JP2007274750A - Capacitor charger - Google Patents

Capacitor charger Download PDF

Info

Publication number
JP2007274750A
JP2007274750A JP2006093693A JP2006093693A JP2007274750A JP 2007274750 A JP2007274750 A JP 2007274750A JP 2006093693 A JP2006093693 A JP 2006093693A JP 2006093693 A JP2006093693 A JP 2006093693A JP 2007274750 A JP2007274750 A JP 2007274750A
Authority
JP
Japan
Prior art keywords
capacitor
charging
current correction
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006093693A
Other languages
Japanese (ja)
Other versions
JP4717684B2 (en
Inventor
Toru Okuma
徹 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2006093693A priority Critical patent/JP4717684B2/en
Publication of JP2007274750A publication Critical patent/JP2007274750A/en
Application granted granted Critical
Publication of JP4717684B2 publication Critical patent/JP4717684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor charger capable of charging a capacitor to a predetermined voltage in a predetermined time even when the capacitance varies from capacitor to capacitor. <P>SOLUTION: The capacitor charger is configured to control an inverter 9 to charge a capacitor 1 by a constant current. The charge includes: a current correction computation unit 8 that detects the charged voltage of the capacitor 1, determines the difference between it and a target voltage more than once during a charging period from the start of charging of the capacitor 1 to the completion of charging, and determines a current correction value based on this difference and the remaining time to the end of the charging period; a timer 10 that outputs timing signals indicating the timing of current correction computation; an error amplifier 7 that determines the difference between a current correction value determined by the current correction computation unit 8 and a detection value of charging current for the capacitor 1; and an inverter control unit 6 that controls the inverter 1 so that the difference from the error amplifier 7 is zeroed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、所定時間内に所定の電圧にコンデンサの充電を行うコンデンサ充電装置に関する。   The present invention relates to a capacitor charging device that charges a capacitor to a predetermined voltage within a predetermined time.

コンデンサを所定の電圧に充電し、そのコンデンサの充電電圧を印加して、フラッシュランプの放電発光、スポット溶接、マグネトロンやクライストロン等による超高周波パルス発生に利用されている。その場合のコンデンサの充電電圧は、用途に応じて相違するが、500V〜50,000V程度であり、充電電源として、インバータと昇圧用トランスと整流回路とを含み、定電流充電制御を行う構成が一般的である。   The capacitor is charged to a predetermined voltage, and the charging voltage of the capacitor is applied, and this is used for discharge emission of flash lamps, spot welding, generation of ultra-high frequency pulses by a magnetron, a klystron or the like. The charging voltage of the capacitor in that case varies depending on the application, but is about 500 V to 50,000 V. The charging power supply includes an inverter, a boosting transformer, and a rectifier circuit, and has a configuration for performing constant current charging control. It is common.

図5は、従来例の説明図であり、51はコンデンサ、52は整流平滑回路、53は絶縁トランス、54はインバータ、55は駆動回路、56はインバータ制御部、57は誤差増幅器、58は電圧検出部、59は商用交流電源に対する整流平滑回路、60はフラッシュランプを示す。このフラッシュランプ60は、プリンタ装置に於けるトナーの定着用とすることができ、高速繰り返し放電発光により、高速定着処理を行うことができる。   FIG. 5 is an explanatory diagram of a conventional example, 51 is a capacitor, 52 is a rectifying and smoothing circuit, 53 is an insulating transformer, 54 is an inverter, 55 is a drive circuit, 56 is an inverter control unit, 57 is an error amplifier, and 58 is a voltage. A detection unit 59 is a rectifying / smoothing circuit for a commercial AC power source, and 60 is a flash lamp. The flash lamp 60 can be used for fixing toner in a printer, and can perform high-speed fixing processing by high-speed repeated discharge light emission.

整流平滑回路59は、商用交流電源の100V又は200Vの交流電圧を整流して平滑化し、インバータ54の入力電圧とする。このインバータ54は、駆動回路55によりスイッチング制御され、出力電圧を絶縁トランス53により昇圧し、整流平滑回路52により整流して平滑化し、コンデンサ51を充電する。このコンデンサ51の充電電圧を電圧検出部58により検出し、コンデンサ51の充電電圧が設定電圧となると、インバータ54の動作を停止させるようにインバータ制御部56を制御する。又コンデンサ51を定電流充電とする為に、充電電流を検出して、誤差増幅器57により電流設定値と比較し、誤差分が零となるように、インバータ制御部56により、駆動回路55を介してインバータ54を制御する。コンデンサ51の充電電圧がフラッシュランプ60に印加されて、フラッシュランプ60は放電発光する。   The rectifying / smoothing circuit 59 rectifies and smoothes the 100V or 200V AC voltage of the commercial AC power supply, and sets it as the input voltage of the inverter 54. The inverter 54 is switching-controlled by the drive circuit 55, boosts the output voltage by the insulating transformer 53, rectifies and smoothes the output voltage by the rectifying and smoothing circuit 52, and charges the capacitor 51. The charging voltage of the capacitor 51 is detected by the voltage detecting unit 58, and when the charging voltage of the capacitor 51 reaches the set voltage, the inverter control unit 56 is controlled so as to stop the operation of the inverter 54. Further, in order to charge the capacitor 51 at a constant current, the charging current is detected and compared with the current set value by the error amplifier 57. The inverter control unit 56 passes the driving circuit 55 through the drive circuit 55 so that the error becomes zero. To control the inverter 54. The charging voltage of the capacitor 51 is applied to the flash lamp 60, and the flash lamp 60 emits light.

コンデンサ51の放電により、再びインバータ54を動作させて、コンデンサ51の充電を開始する。このように、コンデンサ51の充電と放電とを繰り返して、フラッシュランプ60の放電発光により、複写したトナー像の定着を行わせるものである。又コンデンサ51の定電流充電に於いて、所要電力が大きくならないように、充電過程に電流設定値を切替えるコンデンサ充電装置が提案されている(例えば、特許文献1参照)。
特開2004−129345号公報
When the capacitor 51 is discharged, the inverter 54 is operated again, and charging of the capacitor 51 is started. In this way, charging and discharging of the capacitor 51 are repeated, and the copied toner image is fixed by the discharge light emission of the flash lamp 60. In addition, a capacitor charging device that switches the current setting value during the charging process has been proposed so that the required power does not increase during constant current charging of the capacitor 51 (see, for example, Patent Document 1).
JP 2004-129345 A

前述のコンデンサ51は、定格通りの静電容量値を有することが望ましいが、実際にはばらつきがある。この静電容量値のばらつきにより、定電流充電を行った時の充電電圧の上昇のばらつきが生じ、充電開始から所定時間経過時に於ける充電電圧が、定格値の静電容量のコンデンサを用いた場合に比較して相違することになる。例えば、図6は、コンデンサの定電流充電特性を示すもので、横軸を時間、縦軸を充電電圧とし、定格値の静電容量のコンデンサに対する充電開始から所定の時間経過による充電電圧の変化と、充電停止且つ放電を行った場合の電圧変化とを実線で示す。   The above-described capacitor 51 desirably has a capacitance value as rated, but actually varies. Due to this variation in capacitance value, variation in the charging voltage when constant current charging is performed occurs, and a capacitor having a rated capacitance is used as the charging voltage when a predetermined time elapses from the start of charging. It will be different compared to the case. For example, FIG. 6 shows the constant current charging characteristics of a capacitor, where the horizontal axis represents time and the vertical axis represents the charging voltage, and the change in charging voltage with the passage of a predetermined time from the start of charging of the capacitor having the rated capacitance. And a change in voltage when charging is stopped and discharged are indicated by solid lines.

又目標電圧に達して、充電停止、放電を行わせる場合に、静電容量値が大きいコンデンサをCa、小さいコンデンサをCbとすると、充電電圧の変化は、実線で示す定格値の静電容量のコンデンサの場合に比較して、点線で示すものとなる。即ち、充電開始から所定時間経過時に、静電容量値が大きいコンデンサCaの充電電圧はVa、静電容量値が小さいコンデンサCbの充電電圧はVbとして示すように、Vb>Vaとなる。従って、充電開始から充電停止までの時間を規定すると、静電容量値の大小により、充電電圧が目標電圧に対してばらつくことになり、又充電電圧を目標電圧とすると、充電終了の時間が異なることになり、所定の周期でフラッシュランプを放電発光させることができなくなる問題がある。又静電容量値のばらつきが小さいコンデンサを選択することが考えられるが、コンデンサが高価なものとなり、コストアップとなる問題がある。   When the target voltage is reached and charging is stopped and discharged, if the capacitor with a large capacitance value is Ca and the capacitor with a small capacitance is Cb, the change in the charging voltage is the capacitance of the rated value indicated by the solid line. Compared to the case of a capacitor, this is indicated by a dotted line. That is, when a predetermined time elapses from the start of charging, the charging voltage of the capacitor Ca having a large capacitance value is Va, and the charging voltage of the capacitor Cb having a small capacitance value is Vb> Va as shown by Vb. Therefore, if the time from the start of charging to the stop of charging is defined, the charging voltage varies with respect to the target voltage due to the magnitude of the capacitance value, and if the charging voltage is the target voltage, the charging end time is different. In other words, there is a problem that the flash lamp cannot discharge and emit light at a predetermined cycle. Although it is conceivable to select a capacitor having a small variation in capacitance value, there is a problem that the capacitor becomes expensive and the cost is increased.

本発明は、前述の問題点を解決するもので、コンデンサの静電容量値のばらつきを吸収できるように充電制御することを目的とする。   The present invention solves the above-described problems, and an object thereof is to control charging so that variations in the capacitance value of a capacitor can be absorbed.

本発明のコンデンサ充電装置は、インバータを制御してコンデンサを定電流充電するコンデンサ充電装置に於いて、前記コンデンサの充電開始から充電完了までの充電期間内に於ける複数回のタイミングで、前記コンデンサの充電電圧を検出して目標電圧との差分を求め、該差分と前記充電期間内の残時間とを基に電流補正値を求める電流補正演算部と、該電流補正演算部により求めた電流補正値と前記コンデンサの充電電流検出値との差分が零となるように前記インバータを制御するインバータ制御部とを備えている。   The capacitor charging device according to the present invention is a capacitor charging device that controls an inverter to charge a capacitor at a constant current, and the capacitor charging device has a plurality of timings in a charging period from the start of charging of the capacitor to the completion of charging. A current correction calculation unit for obtaining a current correction value based on the difference and the remaining time in the charging period, and a current correction obtained by the current correction calculation unit And an inverter control unit that controls the inverter so that a difference between the value and the charge current detection value of the capacitor becomes zero.

又前記電流補正演算部は、前記コンデンサの充電開始によりスタートし、前記目標電圧までに充電する充電完了までの充電期間内に於ける複数回のタイミング信号を出力するタイマーと、前記コンデンサの充電電圧を検出して目標電圧との差分を求める減算回路と、前記タイマーからのタイミング信号毎に前記減算回路からの差分と前記充電期間内の残時間とを基に電流補正値を算出する算出部とを含む構成を有するものである。   The current correction calculation unit starts when charging the capacitor, and outputs a timing signal for a plurality of times within a charging period until charging is completed until the target voltage is charged, and the charging voltage of the capacitor A subtraction circuit that detects a difference from a target voltage by calculating a current correction value based on the difference from the subtraction circuit and the remaining time in the charging period for each timing signal from the timer; It has the structure containing.

充電期間内の複数回のタイミング毎に、コンデンサの静電容量値のばらつきを補正する為の電流補正値を求めて、コンデンサの充電電流を制御することにより、静電容量値のばらつきがあっても定格値のコンデンサを用いた場合と同様に、所定時間内に目標電圧に充電することができる。   There is a variation in the capacitance value by obtaining a current correction value for correcting the variation in the capacitance value of the capacitor and controlling the charging current of the capacitor at every multiple timings within the charging period. As with the case of using the rated value capacitor, the target voltage can be charged within a predetermined time.

本発明のコンデンサ充電装置は、図1を参照して説明すると、インバータ9を制御してコンデンサ1を定電流充電するコンデンサ充電装置に於いて、コンデンサ1の充電開始から充電完了までの充電期間内に於ける複数回のタイミングで、コンデンサ1の充電電圧を検出して目標電圧との差分を求め、この差分と充電期間内の残時間とを基に電流補正値を求める電流補正演算部8と、電流補正演算のタイミングを示すタイミング信号を出力するタイマー10と、電流補正演算部8により求めた電流補正値とコンデンサ1の充電電流検出値との差分を求める誤差増幅器7と、この誤差増幅器7からの誤差分が零となるようにインバータ1を制御するインバータ制御部6とを備えている。   The capacitor charging device of the present invention will be described with reference to FIG. 1. In the capacitor charging device that controls the inverter 9 to charge the capacitor 1 at a constant current, the capacitor charging device within the charging period from the start of charging of the capacitor 1 to the completion of charging. A current correction calculation unit 8 for detecting a charging voltage of the capacitor 1 at a plurality of times in the time period to obtain a difference from the target voltage and obtaining a current correction value based on the difference and the remaining time in the charging period; A timer 10 for outputting a timing signal indicating the timing of the current correction calculation, an error amplifier 7 for determining a difference between the current correction value obtained by the current correction calculation unit 8 and the charge current detection value of the capacitor 1, and the error amplifier 7 And an inverter control unit 6 that controls the inverter 1 so that the error from the output becomes zero.

図1は、本発明の実施例1の要部説明図であり、1はコンデンサ、2は整流平滑回路、3は絶縁トランス、4はインバータ、5は駆動回路、6はインバータ制御部、7は誤差増幅器、8は電流補正演算部、9は整流平滑回路、10はタイマーである。   FIG. 1 is an explanatory diagram of a main part of the first embodiment of the present invention, in which 1 is a capacitor, 2 is a rectifying and smoothing circuit, 3 is an insulating transformer, 4 is an inverter, 5 is a drive circuit, 6 is an inverter control unit, and 7 is An error amplifier, 8 is a current correction calculation unit, 9 is a rectifying / smoothing circuit, and 10 is a timer.

この実施例1に於いては、図5に示す従来例に比較して、電流補正演算部8とタイマー10とを付加した構成に相当する。又コンデンサ1の充電電圧を印加して例えば放電発光させるフラッシュランプは図示を省略している。又タイマー10は、インバータ制御部6に入力する充電開始/停止信号を入力し、充電開始から停止までの時間内に、予め設定した時間間隔で複数回、電流補正演算部8に於ける補正演算を行わせる為のタイミング信号を出力する。電流補正演算部8は、タイマー10からの充電期間内に於ける複数回のタイミング信号により、そのタイミングに於けるコンデンサ1の充電電圧と、目標の充電電圧と、目標の充電完了時間までの残時間とを基に、充電電流を補正する電流補正値を算出し、誤差増幅器7に入力する。なお、充電開始時は、初期値として定電流充電する為の電流設定値を誤差増幅器7に入力する。   The first embodiment corresponds to a configuration in which a current correction calculation unit 8 and a timer 10 are added as compared with the conventional example shown in FIG. Also, a flash lamp that applies a charging voltage of the capacitor 1 and emits light, for example, is not shown. The timer 10 receives a charge start / stop signal input to the inverter control unit 6 and performs a correction calculation in the current correction calculation unit 8 a plurality of times at a preset time interval within the time from the start of charge to the stop. Outputs a timing signal for performing The current correction calculation unit 8 receives the charging voltage of the capacitor 1 at the timing, the target charging voltage, and the remaining time until the target charging completion time by a plurality of timing signals in the charging period from the timer 10. Based on the time, a current correction value for correcting the charging current is calculated and input to the error amplifier 7. At the start of charging, a current setting value for constant current charging is input to the error amplifier 7 as an initial value.

電流補正演算部8に於ける補正演算は、コンデンサ1の静電容量をC、電流補正値をI、目標電圧までの残充電電圧をΔV、目標の充電完了時間までの充電残時間をΔTとすると、電流補正値Iは、I=C×ΔV/ΔTで求めるものである。誤差増幅器7は、検出したコンデンサ1の充電電流と、電流補正値との差分を求めてインバータ制御部6に入力する。インバータ制御部6は、差分が零となる方向に、駆動回路5を介してインバータ4を制御する。コンデンサ1の充電過程に於いて、電流補正演算部8による補正演算により、コンデンサ1の静電容量値のばらつきを吸収することができる。   The correction calculation in the current correction calculation unit 8 is that the capacitance of the capacitor 1 is C, the current correction value is I, the remaining charge voltage up to the target voltage is ΔV, and the remaining charge time until the target charge completion time is ΔT. Then, the current correction value I is obtained by I = C × ΔV / ΔT. The error amplifier 7 obtains the difference between the detected charging current of the capacitor 1 and the current correction value and inputs the difference to the inverter control unit 6. The inverter control unit 6 controls the inverter 4 via the drive circuit 5 in such a direction that the difference becomes zero. In the charging process of the capacitor 1, the variation in the capacitance value of the capacitor 1 can be absorbed by the correction calculation by the current correction calculation unit 8.

図2は、横軸を時間(msec)、縦軸を充電電圧(V)とし、定格値の静電容量を有するコンデンサの充電電圧特性曲線eと、定格値に対して−10%の静電容量のコンデンサを用いて、電流補正演算を、50回行った場合を曲線b、10回行った場合を曲線c、4回行った場合を曲線dにより示すと共に、電流補正演算を行わなかった場合、即ち、無補償の場合を曲線aで示す。   In FIG. 2, the horizontal axis represents time (msec), the vertical axis represents the charging voltage (V), the charging voltage characteristic curve e of the capacitor having the rated capacitance, and −10% of the rated value When a current correction calculation is performed 50 times using a capacitor b, curve b indicates the case where the current correction is performed 10 times, curve c indicates the case where the current correction calculation is performed 4 times, and curve d indicates that the current correction calculation is not performed That is, the case of no compensation is indicated by a curve a.

定格値の静電容量のコンデンサの充電開始から100msec経過した時点に於ける充電電圧が、曲線eで示すように、1,000Vとなるが、定格値より−10%少ない静電容量のコンデンサを用いた場合、無補償とすると、充電開始から100msec経過した時の充電電圧は、曲線aで示すように、ほぼ1,100Vとなり、+10%高い充電電圧となる。しかし、前述の本発明の実施例1に於ける補正演算を行うことにより、充電開始から100msec経過時の充電電圧を、定格値の静電容量のコンデンサを用いた場合とほぼ同様な電圧とすることができた。特に、100msecの充電期間内に於ける補正演算を50回程度実行した場合は、曲線bで示すように、誤差を無視できる程度の充電電圧とすることができた。   The charging voltage at the time when 100 msec has elapsed from the start of charging of the capacitor having the rated capacitance is 1,000 V as shown by the curve e, but a capacitor having a capacitance of -10% less than the rated value is used. When used, if no compensation is made, the charging voltage when 100 msec has elapsed since the start of charging is approximately 1,100 V, as shown by the curve a, which is a + 10% higher charging voltage. However, by performing the correction calculation in the first embodiment of the present invention described above, the charging voltage when 100 msec has elapsed since the start of charging is set to a voltage that is substantially the same as that when a capacitor having a rated capacitance is used. I was able to. In particular, when the correction calculation was executed about 50 times within the charging period of 100 msec, as shown by the curve b, the charging voltage was such that the error could be ignored.

図3は、本発明の実施例1の説明図であり、図1と同一符号は同一部分を示し、11は減算回路、12は電流検出部、13は充電開始停止制御部、Cは電圧保持用コンデンサ、R1〜R6は抵抗、SW1〜SW5はスイッチを示す。図1に於ける電流補正演算部8は、減算回路11とスイッチSW1〜SW5と抵抗R1〜R6とを含む構成により実現した場合を示す。   FIG. 3 is an explanatory diagram of the first embodiment of the present invention. The same reference numerals as those in FIG. 1 denote the same parts, 11 is a subtracting circuit, 12 is a current detection unit, 13 is a charge start / stop control unit, and C is voltage holding. Capacitors, R1 to R6 are resistors, and SW1 to SW5 are switches. 1 shows a case where the current correction calculation unit 8 is realized by a configuration including a subtraction circuit 11, switches SW1 to SW5, and resistors R1 to R6.

又タイマー10は、充電開始停止制御部13からの充電開始信号により図示を省略したクロック信号のカウント開始又はアナログ信号の積算開始等による構成によって、信号1〜信号5を出力する。例えば、クロック信号をカウントするカウンタ構成とすると、充電開始信号によりカウントを開始し、カウント値に対応して信号1〜信号5を出力し、充電停止信号によりカウント値をリセットする。又信号1〜信号5により、スイッチSW1〜SW5をオンとする。これらのスイッチSW1〜SW5は、トランジスタ等の半導体素子により構成することができる。   Further, the timer 10 outputs signals 1 to 5 with a configuration such as a clock signal count start (not shown) or an analog signal integration start (not shown) by a charge start signal from the charge start / stop control unit 13. For example, in a counter configuration that counts clock signals, counting is started by a charge start signal, signals 1 to 5 are output in response to the count value, and the count value is reset by a charge stop signal. The switches SW1 to SW5 are turned on by the signals 1 to 5. These switches SW1 to SW5 can be constituted by semiconductor elements such as transistors.

又タイマー10からの信号1〜信号5は、例えば、図4に示すタイミングt1〜t4に出力される。又充電電圧は、充電開始からのコンデンサ1の充電電圧を示す。信号1は、充電開始停止制御部13からの充電開始信号のタイミングt1で出力され、この信号1によりスイッチSW1がオンとなり、電流初期値が電圧保持用コンデンサCにより保持されて誤差増幅器7に入力される。又充電開始信号により、インバータ制御部6は駆動回路5を介してインバータ9を制御し、絶縁トランス4により昇圧し、整流平滑回路2により整流して平滑化した高圧直流電圧をコンデンサ1に印加して充電する。   Signals 1 to 5 from the timer 10 are output, for example, at timings t1 to t4 shown in FIG. The charging voltage indicates the charging voltage of the capacitor 1 from the start of charging. The signal 1 is output at the timing t1 of the charge start signal from the charge start / stop control unit 13, the switch 1 is turned on by this signal 1, and the current initial value is held by the voltage holding capacitor C and input to the error amplifier 7. Is done. In response to the charge start signal, the inverter control unit 6 controls the inverter 9 via the drive circuit 5, boosts the voltage by the insulating transformer 4, and applies the high voltage DC voltage rectified and smoothed by the rectifying and smoothing circuit 2 to the capacitor 1. To charge.

コンデンサ1の充電電圧は、抵抗R1,R2により分圧し、減算回路11により目標電圧との差分ΔVを求める。又充電電流を電流検出部12により検出して誤差増幅器7に入力する。誤差増幅器7は、電圧保持用コンデンサCに保持された電流初期値と電流検出部12により検出した充電電流値との差分をインバータ制御部6に入力し、インバータ制御部6は、誤差増幅器7による差分が零となる方向にインバータ9のスイッチング周期或いはスイッチングのオン期間の制御を行う。   The charging voltage of the capacitor 1 is divided by the resistors R1 and R2, and the difference ΔV from the target voltage is obtained by the subtracting circuit 11. The charging current is detected by the current detector 12 and input to the error amplifier 7. The error amplifier 7 inputs the difference between the current initial value held in the voltage holding capacitor C and the charging current value detected by the current detection unit 12 to the inverter control unit 6, and the inverter control unit 6 uses the error amplifier 7. The switching cycle of the inverter 9 or the switching ON period is controlled in the direction in which the difference becomes zero.

次のタイミングt2には、信号2と信号3とが出力されて、スイッチSW2とスイッチSW3とがオンとなる。減算回路11からの目標電圧と充電電圧との差分ΔVが、抵抗R6,R3により分圧されて、スイッチSW2を介して電圧保持用コンデンサCにより保持される。即ち、抵抗R6,R3の値は、時刻t2に於ける補正電流値I=C×ΔV/ΔTのC/ΔTの比を示すように選定する。この場合の静電容量Cは、定格値とする。従って、時刻t2以降は、電圧保持用コンデンサCに保持された補正電流値と、電流検出部12により検出された充電電流との差分を零とするように、インバータ9が制御される。   At the next timing t2, signals 2 and 3 are output, and the switches SW2 and SW3 are turned on. A difference ΔV between the target voltage and the charging voltage from the subtraction circuit 11 is divided by the resistors R6 and R3, and is held by the voltage holding capacitor C via the switch SW2. That is, the values of the resistors R6 and R3 are selected so as to indicate the ratio C / ΔT of the correction current value I = C × ΔV / ΔT at time t2. In this case, the capacitance C is a rated value. Therefore, after time t2, the inverter 9 is controlled so that the difference between the correction current value held in the voltage holding capacitor C and the charging current detected by the current detection unit 12 becomes zero.

次の時刻t3に於いては、信号2と信号4とがタイマー10から出力され、スイッチSW2,SW4がオンとなり、抵抗R6,R4により減算回路11からの差分ΔVを基に電流補正値Iを求めて、電圧保持用コンデンサCにより保持し、検出した充電電流値と電流補正値との差分を零とするように、インバータ9が制御される。次の時刻t4に於いてもほぼ同様に、信号2と信号5とがタイマー10から出力され、スイッチSW2,SW5がオンとなり、抵抗R6,R5により減算回路11からの差分ΔVを基に電流補正値Iを求めて、電圧保持用コンデンサCにより保持する。そして、時刻t5に於いて、コンデンサ1の充電電圧が目標電圧となり、フラッシュランプの放電発光が行われる。   At the next time t3, the signal 2 and the signal 4 are output from the timer 10, the switches SW2 and SW4 are turned on, and the current correction value I is set based on the difference ΔV from the subtraction circuit 11 by the resistors R6 and R4. The inverter 9 is controlled so that the difference between the detected charging current value and the current correction value is zero. At the next time t4, in a similar manner, the signals 2 and 5 are output from the timer 10, the switches SW2 and SW5 are turned on, and current correction is performed based on the difference ΔV from the subtraction circuit 11 by the resistors R6 and R5. The value I is obtained and held by the voltage holding capacitor C. At time t5, the charging voltage of the capacitor 1 becomes the target voltage, and the flash lamp discharges light.

図4に於ける電流補正値の算出は、充電期間内に於いて3回行う場合であり、図2に示す充電特性のように、4回、10回、50回等とすることができるもので、回数を多くする程、コンデンサ1の静電容量のばらつきが大きい場合でも、所望の時間に目標電圧に充電することができる。なお、充電期間内の電流補正値算出回数を多くするに従って、タイマー10から出力する信号数が多くなり、スイッチ及び抵抗の個数を多く必要とすることになるが、タイマー10を含む電流補正演算部8(図1参照)をマイクロプロセッサの演算処理機能を用いて実現することが可能であるから、電流補正値の算出回数を50回等の多数とする構成は容易に実現可能である。   The calculation of the current correction value in FIG. 4 is performed three times during the charging period, and can be set to 4, 10, 50, etc. as in the charging characteristics shown in FIG. Thus, as the number of times is increased, the target voltage can be charged at a desired time even when the variation in the capacitance of the capacitor 1 is large. As the number of current correction value calculations within the charging period is increased, the number of signals output from the timer 10 increases, and a large number of switches and resistors are required. 8 (see FIG. 1) can be realized by using the arithmetic processing function of the microprocessor. Therefore, a configuration in which the current correction value is calculated as many as 50 times can be easily realized.

本発明の実施例1の要部説明図である。It is principal part explanatory drawing of Example 1 of this invention. 本発明の実施例1の効果の説明図である。It is explanatory drawing of the effect of Example 1 of this invention. 本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. 本発明の実施例1の電流補正タイミングの説明図である。It is explanatory drawing of the electric current correction timing of Example 1 of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example. コンデンサの充電電圧の説明図である。It is explanatory drawing of the charging voltage of a capacitor | condenser.

符号の説明Explanation of symbols

1 コンデンサ
2 整流平滑回路
3 絶縁トランス
4 インバータ
5 駆動回路
6 インバータ制御部
7 誤差増幅器
8 電流補正演算部
9 整流平滑回路
10 タイマー
DESCRIPTION OF SYMBOLS 1 Capacitor 2 Rectification smoothing circuit 3 Insulation transformer 4 Inverter 5 Drive circuit 6 Inverter control part 7 Error amplifier 8 Current correction calculating part 9 Rectification smoothing circuit 10 Timer

Claims (2)

インバータを制御してコンデンサを定電流充電するコンデンサ充電装置に於いて、
前記コンデンサの充電開始から充電完了までの充電期間内に於ける複数回のタイミングで、前記コンデンサの充電電圧を検出して目標電圧との差分を求め、該差分と前記充電期間内の残時間とを基に電流補正値を求める電流補正演算部と、
該電流補正演算部により求めた電流補正値と前記コンデンサの充電電流検出値との差分が零となるように前記インバータを制御するインバータ制御部とを
備えたことを特徴とするコンデンサ充電装置。
In the capacitor charger that controls the inverter and charges the capacitor with constant current,
At a plurality of times in the charging period from the start of charging of the capacitor to the completion of charging, the charging voltage of the capacitor is detected to obtain a difference from the target voltage, and the difference and the remaining time in the charging period A current correction calculation unit for obtaining a current correction value based on
A capacitor charging apparatus comprising: an inverter control unit that controls the inverter so that a difference between a current correction value obtained by the current correction calculation unit and a charging current detection value of the capacitor becomes zero.
前記電流補正演算部は、前記コンデンサの充電開始によりスタートし、前記目標電圧までに充電する充電完了までの充電期間内に於ける複数回のタイミング信号を出力するタイマーと、前記コンデンサの充電電圧を検出して目標電圧との差分を求める減算回路と、前記タイマーからのタイミング信号毎に前記減算回路からの差分と前記充電期間内の残時間とを基に電流補正値を算出する算出部とを含む構成を備えたことを特徴とする請求項1記載のコンデンサ充電装置。   The current correction calculation unit starts with charging of the capacitor, and outputs a timing signal for a plurality of times in a charging period until charging is completed until the target voltage is charged, and a charging voltage of the capacitor. A subtraction circuit that detects a difference from the target voltage and a calculation unit that calculates a current correction value based on the difference from the subtraction circuit and the remaining time in the charging period for each timing signal from the timer. The capacitor charging device according to claim 1, further comprising a configuration including the capacitor charging device.
JP2006093693A 2006-03-30 2006-03-30 Capacitor charger Expired - Fee Related JP4717684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093693A JP4717684B2 (en) 2006-03-30 2006-03-30 Capacitor charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093693A JP4717684B2 (en) 2006-03-30 2006-03-30 Capacitor charger

Publications (2)

Publication Number Publication Date
JP2007274750A true JP2007274750A (en) 2007-10-18
JP4717684B2 JP4717684B2 (en) 2011-07-06

Family

ID=38676972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093693A Expired - Fee Related JP4717684B2 (en) 2006-03-30 2006-03-30 Capacitor charger

Country Status (1)

Country Link
JP (1) JP4717684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200781A (en) * 2011-03-28 2012-10-22 Nippon Avionics Co Ltd Charge control method for electrostatic energy storage welding power source and electrostatic energy storage welding power source
JP5874038B2 (en) * 2010-09-28 2016-03-01 パナソニックIpマネジメント株式会社 Power supply system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638667C2 (en) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mixed-color light-emitting semiconductor component with luminescence conversion element
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101567A (en) * 2000-09-22 2002-04-05 Casio Comput Co Ltd Charging apparatus and method for charge of secondary battery
JP2004012556A (en) * 2002-06-04 2004-01-15 Canon Inc Electronic flash apparatus
JP2005039873A (en) * 2003-07-15 2005-02-10 Ricoh Co Ltd Capacitor charger, heating device, fixing device, and image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101567A (en) * 2000-09-22 2002-04-05 Casio Comput Co Ltd Charging apparatus and method for charge of secondary battery
JP2004012556A (en) * 2002-06-04 2004-01-15 Canon Inc Electronic flash apparatus
JP2005039873A (en) * 2003-07-15 2005-02-10 Ricoh Co Ltd Capacitor charger, heating device, fixing device, and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874038B2 (en) * 2010-09-28 2016-03-01 パナソニックIpマネジメント株式会社 Power supply system
US9876350B2 (en) 2010-09-28 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Power supply system
JP2012200781A (en) * 2011-03-28 2012-10-22 Nippon Avionics Co Ltd Charge control method for electrostatic energy storage welding power source and electrostatic energy storage welding power source

Also Published As

Publication number Publication date
JP4717684B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP5374942B2 (en) Flash charging circuit and flash charging control method
EP2365346B1 (en) Switching power supply
JP5822304B2 (en) Charger
JP2009106029A (en) Circuit and method for controlling capacitor charging circuit, and capacitor charging circuit, and electronic equipment using the same
JP6840516B2 (en) Power supply device and image forming device
JP4717684B2 (en) Capacitor charger
JP6649622B2 (en) Capacitor discharge circuit
JP2006277983A (en) Discharge lamp driving device
JP6171205B2 (en) Power supply device, inspection device, and optimization method of power supply device
JP2017123740A (en) Switching power supply
JP6504429B2 (en) Switching power supply
JP3536683B2 (en) High voltage power supply
JP7173783B2 (en) ZERO-CROSS DETERMINATION DEVICE AND IMAGE FORMING DEVICE
US9450493B2 (en) Voltage generating apparatus for stably controlling voltage
WO2020031626A1 (en) Power conversion device
JP2016082714A (en) Power source device and image forming apparatus
JP6891483B2 (en) Power Predictor, Image Former, and Power Predictor Program
JP2019066304A (en) Ac voltage detector, image forming device, and industrial machine
JP2000134924A (en) Power circuit
WO2015079579A1 (en) Power-supply device, inspection device, and optimization method for power-supply device
JP6305151B2 (en) Power supply device and image forming apparatus
KR20150086173A (en) Switch control circuit and power supply devicecomprising the same
JP2003324957A (en) Power supply device and its controlling method
JP2006033352A (en) A-d converter and temperature regulator
JP2000113993A (en) Light source control device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees