B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Cultivation Of Plants (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy both global warming prevention and plant growth promotion. <P>SOLUTION: The method for plant growth promotion comprises spreading or plowing a carrier 1b attached with a methane oxidation bacterium 1a to or in soil 2 of plant-clustering lands and oxidatively decomposing methane in the soil 2 or released from the soil 2 into carbon dioxide by the methane oxidation bacterium 1a so as to make a carbon dioxide concentration in air at plant-clustering lands higher than that in the circumference. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、植物成長促進方法並びに植物成長促進剤に関する。さらに詳述すると、本発明は、光合成を行う植物の成長促進に用いて好適な植物成長促進方法並びに植物成長促進剤に関する。   The present invention relates to a plant growth promoting method and a plant growth promoting agent. More specifically, the present invention relates to a plant growth promotion method and a plant growth promoter suitable for use in promoting the growth of plants that carry out photosynthesis.

耕地単位面積当たりの収穫量を増加させる方法としては化学肥料を用いることが一般的である。しかしながら、化学肥料の使用は生産コストを上げ、化学肥料の多用は環境汚染を招く虞がある。そのため、自然界で常態において存在するものを活用する方法が望まれる。   As a method for increasing the yield per unit area of cultivated land, it is common to use chemical fertilizer. However, the use of chemical fertilizer increases the production cost, and the heavy use of chemical fertilizer may cause environmental pollution. Therefore, a method of utilizing what is normally present in nature is desired.

そこで、近年、野菜や果物栽培等において、温室中の二酸化炭素濃度を上げることによって光合成を促進させ、野菜や果物等の収量及び糖度を向上させることが試みられている(特許文献1)。ここで、植物群生地の大気中二酸化炭素(CO)濃度と植物葉の光合成速度との間には、図2に示すように、大気中二酸化炭素濃度が高まると光合成速度が増加する関係があることが知られている(非特許文献1)。具体的には、閉鎖系の人工気象室実験において大気中二酸化炭素濃度を350ppmから650ppmに上げることにより稲の収量が8〜15%増加したという結果が得られている(非特許文献2)。また、野外開放系大気CO増加実験において、バックグラウンド大気よりも約200ppm高い二酸化炭素濃度条件下で稲の収量が最大15%増加したという結果が得られている(非特許文献3)。なお、これらの実験においては、大気中二酸化炭素濃度を高めるため、例えば、放出口を備えたダクトが接続されたブロワーを用いてタンク等に貯蔵した液化二酸化炭素を気化させて大気中に放出するようにしている。 Thus, in recent years, in vegetable and fruit cultivation, attempts have been made to promote photosynthesis by increasing the carbon dioxide concentration in the greenhouse, thereby improving the yield and sugar content of vegetables and fruits (Patent Document 1). Here, between the atmospheric carbon dioxide (CO 2 ) concentration of the plant group fabric and the photosynthesis rate of the plant leaves, as shown in FIG. 2, there is a relationship in which the photosynthesis rate increases as the atmospheric carbon dioxide concentration increases. It is known that there is (Non-Patent Document 1). Specifically, the yield of rice increased by 8 to 15% by raising the atmospheric carbon dioxide concentration from 350 ppm to 650 ppm in a closed-system artificial weather chamber experiment (Non-Patent Document 2). In addition, in an open-air atmospheric CO 2 increase experiment, the result was that the yield of rice increased by up to 15% under a carbon dioxide concentration of about 200 ppm higher than the background atmosphere (Non-patent Document 3). In these experiments, in order to increase the carbon dioxide concentration in the atmosphere, for example, liquefied carbon dioxide stored in a tank or the like is vaporized and released into the atmosphere using a blower connected to a duct having a discharge port. I am doing so.

このような二酸化炭素の供給において、二酸化炭素ボンベから直接大気中にパージさせる方法では非効率であるとして、植物群生地の大気中二酸化炭素濃度を高めて植物の光合成速度を増加させる従来の光合成促進剤としては、例えば、重合体100質量部に対し、二酸化炭素の当初含有率が2質量部〜70質量部である重合体組成物であって、大気圧下、25℃における二酸化炭素の放出継続時間が少なくとも100時間であることを特徴とする光合成促進用二酸化炭素放出性重合体組成物からなる成形体が通気性包装体の中に包装されている光合成促進剤も提案されている(特許文献1)。   In such a supply of carbon dioxide, the conventional method of promoting photosynthesis that increases the photosynthesis rate of plants by increasing the concentration of carbon dioxide in the atmosphere of the plant group dough, because the method of purging directly from the carbon dioxide cylinder to the atmosphere is inefficient The agent is, for example, a polymer composition having an initial carbon dioxide content of 2 to 70 parts by mass with respect to 100 parts by mass of the polymer, and continues to release carbon dioxide at 25 ° C. under atmospheric pressure. There has also been proposed a photosynthesis accelerator in which a molded article made of a carbon dioxide-releasing polymer composition for promoting photosynthesis is packaged in a breathable package, characterized in that the time is at least 100 hours (Patent Document) 1).

一方、地球温暖化を引き起こす温室効果ガスのうちメタン(CH)の年間総放出量は約6億トンであり、土壌中有機物の分解によるメタンガスの自然発生に基づく水田と湿地とからの大気中への放出は全放出量の約40%を占めるといわれている(波多野隆介:農耕地からの亜酸化窒素、メタン放出のモニタリング,生物の科学 遺伝 別冊 No.17 地球温暖化−世界の動向から対策技術まで−,裳華房,2003年)。また、一分子あたりの地球温暖化ポテンシャルではメタンは二酸化炭素の20倍以上であって温室効果への寄与率は約20%であり、わずかな濃度の上昇が温暖化に大きく作用するといわれている。このため、国連気候変動枠組条約第3回締約国会議いわゆるCOP3において採択された京都議定書では、基準年を1990年として二酸化炭素換算でのメタンの総排出量を少なくとも5wt%削減することが数値目標として定められ、工業、農林業など主要な排出源での対応策が求められている。 On the other hand, of the greenhouse gases that cause global warming, the annual total release of methane (CH 4 ) is about 600 million tons, and it is released into the atmosphere from paddy fields and wetlands based on the natural generation of methane gas by decomposition of organic matter in the soil. It is said that about 40% of the total amount is released (Ryusuke Hatano: Monitoring of nitrous oxide and methane emission from farmland, biology science, genetics, separate volume, No.17 Global warming-from global trends To the countermeasure technology-裳 華 房, 2003). In addition, methane is more than 20 times the carbon dioxide in the global warming potential per molecule, and the contribution rate to the greenhouse effect is about 20%. It is said that a slight increase in concentration greatly affects global warming. . Therefore, according to the Kyoto Protocol adopted at the 3rd Conference of the Parties to the United Nations Framework Convention on Climate Change, the so-called COP3, the numerical target is to reduce the total emission of methane in terms of carbon dioxide by at least 5 wt% with the base year as 1990 And measures are required for major emission sources such as industry and agriculture and forestry.

内島善兵衛:新地球温暖化とその影響,裳華房,p.127 図7・4,2005年Uchijima Yoshibei: New Global Warming and its Impacts, Hankabo, p. 127 Fig. 7 ・ 4, 2005 諸隅・矢島・米村:CO2濃度上昇と温暖化が水稲の生育及び収量に及ぼす影響,日本作物学会紀事65(2),pp.222−228,1996年Morosumi, Yajima, Yonemura: Effects of elevated CO2 concentration and warming on the growth and yield of rice, Journal of the Crop Science Society of Japan 65 (2), pp.222-228, 1996 小林和彦:FACE(開放系大気CO2増加)実験,日本作物学会紀事70(1),pp.1−16,2001年Kazuhiko Kobayashi: FACE (open air CO2 increase) experiment, Journal of the Crop Science Society of Japan 70 (1), pp.1-16, 2001 特開2003−246880号JP 2003-246880 A

しかしながら、特許文献1の光合成促進剤は、温室などの閉ざされた空間内での使用を前提としたものであり、開放空間での使用を考えていない。さらに、全く新たに生成した二酸化炭素が大気中に放出され、地球温暖化防止に反する。   However, the photosynthesis promoter of Patent Document 1 is premised on use in a closed space such as a greenhouse, and is not considered for use in an open space. Furthermore, completely newly generated carbon dioxide is released into the atmosphere, which is against the prevention of global warming.

さらに、地球温暖化ポテンシャルでは二酸化炭素の20倍以上であると共に全放出量に対する水田や湿地等の植物群生地を発生源とする放出量の割合が高いメタンについても大気中への放出を抑制することが望まれる。   In addition, methane, which has a global warming potential more than 20 times that of carbon dioxide and has a high ratio of emissions from plant populations such as paddy fields and wetlands to the total emission, is also suppressed from being released into the atmosphere. It is desirable.

そこで、本発明は、地球温暖化防止と植物成長の促進とを両立することができる植物成長促進方法並びに植物成長促進剤を提供することを目的とする。   Therefore, an object of the present invention is to provide a plant growth promoting method and a plant growth promoting agent capable of achieving both prevention of global warming and promotion of plant growth.

かかる目的を達成するため、本発明者は、植物の成長を促進させると共に、地球温暖化防止対策に貢献するために植物群生地を発生源とするメタンの大気中への放出を抑制するという大局的な見地から検討を行い、メタンを二酸化炭素に変換して植物に吸収させて光合成作用を活発化させるという全く新しい着想に基づいて本発明を完成させるに至った。すなわち請求項1記載の植物成長促進方法は、メタン酸化菌を付着させた担体を植物群生地の土壌に散布若しくは鋤込み、メタン酸化菌により土壌中のメタン或いは土壌から放出されるメタンを酸化分解して二酸化炭素に変換し、植物群生地の大気中二酸化炭素濃度を周囲よりも高めるようにしている。   In order to achieve such an object, the present inventor has promoted the growth of plants and, in order to contribute to global warming prevention measures, suppresses the release of methane from the plant community to the atmosphere. From a natural viewpoint, the present invention has been completed based on a completely new idea that methane is converted to carbon dioxide and absorbed by plants to activate photosynthesis. In other words, the plant growth promoting method according to claim 1 is a method in which a carrier to which methane oxidizing bacteria are attached is sprayed or swallowed onto the soil of the plant group dough, and methane in the soil or methane released from the soil is oxidized and decomposed by the methane oxidizing bacteria. It is converted to carbon dioxide, and the carbon dioxide concentration in the atmosphere of the plant group dough is made higher than the surroundings.

したがって、この植物成長促進方法によると、メタン酸化菌を付着させた担体を植物群生地の土壌に散布若しくは鋤込むようにしているので、メタン酸化菌により土壌中のメタン或いは土壌から放出されるメタンが酸化分解されて二酸化炭素に変換され、植物群生地の大気中二酸化炭素濃度が高まる。   Therefore, according to this method for promoting the growth of plants, the carrier to which the methane oxidizing bacteria are attached is sprayed or put into the soil of the plant group dough, so that the methane in the soil or the methane released from the soil is oxidized by the methane oxidizing bacteria. It is decomposed and converted to carbon dioxide, and the concentration of carbon dioxide in the atmosphere of the plant group fabric increases.

なお、本発明において、メタン酸化菌とは、メタンを酸化分解する能力を有する細菌群を意味するものとして用いる。また、メタンを酸化分解するとは、メタンを二酸化炭素と水に分解することを意味する。   In the present invention, methane oxidizing bacteria are used to mean a group of bacteria having the ability to oxidatively decompose methane. Further, oxidative decomposition of methane means that methane is decomposed into carbon dioxide and water.

また、請求項2記載の植物成長促進方法は、メタン酸化菌を付着させる担体として有機物の炭化物を用いるようにしている。この場合には、有機物であるために担体は土壌中で分解される。また、炭化物であるために担体が多孔質となる。   In the plant growth promoting method according to claim 2, organic carbide is used as a carrier to which methane oxidizing bacteria are attached. In this case, the carrier is decomposed in the soil because it is an organic substance. Moreover, since it is a carbide | carbonized_material, a support | carrier becomes porous.

また、請求項3記載の植物成長促進剤は、担体にメタン酸化菌を保持するようにしている。   Moreover, the plant growth promoter of Claim 3 is made to hold | maintain a methane oxidation microbe on a support | carrier.

したがって、この植物成長促進剤によると、担体にメタン酸化菌を保持するようにしているので、この担体を植物群生地の土壌に例えば散布若しくは鋤込むことにより、メタン酸化菌により土壌中のメタン或いは土壌から放出されるメタンが酸化分解されて二酸化炭素に変換され、植物群生地の大気中二酸化炭素濃度が高まる。   Therefore, according to this plant growth promoter, methane-oxidizing bacteria are retained on the carrier, so that, for example, by spreading or swallowing this carrier into the soil of the plant colony, methane in the soil or Methane released from the soil is oxidatively decomposed and converted to carbon dioxide, increasing the concentration of carbon dioxide in the atmosphere of the plant group fabric.

また、請求項4記載の植物成長促進剤は、メタン酸化菌を付着させる担体として有機物の炭化物を用いるようにしている。この場合には、有機物であるために担体は土壌中で分解される。また、炭化物である担体は多孔質であるため、メタン酸化菌の生息に適した環境でありメタン酸化菌の付着量が多くなる。   The plant growth promoter according to claim 4 uses an organic carbide as a carrier to which methane oxidizing bacteria are attached. In this case, the carrier is decomposed in the soil because it is an organic substance. Moreover, since the support | carrier which is a carbide | carbonized_material is porous, it is an environment suitable for the habitation of methane oxidation bacteria, and the adhesion amount of methane oxidation bacteria increases.

請求項1並びに3記載の植物成長促進方法並びに植物成長促進剤によれば、土壌中のメタン或いは土壌から放出されるメタンが酸化分解されて二酸化炭素に変換されるので、地球温暖化ポテンシャルの高いメタンをそれよりも地球温暖化ポテンシャルの低い二酸化炭素に変換し、この二酸化炭素によって植物群生地の大気中二酸化炭素濃度を高めて、植物の光合成作用を活発にして成長の促進を図ることができる。さらに、メタンを酸化分解して二酸化炭素に変換することにより、二酸化炭素と比べて温室効果の高いメタンの大気中への放出を抑制することができる。すなわち、メタンを二酸化炭素に変換すると共に変換した二酸化炭素を植物に吸収させて酸素を放出させるというサイクルを構築することにより、メタン及び二酸化炭素を積極的に利用して大気への放出量を削減し地球温暖化防止対策に貢献すること及び植物の成長を促進することを同時に達成することができる。   According to the plant growth promoting method and the plant growth promoting agent according to claims 1 and 3, methane in the soil or methane released from the soil is oxidatively decomposed and converted into carbon dioxide, and thus has a high global warming potential. Methane can be converted to carbon dioxide, which has a lower global warming potential, and this carbon dioxide can increase the concentration of carbon dioxide in the atmosphere of plant group fabrics, making the plant's photosynthesis active and promoting growth. . Furthermore, by oxidizing and decomposing methane into carbon dioxide, it is possible to suppress the release of methane, which has a higher greenhouse effect than carbon dioxide, into the atmosphere. In other words, by constructing a cycle in which methane is converted to carbon dioxide and the converted carbon dioxide is absorbed by the plant and oxygen is released, methane and carbon dioxide are actively used to reduce the amount released to the atmosphere. It is possible to simultaneously contribute to the prevention of global warming and promote the growth of plants.

さらに、自然界に生息しているメタン酸化菌を用いているので、化学肥料を用いる場合のように環境汚染の虞がなく、自然環境に悪影響を与えることなく植物の成長の促進を図ることができる。   Furthermore, because methane oxidizing bacteria that inhabit the natural world are used, there is no risk of environmental pollution as in the case of using chemical fertilizers, and the growth of plants can be promoted without adversely affecting the natural environment. .

請求項2並びに4記載の植物成長促進方法並びに植物成長促進剤によれば、担体が土壌中で分解されるので、自然環境に悪影響を与えることなく植物の成長の促進を図ることができる。また、多孔質担体を用いることにより、メタン酸化菌の繁殖を促進することができる。   According to the plant growth promotion method and the plant growth promoter of claims 2 and 4, since the carrier is decomposed in the soil, the growth of the plant can be promoted without adversely affecting the natural environment. Further, by using a porous carrier, it is possible to promote the growth of methane oxidizing bacteria.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

本発明の植物成長促進剤は、担体にメタン酸化菌を保持するものであり、この植物成長促進剤を用いる本発明の植物成長促進方法は、メタン酸化菌を付着させた担体を植物群生地の土壌に散布若しくは鋤込み、メタン酸化菌により土壌中のメタン或いは土壌から放出されるメタンを酸化分解して二酸化炭素に変換し、植物群生地の大気中二酸化炭素濃度を周囲よりも高めるようにしている。   The plant growth promoter of the present invention retains methane-oxidizing bacteria on a carrier, and the plant growth-promoting method of the present invention using this plant growth promoter uses a carrier to which methane-oxidizing bacteria are attached as a plant group dough. Sprinkle or pour into the soil and oxidize and decompose methane in the soil or methane released from the soil by methane-oxidizing bacteria to convert it into carbon dioxide, so that the atmospheric carbon dioxide concentration of the plant population is higher than the surroundings Yes.

メタン資化菌とも呼ばれるメタン酸化菌(Methanotroph)は微生物である。本発明に用いられるメタン酸化菌は、メタンを炭素源として用い、メタンを最終的に二酸化炭素と水に分解し得る細菌であれば特に限定されない。このような微生物は、既に公知であり(Appl.Environ.Microbiol.,Vol.65(11),pp.4887−4897,1999年)、例えばMethylococcus属、Methylopsphaera属、Methylomonas属、Methylomicrobium属、Methylobacter属、Methylosinus属、Methylocystis属及びMethanotrophic属の細菌が挙げられ、本発明に用いられるメタン酸化菌としては好ましくはHyphomicrobrium methylovorum、Hyphomicrobrium facilis、これらと同じクラスターに属するHyphomicrobrium sp.S4として単離された菌株、タイプII メタン酸化細菌と分類されるT2-06株、T2-07株、T2-17株及びこれらと系統的に近縁である菌株からなり、且つメタンを酸化分解する能力(以下、メタン酸化分解能と呼ぶ)を有する細菌である。   Methane-oxidizing bacteria, also called methane-utilizing bacteria, are microorganisms. The methane oxidizing bacterium used in the present invention is not particularly limited as long as it is a bacterium that uses methane as a carbon source and can finally decompose methane into carbon dioxide and water. Such microorganisms are already known (Appl. Environ. Microbiol., Vol. 65 (11), pp. 4887-4897, 1999), for example, the genus Methylococcus, the genus Methylopsphaera, the genus Methylomobium, the genus Methylomicrobium, , The genus Methylosinus, the genus Methylocystis, and the genus Methanotropic, and the methane oxidizing bacteria used in the present invention are preferably Hyphomicrodium methylovorum, Hyphomicrobium facilis, and Hyphobium belonging to the same cluster. Strains isolated as S4, consisting of T2-06, T2-07, T2-17, and strains closely related to these, classified as type II methane-oxidizing bacteria, and oxidatively decompose methane It is a bacterium that has the ability to do so (hereinafter referred to as methane oxidation ability).

これらのメタン酸化菌は、湿地、湖沼や河川、水田、畑地、牧草地、広葉樹の森林の土壌や水中に広く生息していることが知られており、陸域に比べて種類は少ないものの海水や海底の泥土中でも生息していることが確認されている。   These methane-oxidizing bacteria are known to live widely in wetlands, lakes and rivers, paddy fields, upland fields, pastures, broad-leaved forest soils and water. It has been confirmed that it inhabits even in the submarine mud.

メタン酸化菌は、メタン発生量の多い水田、湖沼の湿地、農業用水路の河岸湿地などから土壌を採取し、メタンを唯一の炭素源として培養することにより得られる。本発明に用いられるメタン酸化菌としては、メタン酸化分解能がより高いメタン酸化菌が選択されることが好ましい。   Methane-oxidizing bacteria can be obtained by collecting soil from paddy fields with high methane generation, wetlands in lakes, riverside wetlands in agricultural waterways, etc., and culturing them using methane as the sole carbon source. As the methane-oxidizing bacterium used in the present invention, it is preferable to select a methane-oxidizing bacterium having a higher methane oxidation ability.

メタン酸化菌はメタンを二酸化炭素と水に分解することから、メタン酸化菌の選択はメタンの消費と二酸化炭素の発生を指標として行うことができる。また、メタン酸化菌の培養は、八木ら(国立環境研究所特別研究報告SR−31−2000,2000年)によるクロロエチレン及びクロロエタン分解菌の分離方法に準じて行うことができる。   Since methane-oxidizing bacteria decompose methane into carbon dioxide and water, methane-oxidizing bacteria can be selected using methane consumption and carbon dioxide generation as indicators. Methane oxidizing bacteria can be cultured according to the method for separating chloroethylene and chloroethane-degrading bacteria by Yagi et al. (National Institute for Environmental Studies Special Research Report SR-31-2000, 2000).

具体的には、次のように実施することができる。まず、ガスバイアルビンにメタン酸化菌の培養に適する無機塩液体培地を入れ、さらに土壌を添加し、バイアルビンで密閉する。次いで、ガスバイアルビンのヘッドスペースの空気を一部引き抜いた後、炭素源としてメタンを添加する。これを30℃の定温恒温器内で振とう培養する。一定期間培養した後、ヘッドスペースから空気を採取し、メタン濃度をガスクロマトグラフで測定する。メタン濃度の減少が認められたものについて、その液体培地を液体培地を含むガスバイアルビンに添加して、2回目の振とう培養を行う。この培養において、メタン濃度の減少が大きいメタン酸化菌を選び、さらに新しい液体培地に植え継いで3回目の集積培養を行い、メタン濃度の減少が大きいメタン酸化菌を選ぶ。   Specifically, it can be carried out as follows. First, an inorganic salt liquid medium suitable for culturing methane-oxidizing bacteria is placed in a gas vial, and soil is further added and sealed with a vial. Next, after partially extracting the air in the head space of the gas vial, methane is added as a carbon source. This is cultured with shaking in a constant temperature incubator at 30 ° C. After culturing for a certain period, air is collected from the head space, and the methane concentration is measured with a gas chromatograph. About what the reduction | decrease of methane density | concentration was recognized, the liquid culture medium is added to the gas vial containing a liquid culture medium, and a 2nd shake culture is performed. In this culture, a methane-oxidizing bacterium having a large decrease in methane concentration is selected. Further, the methane-oxidizing bacterium having a large decrease in methane concentration is selected by performing planting in a new liquid medium and performing a third enrichment culture.

本発明の植物成長促進剤は、担体にメタン酸化菌が保持されたものである。本発明では、担体材料として、メタン酸化菌を保持即ちメタン酸化菌を付着させ繁殖させ得る材料が用いられる。そして、メタン酸化菌の繁殖を促進するために多孔質材料が用いられることが好ましい。具体的には例えば、木炭、活性炭、籾殻燻炭が好ましい。   The plant growth promoter of the present invention is one in which methane oxidizing bacteria are held on a carrier. In the present invention, as the carrier material, a material capable of holding methane-oxidizing bacteria, that is, allowing methane-oxidizing bacteria to adhere and propagate is used. And it is preferable that a porous material is used in order to promote the propagation of methane oxidizing bacteria. Specifically, for example, charcoal, activated carbon, and rice husk charcoal are preferable.

例えば、木炭が用いられる場合には、木材が粒経1〜100mm、好ましくは粒径5〜10mm程度にチップ化され、通常300〜1000℃、好ましくは400℃以上で炭化されることにより多孔質担体が得られる。   For example, when charcoal is used, the wood is made into chips with a particle size of 1 to 100 mm, preferably about 5 to 10 mm, and is usually porous by being carbonized at 300 to 1000 ° C., preferably 400 ° C. or more. A carrier is obtained.

また、廃棄物を簡易な処理により有効活用することができることから、担体として燻炭処理した籾殻が用いられることが好ましい。また、籾殻は土壌中で分解されるので土壌汚染につながる虞がないことからも担体材料として籾殻が用いられることが好ましい。また、土壌に有機物が供給されて植物成長のための肥料となることからも担体材料として籾殻が用いられることが好ましい。さらに、担体材料として籾殻が用いられることにより籾殻に含まれていた珪酸が土壌に供給されることとなり、それを水稲が吸収し、水稲の体力増強等の珪酸効果が得られることからも担体材料として籾殻が用いられることが好ましい。   Moreover, since waste can be effectively utilized by simple treatment, it is preferable to use rice husk treated with charcoal as a carrier. In addition, rice husks are preferably used as the carrier material because rice husks are decomposed in the soil and thus there is no risk of soil contamination. In addition, rice husk is preferably used as the carrier material because organic matter is supplied to the soil to become a fertilizer for plant growth. Furthermore, the use of rice husk as a carrier material allows the silicic acid contained in the rice husk to be supplied to the soil, which is absorbed by the paddy rice and the silicic acid effect such as enhancement of the physical strength of the paddy rice can be obtained. It is preferable to use rice husk.

メタン酸化菌を付着・繁殖させた担体即ち本発明の植物成長促進剤を製造する際には、コストなどの実用化の観点から、できるだけ少量のメタン酸化菌を効率的に担体全体に付着させ繁殖させることが好ましい。そこで、担体の上部にメタン酸化菌を含む養液を加え、メタンを含む空気を循環させることで、担体への付着と繁殖を促進させる。具体的には例えば以下のような方法が考えられる。   When producing a carrier to which methane-oxidizing bacteria are attached and propagated, that is, the plant growth promoter of the present invention, from the viewpoint of practical use such as cost, the smallest amount of methane-oxidizing bacteria is efficiently attached to the whole carrier and propagated. It is preferable to make it. Therefore, a nutrient solution containing methane oxidizing bacteria is added to the upper part of the carrier, and air containing methane is circulated to promote adhesion and propagation on the carrier. Specifically, for example, the following method can be considered.

(1)担体に無機塩類培地を噴霧し、含水率80%程度まで十分に湿らせる。
(2)密閉可能な容器に(1)の担体を入れ、上部からメタン酸化菌を含む培養液を添加する。
(3)真空ポンプで内部の空気を抜き、メタンと空気の割合が1:9の混合ガスを注入する。
(4)ファン等を稼動させ、メタンを含む空気を循環させる。
(5)容器内の温度を30℃程度に維持して静置する。
(1) An inorganic salt medium is sprayed on the carrier and sufficiently moistened to a moisture content of about 80%.
(2) Put the carrier of (1) in a sealable container and add a culture solution containing methane-oxidizing bacteria from the top.
(3) The inside air is evacuated with a vacuum pump, and a mixed gas having a methane / air ratio of 1: 9 is injected.
(4) Operate a fan and circulate air containing methane.
(5) The container is kept at a temperature of about 30 ° C.

なお、メタン酸化菌の繁殖においては、初期メタン濃度が5〜45vol%、雰囲気温度が20〜40℃の範囲、酸素濃度が少なくとも5vol%望ましくは8vol%以上に維持される環境が適している。   In the propagation of methane oxidizing bacteria, an environment in which the initial methane concentration is 5 to 45 vol%, the ambient temperature is 20 to 40 ° C., and the oxygen concentration is maintained at least 5 vol%, preferably 8 vol% or more is suitable.

(1)〜(5)の操作終了後、内部のメタン濃度と二酸化炭素濃度を経時的に測定し、メタン濃度が検出限界以下まで低下した時点で空気の循環を停止する。これにより、担体にメタン酸化菌が付着・繁殖した植物成長促進剤が得られる。   After completion of the operations (1) to (5), the internal methane concentration and carbon dioxide concentration are measured over time, and the air circulation is stopped when the methane concentration falls below the detection limit. As a result, a plant growth promoter in which methane-oxidizing bacteria adhere to and propagate on the carrier is obtained.

そして、本発明の植物成長促進方法は、図1に示すように、上述の方法により得られたメタン酸化菌1aを担体1bに保持させた植物成長促進剤1を例えば水田即ち水稲群生地等の植物群生地の土壌2に散布又は鋤込む。散布又は鋤込む植物成長促進剤1の量は植物群生地の土壌2中のメタン濃度やメタン酸化菌1aのメタン酸化分解能によって異なる。具体的には例えば、担体1bとして燻炭処理した籾殻を用いた場合には、1mあたり100g〜50kg、好ましくは2kg〜25kg程度である。また、メタン酸化能が時間の経過に伴って低下した場合には植物成長促進剤1の追加散布を適宜行う。 And, as shown in FIG. 1, the plant growth promoting method of the present invention uses a plant growth promoting agent 1 in which a methane-oxidizing bacterium 1a obtained by the above-described method is held on a carrier 1b, such as paddy rice, that is, paddy rice group dough Sprinkle or pour into soil 2 of the plant community. The amount of the plant growth promoter 1 to be sprayed or drowned varies depending on the methane concentration in the soil 2 of the plant group dough and the methane oxidation ability of the methane oxidizing bacteria 1a. Specifically, for example, when rice husk treated with charcoal is used as the carrier 1b, it is about 100 to 50 kg, preferably about 2 to 25 kg per m 2 . Moreover, when the methane oxidation ability falls with progress of time, the additional growth of the plant growth promoter 1 is suitably performed.

なお、水田土壌2中に植物成長促進剤1を鋤込む場合には、土壌2の表層即ち酸化層に散布若しくは鋤込むことが好ましい。これにより、酸化層の下側の還元層においてメタン生成菌の作用により有機物から発生するメタンを大気中に放出される前に酸化層において二酸化炭素に酸化分解することができる。なお、メタン生成菌とは、メタンを生成する能力を有する細菌をいう。   In addition, when the plant growth promoter 1 is put into the paddy soil 2, it is preferably sprayed or put on the surface layer of the soil 2, that is, the oxidized layer. As a result, methane generated from the organic matter by the action of the methanogen in the reduction layer below the oxide layer can be oxidatively decomposed into carbon dioxide in the oxide layer before being released into the atmosphere. Note that the methanogen refers to a bacterium having an ability to produce methane.

上述の植物成長促進剤1を植物群生地の土壌2に散布若しくは鋤込むことにより、土壌2中の有機物から発生するメタンを酸化分解して二酸化炭素に変換し、土壌2から二酸化炭素を放出させて植物群生地の大気中二酸化炭素濃度を周囲の大気中二酸化炭素濃度よりも高めることができる。そして、植物群生地の大気中二酸化炭素濃度の上昇により植物の光合成速度を増加させて成長を促進させることができる。なお、例えば、20gCH/m/月の定常的メタンフラックスが水田から発生する(農業環境技術研究所:タイにおける水田からのメタン発生,平成7年度 農業環境研究成果情報(第12集),1996年)と共に発生したメタンが全て二酸化炭素に酸化分解され、且つ、群生している植物自体が壁としての役割を果たすことによって活発な換気が抑制された状態(具体的には0.5回/時間)であるとした場合には32ppmの大気中二酸化炭素濃度の増加が見込まれる。さらに、既存の実験データによると大気中二酸化炭素濃度が300ppm増加することにより水稲収量(穂数・籾数)が15%程度増加している(非特許文献2)。これらのことから、32ppmの大気中二酸化炭素濃度の増加によって1.5%程度の水稲収量の増加が見込まれる。 By spraying or swallowing the plant growth promoter 1 described above on the soil 2 of the plant group dough, methane generated from the organic matter in the soil 2 is oxidatively decomposed and converted to carbon dioxide, and carbon dioxide is released from the soil 2 Thus, the atmospheric carbon dioxide concentration of the plant group dough can be made higher than the ambient atmospheric carbon dioxide concentration. And the photosynthesis speed | rate of a plant can be increased by the raise of the atmospheric carbon dioxide density | concentration of a plant group cloth | dough, and growth can be promoted. In addition, for example, a steady methane flux of 20 gCH 4 / m 2 / month is generated from paddy fields (Agricultural Environment Technology Laboratory: Methane generation from paddy fields in Thailand, FY 1995 Agricultural Environment Research Result Information (12th Collection), (1996) all the methane generated along with oxidative decomposition into carbon dioxide, and the active plant ventilation itself is suppressed by the plant itself acting as a wall (specifically 0.5 times) / Hour), an increase in atmospheric carbon dioxide concentration of 32 ppm is expected. Furthermore, according to existing experimental data, the yield of rice (number of spikes / number of pods) has increased by about 15% due to an increase in atmospheric carbon dioxide concentration by 300 ppm (Non-patent Document 2). From these facts, an increase in rice yield of about 1.5% is expected with an increase in the atmospheric carbon dioxide concentration of 32 ppm.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention.

本発明の植物成長促進方法の概要並びに植物成長促進剤の概略構造を示す図である。It is a figure which shows the outline | summary of the plant growth promotion method of this invention, and the schematic structure of a plant growth promoter. 植物群生地の大気中二酸化炭素濃度と植物葉の光合成速度との間の関係を説明する図である。It is a figure explaining the relationship between the atmospheric carbon dioxide density | concentration of plant-group dough and the photosynthesis rate of a plant leaf.

符号の説明Explanation of symbols

1 植物成長促進剤
1a メタン酸化菌
1b 担体
2 土壌
1 Plant Growth Promoter 1a Methane Oxidizing Bacteria 1b Carrier 2 Soil

Claims (4)

メタン酸化菌を付着させた担体を植物群生地の土壌に散布若しくは鋤込み、前記メタン酸化菌により前記土壌中のメタン或いは前記土壌から放出されるメタンを酸化分解して二酸化炭素に変換し、前記植物群生地の大気中二酸化炭素濃度を周囲よりも高めることを特徴とする植物成長促進方法。   Scattering or swallowing the carrier with the methane oxidizing bacteria attached to the soil of the plant group dough, converting the methane in the soil or methane released from the soil by the methane oxidizing bacteria into carbon dioxide by oxidative decomposition, A method for promoting plant growth, comprising increasing the atmospheric carbon dioxide concentration of a plant group dough more than the surroundings. 前記担体は有機物の炭化物であることを特徴とする植物成長促進方法。   A plant growth promoting method, wherein the carrier is an organic carbide. 担体にメタン酸化菌を保持するものである植物成長促進剤。   A plant growth promoter that holds methane-oxidizing bacteria on a carrier. 前記担体は有機物の炭化物であることを特徴とする植物成長促進剤。
A plant growth promoter characterized in that the carrier is an organic carbide.
JP2006109119A 2006-04-11 2006-04-11 Plant growth promoting method and plant growth promoting agent Expired - Fee Related JP4820201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109119A JP4820201B2 (en) 2006-04-11 2006-04-11 Plant growth promoting method and plant growth promoting agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109119A JP4820201B2 (en) 2006-04-11 2006-04-11 Plant growth promoting method and plant growth promoting agent

Publications (2)

Publication Number Publication Date
JP2007275022A true JP2007275022A (en) 2007-10-25
JP4820201B2 JP4820201B2 (en) 2011-11-24

Family

ID=38677215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109119A Expired - Fee Related JP4820201B2 (en) 2006-04-11 2006-04-11 Plant growth promoting method and plant growth promoting agent

Country Status (1)

Country Link
JP (1) JP4820201B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2090547A1 (en) 2007-12-24 2009-08-19 Politechnika Lubelska Filling for biofillter for methane oxidation
EP2163599A2 (en) 2008-09-08 2010-03-17 Politechnika Lubelska Method and device for methane recovery from biogas with low content of methane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105620A (en) * 1991-03-06 1994-04-19 Toshiro Sekine Method for applying fertilizer of carbon dioxide in rice cropping
JP2005118009A (en) * 2003-10-20 2005-05-12 Central Res Inst Of Electric Power Ind Methane-oxidizing bacterium hold-back carrier, method for producing the same, production apparatus therefor and method for suppressing methane generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105620A (en) * 1991-03-06 1994-04-19 Toshiro Sekine Method for applying fertilizer of carbon dioxide in rice cropping
JP2005118009A (en) * 2003-10-20 2005-05-12 Central Res Inst Of Electric Power Ind Methane-oxidizing bacterium hold-back carrier, method for producing the same, production apparatus therefor and method for suppressing methane generation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2090547A1 (en) 2007-12-24 2009-08-19 Politechnika Lubelska Filling for biofillter for methane oxidation
EP2163599A2 (en) 2008-09-08 2010-03-17 Politechnika Lubelska Method and device for methane recovery from biogas with low content of methane

Also Published As

Publication number Publication date
JP4820201B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
De Corato et al. Composts from green sources show an increased suppressiveness to soilborne plant pathogenic fungi: Relationships between physicochemical properties, disease suppression, and the microbiome
Joos et al. Soil under stress: The importance of soil life and how it is influenced by (micro) plastic pollution
Liang et al. Interactive effects of biochar and AMF on plant growth and greenhouse gas emissions from wetland microcosms
ES2334147T3 (en) BACTERIAL CEPA AND COMPOSITION USED TO ACCELERATE THE COMPOSTATION AND AS A FERTILIZER.
CN104860739A (en) Biomass charcoal-based soil conditioner and preparation method thereof
Vassilev et al. Rock phosphate solubilization by immobilized cells of Enterobacter sp. in fermentation and soil conditions
Bashan et al. Environmental uses of plant growth-promoting bacteria
Liu et al. Amino acids hydrolyzed from animal carcasses are a good additive for the production of bio-organic fertilizer
Ellis et al. The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog
Gao et al. Effect of phosphorus amendments on rice rhizospheric methanogens and methanotrophs in a phosphorus deficient soil
Yang et al. Effects of soil tillage, management practices, and mulching film application on soil health and peanut yield in a continuous cropping system
JP4428620B2 (en) Methane oxidizing bacteria holding carrier manufacturing method, manufacturing apparatus, and methane generation suppression method
JP4820201B2 (en) Plant growth promoting method and plant growth promoting agent
Yin et al. Biochar-compost amendment enhanced sorghum growth and yield by improving soil physicochemical properties and shifting soil bacterial community in a coastal soil
Zhan et al. Different responses of soil environmental factors, soil bacterial community, and root performance to reductive soil disinfestation and soil fumigant chloropicrin
JP2022038386A (en) Soil conditioner utilizing ascomycota, wood-rotting fungi, and rhizobium, as well as method for decomposing industrial waste biodegradable plastic and industrial waste organic matter utilizing ascomycota, wood-rotting fungi, and rhizobium
CN104312944A (en) Microbial preparation, and preparation method and application thereof
Rani et al. Immobilization and Co-mobilization: An Unexploited Biotechnological Tool for Enhancing Efficiency of Biofertilizers
Ma et al. Effects and mechanism of microplastics on organic carbon and nitrogen cycling in agricultural soil: A review
Oo et al. Effect of cattle manure amendment and rice cultivars on methane emission from paddy rice soil under continuously flooded conditions
Waring et al. What role can forests play in tackling climate change
Rubin et al. Climate mitigation through soil amendments: quantification, evidence, and uncertainty
Kumar et al. Biochar coupled rehabilitation of cyanobacterial soil crusts: a sustainable approach in stabilization of arid and semiarid soils
FR3021843A1 (en) METHOD AND COMPOSITION FOR IMPROVING THE PRODUCTIVITY OF NON-LEGUMINOUS PLANTS
CN102071161B (en) Chryseobacterium sp. capable of using methane and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees