JP4428620B2 - Methane oxidizing bacteria holding carrier manufacturing method, manufacturing apparatus, and methane generation suppression method - Google Patents

Methane oxidizing bacteria holding carrier manufacturing method, manufacturing apparatus, and methane generation suppression method Download PDF

Info

Publication number
JP4428620B2
JP4428620B2 JP2003359225A JP2003359225A JP4428620B2 JP 4428620 B2 JP4428620 B2 JP 4428620B2 JP 2003359225 A JP2003359225 A JP 2003359225A JP 2003359225 A JP2003359225 A JP 2003359225A JP 4428620 B2 JP4428620 B2 JP 4428620B2
Authority
JP
Japan
Prior art keywords
methane
oxidizing bacteria
charcoal
carrier
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003359225A
Other languages
Japanese (ja)
Other versions
JP2005118009A (en
Inventor
斉 寺添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003359225A priority Critical patent/JP4428620B2/en
Publication of JP2005118009A publication Critical patent/JP2005118009A/en
Application granted granted Critical
Publication of JP4428620B2 publication Critical patent/JP4428620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Description

本発明は、地球温暖化ガスの一つであるメタンを酸化分解する細菌を保持する担体の製造方法、製造装置並びにメタン発生抑制方法に関する。詳細には、メタンを酸化分解する細菌群を多孔質担体に付着・繁殖させることからなるメタン酸化菌保持担体の製造方法、製造装置並びにメタン発生抑制方法に関する。 The present invention relates to a method for manufacturing a responsible body for holding the methane oxidation decomposing bacteria is one of the greenhouse gases, a manufacturing apparatus and methane production inhibition method. In particular, the method of producing methane-oxidizing bacteria retaining support consists in adhere and propagate methane oxidation decomposing bacteria in multiple porous carrier, for the preparation apparatus and methane production inhibition method.

メタン(CH)は地球温暖化を引き起こす温室効果ガスであるが、大気中に約1.7ppm存在し、その主要な発生源は、自然湿地や海洋の他に、水田などの農地、廃棄物処分場、反芻動物、バイオマス燃焼などであると考えられている。メタンは一分子あたりの温暖化ポテンシャルでは二酸化炭素の約21倍であり、わずかな濃度の上昇が温暖化に大きく作用するといわれている。このため、国連気候変動枠組条約第3回締約国会議(COP3)において採択された京都議定書では、メタンは基準年を1990年として二酸化炭素換算での総排出量を少なくとも5wt%削減することが数値目標として定められ、工業、農林業など主な排出源での対応策が求められている。 Methane (CH 4 ) is a greenhouse gas that causes global warming, but it is present in the atmosphere at about 1.7 ppm, and its main source is not only natural wetlands and oceans, but also agricultural land such as paddy fields, waste It is considered to be a disposal site, ruminant, biomass burning. Methane is about 21 times the warming potential per molecule of carbon dioxide, and a slight increase in concentration is said to have a significant effect on global warming. For this reason, according to the Kyoto Protocol adopted at the 3rd Conference of the Parties to the United Nations Framework Convention on Climate Change (COP3), it is a numerical value that methane will reduce total emissions in terms of carbon dioxide by at least 5 wt% with a base year of 1990. It is set as a target, and countermeasures for major emission sources such as industry and agriculture / forestry are required.

メタン発生を抑制する技術は主に水田で検討されており、メタンの原料となる稲藁の施用法、中干しなど水管理などが提案されている。また、メタンを活性炭や木炭などの多孔質剤に吸着させること(特許文献1)、鋼業の産業副産物である転炉スラグや使用済みの使い捨てカイロ等の含鉄資材を水田に施用してメタン放出を抑制することが提案されている(非特許文献1)。しかし、湿地や廃棄物最終処分場などの広大な面積の発生源や高濃度のメタンが発生する堆肥化施設などに適用してメタン発生を抑制するには、中長期的に十分な効果が得られなかったり、残留する含鉄資材の問題があり、実用的な技術はほとんど知られていない。   Techniques for suppressing methane generation are being studied mainly in paddy fields, and methods for applying rice straw, which is a raw material for methane, and water management such as middle drying are proposed. In addition, methane is adsorbed on porous agents such as activated carbon and charcoal (Patent Document 1), and iron-containing materials such as converter slag and used disposable body warmers that are industrial byproducts of the steel industry are applied to paddy fields to release methane. Has been proposed (Non-patent Document 1). However, in order to control methane generation by applying it to large-area sources such as wetlands and final waste disposal sites and composting facilities where high concentrations of methane are generated, it is possible to obtain sufficient effects in the medium to long term. There are problems with iron-containing materials that cannot be used or remain, and few practical techniques are known.

一方、近年、微生物の分解能を利用した環境修復技術(バイオレメディエーション)が注目されており、石油類や農薬、重金属などの汚染物質で実用化されている。また、トリクロロエチレンやPCBなどの有害な化学物質などに付いても実証研究に対する取り組みがなされており、これら汚染物質の除去に微生物が利用可能であることが報告されている。しかし、従来は単一の細菌を使用することがほとんどであり、さらに土壌などの汚染源に直接、分解微生物を散布することから、環境中に存在する多くの捕食者により捕食され、十分な浄化効果が得られないことが多い。このため、有用な細菌を多孔質材に吸着させて、増殖させること(特許文献2)、さらに農薬などの汚染物質に汚染された土壌から汚染物質を分解しうる微生物を集積し、多孔質材に保持させることが提案されている(特許文献3)。   On the other hand, in recent years, environmental remediation technology (bioremediation) using the resolution of microorganisms has attracted attention and has been put to practical use in pollutants such as petroleum, agricultural chemicals, and heavy metals. In addition, efforts have been made for empirical research on harmful chemical substances such as trichlorethylene and PCB, and it has been reported that microorganisms can be used to remove these pollutants. However, in the past, it was almost always to use a single bacterium, and since the microorganisms were sprayed directly onto pollution sources such as soil, they were preyed by many predators existing in the environment and had a sufficient purification effect. Is often not obtained. For this reason, the porous material is made to adsorb and propagate useful bacteria (Patent Document 2), and further accumulates microorganisms capable of decomposing pollutants from soil contaminated with pollutants such as agricultural chemicals. (Patent Document 3).

しかし、これらの微生物を用いる先行技術は液状物質に対するものであり、メタンなどのガス状の汚染物質に適用することができない。また、メタンについては、酸化・分解する微生物の分離・同定する方法が報告されているに過ぎず(非特許文献1)、これらの微生物を用いて自然環境や人工施設からのメタンの発生を抑制することは全く知られていない。
特開2001−17859号公報 特開平8−252086号公報 特開平11−318435号公報 Nutrient Cycling in Agroecosystems, Vol.64, pp.193-201 (2002) Appl. Environ. Microbiol., Vol.65 (11), pp.4887-4897 (1999)
However, the prior art using these microorganisms is for liquid substances and cannot be applied to gaseous pollutants such as methane. For methane, only methods for separating and identifying microorganisms that oxidize and decompose have been reported (Non-patent Document 1), and these microorganisms are used to suppress the generation of methane from the natural environment and artificial facilities. There is nothing known to do.
JP 2001-17859 A Japanese Patent Laid-Open No. 8-252086 JP 11-318435 A Nutrient Cycling in Agroecosystems, Vol.64, pp.193-201 (2002) Appl. Environ. Microbiol., Vol. 65 (11), pp. 4887-4897 (1999)

従って、本発明の課題は、メタンの発生源が広範囲であったり、高濃度のメタン発生が起こるなどの、メタンの発生抑制が困難な環境に対しても適用可能であり、メタン発生または放出を抑制しうる資材の製造方法および製造装置並びにメタン発生抑制方法を提供することである。 Therefore, the problem of the present invention can be applied to an environment where it is difficult to suppress the generation of methane, such as a wide range of methane generation sources or high-concentration methane generation. manufacturing method and a manufacturing apparatus and methane production inhibition method of capital material capable of inhibiting is to provide.

本発明者等は、上記課題を解決するため鋭意研究を行ったところ、メタンを酸化分解する細菌を多孔質担体に付着・繁殖させて該担体に保持させ得ることを見出し、本発明を完成させた。 The present inventors have, when intensive studies for solving the above problems, found that getting the methane adhere and propagate the oxidation decomposing bacteria on a porous support is held by the carrier, completion of the present invention I let you.

従って、本発明は、多孔質担体にメタン酸化能を有する細菌を含有する培養液を混合し、次いでメタンを含有する空気を循環させて前記細菌を多孔質に付着させ、繁殖させることからなるメタン酸化菌を保持する担体の製造方法に関する。なお、多孔質担体にメタン酸化能を有する細菌を含有する培養液を混合する前に、多孔質担体に培養液を吸収させるようにしてもよい。なお、本発明において、メタンの酸化および酸化分解は、いずれもメタンを二酸化炭素と水に分解することを意味する。故に、メタンを酸化分解する細菌、およびメタン酸化菌は同じ細菌群を意味する。 Accordingly, the present invention consists of a porous carrier a mixture of culture medium containing bacteria with methane oxidizing ability, then by attaching the bacteria by circulating air containing methane porous, breeds The present invention relates to a method for producing a carrier for holding methane oxidizing bacteria. The culture medium may be absorbed by the porous carrier before mixing the culture medium containing bacteria having methane oxidizing ability with the porous carrier. In the present invention, the oxidation and oxidative decomposition of methane mean that methane is decomposed into carbon dioxide and water. Therefore, bacteria that oxidize and decompose methane and methane-oxidizing bacteria mean the same group of bacteria.

また、本発明は、内側容器と外側容器との2重容器から成り、前記内側容器は導入口と排気口とを備えると共に前記導入口にメタンを含む空気を当該内側容器内に導入し前記排気口から排出させる送風手段を備え、前記外側容器は前記内側容器との間に前記内側容器から排出されたメタンを含む空気を前記導入口へ還流させる流路を形成し、前記内側容器内にメタン酸化菌を含む養液を散布した多孔質担体を収納すると共に、前記内側容器内の前記多孔質担体を通過するメタンを含む空気の循環流を形成することを特徴とするメタン酸化菌保持担体製造装置に関する。   Further, the present invention comprises a double container of an inner container and an outer container, the inner container having an inlet and an outlet, and introducing the methane-containing air into the inlet and introducing the exhaust into the inner container. A blowing means for discharging from the mouth, and the outer container forms a flow path for returning air containing methane discharged from the inner container to the inlet, between the inner container and methane in the inner container. A carrier for supporting methane-oxidizing bacteria, comprising a porous carrier sprayed with a nutrient solution containing oxidizing bacteria and forming a circulating flow of air containing methane passing through the porous carrier in the inner container Relates to the device.

さらに本発明は、上述のメタン酸化菌保持担体の製造方法により得られたメタン酸化菌を保持する担体を、散布または配置させることからなるメタン発生を抑制する方法に関する。 The invention further a carrier which holds a methanotrophic bacterium obtained by the production method of methanotrophic bacteria hold-back carrier above mentioned method of inhibiting methane production which consists in spraying or disposed.

1.メタン酸化菌
メタンを酸化分解する細菌は、メタン酸化菌(Methanotroph)またはメタン資化菌と称される微生物であり、陸域の湖沼や河川、牧草地、広葉樹の森林の土壌や水中に広く生息していることが知られている。本発明においてはメタンを炭素源として用いることができ、メタンを最終的に二酸化炭素と水に分解しうる細菌であれば特に限定されない。そのような微生物は、非特許文献2に記載されており、例えばMethylococcus属、Methylopsphaera属、Methylomonas属、Methylomicrobium属、Methylobacter属、Methylosinus属、Methylocystis属およびMethanotrophic属の細菌が挙げられ、好ましくはHyphomicrobium methylovorum、Hyphomicrobium facilis、これらと同じクラスターに属するHyphomicrobium sp.S4として単離された菌株、タイプII メタン酸化細菌と分類されるT2-06株、T2-07株、T2-17株およびこれらと系統的に近縁であり、且つメタン酸化能を有する細菌などである。
1. Methane-oxidizing bacteria Bacteria that oxidize and decompose methane are microorganisms called methane-oxidizing bacteria or methane-utilizing bacteria, and are widely used in land and lakes, rivers, pastures, and broad-leaved forest soils and water. It is known that In the present invention, methane can be used as a carbon source, and is not particularly limited as long as it is a bacterium that can finally decompose methane into carbon dioxide and water. Such microorganisms are described in Non-Patent Document 2, for example Methylococcus sp, Methylopsphaera genus Methylomonas sp, Methylomicrobium genus Methylobacter genus Methylosinus genus include Methylocystis sp and Methanotrophic bacteria of the genus, preferably Hyphomicro bi um methylovorum, Hyphomicro bi um facilis, Hyphomicro bi um sp. belonging to these same clusters. Strains isolated as S4, T2-06 strain, T2-07 strain, T2-17 strain classified as type II methane-oxidizing bacteria, and bacteria closely related to these and having methane-oxidizing ability, etc. It is.

2.メタン酸化菌の取得
これらのメタン酸化菌は、湿地、湖沼や河川、水田、畑地、牧草地、広葉樹の森林の土壌や水中に広く生息しており、陸域に比べて種類は少ないものの海水や海底の泥土中でも生息が確認されている。メタン酸化菌は、メタン発生量の多い水田、湖沼の湿地、農業用水路の河岸湿地などから土壌を採取し、メタンを唯一の炭素源として培養することにより得ることができるが、本発明の目的のためにはよりメタン酸化分解能の高いメタン酸化菌または適用する場所の土壌から得られたメタン酸化菌を選択することが好ましい。
2. Acquiring Methane Oxidizing Bacteria These methane oxidizing bacteria are widely inhabited in the soil and water of wetlands, lakes and rivers, paddy fields, upland fields, pastures, broadleaf forests, and there are few types compared to land. Inhabiting has been confirmed even in the submarine mud. Methane-oxidizing bacteria can be obtained by collecting soil from paddy fields with high methane generation, lake wetlands, riverside wetlands in agricultural waterways, etc., and culturing them using methane as the sole carbon source. Therefore, it is preferable to select a methane-oxidizing bacterium having a higher methane-oxidizing ability or a methane-oxidizing bacterium obtained from the soil of the application site.

メタン酸化菌の選択は、メタン酸化菌がメタンを二酸化炭素と水に分解することから、メタンの消費と二酸化炭素の発生を指標として行うことができる。また、メタン酸化菌の培養は、八木ら(国立環境研究所特別研究報告SR−31−2000、2000年)によるクロロエチレンおよびクロロエタン分解菌の分離方法に準じて行うことができる。具体的には、次のように実施することができる。ガスバイアルビンにメタン酸化菌の培養に適する無機塩液体培地を入れ、さらに土壌を添加し、バイアルビンをで密閉する。次いで、ガスバイアルビンのヘッドスペースの空気を一部引き抜いた後、炭素源としてメタンを添加する。これを30℃の定温恒温器内で振とう培養する。一定期間培養した後、ヘッドスペースから空気を採取し、メタン濃度をガスクロマトグラフで測定する。メタン濃度の減少が認められたものについて、その液体培地を液体培地を含むガスバイアルビンに添加して、2回目の振とう培養を行う。この培養において、メタン濃度の減少が大きいメタン酸化菌を選び、さらに新しい液体培地に植え継いで3回目の集積培養を行い、メタン濃度の減少が大きいメタン酸化菌を選ぶ。   The methane-oxidizing bacterium can be selected by using methane consumption and carbon dioxide generation as indicators because the methane-oxidizing bacterium decomposes methane into carbon dioxide and water. Methane oxidizing bacteria can be cultured according to the method for separating chloroethylene and chloroethane-degrading bacteria by Yagi et al. (National Institute for Environmental Studies Special Research Report SR-31-2000, 2000). Specifically, it can be carried out as follows. Put an inorganic salt liquid medium suitable for cultivation of methane-oxidizing bacteria into the gas vial, add more soil, and seal the vial with. Next, after partially extracting air from the head space of the gas vial, methane is added as a carbon source. This is cultured with shaking in a constant temperature incubator at 30 ° C. After culturing for a certain period, air is collected from the head space, and the methane concentration is measured with a gas chromatograph. About what the reduction | decrease of methane density | concentration was recognized, the liquid culture medium is added to the gas vial containing a liquid culture medium, and a 2nd shake culture is performed. In this culture, a methane-oxidizing bacterium having a large decrease in methane concentration is selected. Further, the methane-oxidizing bacterium having a large decrease in methane concentration is selected by performing planting in a new liquid medium and performing a third enrichment culture.

3.多孔質担体
本発明において、多孔質担体は、前述のメタン酸化菌を保持しうる、すなわちメタン酸化菌を吸着させ、増殖させうるものであれば特に限定されないが、例えば木炭、活性炭などの他に、パーライト、軽石材、ゼオライトなどの多孔質鉱石が挙げられるが、木炭、活性炭が好ましい。本発明の多孔質担体を環境に適用する場合、循環型社会構築の一環として、ダム流木や建築廃材などの木質廃棄物、間伐材などを有効利用することが求められているため、本発明ではこれら木質廃棄物や間伐材を原料とした木炭を用いてもよい。この場合、例えばこれらの木質を粒経1〜100mm、好ましくは粒径5〜10mm程度にチップ化し、通常300〜1000℃、好ましくは400℃以上で炭化することにより多孔質資材を得ることができる。また、本発明の多孔質担体をウシなどの反芻動物に適用する場合、生体に影響を与えないもの、例えば木炭やゼオライトなどの多孔質担体を用いることが好ましい。
3. Porous carrier In the present invention, the porous carrier is not particularly limited as long as it can hold the above-mentioned methane-oxidizing bacteria, that is, can adsorb and grow methane-oxidizing bacteria. Porous ores such as perlite, pumice, and zeolite are exemplified, and charcoal and activated carbon are preferable. When the porous carrier of the present invention is applied to the environment, it is required to effectively use wooden waste such as dam driftwood and building waste, thinned wood, etc. as part of the construction of a recycling society. You may use the charcoal which made these woody waste and the thinning material as a raw material. In this case, a porous material can be obtained, for example, by chipping these woods to a grain size of 1 to 100 mm, preferably about 5 to 10 mm, and carbonizing usually at 300 to 1000 ° C., preferably 400 ° C. or more. . When the porous carrier of the present invention is applied to ruminants such as cattle, it is preferable to use a porous carrier such as charcoal or zeolite that does not affect the living body.

4.メタン酸化菌を保持する多孔質担体
メタン酸化菌が繁殖する多孔質担体を製造する際には、コストなどの実用化の観点から、できるだけ少量のメタン酸化菌を効率的に多孔質全体に付着させ、繁殖させることが好ましい。そこで、多孔質担体チップ状とし、その上部にメタン酸化菌を含む養液を加え、メタンを含む空気を循環することで、木炭への付着と繁殖を促進させる。多孔質担体として木炭を例にしてその方法を説明する。
(1)木炭に無機塩類培地を噴霧し、含水率80%程度まで十分に湿らせる。
(2)密閉可能な容器に(1)の木炭を入れ、上部からメタン酸化菌を含む培養液を添加する。
(3)真空ポンプで内部の空気を抜き、メタンと空気の割合が1:9の混合ガスを注入する。
(4)ファン等を稼動させ、メタンを含む空気を循環させる。
(5)容器内の温度を30℃程度に維持して静置する。
尚、メタン酸化菌の繁殖においては、初期メタン濃度が5〜45vol%、雰囲気温度が20〜40℃の範囲、酸素濃度が少なくとも5vol%望ましくは8vol%以上に維持される環境が適しており、上述の条件に限られるものではない。
4). Porous carrier holding methane-oxidizing bacteria When producing a porous carrier on which methane-oxidizing bacteria propagate, from the viewpoint of practical use such as cost, the smallest possible amount of methane-oxidizing bacteria is efficiently attached to the entire porous body. It is preferable to breed. Therefore, a porous carrier chip is formed, and a nutrient solution containing methane-oxidizing bacteria is added to the upper part thereof, and air containing methane is circulated to promote adhesion and propagation to charcoal. The method will be described taking charcoal as an example of the porous carrier.
(1) Spray an inorganic salt medium on charcoal and fully moisten it to a moisture content of about 80%.
(2) Put charcoal (1) into a sealable container and add a culture solution containing methane-oxidizing bacteria from the top.
(3) The inside air is evacuated with a vacuum pump, and a mixed gas having a methane / air ratio of 1: 9 is injected.
(4) Operate a fan and circulate air containing methane.
(5) The container is kept at a temperature of about 30 ° C.
In addition, in the propagation of methane oxidizing bacteria, an environment in which the initial methane concentration is 5 to 45 vol%, the ambient temperature is 20 to 40 ° C., and the oxygen concentration is maintained at least 5 vol%, preferably 8 vol% or more is suitable. It is not restricted to the above-mentioned conditions.

以上の操作終了後、内部のメタン濃度と二酸化炭素を経時的に測定し、メタン濃度が検出限界以下まで低下した時点で空気の循環を停止する。ここで、容器から取り出した木炭を用いて、以下の方法でメタン酸化菌の付着と繁殖の状態、メタン除去能力を確認することができる。   After the above operation is completed, the internal methane concentration and carbon dioxide are measured over time, and the air circulation is stopped when the methane concentration falls below the detection limit. Here, by using the charcoal taken out from the container, it is possible to confirm the adherence and breeding state of methane-oxidizing bacteria and the ability to remove methane by the following methods.

まず、容器から取り出した木炭を十分に混合し、一定量を無作為にピックアップしてガスバイアルビンに入れて密閉する。次に空気を一部引き抜いた後、その代わりにメタンを注入し、ガスバイアルビンは30℃の恒温器内に静置する。24時間問隔でサンプリングし、ガスクロマトグラフでメタンと二酸化炭素の濃度を測定することにより確認することができる。例えば、所望されるメタン除去能が得られない場合、用いたメタン酸化菌のメタン分解能はその分離の際に確認されているため、メタン酸化菌の付着と繁殖の状態が不十分であることが考えられる。   First, the charcoal taken out from the container is thoroughly mixed, and a certain amount is randomly picked up and sealed in a gas vial. Next, after partially extracting air, methane is injected instead, and the gas vial is left in a thermostat at 30 ° C. It can be confirmed by sampling at intervals of 24 hours and measuring the concentrations of methane and carbon dioxide with a gas chromatograph. For example, if the desired ability to remove methane is not obtained, the methane-degrading ability of the methane-oxidizing bacterium used is confirmed at the time of separation, so that the state of methane-oxidizing bacteria adherence and breeding may be insufficient. Conceivable.

