JP2009079975A - Positioning system - Google Patents

Positioning system Download PDF

Info

Publication number
JP2009079975A
JP2009079975A JP2007248734A JP2007248734A JP2009079975A JP 2009079975 A JP2009079975 A JP 2009079975A JP 2007248734 A JP2007248734 A JP 2007248734A JP 2007248734 A JP2007248734 A JP 2007248734A JP 2009079975 A JP2009079975 A JP 2009079975A
Authority
JP
Japan
Prior art keywords
base station
positioning
ionospheric delay
bias
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007248734A
Other languages
Japanese (ja)
Inventor
Sueo Sugimoto
末雄 杉本
Yukihiro Kubo
幸弘 久保
Seigo Fujii
征吾 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007248734A priority Critical patent/JP2009079975A/en
Publication of JP2009079975A publication Critical patent/JP2009079975A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate and operate an ionosphere delay easily and highly accurately by using one linear regression equation. <P>SOLUTION: A base station 1 receives a positioning signal from a positioning satellite SAT, and acquires a carrier phase integrated value and a code pseudo distance (S1). The base station 1 acquires a navigation message, analyzes it, and acquires information of the positioning satellite used for estimation and operation of the ionosphere delay (S2, S3). The base station 1 performs linear approximation by performing Taylor expansion around the positioning satellite position acquired by past estimation and operation, relative to the distance between the base station 1 and the positioning satellite (S4). The base station 1 sets the linear regression equation by using a linear approximation result on the positioning satellite position as a matrix operation element, by including the ionosphere delay as an unknown, and by using the carrier phase integrated value and a value calculated from the code pseudo distance and the base station position as observation values. The base station 1 estimates and operates the ionosphere delay by applying a Kalman filter or the like to the linear regression equation (S5). <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、測位用信号を用いて電離層遅延を推定演算する測位システムに関するものである。   The present invention relates to a positioning system that estimates and calculates ionospheric delay using a positioning signal.

従来、測位衛星から送信される測位用信号を用いて測位を行う測位システムが各種開示されており、測位方法から単独測位と相対測位とが存在する。このような測位システムにおける測位演算では、電離層遅延の問題がある。このために、一般的には、電離層遅延情報を衛星からの航法メッセージ等から取得して、測位演算の際に電離層遅延情報を利用することで電離層遅延の影響を除去していた。
佐田 達典著,「GPS測量技術」,オーム社,平成15年10月20日
Conventionally, various positioning systems that perform positioning using positioning signals transmitted from positioning satellites have been disclosed, and there are independent positioning and relative positioning based on positioning methods. In the positioning calculation in such a positioning system, there is a problem of ionospheric delay. For this reason, in general, ionospheric delay information is acquired from navigation messages from satellites, and the effect of ionospheric delay is removed by using ionospheric delay information during positioning calculation.
Tatsunori Sada, “GPS Survey Technology”, Ohmsha, October 20, 2003

このように、電離層遅延情報は、高精度な測位を行うためには必要なものであり、電離層遅延情報が高精度であるほど、より高精度な測位を行うことができる。そして、このような高精度の電離層遅延情報を算出する方法は、容易ではなかった。   As described above, the ionospheric delay information is necessary for highly accurate positioning, and the more accurate the ionospheric delay information, the more accurate positioning can be performed. And the method of calculating such highly accurate ionospheric delay information has not been easy.

したがって、本発明の目的は、電離層遅延情報を高精度の推定演算を容易に行うことができる測位システムを提供することにある。   Accordingly, an object of the present invention is to provide a positioning system that can easily perform highly accurate estimation calculation of ionospheric delay information.

この発明は、測位用信号を送信する複数の測位衛星と、測位用信号を受信する受信手段を備えるとともに位置が既知である基地局と、を有する測位システムに関するものである。この測位システムの基地局は、電離層遅延バイアスを推定する推定演算手段を備える。推定演算手段は、測位用信号から得られる衛星情報から、基地局と測位衛星との間のコード疑似距離およびキャリア位相積算値を観測し、測位衛星と基地局との距離を、測位衛星の過去の推定位置で一次テイラー級数展開することで線形近似し、少なくとも基地局の電離層遅延バイアスを未知数として説明変数に含み、キャリア位相積算値およびコード擬似距離から基地局位置を減算した観測値を目的変数に含み、線形近似に基づく測位衛星位置を演算行列要素として含む一つの線形回帰方程式を構成し、該線形回帰方程式から基地局の電離層遅延バイアスを推定演算する。   The present invention relates to a positioning system including a plurality of positioning satellites that transmit positioning signals, and a base station that includes a receiving unit that receives positioning signals and has a known position. The base station of this positioning system includes estimation calculation means for estimating the ionospheric delay bias. The estimation calculation means observes the code pseudorange and the carrier phase integrated value between the base station and the positioning satellite from the satellite information obtained from the positioning signal, and calculates the distance between the positioning satellite and the base station from the past of the positioning satellite. Linear approximation by expanding the first-order Taylor series at the estimated position, including at least the ionospheric delay bias of the base station as an unknown variable, and the observed value obtained by subtracting the base station position from the carrier phase integrated value and code pseudorange And a linear regression equation including the positioning satellite position based on the linear approximation as an operation matrix element is constructed, and the ionospheric delay bias of the base station is estimated and calculated from the linear regression equation.

この構成では、一つの線形回帰方程式を用いて、電離層遅延バイアスを推定演算することで、電離層遅延バイアスの推定演算が容易となる。   In this configuration, the ionospheric delay bias can be estimated easily by calculating the ionospheric delay bias using one linear regression equation.

また、この発明の測位システムの推定演算手段は、線形回帰方程式の説明変数に、搬送波毎の整数値バイアスを含んで推定演算を行う。ここで、搬送波毎とは、例えば、GNSSで利用できる測位信号に含まれる搬送波の少なくとも二種類の搬送波毎等のことを示す。   The estimation calculation means of the positioning system according to the present invention performs the estimation calculation including the integer value bias for each carrier wave in the explanatory variable of the linear regression equation. Here, for each carrier, for example, indicates at least two types of carriers included in a positioning signal that can be used in GNSS.

この構成では、電離層遅延バイアスとともに基地局での整数値バイアスを推定する演算がなされる。これにより、既知局(位置が既知の基地局)に近い未知局が既知局に対して相対測位を行う場合に、基地局の整数値バイアスが既知の値となるので、拘束条件が増えて、未知局での測位演算が容易且つ高精度になる。   In this configuration, calculation is performed to estimate the integer bias at the base station together with the ionospheric delay bias. As a result, when an unknown station close to a known station (a base station whose position is known) performs relative positioning with respect to the known station, since the integer value bias of the base station becomes a known value, the constraint condition increases, Positioning calculation at an unknown station is easy and highly accurate.

また、この発明の測位システムの基地局は、複数の受信手段を備える。推定演算手段は、各受信手段に対応する複数の電離層遅延バイアスが同じであるとして、基地局に対する唯一の電離層遅延バイアスとして設定する。   Moreover, the base station of the positioning system of this invention is provided with a plurality of receiving means. The estimation calculation means sets a plurality of ionospheric delay biases corresponding to the respective reception means as the same, and sets it as the only ionospheric delay bias for the base station.

この構成では、線形回帰方程式で利用する観測値である目的変数が増加する一方で、電離層遅延バイアスに関する説明変数は増加しないので、より高精度な推定演算が可能となる。   In this configuration, the objective variable, which is an observation value used in the linear regression equation, increases, but the explanatory variable related to the ionospheric delay bias does not increase, so that a more accurate estimation calculation can be performed.

また、この発明の測位システムの基地局は複数である。そして、測位システムは、複数の基地局で推定演算された電離層遅延バイアスに基づいて、電離層の経度、緯度に応じた電離層情報を推定演算する電離層情報推定手段を備える。   The positioning system of the present invention has a plurality of base stations. The positioning system includes ionosphere information estimation means for estimating and calculating ionosphere information corresponding to the longitude and latitude of the ionosphere based on ionosphere delay biases estimated and calculated by a plurality of base stations.

この構成では、複数の基地局の電離層遅延バイアスに基づいて、経度・緯度に基づく電離層遅延情報が形成されるので、各未知局はこの電離層遅延情報を利用して高精度な測位を行うことができる。   In this configuration, ionospheric delay information based on longitude and latitude is formed based on the ionospheric delay bias of a plurality of base stations, so that each unknown station can perform highly accurate positioning using this ionospheric delay information. it can.

この発明によれば、一つの回帰方程式のみを用いて高精度に電離層遅延バイアスを推定演算することができる。また、この推定演算された電離層遅延バイアスを用いることで、高精度な測位システムを容易に構成することができる。   According to the present invention, the ionospheric delay bias can be estimated and calculated with high accuracy using only one regression equation. In addition, a highly accurate positioning system can be easily configured by using the estimated ionospheric delay bias.

本発明の実施形態に係る測位システムについて図を参照して説明する。なお、以下の説明では、GPSを用いた測位システムについて説明するが、他の全てのGNSS(全地球的航法衛星システム)に適用することができる。
図1は本実施形態の測位システムの構成を示す概念図である。
また、図2は本実施形態の基地局1の構成を示すブロック図である。
また、図3は本実施形態の基地局1の電離層遅延バイアスの推定フローを示すフローチャートである。
A positioning system according to an embodiment of the present invention will be described with reference to the drawings. In the following description, a positioning system using GPS will be described, but the present invention can be applied to all other GNSSs (global navigation satellite systems).
FIG. 1 is a conceptual diagram showing the configuration of the positioning system of this embodiment.
FIG. 2 is a block diagram showing the configuration of the base station 1 of this embodiment.
FIG. 3 is a flowchart showing an estimation flow of the ionospheric delay bias of the base station 1 of the present embodiment.

本実施形態の測位システムは、基地局1と、複数の測位衛星SAT1〜SATnとを備える。   The positioning system of this embodiment includes a base station 1 and a plurality of positioning satellites SAT1 to SATn.

測位用衛星SAT1〜SATnは、航法メッセージが重畳した搬送波(キャリア信号)を、予め衛星毎に設定されたコードで変調して外部に送信する。   The positioning satellites SAT1 to SATn modulate the carrier wave (carrier signal) on which the navigation message is superimposed with a code set in advance for each satellite and transmit it to the outside.

基地局1には測位用アンテナ10が設置されているとともに、基地局1内には、GPS受信機11、航法メッセージ解析部12、衛星情報処理部13および推定演算部14を備える。   The base station 1 is provided with a positioning antenna 10, and the base station 1 includes a GPS receiver 11, a navigation message analysis unit 12, a satellite information processing unit 13, and an estimation calculation unit 14.

測位用アンテナ10は、観測可能な測位用衛星SAT1〜SATnより送信される測位用信号を受信し、GPS受信機は測位用信号を復調する。この復調を行う際に、同時にキャリア位相積算値とコード擬似距離(コード位相)とを算出する(S1)。航法メッセージ解析部12は、復調された測位用信号から航法メッセージを解析して測位用衛星に関する情報を取得する(S2)。衛星情報処理部13は、測位用衛星のエフェメリス情報等を用いて、電離層遅延バイアスの推定演算に利用する測位用衛星を選定して、選定した測位用衛星に関する各種情報を推定演算部14に出力する(S3)。   The positioning antenna 10 receives positioning signals transmitted from observable positioning satellites SAT1 to SATn, and the GPS receiver demodulates the positioning signals. When this demodulation is performed, the carrier phase integrated value and the code pseudo distance (code phase) are calculated simultaneously (S1). The navigation message analysis unit 12 analyzes the navigation message from the demodulated positioning signal and acquires information on the positioning satellite (S2). The satellite information processing unit 13 uses the ephemeris information of the positioning satellite to select a positioning satellite to be used for the ionospheric delay bias estimation calculation, and outputs various information regarding the selected positioning satellite to the estimation calculation unit 14 (S3).

推定演算部14は、衛星情報処理部13から入力される各情報と、基地局情報通信部13から入力される各情報とについて、対象とする測位用衛星に対する整合をとる。そして、推定演算部14は、入力された各観測値を用いて後述する1つの線形回帰方程式を設定する。ここで、観測値は、CAコード、P(Y)コード毎のコード疑似距離、L1搬送波、L2搬送波毎のキャリア位相積算値であり、当該各観測値から、基地局の位置を減算した値が、線形回帰方程式の目的変数となる。一方で、未知数は、少なくとも推定演算すべき電離層遅延バイアスを含み、さらに搬送波毎の整数値バイアス等を有する。そして、この未知数が線形回帰方程式の説明変数となる。さらに、過去の測位衛星位置の周りで一次テイラー級数展開した線形近似により得られる測位衛星位置に関する要素が、線形回帰方程式の演算行列要素として用いられる。推定演算部14は、設定した線形回帰方程式に最小二乗法やLAMBDA法やカルマンフィルタを適用することで、電離層遅延バイアスを推定演算する(S4、S5)。   The estimation calculation unit 14 matches each information input from the satellite information processing unit 13 and each information input from the base station information communication unit 13 with respect to the target positioning satellite. And the estimation calculating part 14 sets one linear regression equation mentioned later using each input observation value. Here, the observed values are the CA code, the code pseudo distance for each P (Y) code, the carrier phase integrated value for each of the L1 carrier and the L2 carrier, and the value obtained by subtracting the position of the base station from each of the observed values. It becomes the objective variable of the linear regression equation. On the other hand, the unknown includes at least an ionospheric delay bias to be estimated and further includes an integer bias for each carrier wave. This unknown is an explanatory variable for the linear regression equation. Further, an element related to the positioning satellite position obtained by linear approximation developed by the first-order Taylor series around the past positioning satellite position is used as an operation matrix element of the linear regression equation. The estimation calculation unit 14 estimates and calculates the ionospheric delay bias by applying the least square method, the LAMBDA method, or the Kalman filter to the set linear regression equation (S4, S5).

基地局1は、このように推定演算された電離層遅延バイアスを、未知局からの要求に応じて、当該未知局に送信する。この際、電離層遅延バイアスと同時に推定演算された整数値バイアスを、未知局に送信しても良い。また、基地局1は、別途設置された電離層遅延情報設定装置に対して、自局位置情報とともに電離層遅延バイアスを送信する。   The base station 1 transmits the ionospheric delay bias thus estimated and calculated to the unknown station in response to a request from the unknown station. At this time, an integer bias estimated and calculated simultaneously with the ionospheric delay bias may be transmitted to the unknown station. Further, the base station 1 transmits an ionospheric delay bias together with its own station position information to an ionosphere delay information setting device installed separately.

次に、基地局での電離層遅延バイアスの推定演算アルゴリズムについて具体的に説明する。なお、以下の説明では、キャリア位相積算値を単に「キャリア位相」と称す。   Next, an ionospheric delay bias estimation calculation algorithm in the base station will be specifically described. In the following description, the carrier phase integrated value is simply referred to as “carrier phase”.

基地局k、GPS衛星p(測位用衛星SAT1〜SATn)に対するキャリア位相φp CA,k(t),φp PY,k(t)の観測方程式は式(3)、(4)で表され、コード擬似距離(擬似距離)ρp L1,k(t),ρp L2,k(t)の観測方程式は式(1)、(2)で表される。また、マルチパス誤差は微少として無視する。 The observation equations of the carrier phases φ p CA, k (t) and φ p PY, k (t) for the base station k and the GPS satellite p (positioning satellites SAT1 to SATn) are expressed by equations (3) and (4). The observation equations of the code pseudorange (pseudodistance) ρ p L1, k (t) and ρ p L2, k (t) are expressed by equations (1) and (2). Multipath errors are negligible and ignored.

Figure 2009079975
Figure 2009079975

ここで、λL1,λL2はL1波、L2波の波長を示し、rp k(t,t−τp k)は時刻tでの基地局kと時刻(t−τp k)でのGPS衛星pとの距離を示し、τp kは衛星pと基地局kとの間の電波の伝搬時間を示し、δIp k(t)は電離層遅延を示し、δTp k(t)は対流圏遅延を示し、δtk(t)は真の時刻tでの基地局kの時計誤差を示し、δtp(t−τp k)は時刻(t−τp k)でのGPS衛星pの時計誤差を示し、Np kは基地局kとGPS衛星pとの間の整数値バイアスを示し、δbCA,k(t),δbPY,k(t),δbL1,k(t),δbL2,k(t)は基地局kの受信機ハードウエアバイアスを示し、δbp CA(t),δbp PY(t),δbp L1(t),δbp L2(t)は基地局kの受信機ハードウエアバイアスを示し、εp k(t),ep k(t)はそれぞれ観測雑音を示す。 Here, λ L1 and λ L2 indicate the wavelengths of the L1 wave and the L2 wave, and r p k (t, t−τ p k ) is the base station k at time t and the time (t−τ p k ). Indicates the distance from the GPS satellite p, τ p k indicates the propagation time of the radio wave between the satellite p and the base station k, δI p k (t) indicates the ionospheric delay, and δT p k (t) indicates the troposphere Δt k (t) represents the clock error of the base station k at the true time t, and δt p (t−τ p k ) represents the clock of the GPS satellite p at the time (t−τ p k ). N p k indicates an integer bias between the base station k and the GPS satellite p, and δb CA, k (t), δb PY, k (t), δb L1, k (t), δb L2, k (t) represents the receiver hardware bias of the base station k, and δb p CA (t), δb p PY (t), δb p L1 (t), and δb p L2 (t) represent the base station k. Ε p k (t), e p k (t) represents observation noise.

ここで、基地局kとGPS衛星pとの距離rp k(t,t−τp k)を、未知数である測位衛星推定位置sep(t)≡[xep(t),yep(t),zep(t)](Tはベクトルまたは行列の転置)のまわりで1次のテイラー級数展開を行い、rp k(t)を線形近似すると、式(5)となる。 Here, the distance between the base station k and the GPS satellite p r p k (t, t -τ p k) a positioning satellite estimated position is unknown se p (t) ≡ [xe p (t), ye p ( t), ze p (t)] T (where T is a vector or matrix transpose) is subjected to first-order Taylor series expansion, and r p k (t) is linearly approximated to obtain Equation (5).

Figure 2009079975
Figure 2009079975

ここで、spは測位衛星位置である。 Here, s p is a positioning satellite position.

この結果に基づき、式(6)〜(9)の関係を設定する。   Based on this result, the relationships of equations (6) to (9) are set.

Figure 2009079975
Figure 2009079975

式(1)〜(4)は、ベクトル・行列表現からなる式(10)となる。 Expressions (1) to (4) become Expression (10) including a vector / matrix expression.

Figure 2009079975
Figure 2009079975

ただし、   However,

Figure 2009079975
Figure 2009079975

である。 It is.

そして、この式(10)を線形変換すると、式(11)となる。なお、式(11)では誤差項を省略する。   Then, when this equation (10) is linearly transformed, equation (11) is obtained. In Equation (11), the error term is omitted.

Figure 2009079975
Figure 2009079975

さらに、式(11)に対して、更なる線形変換を行うと、式(11)は式(12)のように表現することができる。   Furthermore, when further linear transformation is performed on the expression (11), the expression (11) can be expressed as the expression (12).

Figure 2009079975
Figure 2009079975

このように簡素化された線形回帰方程式を用い、ハードウエアバイアスに関する項δbがほぼ定数であり、また、電離層遅延データδIkがKlobucharの電離層遅延モデル、あるいは国際GNSS事業が提供する電離層遅延の推定値δIekを利用して、電離層遅延バイアスδIkとこの推定値δIekとの差分値が一次マルコフ過程と仮定すると、次式の状態方程式と観測方程式とを設定することができる。 Using the linear regression equation thus simplified, the term δb related to the hardware bias is almost constant, and the ionospheric delay data δI k is an estimation of the ionospheric delay provided by the Klobuccharo ionospheric model or the international GNSS project. using the value DELTA Ie k, the difference between the estimated value DELTA Ie k ionospheric delay bias .delta.I k Toko is assumed to primary Markov process, it is possible to set the observation equation and the state equation of the following equation.

x(t+1)=x(t)
k1,d=Hx(t)+υ(t)
この状態方程式および観測方程式にカルマンフィルタ推定理論を適用することで、電離層遅延バイアスδIkと推定値δIekとの差分値が推定演算ができ、結果的に、電離層遅延バイアスδIkを推定演算することができる。この際、整数値バイアスNL1,k,NL2,kに対して、カルマンフィルタによる実数推定値と推定誤差共分散を用いて、LAMBDA法で整数値の推定値を算出する。このような整数値の推定値が算出されることで、より高精度な電離層遅延バイアスδIkを推定演算することができる。
x (t + 1) = x (t)
y k1, d = Hx (t) + υ (t)
By applying the Kalman filter estimation theory to the state equation and the observation equation, the difference value between the ionospheric delay bias δI k and the estimated value δIe k can be estimated, and as a result, the ionospheric delay bias δI k can be estimated and calculated. Can do. At this time, for the integer value biases N L1, k and N L2, k , the estimated value of the integer value is calculated by the LAMBDA method using the real number estimated value and estimated error covariance by the Kalman filter. By calculating the estimated value of such an integer value, it is possible to estimate and calculate the ionospheric delay bias δI k with higher accuracy.

以上のように、本実施形態の構成および処理を用いることで、基地局にて電離層遅延バイアスを高精度且つ容易に推定演算することができる。   As described above, by using the configuration and processing of the present embodiment, the ionosphere delay bias can be estimated and calculated with high accuracy and easily at the base station.

なお、上述の説明では、測位用アンテナ10およびGPS受信機11を基地局1に一つ設置した場合について説明したが、基地局1に複数の測位用アンテナおよびGPS受信機を設置するようにしてもよい。このように、複数の測位用アンテナおよびGPS受信機を用いた場合、各測位用アンテナ(GPS受信機)間の距離が短いので、電離層遅延バイアスは同じであると見なすことができる。このため、上述の線形回帰方程式において、未知数である電離層遅延バイアスδIkの数を増やすことなく、観測値を増加させることができるので、より高精度に電離層遅延バイアスδIkを推定演算することができる。 In the above description, the case where one positioning antenna 10 and one GPS receiver 11 are installed in the base station 1 is described. However, a plurality of positioning antennas and GPS receivers are installed in the base station 1. Also good. Thus, when a plurality of positioning antennas and GPS receivers are used, since the distance between the positioning antennas (GPS receivers) is short, it can be considered that the ionospheric delay bias is the same. Therefore, in the above-described linear regression equation, the observed value can be increased without increasing the number of unknown ionospheric delay bias δI k , so that the ionospheric delay bias δI k can be estimated and calculated with higher accuracy. it can.

なお、上述の説明では、ハードウエアバイアスとして、基地局のハードウエアバイアスと、測位衛星のハードウエアバイアスとを考慮した場合を説明したが、測位衛星のハードウエアバイアスは、10-9オーダであり、無視することもできる。このように無視できる場合には、より容易に電離層遅延バイアスを推定演算することができる。 In the above description, the case where the hardware bias of the base station and the hardware bias of the positioning satellite are considered as the hardware bias has been described. However, the hardware bias of the positioning satellite is on the order of 10 −9 . Can be ignored. If it can be ignored in this way, the ionospheric delay bias can be estimated and calculated more easily.

ところで、このように推定演算された電離層遅延バイアスは、自局位置情報とともに、別途設置された電離層遅延情報設定装置に送信される。電離層遅延情報設定装置は、各基地局からの電離層遅延バイアスとこれに関連付けられた自局位置情報とを収集し、電離層における経度、緯度単位での電離層遅延のデータ群からなる電離層遅延情報を算出する。この際、電離層遅延情報設定装置は、上述のようにして得られた基地局と各GPS衛星との間の電離層遅延バイアスからVTEC(電離層での垂直電子数)を算出する。さらに電離層遅延情報設定装置は、算出したVTECを用いて、電離層点の緯度eβと、Sun−fixed座標系における電離層点の経度esとの関数E(eβ,es)を推定演算する。そして、このようにして得られた関数E(eβ,es)を電離層遅延情報として、測位用衛星や情報提供用衛星等に送信する。電離層遅延情報は、各衛星から放送され、例えば、測位を行う自装置が未知の測位装置(未知局)で測位演算を実行する際に利用される。これにより、各未知局は、高精度な測位を行うことができる。   By the way, the ionospheric delay bias calculated in this way is transmitted to the ionospheric delay information setting apparatus installed separately together with the local station position information. The ionospheric delay information setting device collects the ionospheric delay bias from each base station and the local station position information associated therewith, and calculates ionospheric delay information composed of ionospheric delay data groups in longitude and latitude in the ionosphere. To do. At this time, the ionosphere delay information setting device calculates VTEC (number of vertical electrons in the ionosphere) from the ionosphere delay bias between the base station and each GPS satellite obtained as described above. Further, the ionospheric delay information setting device estimates and calculates a function E (eβ, es) between the latitude eβ of the ionospheric point and the longitude es of the ionospheric point in the Sun-fixed coordinate system, using the calculated VTEC. The function E (eβ, es) thus obtained is transmitted as ionospheric delay information to a positioning satellite, an information providing satellite, or the like. The ionospheric delay information is broadcast from each satellite, and is used, for example, when the own device that performs positioning performs positioning calculation with an unknown positioning device (unknown station). Thereby, each unknown station can perform highly accurate positioning.

本発明の実施形態の測位システムの構成を示す概念図である。It is a conceptual diagram which shows the structure of the positioning system of embodiment of this invention. 本実施形態の基地局1の構成を示すブロック図である。It is a block diagram which shows the structure of the base station 1 of this embodiment. 本実施形態の基地局1の電離層遅延バイアスの推定フローを示すフローチャートである。It is a flowchart which shows the estimation flow of the ionospheric delay bias of the base station 1 of this embodiment.

符号の説明Explanation of symbols

1−基地局
10−測位用アンテナ
11−GPS受信機
12−航法メッセージ解析部
13−衛星情報処理部
14−推定演算部
SAT1〜SATn−測位用衛星
1-base station 10-positioning antenna 11-GPS receiver 12-navigation message analysis unit 13-satellite information processing unit 14-estimation calculation units SAT1-SATn-positioning satellite

Claims (4)

測位用信号を送信する複数の測位衛星と、
前記測位用信号を受信する受信手段を備えるとともに、位置が既知である基地局とを有する測位システムであって、
前記基地局は、
前記測位用信号から得られる衛星情報から、前記基地局と前記測位衛星との間のコード疑似距離およびキャリア位相積算値を観測し、
前記測位衛星と前記基地局との距離方程式を、前記測位衛星の過去の推定位置で一次テイラー級数展開することで線形近似し、
少なくとも前記基地局の電離層遅延バイアスを未知数として説明変数に含み、前記キャリア位相積算値および前記コード擬似距離から前記基地局位置を減算した観測値を目的変数に含み、前記線形近似に基づく前記測位衛星位置を演算行列要素として含む一つの線形回帰方程式を構成し、
該線形回帰方程式から、前記基地局の電離層遅延バイアスを推定演算する、推定演算手段を備えた、測位システム。
Multiple positioning satellites that transmit positioning signals;
A positioning system comprising a receiving means for receiving the positioning signal and a base station whose position is known,
The base station
From the satellite information obtained from the positioning signal, observe the code pseudorange and the carrier phase integrated value between the base station and the positioning satellite,
The distance equation between the positioning satellite and the base station is linearly approximated by developing a first order Taylor series at the estimated position of the positioning satellite in the past,
At least the ionospheric delay bias of the base station is included in the explanatory variable as an unknown, the observation value obtained by subtracting the base station position from the carrier phase integrated value and the code pseudorange is included in the objective variable, and the positioning satellite based on the linear approximation Construct a linear regression equation that includes the position as an arithmetic matrix element,
A positioning system comprising estimation calculation means for estimating and calculating the ionospheric delay bias of the base station from the linear regression equation.
前記推定演算手段は、前記線形回帰方程式の説明変数に、搬送波毎の整数値バイアスを含む、請求項1に記載の測位システム。   The positioning system according to claim 1, wherein the estimation calculation unit includes an integer value bias for each carrier wave in an explanatory variable of the linear regression equation. 前記基地局は、複数の受信手段を備え、
前記推定演算手段は、各受信手段に対応する複数の電離層遅延バイアスが同じであるとして、前記基地局に対する唯一の電離層遅延バイアスとして設定する、請求項1または請求項2に記載の測位システム。
The base station comprises a plurality of receiving means,
The positioning system according to claim 1 or 2, wherein the estimation calculation means sets a plurality of ionospheric delay biases corresponding to the receiving means as the same ionospheric delay bias for the base station.
前記基地局は複数あり、
該複数の基地局で推定演算された電離層遅延バイアスに基づいて、電離層の経度、緯度に応じた電離層情報を推定演算する、電離層情報推定手段を備えた、請求項1〜請求項3のいずれかに記載の測位システム。
There are a plurality of the base stations,
The ionosphere information estimation means for estimating and calculating ionosphere information corresponding to the longitude and latitude of the ionosphere based on the ionosphere delay bias estimated and calculated by the plurality of base stations. The positioning system described in.
JP2007248734A 2007-09-26 2007-09-26 Positioning system Pending JP2009079975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248734A JP2009079975A (en) 2007-09-26 2007-09-26 Positioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248734A JP2009079975A (en) 2007-09-26 2007-09-26 Positioning system

Publications (1)

Publication Number Publication Date
JP2009079975A true JP2009079975A (en) 2009-04-16

Family

ID=40654839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248734A Pending JP2009079975A (en) 2007-09-26 2007-09-26 Positioning system

Country Status (1)

Country Link
JP (1) JP2009079975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147569A1 (en) * 2015-03-13 2016-09-22 パナソニックIpマネジメント株式会社 Satellite positioning system, electronic instrument, and positioning method
CN110009528A (en) * 2019-04-12 2019-07-12 杭州电子科技大学 A kind of parameter adaptive update method based on optimum structure multidimensional Taylor net
WO2020066153A1 (en) * 2018-09-26 2020-04-02 Necソリューションイノベータ株式会社 Information processing device, information processing system, information processing method, and non-temporary computer-readable medium
CN112764075A (en) * 2020-12-28 2021-05-07 华力智芯(成都)集成电路有限公司 Carrier integer ambiguity fixing method based on three satellites
CN113155156A (en) * 2021-04-27 2021-07-23 北京信息科技大学 Method and device for determining running information, storage medium and electronic device
CN113536983A (en) * 2021-06-29 2021-10-22 辽宁工业大学 Petroleum pipeline stealing positioning method based on P-RLS adaptive filtering time delay estimation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171071A (en) * 1995-10-24 1997-06-30 Internatl Mobil Satellite Org Satellite radio determination
WO2006022318A1 (en) * 2004-08-25 2006-03-02 The Ritsumeikan Trust Independent positioning device and independent positioning method
JP2007171082A (en) * 2005-12-26 2007-07-05 Nec Toshiba Space Systems Ltd Ionosphere delay correction method, ionosphere delay correction system, earth station, and mobile station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171071A (en) * 1995-10-24 1997-06-30 Internatl Mobil Satellite Org Satellite radio determination
WO2006022318A1 (en) * 2004-08-25 2006-03-02 The Ritsumeikan Trust Independent positioning device and independent positioning method
JP2007171082A (en) * 2005-12-26 2007-07-05 Nec Toshiba Space Systems Ltd Ionosphere delay correction method, ionosphere delay correction system, earth station, and mobile station

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147569A1 (en) * 2015-03-13 2016-09-22 パナソニックIpマネジメント株式会社 Satellite positioning system, electronic instrument, and positioning method
JPWO2016147569A1 (en) * 2015-03-13 2018-01-18 パナソニックIpマネジメント株式会社 Satellite positioning system, electronic device and positioning method
US11762100B2 (en) 2018-09-26 2023-09-19 Nec Solution Innovators, Ltd. Information processing apparatus, information processing system, information processing method, and non-transitory computer readable medium
WO2020066153A1 (en) * 2018-09-26 2020-04-02 Necソリューションイノベータ株式会社 Information processing device, information processing system, information processing method, and non-temporary computer-readable medium
CN112673282A (en) * 2018-09-26 2021-04-16 日本电气方案创新株式会社 Information processing apparatus, information processing system, information processing method, and non-transitory computer-readable medium
JPWO2020066153A1 (en) * 2018-09-26 2021-08-30 Necソリューションイノベータ株式会社 Information processing equipment, information processing systems, information processing methods and programs
CN110009528B (en) * 2019-04-12 2021-06-01 杭州电子科技大学 Parameter self-adaptive updating method based on optimal structure multi-dimensional Taylor network
CN110009528A (en) * 2019-04-12 2019-07-12 杭州电子科技大学 A kind of parameter adaptive update method based on optimum structure multidimensional Taylor net
CN112764075A (en) * 2020-12-28 2021-05-07 华力智芯(成都)集成电路有限公司 Carrier integer ambiguity fixing method based on three satellites
CN112764075B (en) * 2020-12-28 2024-03-15 华力智芯(成都)集成电路有限公司 Carrier integer ambiguity fixing method based on three satellites
CN113155156A (en) * 2021-04-27 2021-07-23 北京信息科技大学 Method and device for determining running information, storage medium and electronic device
CN113536983A (en) * 2021-06-29 2021-10-22 辽宁工业大学 Petroleum pipeline stealing positioning method based on P-RLS adaptive filtering time delay estimation
CN113536983B (en) * 2021-06-29 2023-12-12 辽宁工业大学 Petroleum pipeline stealing positioning method based on P-RLS adaptive filtering time delay estimation

Similar Documents

Publication Publication Date Title
US8255160B2 (en) Integrated mobile terminal navigation
US10955563B2 (en) Position estimation in a low earth orbit satellite communications system
CN101371159B (en) A method for combined use of a local positioning system, a local RTK system, and a regional, wide- area, or global carrier-phase positioning system
CN1902505B (en) Method for combined use of a local RTK system and a regional, wide-area, or global carrier-phase positioning system
US10012738B2 (en) Positioning method and positioning apparatus using satellite positioning system
CN101449179B (en) A method for increasing the reliability of position information when transitioning from a regional, wide-area, or global carrier-phase differential navigation (wadgps) to a local real-time RTK
CN107710017A (en) For the satellite navigation receiver and method switched between real time kinematics pattern and relative positioning mode
EP2101186B1 (en) Method and system for generating temporary ephemeris
US10739471B2 (en) GNSS receiver with a capability to resolve ambiguities using an uncombined formulation
US20090109090A1 (en) Position determination with reference data outage
JP2002357651A (en) Method, device and system for estimating user position by satellite positioning system with weak signal state
US9389317B2 (en) Method and apparatus for determining position in a global navigation satellite system
JP5636552B2 (en) How to optimize the acquisition of spread spectrum signals from satellites by mobile receivers
JP7329814B2 (en) Positioning device, positioning method, positioning program, positioning program storage medium, application device, and positioning system
JPWO2006121023A1 (en) Positioning device and positioning system
JP2009079975A (en) Positioning system
JP2015068768A (en) Positioning system, device, method, and program
JP2009025233A (en) Carrier phase positioning system
EP4016110A1 (en) Position, navigation and timing system architecture based on signals of opportunity
JP4108738B2 (en) Positioning device
Rahman et al. ECEF position accuracy and reliability in the presence of differential correction latency
US11112508B2 (en) Positioning method and positioning terminal
EP2656097A1 (en) Method and apparatus for estimating satellite positioning reliability
JP2005069866A (en) Relative positioning system
JP2008082819A (en) Positioning instrument and method

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20100922

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A02 Decision of refusal

Effective date: 20130507

Free format text: JAPANESE INTERMEDIATE CODE: A02