JP2007271500A - Position/attitude estimation device - Google Patents

Position/attitude estimation device Download PDF

Info

Publication number
JP2007271500A
JP2007271500A JP2006098620A JP2006098620A JP2007271500A JP 2007271500 A JP2007271500 A JP 2007271500A JP 2006098620 A JP2006098620 A JP 2006098620A JP 2006098620 A JP2006098620 A JP 2006098620A JP 2007271500 A JP2007271500 A JP 2007271500A
Authority
JP
Japan
Prior art keywords
antenna
attitude
attitude angle
angle
gnss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006098620A
Other languages
Japanese (ja)
Other versions
JP4215264B2 (en
Inventor
Toshiaki Tsujii
利昭 辻井
Hiroshi Tomita
博史 冨田
Kazuki Ogamino
和貴 小神野
Seiya Kawaguchi
星也 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
GNSS Technologies Inc
Original Assignee
Japan Aerospace Exploration Agency JAXA
GNSS Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, GNSS Technologies Inc filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2006098620A priority Critical patent/JP4215264B2/en
Publication of JP2007271500A publication Critical patent/JP2007271500A/en
Application granted granted Critical
Publication of JP4215264B2 publication Critical patent/JP4215264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance attitude estimation precision and position estimation precision, by reducing a multipath error without complicating a device, in a GNSS (Global Navigation Satellite System) position/attitude estimation device using a plurality of antennas. <P>SOLUTION: This attitude estimation device of the present invention includes a function for assigning a carrier wave phase difference calculated by a following expression using attitude angle information, as a restriction condition, in a correlation device mounted with plurality of antennas on a moving body, and for correlating a GNSS satellite signal acquired in the each antenna with a replica signal generated in an inside of the device, and further includes a means for reducing the multipath error of a carrier wave phase by using the correlation device having the restriction condition, using the attitude angle obtained by a function of a conventional GNSS attitude estimation device as an initial value, and for estimating the carrier wave phase in the each antenna to recalculate the attitude angle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はGNSS航法測位技術に関し、特に、姿勢推定精度および位置推定精度を向上させる装置に関する。このGNSSとはGlobal Navigation Satellite Systemの略称であって、GPSに代表される人工衛星による全世界航法測位システムや、ロシアが運用中のGLONASS、欧州が開発中のGALILEO、そして、日本が開発中の準天頂衛星システム等が含まれる。   The present invention relates to a GNSS navigation positioning technique, and more particularly to an apparatus for improving posture estimation accuracy and position estimation accuracy. This GNSS is an abbreviation for Global Navigation Satellite System. It is a global navigation positioning system using satellites represented by GPS, GLONASS operated in Russia, GALILEO being developed in Europe, and Japan being developed. Includes quasi-zenith satellite system.

GNSSは航空機、船舶、自動車の航法測位に広く使われているが、複数のアンテナに対するGPS観測データ(搬送波位相)の位相差を用いることで姿勢決定にも使用でき、船舶ではGPSコンパスとして実用化されている。位置・姿勢推定精度を高めるためにはGNSS信号に含まれるマルチパス誤差(多重伝搬誤差)を軽減する必要がある。
このマルチパス誤差は、特別なアンテナ(チョークリング・アンテナ等)を使用すること、受信機内部で高度な相関器(ナローコリレータ,ストロボコリレータ)を使うことで軽減できることが知られているが、複数のアンテナを使って受信し、これらの受信信号を総合処理して軽減することも可能である。
GNSS is widely used for navigation positioning of aircraft, ships, and automobiles, but it can also be used for attitude determination by using the phase difference of GPS observation data (carrier phase) for multiple antennas, and practically used as a GPS compass for ships Has been. In order to improve the position / posture estimation accuracy, it is necessary to reduce the multipath error (multiple propagation error) included in the GNSS signal.
It is known that this multipath error can be reduced by using a special antenna (choke ring, antenna, etc.) and using an advanced correlator (narrow correlator, strobe correlator) inside the receiver. It is also possible to reduce the noise by receiving these antennas and comprehensively processing these received signals.

複数のアンテナによって受信するものとして、特許文献1には、電波の一時的な遮蔽あるいはフェージング等がある場合にも、高い測位精度を実現することのできる測位装置を得ることを目的とした、測位装置が提示されている。この測位装置は発信機からの電波を複数の受信機で受信し、その受信信号に基づいて発信機の位置を一定周期ごとに測位するとともに、次回周期測位予測値を推定する機能を備えており、複数の受信機の受信信号による観測値と、推定された次回周期測位予測値による予測値との比較に基づいて測位予測誤差を算出する測位処理部と、測位予測誤差に基づいて発信機の測位値及び次回周期測位予測値の状態推定を行うフィルタ手段とを備えるものである。従来の測位装置は電波の一時的な遮蔽、あるいは室内環境で発生するフェージング等により、一時的に測位が中断されてしまうと、整数値バイアスが失われてしまい、測位の続行が不可能となる。あるいは、誤った整数値バイアスを用いて測位しなければならないため、以後の測位における誤差が大きくなってしまうという問題がある。また、受信機間の位相差によって測位を行うため、位相の基準とする受信機が遮蔽される、あるいはフェージング等により受信状態が悪くなると、全ての方程式における位相差の計測精度が悪くなってしまい、測位精度が劣化してしまうという問題がある。しかし、この発明は前記フィルタ手段により推定される測位予測値を活用することにより、基準となる特定の受信機を定める必要がなく、それぞれの受信機の受信信号に基づいて測位を行うことができ、ある受信機で電波の一時的な遮蔽あるいはフェージング等がある場合にも、高い測位精度を実現することのできる測位装置を得ることができるものである。   As what is received by a plurality of antennas, Patent Document 1 discloses a positioning device for obtaining a positioning device capable of realizing high positioning accuracy even when there is temporary shielding or fading of radio waves. A device is presented. This positioning device has a function to receive radio waves from a transmitter with multiple receivers, position the transmitter at regular intervals based on the received signals, and estimate the next periodic positioning prediction value. A positioning processing unit that calculates a positioning prediction error based on a comparison between an observed value based on received signals of a plurality of receivers and a predicted value based on an estimated next periodic positioning prediction value; and a transmitter based on the positioning prediction error Filter means for estimating the state of the positioning value and the next periodic positioning prediction value. In conventional positioning devices, if positioning is temporarily interrupted due to temporary shielding of radio waves or fading that occurs in the indoor environment, the integer bias will be lost, making it impossible to continue positioning. . Alternatively, since positioning must be performed using an erroneous integer value bias, there is a problem that errors in subsequent positioning increase. In addition, since positioning is performed based on the phase difference between the receivers, if the receiver used as a phase reference is shielded or the reception state is deteriorated due to fading or the like, the accuracy of measurement of the phase difference in all equations is deteriorated. There is a problem that positioning accuracy deteriorates. However, the present invention makes it possible to perform positioning based on the received signal of each receiver without using a specific receiver as a reference by utilizing the predicted positioning value estimated by the filter means. A positioning device capable of realizing high positioning accuracy can be obtained even when there is temporary shielding or fading of radio waves at a certain receiver.

また、特許文献2には、GPS衛星を用いて移動体の測位を行う測位装置において、マルチパスによる影響を除去して測位の検出精度を向上させると共に、信頼性を向上させることを目的とした「測位装置」が開示されている。この測位装置はGPS衛星からの信号を受信するn個(nは1以上の整数)のアンテナと、n個のベースバンド信号を時間軸方向にm個分割して得られた(m×n)のベースバンド信号から(m×n)チャンネルの位置情報を算出する(m×n)個のベースバンド信号処理部を備えn個のアンテナのそれぞれから受信信号を復調してn個のベースバンド信号に変換し、各n個のベースバンド信号毎に、時間の異なるm個のデータに分配し、(m×n)個のベースバンド信号を得て、空間ダイバシティと時間ダイバシティとにより、移動体の位置を算出するように構成することで、信頼性が向上され、また、位置検出精度が向上されるものである。   Further, Patent Document 2 aims to improve the detection accuracy of positioning and improve the reliability by removing the influence of multipath in a positioning device that performs positioning of a mobile object using a GPS satellite. A “positioning device” is disclosed. This positioning device was obtained by dividing n antennas (n is an integer of 1 or more) for receiving signals from GPS satellites and m baseband signals into m pieces in the time axis direction (m × n). (M × n) channel position information is calculated from the baseband signals of (m × n), and (m × n) baseband signal processing units are provided to demodulate the received signal from each of the n antennas to generate n baseband signals. For each n baseband signals and distributed to m data at different times to obtain (m × n) baseband signals, and the spatial diversity and temporal diversity By configuring so as to calculate the position, the reliability is improved and the position detection accuracy is improved.

ところで、前記の特許文献1と特許文献2そして非特許文献1も精度の高い測位装置を提供することを課題としたものであり、精度の良い姿勢装置を提供することは想定していない。また、特許文献1は電波の一時的な遮蔽あるいはフェージング等による影響を除去する技術であり、マルチパス誤差を軽減または除去する技術ではない。特許文献2はマルチパスについての言及はあるものの、この装置は(m×n)個のベースバンド信号処理部で算出された(m×n)チャンネルの位置情報の中から、受信状態検出部で検出された受信状態の情報に応じて、受信状態の悪いチャンネルの位置情報をスクリーニングするスクリーニング部と、(m×n)個のベースバンド信号処理部で算出された(m×n)チャンネルの位置情報からスクリーニングされた情報を除いた後、演算部においてダイバシティ処理を行って、移動体の位置情報を検出算出するという手法を採用しており、処理方法が厄介であり装置が複雑化する。
特許文献3の米国特許は複数のアンテナを配置して各アンテナで取得した信号と受信機内部で生成した信号の相関をとる相関器を用いるものであるが、姿勢角については外部情報を用いるものである。
特開2005−326184号公報 「測位装置」 平成17年11月24日公開 特開2005−69743号公報 「測位装置」 平成17年3月17日公開 米国特許第6882312号 M. Y. Vorobiev et a1., “Method and Apparatus for Multipath Mitigation Using Antenna Array” Apr. 19, 2005. Ray, J. K., M. E. Cannon and P. Fenton, Mitigation of Static Carrier Phase Multipath Effects Using Multiple C1osely-Spaced Antennas, NAVIGATION, J. of the Institute of Navigation, 46, No.3, 1999, pp193-202.
Incidentally, Patent Document 1, Patent Document 2, and Non-Patent Document 1 described above are also intended to provide a highly accurate positioning device, and do not assume that an accurate posture device is provided. Further, Patent Document 1 is a technique for removing the influence of temporary shielding or fading of radio waves, and is not a technique for reducing or removing multipath errors. Although Patent Document 2 mentions multipath, this apparatus uses a reception state detection unit from (m × n) channel position information calculated by (m × n) baseband signal processing units. The position of the (m × n) channel calculated by the screening unit that screens the position information of the bad reception state according to the detected reception state information and (m × n) baseband signal processing units. After the screened information is removed from the information, a technique is employed in which diversity processing is performed in the calculation unit to detect and calculate the position information of the moving body, which makes the processing method cumbersome and complicates the apparatus.
The US patent of Patent Document 3 uses a correlator that arranges a plurality of antennas and correlates a signal acquired by each antenna and a signal generated inside the receiver, but uses external information for the attitude angle. It is.
JP 2005-326184 A “Positioning device” published on November 24, 2005 Japanese Patent Laid-Open No. 2005-69743 “Positioning Device” published on March 17, 2005 US Pat. No. 6,883,212 MY Vorobiev et al., “Method and Apparatus for Multipath Mitigation Using Antenna Array” Apr. 19, 2005. Ray, JK, ME Cannon and P. Fenton, Mitigation of Static Carrier Phase Multipath Effects Using Multiple C1osely-Spaced Antennas, NAVIGATION, J. of the Institute of Navigation, 46, No.3, 1999, pp193-202.

本発明の課題は、複数アンテナを使用するGNSS位置・姿勢推定装置において、装置を複雑化することなく、マルチパス誤差を軽減することにより、姿勢推定精度および位置推定精度を向上させることにある。   An object of the present invention is to improve posture estimation accuracy and position estimation accuracy by reducing a multipath error in a GNSS position / posture estimation device using a plurality of antennas without complicating the device.

本発明の姿勢推定装置は、移動体上に複数のアンテナを搭載し、各アンテナで取得したGNSS衛星信号と装置内部で生成したレプリカ信号の相関をとる相関器において、姿勢角情報を用いて式2で計算した搬送波位相差を拘束条件として課する機能を備えるようにした。

Figure 2007271500
また、本発明の姿勢推定装置は、上記構成に加え、従来のGNSS姿勢推定装置の機能により得られた姿勢角を初期値とし、前記の拘束条件を有する相関器を用いることにより搬送波位相のマルチパス誤差を軽減し、各アンテナにおける搬送波位相φ+φを推定して姿勢角を再度計算する手段を備えるようにした。なお、φは基準となるアンテナにおける位相の推定値である。
また、本発明の姿勢推定装置は、上記構成に加え、再計算した姿勢角が収束したか否かを判定する手段を備え、収束していなければこの時の推定値を初期値として再び処理を繰り返し、収束するまで行い、その結果として姿勢角を高精度に推定する。また、マルチパス誤差が低減された搬送波位相を用い搬送波差分測位や精密単独測位手法における精度を向上させるようにした。 The attitude estimation apparatus according to the present invention includes a plurality of antennas mounted on a moving body, and uses an attitude angle information in a correlator that correlates a GNSS satellite signal acquired by each antenna and a replica signal generated inside the apparatus. A function of imposing the carrier phase difference calculated in 2 as a constraint condition is provided.
Figure 2007271500
In addition to the above-described configuration, the attitude estimation apparatus of the present invention uses the correlator having the above-described constraint conditions, with the attitude angle obtained by the function of the conventional GNSS attitude estimation apparatus as an initial value, and is capable of multi-carrier phase. A path error is reduced, and a means for recalculating the attitude angle by estimating the carrier phase φ m + φ k at each antenna is provided. Note that φ m is an estimated value of the phase in the reference antenna.
In addition to the above configuration, the posture estimation apparatus of the present invention further includes means for determining whether or not the recalculated posture angle has converged. If the posture angle has not converged, the estimated value at this time is used as an initial value to perform the process again. Repeat until convergence, and as a result, estimate the attitude angle with high accuracy. In addition, the carrier phase with reduced multipath error is used to improve the accuracy in the carrier differential positioning and precision single positioning methods.

本発明の姿勢推定装置は、移動体上に複数のアンテナを搭載し、各アンテナで取得したGNSS衛星信号と装置内部で生成したレプリカ信号の相関をとる相関器において、姿勢角情報を用いて式2で計算した搬送波位相差を拘束条件として課する機能を備えるようにしたものであるから、
そのことにより、本発明の姿勢推定装置は、ジャイロ等の姿勢検出装置を使用せずに、GNSS受信機のみで姿勢推定が出来、マルチパス誤差を軽減することで従来よりも推定精度が向上することができる。この装置を船舶等移動体に搭載すれば、従来よりも高精度に移動体の位置、姿勢を推定することができ、移動体からのリモートセンシング等、地球環境科学・工学におおきな貢献をすることができる。
The attitude estimation apparatus according to the present invention includes a plurality of antennas mounted on a moving body, and uses an attitude angle information in a correlator that correlates a GNSS satellite signal acquired by each antenna and a replica signal generated inside the apparatus. Since it has a function to impose the carrier phase difference calculated in 2 as a constraint condition,
As a result, the posture estimation apparatus of the present invention can perform posture estimation only by a GNSS receiver without using a posture detection device such as a gyro, and the estimation accuracy is improved as compared with the conventional case by reducing multipath errors. be able to. If this device is mounted on a moving body such as a ship, the position and orientation of the moving body can be estimated with higher accuracy than before, and it will make a significant contribution to earth environmental science and engineering, such as remote sensing from the moving body. Can do.

レプリカ信号との相関をとる方式の本発明の姿勢推定装置における姿勢推定の原理を説明する。複数(n個)のGNSSアンテナ群(Ant-1〜Ant-n)が船舶や航空機、大型車両といった移動設備に搭載され、三次元空間に配設されているとき、1つのアンテナAnt-1と他のアンテナAnt-kとGNSS衛星の位置関係を図3に示して考察する。実際の位置関係は三次元であるが、この図は三者の中心位置を含む平面で二次元的に描写してある。アンテナのAnt-1とAnt-kからGNSS衛星の距離はアンテナのAnt-1とAnt-k間の距離と比較すると十分に大きく無限遠の存在と見なせるので、受ける電波の方向は平行の関係となる。今、アンテナのAnt-1を基準としてアンテナから見たGNSS衛星の仰角をEとし、アンテナのAnt-1とAnt-kの位相中心の間隔をdとし、アンテナのAnt-1とAnt-kとを結ぶ線の水平線とのなす角を姿勢角θとすると、アンテナのAnt-1とGNSS衛星間の距離と、アンテナのAnt-kとGNSS衛星間の距離との差である遅延距離Lは次式(式1)で計算される。

Figure 2007271500
複数あるアンテナの相互位置関係は固定であるから、各d値は既知である。また、搬送波位相差φは次式 (式2) で与えられる。
Figure 2007271500
上記した式2の関係はGNSS衛星からアンテナが直接受信した搬送波について成立するものであって、高層ビル等の構造物に反射して伝搬されたマルチパス誤差信号には成立しないことに着目する。次に、複数ある各アンテナで受信した信号と受信機内部で生成したレプリカ信号との相関処理を行うが、アンテナk(k=2〜n)で受信した信号に対する相関値を計算する際に式2で計算した搬送波位相差を拘束条件として使用する。すなわち、アンテナで取得した信号に対するレプリカ信号の同相成分および直交成分を振幅をAとしてそれぞれ次式(式3)とすると、
Figure 2007271500
アンテナkで取得した信号に対するレプリカ信号はそれぞれ、次式(式4)となる。
Figure 2007271500
全アンテナに対する相関値から、受信信号に重畳されているマルチパス誤差信号が排除され、GNSS衛星からの直進搬送波を推定して特定できる。結果としてアンテナ1における位相の推定値φが得られ、アンテナkに対する位相の推定値はφ+φとなる。 The principle of posture estimation in the posture estimation apparatus of the present invention using the method of correlating with the replica signal will be described. When a plurality (n) of GNSS antenna groups (Ant-1 to Ant-n) are mounted on a moving facility such as a ship, an aircraft, or a large vehicle and arranged in a three-dimensional space, one antenna Ant-1 The positional relationship between the other antenna Ant-k and the GNSS satellite will be discussed with reference to FIG. Although the actual positional relationship is three-dimensional, this figure is depicted two-dimensionally on a plane including the central positions of the three parties. The distance from Ant-1 and Ant-k of the antenna to the GNSS satellite is sufficiently large compared to the distance between Ant-1 and Ant-k of the antenna and can be regarded as being at infinity. Become. Now, let E be the elevation angle of the GNSS satellite viewed from the antenna with reference to Ant-1 of the antenna, and let d k be the distance between the phase centers of Ant-1 and Ant-k of the antenna, and Ant-1 and Ant-k of the antenna. Is a posture angle θ, and the delay distance L that is the difference between the antenna Ant-1 and the GNSS satellite and the antenna Ant-k and the GNSS satellite is It is calculated by the following formula (Formula 1).
Figure 2007271500
Since the mutual positional relationship between a plurality of antennas is fixed, each d k value is known. The carrier phase difference φ k is given by the following equation (Equation 2).
Figure 2007271500
It should be noted that the relationship of Equation 2 above is established for a carrier wave directly received by an antenna from a GNSS satellite, and not for a multipath error signal reflected and propagated to a structure such as a high-rise building. Next, a correlation process is performed between a signal received by each of a plurality of antennas and a replica signal generated inside the receiver, and an expression is used when calculating a correlation value for a signal received by antenna k (k = 2 to n). The carrier phase difference calculated in 2 is used as a constraint condition. That is, when the in-phase component and the quadrature component of the replica signal with respect to the signal acquired by the antenna are set to amplitude A, respectively,
Figure 2007271500
Each replica signal for the signal acquired by the antenna k is expressed by the following formula (formula 4).
Figure 2007271500
The multipath error signal superimposed on the received signal is excluded from the correlation values for all the antennas, and the straight carrier wave from the GNSS satellite can be estimated and specified. As a result, an estimated value φ m of the antenna 1 is obtained, and the estimated value of the phase for the antenna k is φ m + φ k .

本発明の姿勢推定装置の全体構成は、図1のように複数のGNSSアンテナ1〜Nの群1、低ノイズアンプ(LNA)2、バンドパスフィルタ,アンプ,ミキサ等からなるRF部3、アナログ/デジタル変換器(ADC)4、各アンテナからの信号を通常のGNSS受信機と同様に処理して疑似距離,搬送波位相,航法メッセージを出力するデータ処理器5、各アンテナ対する疑似距離,搬送波位相,航法メッセージから位置および姿勢角を演算する演算器6、そして位置姿勢を高精度に推定する推定器7からなっている。推定器7は演算器6で計算した姿勢角、または過去の推定器7の出力姿勢角値、または過去の推定器7の出力値に基づく現在の姿勢角予測値を初期値として使用する。   As shown in FIG. 1, the overall configuration of the posture estimation apparatus of the present invention includes a group 1 of a plurality of GNSS antennas 1 to N, a low noise amplifier (LNA) 2, an RF unit 3 including a bandpass filter, an amplifier, a mixer, and the like, an analog / Digital converter (ADC) 4, data processor 5 that processes signals from each antenna in the same manner as a normal GNSS receiver and outputs pseudorange, carrier phase, navigation message, pseudorange, carrier phase for each antenna , An arithmetic unit 6 for calculating the position and posture angle from the navigation message, and an estimator 7 for estimating the position and posture with high accuracy. The estimator 7 uses, as an initial value, the posture angle calculated by the calculator 6, the past output posture angle value of the estimator 7, or the current posture angle predicted value based on the past output value of the estimator 7.

推定器7における処理を図2に示すフローチャートに沿って説明する。複数のアンテナが移動設備上に搭載されているため、当初姿勢角Eは従来装置と同様に正確には特定されていない。ステップ1でまず不正確な姿勢角Eの予測値を初期値としてアンテナ対における搬送波位相差φを計算する。ステップ2で位相差を拘束条件とする相関計算を行い、各アンテナにおける搬送波位相φ+φを推定する。ステップ3で推定した搬送波位相φ+φにより姿勢角Eを再度計算する。続いてステップ4で姿勢角Eの推定が収束したかの判定を行い、収束していなければこの時の推定値を初期値としてステップ1から再び処理を繰り返し、収束するまで行う。収束すればステップ5に進み、その時の搬送波推定値を用いてアンテナ位置計算を行い精度の高い位置・姿勢角値を出力する。
本発明の位置・姿勢推定装置は基準局を使わずにGPS精密衛星軌道、時計推定値と搬送波観測データを使って精密測位を行う精密単独測位(PPP:Precise Point Positioning)の装置であってもよい。
The processing in the estimator 7 will be described along the flowchart shown in FIG. Since a plurality of antennas are mounted on the mobile equipment, the initial posture angle E is not accurately specified as in the conventional apparatus. The predicted value of the first incorrect posture angle E in Step 1 to compute the carrier phase difference phi k in antenna pair as an initial value. In step 2, correlation calculation is performed with the phase difference as a constraint, and the carrier phase φ m + φ k at each antenna is estimated. The attitude angle E is calculated again from the carrier phase φ m + φ k estimated in step 3. Subsequently, in step 4, it is determined whether or not the estimation of the posture angle E has converged. If it has not converged, the estimated value at this time is used as an initial value, and the process is repeated from step 1 until convergence. If it converges, the process proceeds to step 5 where the antenna position is calculated using the estimated carrier wave value at that time, and a highly accurate position / posture angle value is output.
The position / orientation estimation apparatus of the present invention may be a precision point positioning (PPP) apparatus that performs precise positioning using GPS precise satellite orbits, clock estimates, and carrier observation data without using a reference station. .

マルチパス誤差低減による位置姿勢角精度が向上するので、高精度な位置または姿勢角を必要とするすべてのGNSS応用分野で利用できる。例えば船舶等で使用されるGPSコンパスの改良品となる。また移動体からのリモートセンシング等、地球環境科学・工学の分野で貢献することができる。   Since the position / orientation angle accuracy is improved by reducing the multipath error, it can be used in all GNSS application fields that require a highly accurate position or orientation angle. For example, it is an improved product of a GPS compass used in ships and the like. It can also contribute to the field of global environmental science and engineering, such as remote sensing from mobile objects.

本発明に係る姿勢推定装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the attitude | position estimation apparatus which concerns on this invention. 本発明に係る姿勢推定装置の推定器7における処理を説明するフローチャートである。It is a flowchart explaining the process in the estimator 7 of the attitude | position estimation apparatus which concerns on this invention. 1つのアンテナAnt-1と他のアンテナAnt-kとGNSS衛星の位置関係と本発明の姿勢推定装置における拘束条件を説明する図である。It is a figure explaining the positional relationship of one antenna Ant-1, another antenna Ant-k, and a GNSS satellite, and the constraint conditions in the attitude | position estimation apparatus of this invention.

符号の説明Explanation of symbols

1 アンテナ群 2 低ノイズアンプ(LNA)
3 RF部 4 アナログ/デジタル変換器(ADC)
5 データ処理器 6 演算器
7 推定器
1 Antenna group 2 Low noise amplifier (LNA)
3 RF section 4 Analog / digital converter (ADC)
5 Data processor 6 Arithmetic unit 7 Estimator

Claims (4)

移動体上に複数のアンテナを搭載し、各アンテナで取得したGNSS衛星信号と装置内部で生成したレプリカ信号の相関をとる相関器において、姿勢角情報を用いて次式で計算した搬送波位相差φを拘束条件として課する機能を備えた位置・姿勢推定装置。
Figure 2007271500
なお、式中Eはアンテナから見たGNSS衛星の仰角、dは1つのアンテナと他のアンテナkの位相中心の間隔、θは両アンテナ位置を結ぶ線の水平線とのなす角を姿勢角、λは搬送波の波長である。
In a correlator that mounts a plurality of antennas on a moving body and correlates a GNSS satellite signal acquired by each antenna and a replica signal generated inside the apparatus, a carrier phase difference φ calculated by the following equation using attitude angle information A position / posture estimation device having a function of imposing k as a constraint.
Figure 2007271500
Where E is the elevation angle of the GNSS satellite viewed from the antenna, d k is the distance between the phase centers of one antenna and the other antenna k, θ is the angle between the horizontal line of the lines connecting the positions of both antennas, and the attitude angle λ is the wavelength of the carrier wave.
従来のGNSS姿勢推定装置の機能により得られた姿勢角を初期値とし、前記の拘束条件を有する相関器を用いることにより搬送波位相のマルチパス誤差を軽減し、各アンテナにおける搬送波位相φ+φを推定して姿勢角を再度計算する手段を備えた請求項1に記載の位置・姿勢推定装置。
なお、φは基準となるアンテナにおける位相の推定値
The attitude angle obtained by the function of the conventional GNSS attitude estimation device is set as an initial value, and the multipath error of the carrier phase is reduced by using the correlator having the above-described constraint conditions, and the carrier phase φ m + φ k at each antenna is reduced. The position / orientation estimation apparatus according to claim 1, further comprising means for estimating the angle and recalculating the attitude angle.
Φ m is the estimated phase of the reference antenna.
再計算した姿勢角が収束したか否かを判定する手段を備え、収束していなければこの時の推定値を初期値として再び処理を繰り返し、収束するまで行い、その結果として姿勢角を高精度に推定することを特徴とする請求項2に記載の位置・姿勢推定装置。   A means to determine whether or not the recalculated attitude angle has converged. If it has not converged, repeat the process again using the estimated value at this time as the initial value until it converges. As a result, the attitude angle is highly accurate. The position / posture estimation apparatus according to claim 2, wherein 再計算した姿勢角が収束したか否かを判定する手段を備え、収束していなければこの時の推定値を初期値として再び処理を繰り返し、収束するまで行い、マルチパス誤差が低減された搬送波位相を用い搬送波差分測位や精密単独測位手法における精度を向上させることを特徴とする請求項2に記載の位置・姿勢推定装置。   A means for determining whether or not the recalculated attitude angle has converged. If it has not converged, repeat the process again using the estimated value at this time as the initial value, and continue until convergence, reducing the multipath error. The position / posture estimation apparatus according to claim 2, wherein the phase is used to improve accuracy in carrier wave differential positioning or precision single positioning method.
JP2006098620A 2006-03-31 2006-03-31 Position and orientation estimation device Active JP4215264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098620A JP4215264B2 (en) 2006-03-31 2006-03-31 Position and orientation estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098620A JP4215264B2 (en) 2006-03-31 2006-03-31 Position and orientation estimation device

Publications (2)

Publication Number Publication Date
JP2007271500A true JP2007271500A (en) 2007-10-18
JP4215264B2 JP4215264B2 (en) 2009-01-28

Family

ID=38674445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098620A Active JP4215264B2 (en) 2006-03-31 2006-03-31 Position and orientation estimation device

Country Status (1)

Country Link
JP (1) JP4215264B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073318B1 (en) 2010-01-19 2011-10-12 서울대학교산학협력단 Positioning system and method of terminal comprising multiple antenna
CN104121907A (en) * 2014-07-30 2014-10-29 杭州电子科技大学 Square root cubature Kalman filter-based aircraft attitude estimation method
WO2020174935A1 (en) 2019-02-25 2020-09-03 古野電気株式会社 Movement information calculation device and movement information calculation method
CN114156640A (en) * 2021-12-16 2022-03-08 歌尔科技有限公司 Antenna assembly, unmanned aerial vehicle and unmanned aerial vehicle positioning method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073318B1 (en) 2010-01-19 2011-10-12 서울대학교산학협력단 Positioning system and method of terminal comprising multiple antenna
CN104121907A (en) * 2014-07-30 2014-10-29 杭州电子科技大学 Square root cubature Kalman filter-based aircraft attitude estimation method
CN104121907B (en) * 2014-07-30 2017-02-08 杭州电子科技大学 Square root cubature Kalman filter-based aircraft attitude estimation method
WO2020174935A1 (en) 2019-02-25 2020-09-03 古野電気株式会社 Movement information calculation device and movement information calculation method
US11953610B2 (en) 2019-02-25 2024-04-09 Furuno Electric Co., Ltd. Device and method for calculating movement information
CN114156640A (en) * 2021-12-16 2022-03-08 歌尔科技有限公司 Antenna assembly, unmanned aerial vehicle and unmanned aerial vehicle positioning method

Also Published As

Publication number Publication date
JP4215264B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
EP3688495B1 (en) System for determining a physical metric such as position
EP2634593B1 (en) Positioning using a local wave-propagation model
JP5301762B2 (en) Carrier phase relative positioning device
JP2016539325A (en) Anomaly detection using antenna baseline constraints
RU2011142686A (en) METHOD AND SYSTEM OF GEOLOCALIZATION OF THE RADIO BEACON IN THE ALARM AND NOTIFICATION SYSTEM
JP2014228537A (en) Receivers and methods for multi-mode navigation
JP5759676B2 (en) Propagation path estimation system and propagation path estimation method
JP2014186032A (en) Module, device and method for positioning
US9391366B2 (en) Method and device for calibrating a receiver
US20230009945A1 (en) Method, system and computer program product for performing correlation in a positioning system
KR102039644B1 (en) Precise integrated navigation positioning verification apparatus
US6882312B1 (en) Method and apparatus for multipath mitigation using antenna array
JP4215264B2 (en) Position and orientation estimation device
CN105487094A (en) Data link and satellite navigation collaborative positioning method and positioning system
US20190293803A1 (en) Multi-antenna device for the rejection of multi-paths in a satellite navigation system and associated method
JPWO2006046298A1 (en) Relative positioning method and relative positioning system using satellite
JP4723801B2 (en) Relative positioning device
JP2009079975A (en) Positioning system
WO2017090359A1 (en) Attitude angle calculation device and attitude angle calculation method
US7961145B1 (en) Method and apparatus for estimating relative position in a global navigation satellite system
US20150192678A1 (en) Satellite positioning method, satellite positioning apparatus, and computer-readable medium
JP2005077318A (en) Global positioning system
JP2005195347A (en) Direction search sensor, and radio wave emission source position estimation system
JP3178938U (en) Satellite positioning device
RU2661336C2 (en) Method for increasing the accuracy in determining the angles of spatial orientation of a vessel in conditions of violation of the structure of received gnss signals by vessel infrastructure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

R150 Certificate of patent or registration of utility model

Ref document number: 4215264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250