5.メタン発生の抑制
本発明のメタン酸化能を有する細菌を保持多孔質担体を水田、湿地、廃棄物処分場または堆肥化施設に配置、散布あるいは埋設する。埋設する場合、メタン酸化菌は好気性細菌であるため、該担体中が好気的条件になるようにする必要がある。配置、散布または埋設する量は、メタンの発生を抑制すべき条件、該細菌のメタン酸化・分解能によって異なるが、例えば1mあたり、100g〜50kg、好ましくは2kg〜25kg程度である。例えば水田や湿地の場合、100g/m程度でも十分なメタン抑制効果を得られるが、廃棄物処分場などでは約1〜20cm、好ましくは約5〜10cmの層を形成させるため、層の厚さに応じて必要量は多くなる。
5). Suppression of methane generation The porous carrier holding the bacteria having the ability to oxidize methane of the present invention is placed, spread or buried in a paddy field, wetland, waste disposal site or composting facility. When buried, the methane-oxidizing bacterium is an aerobic bacterium, so it is necessary to make the inside of the carrier aerobic. The amount to be arranged, sprayed or buried varies depending on the conditions under which methane generation should be suppressed and the methane oxidation / decomposition of the bacteria, but is, for example, about 100 to 50 kg, preferably about 2 to 25 kg per 1 m 2 . For example, in the case of paddy fields and wetlands, a sufficient methane suppression effect can be obtained even at about 100 g / m 2 , but a layer of about 1 to 20 cm, preferably about 5 to 10 cm, is formed in a waste disposal site. The required amount increases accordingly.

本発明のメタン酸化菌保持担体の製造方法並びに装置によれば、少量のメタン酸化菌を効率的に木炭あるいはその他の多孔質担体の全体に付着・繁殖させることができ、低コストでメタン酸化菌保持担体を大量生産可能となる。そして、このメタン酸化菌保持担体により、メタン発生源が広範囲にわたる廃棄物最終処分場や湿地、水田などからのメタン発生を効率よく、低コストで抑制することができる。さらに、多孔質材として木炭という自然素材、特にダム流木や建築廃材などの木質廃棄物、間伐材を原料とした木炭が利用できることから環境への負荷が小さい。 According to the method and apparatus for producing a carrier for holding methane-oxidizing bacteria of the present invention , a small amount of methane-oxidizing bacteria can be efficiently attached to and propagated on the entire charcoal or other porous carrier, and the methane-oxidizing bacteria can be produced at low cost. The holding carrier can be mass-produced. The methane-oxidizing bacterium holding carrier can efficiently suppress methane generation from a waste final disposal site, a wetland, a paddy field, etc. over a wide range of methane generation sources at low cost. Furthermore, natural materials such as charcoal, especially timber waste such as dam driftwood and building waste, and charcoal made from thinned wood can be used as a porous material, so the burden on the environment is small.

下記の実施例により本発明を説明するが、本発明は以下の実施例のみに限定されるものではない。   The present invention will be described with reference to the following examples, but the present invention is not limited to the following examples.

1.メタン酸化菌の採取および培養
本実施例におけるメタン酸化菌群は、水田、手賀沼湿地、農業用水路の河岸湿地の土壌(黒色の表層から約5cmの深さまで10cm×10cm程度)から以下の方法で採取・集積培養し、メタン分解能力の高いものを選択した。
30mLのガスバイアルビンに表1に示すメタン酸化菌用無機塩液体培地を入れ、さらに土壌を0.1g添加し、ブチルゴム栓をアルミシールで密閉し、炭素源としてメタンを10mL添加した。それぞれのガスバイアルビンは、30℃の定温恒温器内で振とう培養(回転数:120rpm)した。1週間後に、その液体培地を1mL採取し、新しい液体培地10mLを入れたガスバイアルビンに添加して、再度メタンを添加して振とう培養を行った。この操作を繰り返して、4回目の集積培養を行った。集積したメタン酸化細菌群のメタン分解能力を図1に示す。これらのメタン酸化菌のメタン除去能力では、手賀沼湿地A区で実験開始から3日目に検出限界以下までメタン濃度が低下し、水田区と用水湿地A、B区、手賀沼湿地B区のメタン濃度が約50%しか低下していないのに比べ、高い除去効果を示した。同様に、二酸化炭素濃度でも、手賀沼湿地A区は他の区に比べ高い濃度を示した。
1. Collection and culture of methane-oxidizing bacteria The methane-oxidizing bacteria group in this example is obtained from the paddy field, the Teganuma wetland, the soil of riverside wetlands of agricultural waterways (about 10 cm x 10 cm from the black surface to a depth of about 5 cm) by the following method. Harvested and enriched cultures were selected to have high methane decomposition ability.
A 30 mL gas vial was charged with the inorganic salt liquid medium for methane oxidizing bacteria shown in Table 1, 0.1 g of soil was further added, the butyl rubber stopper was sealed with an aluminum seal, and 10 mL of methane was added as a carbon source. Each gas vial was cultured with shaking (rotation speed: 120 rpm) in a constant-temperature incubator at 30 ° C. One week later, 1 mL of the liquid medium was collected, added to a gas vial containing 10 mL of a new liquid medium, and methane was added again to perform shaking culture. This operation was repeated to perform a fourth enrichment culture. FIG. 1 shows the methane decomposition ability of the accumulated methane-oxidizing bacteria group. In the methane removal ability of these methane-oxidizing bacteria, the methane concentration decreased to the detection limit or less on the third day from the start of the experiment in Teganuma Wetland A ward, and the paddy ward, irrigation wetlands A, B ward, Compared with the fact that the methane concentration was reduced by only about 50%, a high removal effect was exhibited. Similarly, in the carbon dioxide concentration, Teganuma Wetland A Ward showed higher concentration than other Wards.

2.木炭を用いたメタン酸化細菌群の付着・繁殖
実施例1で得られた5種類のメタン酸化菌の中で除去能力の高かった手賀沼湿地A区のメタン酸化菌群を用いて、木炭への付着・繁殖を試みた。木炭はダム流木(広葉樹と針葉樹の割合が7:3)のチップを原料とした木炭を用いた。木炭の比表面積を表2に示す。実験に使用した木炭は、篩で粒径5mm〜10mmに選別し、蒸留水で十分に洗浄した後、100℃で24時間乾燥した。木炭への付着・繁殖実験の接種源として、メタン酸化菌が集積した液体培地1mLを新しい液体培地10mLに入れ、3mLのメタンを加えて1週間増殖させた養液を作成した。作成した養液中の生菌数(cfuで表す)は、0.14×1010cfu MPN/mLと推定された。
2. Attachment and breeding of methane-oxidizing bacteria using charcoal Using the methane-oxidizing bacteria in the Aga Teganuma wetland, which had a high removal ability among the five types of methane-oxidizing bacteria obtained in Example 1, Attempt to adhere and breed. As charcoal, charcoal made from chips of dam driftwood (ratio of hardwood and conifer 7: 3) was used. Table 2 shows the specific surface area of charcoal. The charcoal used in the experiment was screened to a particle size of 5 mm to 10 mm with a sieve, washed thoroughly with distilled water, and then dried at 100 ° C. for 24 hours. As an inoculation source for the charcoal adhesion / reproduction experiment, 1 mL of a liquid medium in which methane-oxidizing bacteria were accumulated was placed in 10 mL of a new liquid medium, and 3 mL of methane was added to grow for 1 week. The viable cell count (expressed in cfu) in the prepared nutrient solution was estimated to be 0.14 × 10 10 cfu MPN / mL.

メタン酸化菌が繁殖する木炭を作成する場合、実用化の観点から、できるだけ少量のメタン酸化菌を効率的に木炭全体に付着・繁殖させることが望ましい。そこで、木炭はチップ状とし、その上部にメタン酸化菌を含む養液を加え、メタンを含む空気を循環することで、木炭への付着と繁殖を促進できると考え、実験的規模のメタン酸化菌保持担体製造装置(図2)を試作した。   When preparing charcoal in which methane-oxidizing bacteria propagate, it is desirable to efficiently attach and propagate as little methane-oxidizing bacteria as possible to the entire charcoal from the viewpoint of practical use. Therefore, it is considered that charcoal is chip-shaped, and a nutrient solution containing methane-oxidizing bacteria is added to the top, and air containing methane is circulated to promote adhesion and propagation to charcoal. A holding carrier manufacturing apparatus (FIG. 2) was prototyped.

このメタン酸化菌保持担体製造装置は、内側容器1と外側容器2との2重容器から成り、内側容器1は導入口3と排気口4とを備えると共に導入口3にメタンを含む空気5を当該内側容器1内に導入し排気口4から排出させる送風手段6を備え、外側容器2は内側容器1との間に内側容器1から排出されたメタンを含む空気5を導入口3へ還流させる流路7を形成し、内側容器1内にメタン酸化菌を含む養液8を散布した多孔質担体9を収納すると共に、内側容器1内の多孔質担体9を通過するメタンを含む空気5の循環流を形成するようにしている。ここで、内側容器1の大きさは、100mm(W)×100mm(D)×200mm(H)で、導入口3を塞ぐ蓋部分に送風手段6としての12Vのシロッコファンを取り付けてあり、容器1の下部に5mmの穴からなる排気口4を4個設けた構造とした。この内側容器1を外側容器2としての真空ポリカーボネイトデシケータ(容量2.4L)に収めて二重容器とし、デシケータ2と内側容器1との間にメタンを含む空気の循環流を形成可能とする流路・スペースを形成する。このメタン酸化菌保持担体製造装置を用いて、以下の手順で実験を実施した。
(1)木炭に無機塩類培地を噴霧し、含水率80%程度まで十分に湿らせる。
(2)内側容器1に多孔質担体9としての木炭チップを20g入れ、上部からメタン酸化菌を含む養液8を1mLを滴下させて加える。
(3)内側容器1をデシケータ2内に静置する。
(4)図示していない真空ポンプでデシケータ2内の空気を抜き、メタンと空気の割合が1:9の混合ガスを注入する。
(5)シロッコファン6を稼動させ、メタンを含む空気5を内側容器1内に送り込む。
(6)デシケータ2を30℃の恒温器(図示省略)内に静置する。
This apparatus for producing a carrier for holding methane-oxidizing bacteria comprises a double container of an inner container 1 and an outer container 2, and the inner container 1 is provided with an inlet 3 and an outlet 4 and air 5 containing methane at the inlet 3 is provided. A blowing means 6 is provided for introducing into the inner container 1 and discharging from the exhaust port 4, and the outer container 2 circulates air 5 containing methane discharged from the inner container 1 to the inlet 3. The flow path 7 is formed, the porous carrier 9 in which the nutrient solution 8 containing methane oxidizing bacteria is dispersed is accommodated in the inner container 1, and the air 5 containing methane that passes through the porous carrier 9 in the inner container 1. A circulation flow is formed. Here, the size of the inner container 1 is 100 mm (W) × 100 mm (D) × 200 mm (H), and a 12 V sirocco fan as the blowing means 6 is attached to the lid portion that closes the inlet 3. A structure is provided in which four exhaust ports 4 each having a 5 mm 2 hole are provided in the lower part of 1. The inner container 1 is housed in a vacuum polycarbonate desiccator (capacity 2.4 L) as the outer container 2 to form a double container, and a flow that can form a circulating flow of air containing methane between the desiccator 2 and the inner container 1. Form roads and spaces. Using this methane-oxidizing bacteria-retaining carrier production apparatus, an experiment was performed according to the following procedure.
(1) Spray an inorganic salt medium on charcoal and fully moisten it to a moisture content of about 80%.
(2) 20 g of charcoal chips as the porous carrier 9 are put into the inner container 1, and 1 mL of nutrient solution 8 containing methane oxidizing bacteria is added dropwise from above.
(3) Place the inner container 1 in the desiccator 2.
(4) The air in the desiccator 2 is extracted with a vacuum pump (not shown), and a mixed gas having a methane / air ratio of 1: 9 is injected.
(5) The sirocco fan 6 is operated, and the air 5 containing methane is sent into the inner container 1.
(6) The desiccator 2 is placed in a thermostat (not shown) at 30 ° C.

以上の操作終了後、デシケータ2内のガスを採取口10から抽出して、メタン濃度と二酸化炭素濃度を経時的に測定し、メタン濃度が検出限界以下まで低下した時点でシロッコファン6を止めて空気5の循環を停止し、内側容器1をデシケータ2から取り出した。内側容器1から取り出した木炭9を用いて、メタン除去能力を調べた結果を図3に示す。容器1から木炭(多孔質担体)9をランダムに1gずつ採取し5サンプルを作成した。そして、3mLのメタンを含む空気と木炭を30mLのガスバイアルビンに入れ、密閉後30℃の恒温器内に静置した。メタンと二酸化炭素濃度をガスクロマトグラフで経時的に測定した。その結果、いずれの木炭においても、実験開始からメタン濃度は急速に低下し、2日目には1%以下、7日目には検出限界以下になることが判明した。また、二酸化炭素濃度もメタン濃度の低下に伴って、2日目には約4%、7日目には5%に達した。このことから、ガスバイアルビンに注入したメタンは、木炭に付着・繁殖したメタン酸化菌によって除去されたことが確認された。さらに、SEM電子顕微鏡による分解木炭の写真撮影にいより、木炭の孔隙内にメタン酸化菌が繁殖しているのが確認された(図4)。また、木炭の含水率は、実験開始時には約80%であったが、終了時には40%に低下し、空気の循環により乾燥したことで取り扱いが容易になった。   After the above operation is completed, the gas in the desiccator 2 is extracted from the sampling port 10, the methane concentration and the carbon dioxide concentration are measured over time, and the sirocco fan 6 is stopped when the methane concentration falls below the detection limit. The circulation of the air 5 was stopped, and the inner container 1 was taken out from the desiccator 2. The result of examining the methane removal capability using the charcoal 9 taken out from the inner container 1 is shown in FIG. 1 g of charcoal (porous carrier) 9 was randomly collected from the container 1 to prepare 5 samples. And the air and charcoal containing 3 mL of methane were put into a 30 mL gas vial bottle, and after standing, it was left still in a 30 ° C. thermostat. Methane and carbon dioxide concentrations were measured over time with a gas chromatograph. As a result, it was found that in any charcoal, the methane concentration rapidly decreased from the start of the experiment, and became 1% or less on the second day and below the detection limit on the seventh day. The carbon dioxide concentration also reached about 4% on the 2nd day and 5% on the 7th day as the methane concentration decreased. From this, it was confirmed that the methane injected into the gas vial was removed by the methane oxidizing bacteria attached to and propagated on the charcoal. Furthermore, it was confirmed that methane-oxidizing bacteria propagated in the pores of charcoal by taking pictures of decomposed charcoal with an SEM electron microscope (FIG. 4). The moisture content of charcoal was about 80% at the start of the experiment, but decreased to 40% at the end of the experiment, and it became easy to handle because it was dried by air circulation.

3.メタン酸化・分解能の評価
実施例2で得られた木炭の重量を変えて、メタンの除去効果を調べた結果を図5に示す。3mLのメタンを含む空気と重量を変えた木炭を30mLのガスバイアルビンに入れ、密閉した後30℃の恒温器内に静置した。メタン濃度をガスクロマトグラフで測定し、検出されなくなった場合は再びメタンを含む空気を入れる操作を濃度の減少が認められなくなるまで継続した。その結果、木炭によって除去されたメタン量は、木炭の重量に比例して増加することが判明した。すなわち、分解木炭は、1gあたり約6.1mgのメタン除去能力を有することが示された。木炭のみによる重量1gあたりのメタン除去量は約4.7×10-4mg/gであったことから、メタン酸化菌の繁殖により木炭の除去能力が約13,000倍に高まった。
3. Evaluation of Methane Oxidation / Resolution The results of examining the effect of removing methane by changing the weight of charcoal obtained in Example 2 are shown in FIG. The air containing 3 mL of methane and charcoal with different weights were placed in a 30 mL gas vial, sealed, and then placed in a 30 ° C. incubator. The methane concentration was measured with a gas chromatograph, and when it was no longer detected, the operation of adding air containing methane was continued until no decrease in the concentration was observed. As a result, it was found that the amount of methane removed by charcoal increased in proportion to the weight of charcoal. That is, it was shown that cracked charcoal has a methane removal capacity of about 6.1 mg / g. Since the amount of methane removed per gram by weight of charcoal alone was about 4.7 × 10 −4 mg / g, the ability to remove charcoal increased by about 13,000 times due to the propagation of methane oxidizing bacteria.

メタン酸化菌を保持する木炭によるメタン除去速度を調べた結果を図6に示す。2mLのメタンを含む空気と木炭1gを20mLの試験管に入れ、密閉した後30℃の恒温器内に静置した。メタン濃度をガスクロマトグラフで経時的に測定した。この結果、実験開始時のメタン濃度は約2.5mg CH(容量比:15%)であったが、6時間後には初期濃度の75%、15時間後には約40%、26時間後にはほぼ検出限界以下に低下したことが判明した。メタン濃度は、時間に反比例して減少することから、メタン酸化菌を保持する木炭によるメタンの除去速度は、0.091mgCH/hr/gと算出された。また、メタン酸化菌を保持する木炭の異なる温度条件におけるメタン除去率を図7に示す。実験開始から7日目のメタン除去率は、温度が5℃では約5%で、温度が高くなると除去率も増加し、10℃で約30%、15℃で約50%であった。実験開始5日目に比べて、7日目のメタン除去率が増加したことから、メタン酸化菌は活動していると考えられる。一方、温度が20℃から40℃では、メタン除去率は5日目で100%に達し、注入したメタンはすべて除去された。しかし、温度を50℃に設定するとメタンの除去率は小さく、ほとんど除去されなかった。以上のことから、木炭で繁殖したメタン酸化菌は20〜40℃が生育適温と考えられ、15℃以下ではメタン除去能力が低下し、50℃以上では分解能力を失うと推測された。尚、異なる温度条件におけるメタン酸化菌繁殖木炭のメタン除去に関する実験は、3mLのメタンを含む空気と木炭1gを20mLの試験管に入れ、密閉した後、5,10,15,20,30,40,50℃の恒温器内に静置した。メタン濃度を5日目と7日目にガスクロマトグラフで測定し、初期濃度に対する減少した割合を除去率とした。 The result of examining the methane removal rate by charcoal holding methane oxidizing bacteria is shown in FIG. Air containing 2 mL of methane and 1 g of charcoal were placed in a 20 mL test tube, sealed, and then placed in a thermostat at 30 ° C. The methane concentration was measured over time with a gas chromatograph. As a result, the methane concentration at the start of the experiment was about 2.5 mg CH 4 (volume ratio: 15%), but after 6 hours it was 75% of the initial concentration, after 15 hours it was about 40%, and after 26 hours. It was found that it was almost below the detection limit. Since the methane concentration decreased in inverse proportion to the time, the removal rate of methane by charcoal holding methane oxidizing bacteria was calculated to be 0.091 mg CH 4 / hr / g. Moreover, the methane removal rate in the different temperature conditions of the charcoal which hold | maintains methane oxidation bacteria is shown in FIG. On the seventh day from the start of the experiment, the methane removal rate was about 5% at a temperature of 5 ° C., and the removal rate increased with an increase in temperature, about 30% at 10 ° C. and about 50% at 15 ° C. Since the methane removal rate on the 7th day increased compared to the 5th day from the start of the experiment, it is considered that the methane oxidizing bacteria are active. On the other hand, when the temperature was 20 ° C. to 40 ° C., the methane removal rate reached 100% on the fifth day, and all the injected methane was removed. However, when the temperature was set to 50 ° C., the removal rate of methane was small and hardly removed. From the above, it was considered that methane-oxidizing bacteria propagated on charcoal were considered to have a suitable growth temperature of 20 to 40 ° C., the ability to remove methane was lowered at 15 ° C. or lower, and the ability to decompose was lost at 50 ° C. or higher. In addition, the experiment regarding the methane removal of the methane-oxidizing bacterium breeding charcoal under different temperature conditions was carried out by putting air containing 3 mL of methane and 1 g of charcoal into a 20 mL test tube, sealing it, then 5, 10, 15, 20, 30, 40. , Left in a 50 ° C. incubator. The methane concentration was measured with a gas chromatograph on the 5th and 7th days, and the reduction rate relative to the initial concentration was taken as the removal rate.

4.メタン酸化細菌群の同定
木炭に付着・繁殖したメタン酸化菌群の菌種を同定するために、この木炭をすりつぶし、表1の液体培地で培養したものからゲノムDNAを抽出し、これを鋳型としてPCRを行い、16S rRNA遺伝子領域を増幅した。プライマーには、細菌全般に保存性の高い27F(5’-GAGTTTGATCMTGGCTCA-3’;配列番号1)と1544R(5’-AGAAAGGAGGTGATCCAGCC-3’;配列番号2)というプライマーを用いた。アガロースゲル電気泳動にて、目的領域の増幅を確認後、このPCR産物のクローニングを行った。ベクターには、pGEMT-easy(プロメガ)を用い、常法にて、TAクローニングを行い、大腸菌にエレクトロポレーションによって、導入した。
4). Identification of methane-oxidizing bacteria group In order to identify the species of methane-oxidizing bacteria group that adhered to and propagated on charcoal, this charcoal was ground, and genomic DNA was extracted from those cultured in the liquid medium shown in Table 1, using this as a template. PCR was performed to amplify the 16S rRNA gene region. As the primers, primers 27F (5′-GAGTTTGATCMTGGCTCA-3 ′; SEQ ID NO: 1) and 1544R (5′-AGAAAGGAGGTGATCCAGCC-3 ′; SEQ ID NO: 2), which are highly conserved throughout bacteria, were used. After confirming amplification of the target region by agarose gel electrophoresis, this PCR product was cloned. Using pGEMT-easy (Promega) as a vector, TA cloning was performed by a conventional method and introduced into E. coli by electroporation.

出現したコロニーは、ベクターに存在するM13のプライマーセット
M13前方プライマー:5’-GTTTTCCCAGTCACGACGTT-3’(配列番号3)
M13後方プライマー:5’-GGAAACAGCTATGACCATGA-3’;(配列番号4)
で直接増幅し、インサートの確認を行った。目的産物の増幅が確認できたものについて、M13前方プライマーを用いて、シーケンスを行い、メタン酸化菌と考えられるMet16、21、31という3検体を選択し、全長をカバーするようなシークエンスを行った。得られた配列データを元にアッセンブルを行い、全長の配列を決定し、16S rRNA遺伝子の塩基配列を用いて、相同性検索、系統樹の作製を行い、非特許文献2の方法に準じて菌種の推定を行った。相同性検索は、GenBankのデータベースに対するBLAST検索を用た。マルチプルアライメントおよび系統樹の作製には、ClustalXとTreeviewを用いた。
The emerged colony is M13 primer set present in the vector M13 forward primer: 5'-GTTTTCCCAGTCACGACGTT-3 '(SEQ ID NO: 3)
M13 rear primer: 5′-GGAAACAGCTATGACCATGA-3 ′; (SEQ ID NO: 4)
Amplification was performed directly, and the insert was confirmed. For those for which amplification of the target product was confirmed, sequencing was performed using the M13 forward primer, three samples Met16, 21, and 31 considered to be methane-oxidizing bacteria were selected, and a sequence covering the entire length was performed. . Assembly is performed based on the obtained sequence data, the full-length sequence is determined, homology search and phylogenetic tree generation are performed using the base sequence of 16S rRNA gene, and the fungus is prepared according to the method of Non-Patent Document 2. Species estimation was performed. The homology search used a BLAST search against the GenBank database. ClustalX and Treeview were used for multiple alignment and generation of phylogenetic trees.

以上の結果、Met16は、Hyphomicrobium methylovorum、Hyphomicrobium facilisと同じクラスターに属する菌株で、Hyphomicrobium sp.S4として単離された株と系統的に非常に近い株と同定された。さらに、Met21株とMet31株は、タイプII メタン酸化細菌[Methanotroph]と分類された配列データが高い相同性を持っており、Met21株は、T2−06株と近縁、Met31株は、T2−07株やT2−17株と近縁であると判断された。 As a result of the above, Met16 is, Hyphomicro bi um methylovorum, in a strain belonging to the same cluster as the Hyphomicro bi um facilis, Hyphomicro bi um sp. A strain that was systematically very close to the strain isolated as S4 was identified. Furthermore, the Met21 strain and the Met31 strain have high homology in the sequence data classified as type II methane-oxidizing bacteria [Methanotroph], the Met21 strain is closely related to the T2-06 strain, and the Met31 strain is the T2- It was judged to be closely related to the 07 strain and the T2-17 strain.

尚、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、図2に例示するメタン酸化菌保持担体製造装置は、便宜上実験に適した構造を採っているが、工業的実施に際してはこれに限られない。即ち、外側容器2は実験上メタン濃度を正確に測定する必要があるのでデシケータを利用しているが、必ずしもデシケータでなくとも良く、単にメタンを含む空気が漏洩しない程度の密封容器であれば足りるし、繁殖のための温度も恒温器などを使って30℃一定に保温する必要はなく、20℃〜40℃の範囲であればその間で変動しても、あるいは任意の温度で一定温度に管理されていても効率的に繁殖させ得る。また、メタンを含む空気の酸素濃度も、少なくとも5vol%程度あれば繁殖可能であり、望ましくは8vol%以上に維持することであるが、空気には通常24vol%の酸素が含まれているので5〜45vol%の範囲でメタンを含めての密閉状態下での循環使用に際しても酸素濃度は8vol%以上に維持することが可能である。さらに、内側容器1の大きさや導入口3および排気口4の位置や大きさ、数などは図示の実施例のものに限られず、メタン酸化菌保持担体の製造規模に応じて適宜選定される。また、送風手段6として、本実施例ではシロッコファンを用いているがこれに限られずメタン酸化菌の繁殖に適した送風量を確保できる手段であればどのようなものでも実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example, the methane oxidant holding carrier production apparatus exemplified in FIG. 2 has a structure suitable for experiments for convenience, but is not limited to this in industrial implementation. That is, since it is necessary to accurately measure the methane concentration in the experiment, the outer container 2 uses a desiccator. However, the outer container 2 is not necessarily a desiccator, and may be a sealed container that does not leak methane-containing air. However, the temperature for breeding does not need to be kept constant at 30 ° C. using a thermostat or the like, and if it is in the range of 20 ° C. to 40 ° C., it may fluctuate between them or be controlled at a constant temperature. Can be propagated efficiently. In addition, if the oxygen concentration of air containing methane is at least about 5 vol%, it can be propagated and desirably maintained at 8 vol% or more. However, since air usually contains 24 vol% oxygen, 5 The oxygen concentration can be maintained at 8 vol% or more even in the circulation use in a sealed state including methane in the range of ˜45 vol%. Furthermore, the size of the inner container 1 and the positions, sizes, number, and the like of the introduction port 3 and the exhaust port 4 are not limited to those of the illustrated embodiment, and are appropriately selected according to the production scale of the methane oxidizing bacteria holding carrier. In the present embodiment, a sirocco fan is used as the air blowing means 6, but the present invention is not limited to this, and any means can be used as long as it can secure an air blowing amount suitable for the propagation of methane oxidizing bacteria.

水田、手賀沼湿地、農業用水路の河岸湿地から採取した土壌から得られたメタン酸化菌群のメタン分解能力を示すグラフであり、(A)はメタン濃度の変化を、(B)は二酸化炭素濃度の変化をそれぞれ示す。It is a graph which shows the methane decomposition ability of the methane oxidizing bacteria group obtained from the soil collected from the paddy field, Teganuma wetland, and the riverside wetland of the agricultural canal. (A) is the change of methane concentration, (B) is the carbon dioxide concentration. The change of each is shown. メタン酸化菌群を木炭に付着・繁殖させるための装置の概略図である。It is the schematic of the apparatus for making methane oxidation bacteria group adhere and propagate to charcoal. メタン酸化菌群を付着・繁殖させた木炭のメタン分解能力を示すグラフであり、(A)はメタン濃度の変化を、(B)は二酸化炭素濃度の変化をそれぞれ示す。It is a graph which shows the methane decomposition | disassembly ability of the charcoal which adhered and propagated the methane oxidation bacteria group, (A) shows the change of methane concentration, (B) shows the change of carbon dioxide concentration, respectively. メタン酸化菌が木炭の孔隙で繁殖しているSEM写真である。It is a SEM photograph in which methane-oxidizing bacteria propagate in the pores of charcoal. 分解木炭の重量とメタン分解量との関係を示すグラフである。It is a graph which shows the relationship between the weight of decomposition | disassembly charcoal, and the amount of methane decomposition | disassembly. 分解木炭によるメタンの分解速度を表すグラフである。It is a graph showing the decomposition rate of methane by cracked charcoal. 異なる温度条件下での分解木炭のメタン分解能力を示すグラフである。It is a graph which shows the methane decomposition ability of cracked charcoal under different temperature conditions.

符号の説明Explanation of symbols

1 内側容器
2 外側容器
3 導入口
4 排気口
5 メタンを含む空気
6 送風手段
7 還流路
8 メタン酸化菌を含む養液
9 多孔質担体
DESCRIPTION OF SYMBOLS 1 Inner container 2 Outer container 3 Inlet port 4 Exhaust port 5 Air containing methane 6 Blowing means 7 Reflux path 8 Nutrient solution containing methane oxidizing bacteria 9 Porous carrier

Claims (6)

多孔質担体にメタン酸化能を有する細菌を含有する培養液を散布あるいは添加して混合し、次いでメタンを含有する空気を前記多孔質担体を通過させるように循環させて前記細菌を多孔質に付着させ、繁殖させることからなるメタン酸化菌保持担体の製造方法。 A culture solution containing bacteria capable of oxidizing methane is sprayed or added to the porous carrier and mixed, and then air containing methane is circulated through the porous carrier to attach the bacteria to the porous material. A method for producing a carrier for holding methane-oxidizing bacteria , which comprises allowing the microorganism to propagate . 前記多孔質担体に前記メタン酸化能を有する細菌を含有する培養液を散布あるいは添加して混合する前に、前記多孔質担体に培養液を吸収させる請求項1記載の方法。 The method according to claim 1, wherein the culture solution is absorbed by the porous carrier before the culture solution containing the bacterium capable of oxidizing methane is dispersed or added to the porous carrier and mixed. 前記多孔質担体が、木炭、活性炭、パーライト、軽石材またはゼオライトから選択される請求項1記載の方法 The method according to claim 1, wherein the porous carrier is selected from charcoal, activated carbon, perlite, pumice or zeolite . 前記多孔質担体は、木質材料を粒径1〜100mm程度にチップ化し、300℃〜1000℃で炭化して得られる木炭である請求項3記載の方法 The method according to claim 3, wherein the porous carrier is charcoal obtained by chipping a wood material into a particle size of about 1 to 100 mm and carbonizing at 300 ° C. to 1000 ° C. 内側容器と外側容器との2重容器から成り、前記内側容器は導入口と排気口とを備えると共に前記導入口にメタンを含む空気を当該内側容器内に導入し前記排気口から排出させる送風手段を備え、前記外側容器は前記内側容器との間に前記内側容器から排出されたメタンを含む空気を前記導入口へ還流させる流路を形成し、前記内側容器内にメタン酸化菌を含む養液を散布した多孔質担体を収納すると共に、前記内側容器内の前記多孔質担体を通過するメタンを含む空気の循環流を形成することを特徴とするメタン酸化菌保持担体製造装置 An air blowing means comprising a double container of an inner container and an outer container, the inner container having an inlet and an outlet, and introducing air containing methane into the inlet and discharging the air from the outlet The outer container forms a flow path for returning air containing methane discharged from the inner container to the introduction port between the outer container and the nutrient solution containing methane oxidizing bacteria in the inner container An apparatus for producing a carrier for holding methane-oxidizing bacteria , wherein a circulating flow of air containing methane passing through the porous carrier in the inner container is formed . 請求項1〜4のいずれか1つに記載のメタン酸化菌保持担体の製造方法により製造されたメタン酸化菌保持担体を、メタン発生源に散布または配置させることからなるメタン発生抑制方法 A method for inhibiting methane generation, comprising spraying or arranging a methane oxidant holding carrier produced by the method for producing a methane oxidant holding carrier according to any one of claims 1 to 4 on a methane generation source .
JP2003359225A 2003-10-20 2003-10-20 Methane oxidizing bacteria holding carrier manufacturing method, manufacturing apparatus, and methane generation suppression method Expired - Fee Related JP4428620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359225A JP4428620B2 (en) 2003-10-20 2003-10-20 Methane oxidizing bacteria holding carrier manufacturing method, manufacturing apparatus, and methane generation suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359225A JP4428620B2 (en) 2003-10-20 2003-10-20 Methane oxidizing bacteria holding carrier manufacturing method, manufacturing apparatus, and methane generation suppression method

Publications (2)

Publication Number Publication Date
JP2005118009A JP2005118009A (en) 2005-05-12
JP4428620B2 true JP4428620B2 (en) 2010-03-10

Family

ID=34615525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359225A Expired - Fee Related JP4428620B2 (en) 2003-10-20 2003-10-20 Methane oxidizing bacteria holding carrier manufacturing method, manufacturing apparatus, and methane generation suppression method

Country Status (1)

Country Link
JP (1) JP4428620B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820201B2 (en) * 2006-04-11 2011-11-24 財団法人電力中央研究所 Plant growth promoting method and plant growth promoting agent
KR100804624B1 (en) * 2006-06-08 2008-02-20 한국건설기술연구원 Biological phosphorus and nitrogen removal methods using the granulated methan-oxidizing bacteria and apparatus therefor
PL214037B1 (en) * 2007-12-24 2013-06-28 Lubelska Polt Filling of biofilter for oxidation of methane
EP2232259B1 (en) 2008-01-09 2016-10-12 Keck Graduate Institute System, apparatus and method for material preparation and/or handling
JP5711227B2 (en) 2009-06-26 2015-04-30 クレアモント バイオソリューソンズ エルエルシー Capture and elution of biological specimens using sample destruction beads
KR101160399B1 (en) * 2010-02-02 2012-06-26 주식회사 젬백스앤카엘 A Coating Method Of MMOMethan Mono-Oxygenase Catalyst For Reduction Of Nitrogen Oxides And A Supporting Body Using The Same
JP5628955B2 (en) * 2013-03-29 2014-11-19 水ing株式会社 Organic waste water treatment apparatus and treatment method
KR101536396B1 (en) * 2013-04-10 2015-07-17 이화여자대학교 산학협력단 Composition for removing pollutant comprising methanotrophs and uses thereof
JP7387537B2 (en) * 2020-03-27 2023-11-28 東邦瓦斯株式会社 Off gas treatment system
CN114768521B (en) * 2022-04-26 2023-04-11 西南科技大学 Methane reduction agent, preparation method and methane in-situ reduction method

Also Published As

Publication number Publication date
JP2005118009A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
Mohamed et al. Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges
KR100878086B1 (en) Novel endophytic fungi and methods of use
Dianou et al. Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH)
JP4428620B2 (en) Methane oxidizing bacteria holding carrier manufacturing method, manufacturing apparatus, and methane generation suppression method
Liu et al. Elevated atmospheric CO2 and nitrogen fertilization affect the abundance and community structure of rice root-associated nitrogen-fixing bacteria
Gao et al. Effect of phosphorus amendments on rice rhizospheric methanogens and methanotrophs in a phosphorus deficient soil
Rani et al. Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India
Stępniewska et al. Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants
Kanno et al. Detection and isolation of plant‐associated bacteria scavenging atmospheric molecular hydrogen
CN110616178B (en) Alcaligenes faecalis phenol subspecies screening culture method
Wang et al. Role of microbes and microbial dynamics during composting
CN113755337B (en) Polycyclic aromatic hydrocarbon degrading fungi GIG-1 and GIG-2 in petroleum-polluted soil, mixed microbial inoculum thereof and application thereof
Yang et al. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses
Lin et al. Methanogenic community was stable in two contrasting freshwater marshes exposed to elevated atmospheric CO2
Matsui et al. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea
CN108969956B (en) Degrading strain of bactericide kresoxim-methyl and application thereof
Khiyami et al. Aerobic and facultative anaerobic bacteria from gut of red palm weevil (Rhynchophorus ferrugineus)
Lan et al. Naphthalene exerts non-target effects on the abundance of active fungi by stimulating basidiomycete abundance
CN113980852B (en) Microbial composition for synergistic degradation of benzonitrile herbicide and microbial agent produced by same
Dubey et al. Tracking of methanotrophs and their diversity in paddy soil: A molecular approach
CN109517756A (en) One plant of ocean phosphorus decomposing bacillus megaterium and its application
CN109439587A (en) One plant of ocean fixed nitrogen series bacillus and its application
JP4820201B2 (en) Plant growth promoting method and plant growth promoting agent
CN110577908B (en) Degradation strain of pyrethroid insecticide and application thereof
Oliferchuk et al. Changes in the structure of myco-and microbiocenosis of soil with use of fungi and bacteria strains immobilized on biochar as an example of ecosystem maintenance services

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees