JP2005077318A - Global positioning system - Google Patents

Global positioning system Download PDF

Info

Publication number
JP2005077318A
JP2005077318A JP2003310074A JP2003310074A JP2005077318A JP 2005077318 A JP2005077318 A JP 2005077318A JP 2003310074 A JP2003310074 A JP 2003310074A JP 2003310074 A JP2003310074 A JP 2003310074A JP 2005077318 A JP2005077318 A JP 2005077318A
Authority
JP
Japan
Prior art keywords
satellite
multipath
calculated
receiver
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003310074A
Other languages
Japanese (ja)
Inventor
Imei Cho
▲い▼▲めい▼ 丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003310074A priority Critical patent/JP2005077318A/en
Publication of JP2005077318A publication Critical patent/JP2005077318A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a global positioning system for accurately detecting a satellite, where multipath, or the like occurred. <P>SOLUTION: A receiver position is calculated by master positioning arithmetic processing, based on all received GPS satellites, a receiver position is calculated by sub positioning arithmetic processing for three GPS satellites successively excluding a GPS satellite from respective GPS satellites one by one, a recursive residual APR is calculated, based on pseudo distance and approximation distance, based on all GPS satellites, the maximum difference of the processing result in the sub positioning arithmetic processing is calculated, and the presence or absence of the multipath is determined, based on the recursive residual APR and the maximum difference. When the multipath is occurring, at least two weighing operations are made to each GPS satellite successively assuming that each receiver position calculated by the sub positioning arithmetic operation is a true value, a position error is calculated, based on the operation result, and a satellite is determined to have generated a multipath when the position error increases proportionally to the increase of weight to the weight of only the GPS satellite excluded by the operation of the receiver position assumed to be a true value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地球を周回する複数のGPS(Global Positioning System)衛星からの受信電波に基づいて受信機位置を測定する全地球測位システムに関する。   The present invention relates to a global positioning system that measures a receiver position based on received radio waves from a plurality of GPS (Global Positioning System) satellites orbiting the earth.

従来の全地球測位システムとしては、例えば前回測位結果から求めた受信機の予測位置座標と衛星からの軌道情報を用いて算出した衛星位置座標とを用いて、予測位置から衛星までの距離(近似距離)を計算する近似距離計算部と、衛星の送信時刻と受信機の受信時刻との時刻差分を用いて衛星から受信機までの伝搬距離(疑似距離)を計算する疑似距離計算部とを設け、疑似距離と近似距離とを比較した差分が予め定めた誤差許容範囲を超えた場合、マルチパス等により誤差が発生していると判定し、当該衛星の疑似距離及び近似距離を測位算出に使用しないことにより、マルチパス等の誤差衛星による影響を除去するようにした航法衛星信号受信機が提案されている(例えば、特許文献1参照)。   As a conventional global positioning system, for example, using the predicted position coordinates of the receiver obtained from the previous positioning result and the satellite position coordinates calculated using the orbit information from the satellite, the distance (approximate from the predicted position to the satellite) Distance) and an approximate distance calculator that calculates the propagation distance (pseudo distance) from the satellite to the receiver using the time difference between the satellite transmission time and the receiver reception time. If the difference between the pseudorange and approximate distance exceeds the predetermined allowable error range, it is determined that an error has occurred due to multipath, etc., and the pseudorange and approximate distance of the satellite are used for positioning calculation. By doing so, a navigation satellite signal receiver has been proposed in which the influence of error satellites such as multipath is eliminated (see, for example, Patent Document 1).

しかしながら、この特許文献1に記載された従来例では、マルチパスを判断するための閾値を適格に設定することが困難であり、特に予測位置が正しくない場合には近似距離と疑似距離との差分からマルチパスの発生が判断しにくくなるという問題点を有する。
この問題点を解決するために、マルチパスの発生した衛星の検出/分離(Detection/Isolation)手順として、下記に示す手順が提案されている(例えば、非特許文献1参照)。
However, in the conventional example described in Patent Document 1, it is difficult to properly set a threshold for determining a multipath, and in particular, when the predicted position is not correct, the difference between the approximate distance and the pseudo distance Therefore, it is difficult to determine the occurrence of multipath.
In order to solve this problem, the following procedure has been proposed as a detection / isolation procedure for a satellite in which a multipath has occurred (for example, see Non-Patent Document 1).

(1)受信した全ての衛星を利用して、疑似距離残差rを計算する(All-in-view Solution)。
(2)疑似距離残差rは閾値RDより小さければ、全ての受信衛星が正常とし、正常(Integrity)チェック成功とする一方、疑似距離残差rが閾値RDより大きければ正常チェックが失敗と判断する。
(1) The pseudorange residual r is calculated using all received satellites (All-in-view Solution).
(2) If the pseudorange residual r is smaller than the threshold value RD, it is determined that all the receiving satellites are normal and the normality (Integrity) check is successful. On the other hand, if the pseudorange residual r is larger than the threshold value RD, it is determined that the normal check fails. To do.

(3)正常チェックの失敗を検出したら、n−1個の衛星からなるn個のサブセットに対して、それぞれの疑似距離残差r1、r2……rnを計算する(Sub-set-solution)。
(4)疑似距離残差riは閾値RIより小さくて且つ他の疑似距離残差rは閾値RIより大きければ、i番衛星は失敗衛星とする。
もし、2個以上の疑似距離残差riが閾値RIより小さければ、失敗衛星を検出できない。
(3) When failure of normal check is detected, respective pseudorange residuals r1, r2,... Rn are calculated for n subsets of n-1 satellites (Sub-set-solution).
(4) If the pseudorange residual ri is smaller than the threshold RI and the other pseudorange residuals r are larger than the threshold RI, the i-th satellite is a failed satellite.
If two or more pseudorange residuals ri are smaller than the threshold RI, a failed satellite cannot be detected.

(5)失敗衛星を分離できたら、失敗衛星を排除したSub-set-solutionを測位に利用する。一方、正常チェックの失敗を検出しても、失敗衛星を特定できないと、All-in-view Solutionを測位に利用する。ただし位置精度は低下する。
特開2003−57327号公報(第1頁、図1) 「GLOBAL POSITIONING SYSTEM, VOLUME V」The Institute of Navigation,Washington,D.C.,Journal of The Institute of Navigation Vol.35,No.2,Summer 1988 (第49頁〜第65頁、特に第54頁参照)
(5) If the failed satellites can be separated, use the Sub-set-solution that excludes the failed satellites for positioning. On the other hand, if a failed satellite cannot be identified even if a normal check failure is detected, the All-in-view Solution is used for positioning. However, the position accuracy decreases.
Japanese Patent Laying-Open No. 2003-57327 (first page, FIG. 1) "GLOBAL POSITIONING SYSTEM, VOLUME V" The Institute of Navigation, Washington, DC, Journal of The Institute of Navigation Vol. 35, No. 2, Summer 1988 (see pages 49-65, especially page 54)

上記非特許文献1に記載された従来例にあっては、正常チェックが失敗したと判断されたときに、n個の衛星から順次1ずつ衛星を除去し、n−1個の衛星からなるn個のサブセットに対して疑似距離残差r1、r2……rnを計算し、ある疑似距離残差riが閾値RIより小さく且つ他の疑似距離残差rが閾値RIより大きい場合にi番目衛星はマルチパス等が発生した失敗衛星として特定することができるものであるが、2個以上の疑似距離残差riが閾値RIより小さい場合には失敗衛星を検出することができず、マルチパス等が発生した失敗衛星を検出する精度が低いという未解決の課題がある。   In the conventional example described in Non-Patent Document 1, when it is determined that the normal check has failed, the satellites are sequentially removed one by one from the n satellites, and n−1 consisting of n−1 satellites. If the pseudorange residuals r1, r2,... Rn are calculated for a subset, and one pseudorange residual ri is smaller than the threshold RI and the other pseudorange residual r is larger than the threshold RI, the i-th satellite Although it can be identified as a failed satellite in which a multipath or the like has occurred, if two or more pseudorange residuals ri are smaller than the threshold RI, the failed satellite cannot be detected, There is an unresolved problem that the accuracy of detecting the failed satellite that has occurred is low.

そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、マルチパス等が発生した衛星を正確に検出することができる全地球測位システムを提供することを目的としている。   Accordingly, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and aims to provide a global positioning system capable of accurately detecting a satellite in which a multipath or the like has occurred. Yes.

第1の技術手段は、衛星からの電波を受信するアンテナ部と、複数の衛星からの受信信号を復調する検波部と、該検波部で復調した信号から衛星航法メッセージを集めて解析するデータ解析部と、衛星から信号が送信された送信時刻を演算する送信時刻換算部と、衛星での前記送信時刻と受信機での受信時刻との差から電波の伝搬距離を表す疑似距離を演算する疑似距離演算部と、該疑似距離演算部で演算した疑似距離と衛星座標位置とに基づいて受信機位置を演算する測位演算部とを備えた全地球測位システムにおいて、前記測位演算部は、受信信号を受信した全ての衛星の疑似距離と衛星位置とに基づいて受信機位置を演算するマスタ測位演算手段と、全ての衛星のうち順次1つを除いた残りの衛星の疑似距離と衛星位置とに基づいて複数N個の受信機位置を演算するサブ測位演算手段と、前記衛星座標位置から受信機概略座標位置までの座標空間距離を表す近似距離を演算する近似距離演算部と、前記マスタ測位演算手段で算出した受信機位置と衛星座標に基づいて、前記近似距離演算部で演算した衛星毎の近似距離と前記疑似距離との偏差の二乗値を加算した帰納的残差を演算する帰納的残差演算手段と、前記サブ測位演算手段で演算した複数の受信機位置の最大差を演算する最大差演算手段と、前記帰納的残差及び最大差に基づいてマルチパス発生の有無を判定するマルチパス判定手段と、該マルチパス判定手段の判定結果がマルチパスの発生がないときには前記マスタ測位演算手段で演算した受信機位置を選択する正常時選択手段と、前記マルチパス判定手段の判定結果がマルチパスの発生があるときには、衛星毎に重み付け演算を行って、その演算結果からマルチパスが発生した衛星を特定し、当該マルチバスが発生した衛星を除いたサブ測位演算手段で演算した受信機位置を選択するマルチパス発生状態選択手段とを備えていること特徴としている。   The first technical means includes an antenna unit for receiving radio waves from satellites, a detection unit for demodulating received signals from a plurality of satellites, and data analysis for collecting and analyzing satellite navigation messages from signals demodulated by the detection units. A transmission time conversion unit that calculates a transmission time at which a signal is transmitted from the satellite, and a pseudo-range that calculates a pseudo distance that represents a propagation distance of radio waves from a difference between the transmission time at the satellite and the reception time at the receiver. In a global positioning system including a distance calculation unit, and a positioning calculation unit that calculates a receiver position based on the pseudo distance calculated by the pseudo distance calculation unit and the satellite coordinate position, the positioning calculation unit receives a received signal Master positioning calculation means for calculating the receiver position based on the pseudoranges and satellite positions of all the satellites that received the satellite, and the pseudoranges and satellite positions of the remaining satellites except for one of all the satellites in order. Based on compound Sub positioning calculation means for calculating N receiver positions, an approximate distance calculation section for calculating an approximate distance representing a coordinate space distance from the satellite coordinate position to the receiver approximate coordinate position, and calculation by the master positioning calculation means Inductive residual calculation means for calculating an inductive residual obtained by adding a square value of a deviation between the approximate distance calculated for each satellite calculated by the approximate distance calculation unit and the pseudo distance based on the received receiver position and satellite coordinates A maximum difference calculation means for calculating a maximum difference between a plurality of receiver positions calculated by the sub-positioning calculation means, and a multipath determination means for determining the presence or absence of multipath generation based on the recursive residual and the maximum difference And when the determination result of the multipath determination means indicates that there is no multipath, the normal time selection means for selecting the receiver position calculated by the master positioning calculation means, and the determination result of the multipath determination means. When multipath occurs, weighting calculation is performed for each satellite, the satellite where the multipath is generated is identified from the calculation result, and the reception received by the sub-positioning calculation means excluding the satellite where the multibus is generated Multipath generation state selection means for selecting the machine position is provided.

この第1の技術手段では、マスタ測位演算手段で、受信信号を受信した全ての衛星の疑似距離と衛星位置とに基づいて受信機位置を演算すると共に、サブ測位演算手段で全ての衛星から順次1つを除いた残りの衛星の疑似距離と衛星位置とに基づいて受信機位置を演算し、さらにマルチパス判定手段で、衛星毎の疑似距離と近似距離の偏差の二乗値を加算した帰納的残差と、サブ測位演算手段で演算した受信機位置の最大差とに基づいてマルチパス発生の有無を判定し、マルチパスが発生していないときにはマスタ測位演算手段で演算した受信機位置を真値として選択し、マルチパスが発生しているときには、衛星毎に重み付け演算を行って、その演算結果からマルチパスが発生した衛星を特定し、当該マルチパスが発生した衛星を除いたサブ測位演算手段で演算した受信機位置を測位結果として選択する。   In the first technical means, the master positioning calculation means calculates the receiver position based on the pseudoranges and the satellite positions of all the satellites that have received the received signals, and the sub-positioning calculation means sequentially from all the satellites. The receiver position is calculated based on the pseudorange and satellite position of the remaining satellites except for one, and the multipath determination means adds the square value of the deviation between the pseudorange and approximate distance for each satellite. The presence or absence of multipath is determined based on the residual and the maximum difference between the receiver positions calculated by the sub-positioning calculation means. If no multipath occurs, the receiver position calculated by the master positioning calculation means is When a multipath occurs, a weighting operation is performed for each satellite, the satellite where the multipath has occurred is identified from the calculation result, and the satellite from which the multipath has occurred is excluded. Selecting a receiver position computed by the positioning calculation means as a positioning result.

このため、サブ測位演算手段の演算結果のみからマルチパスが発生した衛星を特定できない場合でも、重み付け演算を行ってその演算結果からマルチパスが発生した衛星を特定することにより、マルチパスが発生した衛星を正確に特定して、受信機位置を正確に測定することができる。
また、第2の技術手段は、前記第1の技術手段において、前記マルチパス判定手段は、前記帰納的残差が帰納的残差閾値未満であり、且つ最大偏差が最大偏差閾値未満となるマルチパス非発生条件を満足するときにマルチパス非発生状態と判定し、当該マルチパス非発生条件を満足しないときにマルチパス発生状態であると判定するように構成されていることを特徴としている。
For this reason, even if it is not possible to identify the satellite where the multipath occurred from only the calculation result of the sub-positioning calculation means, the multipath occurred by performing the weighting calculation and identifying the satellite where the multipath occurred from the calculation result. The satellite can be accurately identified and the receiver position can be accurately measured.
Further, the second technical means is the first technical means, wherein the multipath determining means is a multipath in which the recursive residual is less than a recursive residual threshold and a maximum deviation is less than a maximum deviation threshold. The multi-path non-occurrence state is determined when the path non-occurrence condition is satisfied, and the multi-path occurrence state is determined when the multi-path non-occurrence condition is not satisfied.

この第2の技術手段では、マルチパス判定手段で、衛星毎の疑似距離及び近似距離の偏差を二乗した二乗値の加算値でなる帰納的残差APRが帰納的残差閾値TH1未満であり、且つサブ測位演算手段で演算した受信機位置の最大偏差MSが最大偏差閾値TH2未満となるマルチパス非発生条件を満足するか否かを判定し、APR<TH1且つMS<TH2であるときにはマルチパス非発生状態であると判断し、APR≧TH1及び/又はMS≧TH2となるときにはマルチパス発生状態であると判断するので、マルチパス発生の有無を正確に判定することができる。   In the second technical means, the recursive residual APR, which is a sum of square values obtained by squaring the pseudo-range and approximate distance deviation of each satellite in the multipath determination means, is less than the recursive residual threshold TH1, In addition, it is determined whether or not the multipath non-occurrence condition in which the maximum deviation MS of the receiver position calculated by the sub-positioning calculation means is less than the maximum deviation threshold TH2 is satisfied, and when APR <TH1 and MS <TH2, Since it is determined that a non-occurrence state has occurred, and when APR ≧ TH1 and / or MS ≧ TH2, it is determined that a multi-path occurrence state has occurred, it is possible to accurately determine whether a multi-path has occurred.

さらに、第3の技術手段は、第1又は第2の技術手段において、前記マルチパス発生状態選択手段は、サブ測位演算手段で演算した複数N個の受信機位置を順次真値として、衛星毎に少なくとも異なる2つの重み付けを行った測位値、及び前記マスタ測位演算手段で算出した測位値の少なくとも3つの値のそれぞれについて位置誤差を算出する位置誤差算出手段と、該位置誤差算出手段で算出した位置誤差のうち、真値に設定された受信機位置の演算から除かれた衛星に対して、重みの増加に比例して位置誤差が増加するときに当該衛星をマルチパスが発生した衛星として特定するように構成されていることを特徴としている。   Further, the third technical means is the first or second technical means, wherein the multipath occurrence state selecting means sequentially sets a plurality of N receiver positions calculated by the sub-positioning calculating means as true values in order, for each satellite. A position error calculation means for calculating a position error for each of at least three positioning values obtained by weighting at least two different positioning values and a positioning value calculated by the master positioning calculation means, and the position error calculation means Among the position errors, when the position error increases in proportion to the increase of the weight for the satellite that is excluded from the calculation of the receiver position set to the true value, the satellite is identified as the satellite that generated the multipath. It is characterized by being configured.

この第3の技術手段では、複数N個の受信機位置を順次真値として、衛星毎に少なくとも異なる2つの重み付けを行った測位値、及び前記マスタ測位演算手段で算出した測位値の3つの値のそれぞれについて位置誤差を演算し、演算した位置誤差のうち、真値に設定された受信機位置の演算から除いた衛星のみに対して、重みの増加に比例して位置誤差が増加するときに、その衛星をマルチパスが発生した衛星として特定することにより、マルチパスが発生した衛星を正確に検出することができる。   In this third technical means, a plurality of N receiver positions are successively set as true values, and at least two differently weighted positioning values for each satellite and three positioning values calculated by the master positioning calculating means are used. When the position error increases in proportion to the increase in weight for only the satellites that are excluded from the calculation of the receiver position set to the true value among the calculated position errors. By identifying the satellite as a satellite in which a multipath has occurred, the satellite in which the multipath has occurred can be accurately detected.

さらにまた、第4の技術手段は、前記マルチパス発生状態選択手段は、前記位置誤差算出手段で算出した位置誤差のうち真値に設定された受信機位置の演算から除かれた衛星に対して、位置誤差が重みの増加に比例して増加する組が複数存在する場合に、重みの増加に対する位置誤差の増加率が最大となる衛星をマルチパスが発生した衛星として特定するように構成されていることを特徴としている。   Furthermore, the fourth technical means is that the multipath generation state selection means is for the satellites excluded from the calculation of the receiver position set to a true value among the position errors calculated by the position error calculation means. When there are multiple pairs in which the position error increases in proportion to the increase of the weight, the satellite having the largest increase rate of the position error with respect to the increase of the weight is specified as the satellite in which the multipath has occurred. It is characterized by being.

この第4の技術手段では、位置誤差算出手段で算出した位置誤差のうちに設定された受信機位置の演算で除かれた衛星に対して、重みの増加に比例して位置誤差が増加する組が複数存在する場合に、重みの増加に対する位置誤差の増加率が最大の衛星をマルチパスが発生した衛星として特定することにより、マルチパスが発生した衛星を正確に検出することができる。   In the fourth technical means, the position error increases in proportion to the increase in weight with respect to the satellites that are removed by the calculation of the set receiver position among the position errors calculated by the position error calculation means. When there are a plurality of satellites, the satellite having the largest increase rate of the position error relative to the increase in weight is specified as the satellite in which the multipath has occurred, so that the satellite in which the multipath has occurred can be accurately detected.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一実施形態を示すブロック図であり、図中、1は全地球測位システムであって、地球の大気圏外を周回する少なくとも4つのGPS(Global Positioning System)衛星SV14,SV20〜SV22から送信された電波をGPS受信機2で受信して受信機位置を求めるように構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is a global positioning system, and at least four GPS (Global Positioning System) satellites SV14 and SV20 orbiting outside the earth's atmosphere. The radio wave transmitted from the SV 22 is received by the GPS receiver 2 to obtain the receiver position.

GPS衛星SV14,SV20〜SV22は、受信者向けにLバンドの周波数帯の1575.42MHzと電離層の伝搬遅延の補正用として1227.6MHzの2周波の信号を、直接拡散方式を用いたスペクトラム拡散通信方式で送信する。
GPS受信機2は、GPS衛星SV14,SV20〜SV22からの電波を受信するアンテナ3と、このアンテナ3で受信したRF信号を増幅する低雑音増幅器4と、この低雑音増幅器4で増幅されたRF信号をIF信号にダウンコンバートする周波数変換部5と、この周波数変換部5で変換されたIF信号が入力されるGPS復調・演算部6とで構成されている。
The GPS satellites SV14, SV20 to SV22 are spread spectrum communication using a direct spread method for a receiver, two signals of 157.64 MHz in the L-band frequency band and 1227.6 MHz for correcting the propagation delay of the ionosphere. Send by method.
The GPS receiver 2 includes an antenna 3 that receives radio waves from GPS satellites SV14 and SV20 to SV22, a low noise amplifier 4 that amplifies an RF signal received by the antenna 3, and an RF amplified by the low noise amplifier 4. The frequency conversion unit 5 down-converts the signal into an IF signal, and the GPS demodulation / calculation unit 6 to which the IF signal converted by the frequency conversion unit 5 is input.

GPS復調・演算部6は、周波数変換部5から出力される各GPS衛星SV14,SV20〜SV22から受信したIF信号を復調して時刻情報、軌道情報等を含むディジタルデータを生成し、このディジタルデータを用いて演算処理を行い、受信機位置を表す測位データを演算する。
このGPS復調・演算部6では、測位演算処理を実行する。ここで、予め衛星番号と変数iとの関係を図2に示すように、衛星SV21の変数を“1”、衛星SV14の変数を“2”、衛星SV20 の変数を“3”及び衛星SV22の変数を“4”となるように設定しておく。
The GPS demodulator / arithmetic unit 6 demodulates the IF signal received from each of the GPS satellites SV14, SV20 to SV22 output from the frequency converter 5, and generates digital data including time information, orbit information, and the like. Is used to calculate the positioning data representing the receiver position.
The GPS demodulation / calculation unit 6 executes positioning calculation processing. Here, as shown in FIG. 2 in advance, the relationship between the satellite number and the variable i is as follows: the satellite SV21 variable is “1”, the satellite SV14 variable is “2”, the satellite SV20 variable is “3”, and the satellite SV22 Set the variable to be “4”.

そして、測位演算処理は、図3に示すように、先ず、ステップS1で、各GPS衛星SV14,SV20,SV21,SV22が電波を送信した送信時刻とGPS受信機2が電波を受信した受信時刻との差分ti と光速cとから電波の伝搬距離に相当する疑似距離ym(i=1,2,……4)=c×ti を算出する。
次いで、ステップS2に移行して、復調したディジタルデータに含まれる衛星送信時刻と軌道情報とを用いて衛星位置(X,Yi ,Zi )を算出する。
As shown in FIG. 3, in the positioning calculation process, first, in step S1, each GPS satellite SV14, SV20, SV21, SV22 transmits a transmission time and a reception time when the GPS receiver 2 receives a radio wave. The pseudo distance ym i (i = 1, 2,... 4) = c × t i corresponding to the propagation distance of the radio wave is calculated from the difference t i and the speed of light c.
Next, the process proceeds to step S2, and the satellite position (X i , Y i , Z i ) is calculated using the satellite transmission time and orbit information included in the demodulated digital data.

次いで、ステップS3に移行して、受信機位置を(x,y,z)とし、GPS衛星の基準時刻と受信機時刻とのずれをΔtとしたとき、これら4つの未知数を、疑似距離ymi と衛星位置(X,Yi ,Zi )とに基づく下記(1)〜(4)式を解いて演算するマスタ測位演算を行う。
ym1 ={(X1 −x)2 +(Y1 −y)2 +(Z1 −z)2 1/2 +cΔt …(1)
ym2 ={(X2 −x)2 +(Y2 −y)2 +(Z2 −z)2 1/2 +cΔt …(2)
ym3 ={(X3 −x)2 +(Y3 −y)2 +(Z3 −z)2 1/2 +cΔt …(3)
ym4 ={(X4 −x)2 +(Y4 −y)2 +(Z4 −z)2 1/2 +cΔt …(4)
次いで、ステップS4に移行して、算出した受信機位置(x,y,z)と衛星位置(X,Yi ,Zi )とから第1番目〜第4番目の衛星との近似距離yp1 〜yp4 を下記(5)〜(8)式に基づいて算出する。
Then, it goes to step S3, the receiver position and (x, y, z), when the deviation between the reference time and the receiver time of the GPS satellites and the Delta] t, the four unknowns, pseudorange ym i And the master positioning calculation is performed by solving the following equations (1) to (4) based on the satellite position (X i , Y i , Z i ).
ym 1 = {(X 1 −x) 2 + (Y 1 −y) 2 + (Z 1 −z) 2 } 1/2 + cΔt (1)
ym 2 = {(X 2 −x) 2 + (Y 2 −y) 2 + (Z 2 −z) 2 } 1/2 + cΔt (2)
ym 3 = {(X 3 −x) 2 + (Y 3 −y) 2 + (Z 3 −z) 2 } 1/2 + cΔt (3)
ym 4 = {(X 4 −x) 2 + (Y 4 −y) 2 + (Z 4 −z) 2 } 1/2 + cΔt (4)
Next, the process proceeds to step S4, and the approximate distance yp between the first to fourth satellites from the calculated receiver position (x, y, z) and satellite position (X i , Y i , Z i ). It is calculated based on the 1 ~yp 4 below (5) to (8).

yp1 ={(X1 −x)2 +(Y1 −y)2 +(Z1 −z)2 1/2 ………(5)
yp2 ={(X2 −x)2 +(Y2 −y)2 +(Z2 −z)2 1/2 ………(6)
yp3 ={(X3 −x)2 +(Y3 −y)2 +(Z3 −z)2 1/2 ………(7)
yp4 ={(X4 −x)2 +(Y4 −y)2 +(Z4 −z)2 1/2 ………(8)
次いで、ステップS5に移行して、疑似距離ymi 及び近似距離ypに基づいて下記(9)式の演算を行って帰納的残差APRを算出する。
yp 1 = {(X 1 -x) 2 + (Y 1 -y) 2 + (Z 1 -z) 2 } 1/2 (5)
yp 2 = {(X 2 −x) 2 + (Y 2 −y) 2 + (Z 2 −z) 2 } 1/2 (6)
yp 3 = {(X 3 −x) 2 + (Y 3 −y) 2 + (Z 3 −z) 2 } 1/2 (7)
yp 4 = {(X 4 -x) 2 + (Y 4 -y) 2 + (Z 4 -z) 2 } 1/2 (8)
Next, the process proceeds to step S5, and the recursive residual APR is calculated by performing the following equation (9) based on the pseudo distance ym i and the approximate distance yp i .

Figure 2005077318
次いで、ステップS6に移行して、時刻ずれΔtが求まっているので、前記(1)〜(4)式から例えば(1)式から順に(2)式、(3)式及び(4)式を除いた3つの式からN個即ち4個の受信機位置(xi ,yi ,zi )を演算するサブ測位演算を行う。
Figure 2005077318
Next, the process proceeds to step S6, and the time lag Δt is obtained. Therefore, from the equations (1) to (4), for example, the equations (2), (3), and (4) are sequentially calculated from the equation (1). Sub-positioning calculation is performed to calculate N receiver positions (x i , y i , z i ) from the three expressions excluded.

次いで、ステップS7に移行して、上記ステップS6で算出したサブ測位結果の最大差MS(Maximum Separation)を算出してからステップS8に移行する。
このステップS8では、ステップS5で算出した帰納的残差APRが予め設定された帰納的残差閾値TH1未満で且つ最大差分MSが予め設定された最大差分閾値TH2未満であるマルチパス非発生条件を満足するか否かを判定し、APR<TH1且つMS<TH2であって、マルチパス非発生条件を満足する場合には、ステップS9に移行して、前記ステップS3で算出した4つの衛星を使用したマスタ測位演算で演算された受信機位置(xM ,yM ,zM )を測位結果として選択してから前記ステップS1に戻る。
Next, the process proceeds to step S7, the maximum difference MS (Maximum Separation) of the sub-positioning result calculated in step S6 is calculated, and then the process proceeds to step S8.
In this step S8, the multipath non-occurrence condition in which the recursive residual APR calculated in step S5 is less than a preset recursive residual threshold TH1 and the maximum difference MS is less than a preset maximum differential threshold TH2 is set. If APR <TH1 and MS <TH2 and the multipath non-occurrence condition is satisfied, the process proceeds to step S9 and uses the four satellites calculated in step S3. The receiver position (x M , y M , z M ) calculated in the master positioning calculation is selected as the positioning result, and the process returns to step S1.

一方、ステップS8の判定結果がAPR≧TH1若しくはMS≧TH2であるか又はAPR≧TH1且つMS≧TH2であるときには、マルチパス非発生条件を満足しないのでマルチパス発生状態であると判断してステップS10に移行する。
このステップS10では、マルチパスが発生しているGPS衛星を特定する図4に示す重み付けアルゴリズムを実行してから前記ステップS1に戻る。
On the other hand, if the determination result in step S8 is APR ≧ TH1 or MS ≧ TH2, or APR ≧ TH1 and MS ≧ TH2, the multipath non-occurrence condition is not satisfied, and it is determined that the multipath is in the state. The process proceeds to S10.
In step S10, the weighting algorithm shown in FIG. 4 for identifying the GPS satellite in which the multipath has occurred is executed, and then the process returns to step S1.

この重み付けアルゴリズムは、図4に示すように、先ず、ステップS11で、変数iを“1”に設定し、次いでステップS12に移行して、変数iのGPS衛星を排除したサブ測位演算結果である受信機位置(xi ,yi ,zi ) を真値(x* i,y* i ,z* i)として設定してからステップS13に移行する。
このステップS13では、変数iのGPS衛星について重みwi を2-1 +1としたときの重み付け演算処理を行う。
この重み付け処理は、通常のGPS測位計算モデルとしてCancel-B法を適用して、
i =HX+b …………(10)
i −y* =(Hi −H* )X …………(11)
ここで、yi は疑似距離と近似距離の差分ベクトル、Hは視線方向ベクトル、Xは位置誤差ベクトルである。ただし
As shown in FIG. 4, this weighting algorithm is a sub-position calculation result obtained by first setting the variable i to “1” in step S11 and then moving to step S12 to exclude the GPS satellite of the variable i. After setting the receiver position (x i , y i , z i ) as a true value (x * i , y * i , z * i ), the process proceeds to step S13.
In step S13, the weight w i is set to 2 −1 for the GPS satellite of the variable i. 2. Weighting calculation processing when +1 is performed.
This weighting process applies the Cancel-B method as a normal GPS positioning calculation model,
y i = H i X + b (10)
y i −y * = (H i −H * ) X (11)
Here, y i is a difference vector between the pseudo distance and the approximate distance, H is a gaze direction vector, and X is a position error vector. However,

Figure 2005077318
これに対し下記のように重み付け法を適用する。
i (yi −y* )=wi (Hi −H* )X …………(12)
ただし、
* =(Σwi i )/(Σwi
* =(Σwi i )/(Σwi
そして、重み付け法を適用した変数iのGPS衛星に対して、重み毎の受信機位置(xi1,yi1,zi1),(xi2,yi2,zi2) を算出する。
Figure 2005077318
On the other hand, the weighting method is applied as follows.
w i (y i −y * ) = w i (H i −H * ) X (12)
However,
y * = (Σw i y i ) / (Σw i )
H * = (Σw i H i ) / (Σw i )
Then, the receiver position (x i1 , y i1 , z i1 ) and (x i2 , y i2 , z i2 ) for each weight is calculated for the GPS satellite of the variable i to which the weighting method is applied.

次いでステップS14に移行して、上記ステップS13で算出した重み毎の受信機位置と前記ステップS12で設定した真値(x* i,y* i ,z* i)とに基づいて下記式の演算を行って位置誤差PEを算出し、これをメモリ等の記憶装置に記憶する。
PE={(xij−x* 2 +(yij−y* 2 +(zij−z* 2 1/2 ……(13)
次いで、ステップS15に移行して、変数iをインクリメント(i=i+1)し、次いでステップS16に移行して、変数iが受信した衛星数Nを超えたか否かを判定し、i≦Nであるときには位置誤差演算が終了していないものと判断して前記ステップS12に戻り、i>Nであるときには位置誤差演算が終了したものと判断してステップS17に移行する。
Next, the process proceeds to step S14, and the following formula is calculated based on the receiver position for each weight calculated in step S13 and the true values (x * i , y * i , z * i ) set in step S12. To calculate a position error PE and store it in a storage device such as a memory.
PE = {(x ij −x * ) 2 + (y ij −y * ) 2 + (z ij −z * ) 2 } 1/2 (13)
Next, the process proceeds to step S15, the variable i is incremented (i = i + 1), and then the process proceeds to step S16 to determine whether or not the variable i exceeds the number N of received satellites, and i ≦ N. Sometimes it is determined that the position error calculation has not ended, and the process returns to step S12. When i> N, it is determined that the position error calculation has ended, and the process proceeds to step S17.

このステップS17では、記憶装置に記憶されているGPS衛星毎の重みに対する位置誤差PEを読出し、サブ演算から除かれた衛星のみに対して、重みの増加に比例して位置誤差PEが増加し、残りの3つの衛星に対して、重みの増加に反比例して位置誤差PEが減少するマルチパス発生条件を満足する組を抽出し、次いでステップS18に移行して、抽出したマルチパス発生条件を満足する組が1組だけであるか否かを判定し、1組だけであるときには、ステップS19に移行して、その組の真値として設定した受信機位置の演算から除いたGPS衛星をマルチパス発生衛星として特定し、次いでステップS20に移行して、前記サブ測位処理における該当するマルチパス発生衛星を除く3つのGPS衛星で演算した受信機位置を測位結果として設定してから重み付けアルゴリズムを終了して図3の前記ステップS1に戻る。   In this step S17, the position error PE with respect to the weight for each GPS satellite stored in the storage device is read, and the position error PE increases in proportion to the increase of the weight for only the satellites excluded from the sub-operation. For the remaining three satellites, a set satisfying the multipath generation condition in which the position error PE decreases in inverse proportion to the increase in weight is extracted, and then the process proceeds to step S18 to satisfy the extracted multipath generation condition. It is determined whether or not there is only one set. If there is only one set, the process proceeds to step S19, and the GPS satellites excluded from the calculation of the receiver position set as the true value of the set are multipathed. Then, the process proceeds to step S20, where the receiver positions calculated by the three GPS satellites excluding the corresponding multipath generating satellite in the sub-positioning process are set as positioning results. Then, the weighting algorithm is terminated and the process returns to step S1 in FIG.

また、ステップS18の判定結果がマルチパス発生条件を満足する組が複数組存在する場合には、ステップS21に移行して、重みの増加によって増加する位置誤差PEの変化率が最大となる組の真値として設定した受信機位置の演算から除いたGPS衛星をマルチパス発生衛星として特定してから前記ステップS20に移行する。
この図3の処理が測位演算手段に対応し、このうちステップS1の処理が疑似距離演算手段に対応し、ステップS2〜S3の処理がマスタ測位演算手段に対応し、ステップS5の処理が機能的残差演算手段に対応し、ステップS6の処理がサブ測位演算手段に対応し、ステップS7の処理が最大差演算手段に対応し、ステップS8の処理がマルチパス判定手段に対応し、ステップS9の処理が正常時選択手段に対応し、ステップS10の処理及び図4の処理がマルチパス発生状態選択手段に対応している。
Further, when there are a plurality of sets whose determination result of step S18 satisfies the multipath generation condition, the process proceeds to step S21, and the set with the maximum change rate of the position error PE that increases due to the increase of the weight is obtained. After the GPS satellite excluded from the calculation of the receiver position set as the true value is specified as the multipath generation satellite, the process proceeds to step S20.
The processing in FIG. 3 corresponds to the positioning calculation means, of which the processing in step S1 corresponds to the pseudo distance calculation means, the processing in steps S2 to S3 corresponds to the master positioning calculation means, and the processing in step S5 is functional. Corresponding to the residual calculation means, the processing in step S6 corresponds to the sub-positioning calculation means, the processing in step S7 corresponds to the maximum difference calculation means, the processing in step S8 corresponds to the multipath determination means, and in step S9 The process corresponds to a normal selection unit, and the process of step S10 and the process of FIG. 4 correspond to a multipath generation state selection unit.

次に、上記実施形態の動作を説明する。
今、マルチパスが発生しているGPS衛星が例えばGPS衛星SV21であって既知であると共に、受信機位置の真値(x*、y*、z*)が既知であるものとして、各GPS衛星SV21,SV14,SV20,SV22の位置誤差PEを前記(13)式を適用して演算すると、図5に示すように、マルチパス発生衛星であるGPS衛星SV21については、重みが20 である状態で位置誤差PEが170m程度となる状態から重みが21,22 ,23 と増加するにつれて緩やかに増加し、逆に重みが2-1,2-2 ,2-3と減少するにつれて緩やかに略“0”となるまで減少し、その後は重みの減少によっても位置誤差が略“0”の状態を維持する。
Next, the operation of the above embodiment will be described.
Assuming that the GPS satellite in which the multipath is generated is, for example, the GPS satellite SV21 and is known and the true value (x *, y *, z *) of the receiver is known, each GPS satellite SV21, SV14, SV20, when the position error PE of SV22 computed by applying the equation (13), as shown in FIG. 5, the GPS satellites SV21 is multipath generation satellites, the weight is 2 0 state gentle as in the position error PE is gradually increased as the weight from the state of the order of 170m is increased and 2 1, 2 2, 2 3, weight conversely 2 -1, 2 -2, decreases with 2 -3 Until the position error becomes substantially “0”, and thereafter the position error remains substantially “0” even when the weight is reduced.

ところが、マルチパスを発生していない残りの3つのGPS衛星SV14,SV20及びSV22については重みが2-3,2-2,2-1,20 まで増加すると位置誤差PEが比較的急峻に減少し、その後重みが20 から21 ,22 ,23 まで増加すると位置誤差PEが比較的緩やかに減少する。
この結果から、マルチパスが発生したGPS衛星に対して、重みの増加に比例して位置誤差PEが増加する一方、マルチパスが発生していないGPS衛星に対して、重みの増加に反比例して位置誤差PEが減少することが理解される。
However, for the remaining three GPS satellites SV14, SV20, and SV22 that do not generate multipath, the position error PE decreases relatively steeply when the weight increases to 2 −3 , 2 −2 , 2 −1 , 2 0. Thereafter, when the weight increases from 2 0 to 2 1 , 2 2 , 2 3 , the position error PE decreases relatively slowly.
From this result, the position error PE increases in proportion to an increase in weight for a GPS satellite in which a multipath has occurred, whereas it increases in inverse proportion to an increase in weight for a GPS satellite in which no multipath has occurred. It is understood that the position error PE is reduced.

この原理に基づいて上記実施形態では、前述したように4つのGPS衛星SV21,SV14,SV20,SV22からの電波をGPS受信機2で受信したものとすると、GPS受信機2ではアンテナ3で受信したRF信号を低雑音増幅器4で増幅してから周波数変換部5でIF信号にダウンコンバートし、このIF信号をGPS復調・演算部6に供給することにより、IF信号を復調して、送信時刻、軌道情報等を含むディジタルデータを生成する。   Based on this principle, in the above-described embodiment, if the GPS receiver 2 receives radio waves from the four GPS satellites SV21, SV14, SV20, SV22 as described above, the GPS receiver 2 receives the signals via the antenna 3. The RF signal is amplified by the low noise amplifier 4 and then down-converted to an IF signal by the frequency converter 5, and this IF signal is supplied to the GPS demodulator / arithmetic unit 6 to demodulate the IF signal and transmit time, Digital data including orbit information is generated.

そして、各GPS衛星の復調したディジタルデータに基づいて図3及び図4の処理を実行してマルチパスが発生したGPS衛星の有無を判定し、その判定結果に基づいて受信機位置を演算する。
すなわち、前述したように、受信した全てのGPS衛星SV21,SV14,SV20,SV22について疑似距離ym,ym2 ,ym3 ,ym4 を演算する。
Then, the processing of FIGS. 3 and 4 is executed based on the demodulated digital data of each GPS satellite to determine the presence / absence of a GPS satellite in which a multipath has occurred, and the receiver position is calculated based on the determination result.
That is, as described above, the pseudo distances ym 1 , ym 2 , ym 3 , ym 4 are calculated for all the received GPS satellites SV 21, SV 14, SV 20, SV 22.

そして、演算した疑似距離ymi と、衛星位置(Xi ,Yi ,Zi )とから前記(1)式〜(4)式を解いて受信機位置(xM ,yM ,zM )を演算するマスタ測位演算を行う。
次いで、マスタ測位演算処理で求めた受信機位置(xM ,yM ,zM )と各GPS衛星の衛星位置(Xi ,Yi ,Zi )とに基づいて前記(5)式〜(8)式の演算を行ってGPS衛星毎の近似距離ymi を算出する。
Then, from the calculated pseudo distance ym i and the satellite position (X i , Y i , Z i ), the equations (1) to (4) are solved to obtain the receiver position (x M , y M , z M ). Performs the master positioning calculation to calculate.
Next, based on the receiver position (x M , y M , z M ) obtained by the master positioning calculation process and the satellite positions (X i , Y i , Z i ) of each GPS satellite, the above formulas (5) to (5) 8) The approximate distance ym i for each GPS satellite is calculated by calculating the equation.

そして、疑似距離ymi と近似距離ypi とに基づいて帰納的残差APRを算出する。
さらに、4つのGPS衛星から1つずつを排除した残りの3つのGPS衛星に基づいてサブ測位演算処理を行い、4つのサブ測位解となる受信機位置を演算し、さらにサブ測位演算処理で算出した受信機位置の最大差MSを算出する。
そして、算出した帰納的残差APRが帰納的残差閾値TH1未満であり、且つ最大差MSが最大差閾値TH2未満であるマルチパス非発生条件を満足するか否かを判定し、マルチパス非発生条件を満足するときには、各GPS衛星SV21,SV14,SV20,SC22にマルチパスが発生していないものと判断して、マスタ測位演算処理で算出した受信機位置(xM ,yM ,zM )を真値として選択し、これを後段の例えばカーナビゲーションシステムに出力する。
Then, an inductive residual APR is calculated based on the pseudo distance ym i and the approximate distance yp i .
Furthermore, sub-positioning calculation processing is performed based on the remaining three GPS satellites, each of which is excluded from four GPS satellites, and the receiver position that is the four sub-positioning solutions is calculated, and further calculated by sub-positioning calculation processing. The maximum difference MS of the received receiver position is calculated.
Then, it is determined whether or not the calculated recursive residual APR satisfies a multipath non-occurrence condition in which the recursive residual threshold APR is less than the recursive residual threshold TH1 and the maximum difference MS is less than the maximum difference threshold TH2. When the generation condition is satisfied, it is determined that no multipath has occurred in each of the GPS satellites SV21, SV14, SV20, and SC22, and the receiver position (x M , y M , z M calculated by the master positioning calculation process is determined. ) Is selected as a true value, and this is output to a subsequent car navigation system, for example.

ところが、GPS衛星SV21にマルチパスが発生し、算出した帰納的残差APR及び最大差MSがマルチパス非発生条件を満足しないときには、図4の重み付けアルゴリズムを実行する。
この重み付けアルゴリズムでは、先ず、変数iを“1”に設定して、4つのGPS衛星のうちGPS衛星SV21を除いた3つのGPS衛星SV14,SV20,SV22に基づいてサブ測位演算処理を行って演算した受信機位置(x1 ,1 ,z1 )を真値(x* * ,z* )として仮定すると共に、衛星毎に2-1,2+1で表される2つの重みを設定した重み付け演算を行って、受信機位置(x11,y11 ,z11),(x12、y12、z12)〜(x41、y41、z41)、(x42、y42、z42)を算出し、これらに基づいて前記(13)式の演算を行って各重みに対する位置誤差PEを算出する。この演算結果は、マルチパス発生衛星をGPS衛星SV21としたときに、図6に示すように、真値として仮定した受信機位置の演算から除かれたGPS衛星SV21に対して、受信機の位置誤差PEが○印で示すように重みの増加に比例して増加し、残りのGPS衛星SV14,SV20,SV22に対して、受信機の位置誤差PEが□、▲、◆印で示すように、重みの増加に反比例して減少する傾向となる。
However, when a multipath occurs in the GPS satellite SV21 and the calculated recursive residual APR and maximum difference MS do not satisfy the multipath non-occurrence condition, the weighting algorithm of FIG. 4 is executed.
In this weighting algorithm, first, the variable i is set to “1”, and sub-positioning calculation processing is performed based on three GPS satellites SV14, SV20, SV22 excluding the GPS satellite SV21 among the four GPS satellites. The received receiver position (x 1, y 1 , z 1 ) is a true value (x * , y * , Z * ) And a weighting operation in which two weights represented by 2 −1 and 2 +1 are set for each satellite, and receiver positions (x 11 , y 11 , z 11 ), (x 12 , y 12 , z 12 ) to (x 41 , y 41 , z 41 ), (x 42 , y 42 , z 42 ) are calculated, and based on these, the calculation of the formula (13) is performed, and the position for each weight is calculated. The error PE is calculated. As shown in FIG. 6, when the multipath generating satellite is the GPS satellite SV21, the calculation result indicates that the receiver position relative to the GPS satellite SV21 excluded from the calculation of the receiver position assumed to be a true value is shown in FIG. The error PE increases in proportion to the increase in weight as indicated by a circle, and for the remaining GPS satellites SV14, SV20, SV22, the receiver position error PE is indicated by □, ▲, and ◆, It tends to decrease in inverse proportion to the increase in weight.

次に、変数iを“2”としてGPS衛星SV14を除く3つのGPS衛星SV21,SV20,SV22に基づいてサブ測位演算を行って演算した受信機位置(x2 ,2 ,z2 )を真値(x* * ,z* )として仮定すると共に、衛星毎に2-1,2+1の重みを設定した重み付け演算を行って、受信機位置(x11,y11 ,z11),(x12、y12、z12)〜(x41、y41、z41),(x42、y42、z42)を算出し、これらに基づいて前記(13)式の演算を行って各重みに対する位置誤差PEを算出する。この演算結果は、図7に示すように、□及び◆印で示すGPS衛星SV14及びSV22に対して、受信機の位置誤差PEが重みの増加に比例して増加し、○及び▲印で示すGPS衛星SV21及びSV20に対して、位置誤差PEが重みの増加に反比例して減少する傾向となる。 Next, the variable i is set to “2” and the receiver position (x 2, y 2 , z 2 ) calculated by performing the sub-positioning calculation based on the three GPS satellites SV21, SV20, SV22 excluding the GPS satellite SV14 is true. Value (x * , y * , Z * ) And a weighting operation in which weights of 2 −1 and 2 +1 are set for each satellite, and receiver positions (x 11 , y 11 , z 11 ), (x 12 , y 12 , z 12 ) are assumed. ) To (x 41 , y 41 , z 41 ), (x 42 , y 42 , z 42 ), and based on these, the calculation of the equation (13) is performed to calculate the position error PE for each weight. . As shown in FIG. 7, the calculation result shows that the position error PE of the receiver increases in proportion to the increase in weight with respect to the GPS satellites SV14 and SV22 indicated by □ and ♦, and is indicated by ◯ and ▲. For the GPS satellites SV21 and SV20, the position error PE tends to decrease in inverse proportion to the increase in weight.

さらに、変数iを“3”として、GPS衛星SV20を除く3つのGPS衛星SV21,SV14,SV22に基づいてサブ測位演算を行って演算した受信機位置(x3 ,3 ,z3 )を真値(x* * ,z* )として仮定すると共に、衛星毎に2-1,2+1の重みを設定した重み付け演算を行って、受信機位置(x11,y11 ,z11),(x12,y12,z12)〜(x41,y41,z41),(x42,y42,z42)を算出し、これらに基づいて前記(13)式の演算を行って各重みに対する位置誤差PEを算出する。この演算結果は、図8に示すように、▲及び◆印で示すGPS衛星SV20及びSV22に対して、重みの増加に比例して受信機の位置誤差が増加し、○及び□印で示すGPS衛星SV21及びSV14に対して、重みの増加に反比例して受信機の位置誤差が減少する傾向となる。 Furthermore, the variable i is set to “3”, and the receiver position (x 3, y 3 , z 3 ) calculated by performing the sub-positioning calculation based on the three GPS satellites SV21, SV14, SV22 excluding the GPS satellite SV20 is true. Value (x * , y * , Z * ) And a weighting operation in which weights of 2 −1 and 2 +1 are set for each satellite, and receiver positions (x 11 , y 11 , z 11 ), (x 12 , y 12 , z 12 ) are assumed. ) To (x 41 , y 41 , z 41 ), (x 42 , y 42 , z 42 ) are calculated, and the calculation of the equation (13) is performed based on these to calculate the position error PE for each weight. . As shown in FIG. 8, the calculation result shows that the position error of the receiver increases in proportion to the increase in weight with respect to the GPS satellites SV20 and SV22 indicated by ▲ and ◆, and GPS indicated by ◯ and □. For satellites SV21 and SV14, the receiver position error tends to decrease in inverse proportion to the increase in weight.

さらにまた、変数iを“4”として、GPS衛星SV22を除く3つのGPS衛星SV21,SV14,SV20に基づいてサブ測位演算を行って演算した受信機位置(x4 ,4 ,z4 )を真値(x* * ,z* )として仮定すると共に、衛星毎に2-1,2+1の重みを設定した重み付け演算を行って、受信機位置(x11,y11 ,z11),(x12,y12,z12)〜(x41,y41,z41),(x42,y42,z42)を算出し、これらに基づいて前記(13)式の演算を行って各重みに対する位置誤差PEを算出する。この演算結果は、図9に示すように、□、▲及び◆印で示すGPS衛星SV14、SV20及びSV22に対して、位置誤差PEが重みの増加に比例して増加し、○印で示すGPS衛星SV21に対して、位置誤差PEが重みの増加に反比例して減少する傾向となる。 Furthermore, the variable i is set to “4”, and the receiver position (x 4, y 4 , z 4 ) calculated by performing the sub-positioning calculation based on the three GPS satellites SV21, SV14, SV20 excluding the GPS satellite SV22. True value (x * , y * , Z * ) And a weighting operation in which weights of 2 −1 and 2 +1 are set for each satellite, and receiver positions (x 11 , y 11 , z 11 ), (x 12 , y 12 , z 12 ) To (x 41 , y 41 , z 41 ), (x 42 , y 42 , z 42 ) are calculated, and based on these, the calculation of the equation (13) is performed to calculate the position error PE for each weight. . As shown in FIG. 9, the calculation result shows that the position error PE increases in proportion to the increase of the weight with respect to the GPS satellites SV14, SV20, and SV22 indicated by □, ▲, and ◆, and GPS indicated by ◯ For the satellite SV21, the position error PE tends to decrease in inverse proportion to the increase in weight.

したがって、各GPS衛星SV21,SV14.SV20,SV22を順次除いたサブ測位演算処理で演算した受信機位置を真値と仮定して、重み付け演算を行った各GPS衛星の受信機位置と真値とに基づいて前記(13)式の演算を行って演算結果を表す図6〜図9から理解されるように図5のみが真値として設定したサブ測位演算処理の受信機位置の演算から除かれたGPS衛星ののみの重みに対して、位置誤差が重みの増加に比例して増加し、残りのGPS衛星の重みに対して、位置誤差が重みの増加に反比例して減少するマルチパス発生条件を満たすことになり、この結果からマルチパス発生衛星としてGPS衛星SV21を特定し、この真値として仮定した受信機位置(x1 ,1 ,z1 )を測位結果として決定し、これを後段のカーナビゲーションシステム等に出力する。 Therefore, each GPS satellite SV21, SV14. Assuming that the receiver position calculated in the sub-positioning calculation process in which SV20 and SV22 are sequentially removed is a true value, the weighting calculation is performed on the basis of the receiver position and the true value of each GPS satellite. As understood from FIGS. 6 to 9 showing the calculation results by performing the calculation, only the weight of the GPS satellite removed from the calculation of the receiver position of the sub-positioning calculation process in which only FIG. 5 is set as the true value. Thus, the position error increases in proportion to the increase in weight, and the multipath generation condition in which the position error decreases in inverse proportion to the increase in weight with respect to the weights of the remaining GPS satellites is satisfied. The GPS satellite SV21 is specified as the multipath generating satellite, the receiver position (x 1, y 1 , z 1 ) assumed as the true value is determined as the positioning result, and this is output to the car navigation system or the like at the subsequent stage.

また、マルチパス発生条件を満たす結果が複数存在する場合には、そのうちの重みの増加に対する位置誤差PEの変化率が一番大きい組を選択し、この組の真値の演算に排除したGPS衛星をマルチパス発生衛星として特定し、この組の真値として仮定した受信機位置(xi ,i ,zi )を真値として決定し、これを後段のカーナビゲーションシステム等に出力する。 In addition, when there are a plurality of results satisfying the multipath generation condition, a GPS satellite that has selected the largest change rate of the position error PE with respect to the increase of the weight and excluded the true value of the set is calculated. Is determined as a multipath generating satellite, the receiver position (x i, y i , z i ) assumed as the true value of this set is determined as a true value, and this is output to the car navigation system or the like at the subsequent stage.

このように、上記実施形態によると、マスタ測位演算処理で算出した疑似距離ymi と近似距離ypi とに基づいて算出した帰納的残差APRと、受信した全てのGPS衛星から順次1つを除いた残りのGPS衛星についてサブ測位演算処理を行って演算した受信機位置の最大差MSとに基づいてマルチパスが発生したGPS衛星の有無を判断し、マルチパスが発生したGPS衛星が存在しない場合には、マスタ測位演算処理で演算した受信機位置を真値として選択し、マルチパス衛星が発生したGPS衛星が存在する場合には、サブ測位演算処理で演算した各受信機位置を順次真値として仮定し、このときの4つのGPS衛星について重み付け処理を行ってから、それらについて位置誤差PEを演算し、この演算結果について真値として仮定した受信機位置の演算で排除したGPS衛星の重みに対して、位置誤差が重みの増加に比例して増加し、残りの3つのGPS衛星に対して、位置誤差が重みの増加に反比例して減少するマルチパス発生条件を満足する場合に、排除したGPS衛星をマルチパス発生衛星として特定するので、マルチパス発生衛星の存在を検出したときに、マルチパス発生衛星を正確に特定することができる。 Thus, according to the above embodiment, the recursive residual APR calculated based on the pseudo distance ym i calculated by the master positioning calculation process and the approximate distance yp i and one of all received GPS satellites in order. The presence or absence of a multipath-occurring GPS satellite is determined based on the maximum difference MS of the receiver position calculated by performing sub-positioning calculation processing on the remaining GPS satellites, and there is no GPS satellite in which a multipath has occurred In this case, the receiver position calculated in the master positioning calculation process is selected as a true value, and if there is a GPS satellite generated by a multipath satellite, each receiver position calculated in the sub-positioning calculation process is sequentially true. Assuming the value, weighting processing is performed for the four GPS satellites at this time, the position error PE is calculated for them, and the calculation result is assumed to be a true value. The position error increases in proportion to the increase in the weight with respect to the weight of the GPS satellite excluded by the calculation of the receiver position, and the position error in inverse proportion to the increase in the weight for the remaining three GPS satellites. When the reduced multipath generation condition is satisfied, the excluded GPS satellite is specified as the multipath generation satellite. Therefore, when the presence of the multipath generation satellite is detected, the multipath generation satellite can be accurately specified. .

因に、受信した全ての衛星を使用するマスタ測位解で帰納的残差APRを算出すると共に、1つずつGPS衛星を排除した3つの衛星を使用するサブ測位解で帰納的残差APRを算出すると、下記表1に示すように、マスタ測位解ではAPRが149.8となり、残りのサブ測位解では全ての帰納的残差APRが0となる。また、位置誤差についてはマスタ測位解では163.9mとなり、GPS衛星SV21を除く3つの衛星によるサブ測位解21では18.2m、GPS衛星SV14を除く3つの衛星によるサブ測位解14では1993.0mとなり、GPS衛星SV20を除く3つの衛星によりサブ測位解20では962.7mとなり、GPS衛星SV22を除く3つの衛星によりサブ測位解22では221.2mとなっており、前述した非特許文献1に記載された従来例では、“0”となるサブ測位解が複数存在することにより、マスタ測位解が選択されることにより,位置誤差が163.9mも生じることになるが、本実施形態では、前述したようにサブ測位解21が選択されることにより、位置誤差が最小値18.2となり、より正確の受信機位置を演算することができる。   The recursive residual APR is calculated with the master positioning solution that uses all the received satellites, and the recursive residual APR is calculated with the sub-positioning solution that uses three satellites that exclude the GPS satellites one by one. Then, as shown in Table 1 below, the APR is 149.8 in the master positioning solution, and all the recursive residuals APR are 0 in the remaining sub-positioning solutions. The position error is 163.9 m in the master positioning solution, 18.2 m in the sub-positioning solution 21 using three satellites excluding the GPS satellite SV21, and 1993.0 m in the sub-positioning solution 14 using three satellites excluding the GPS satellite SV14. With the three satellites excluding the GPS satellite SV20, the sub-positioning solution 20 is 962.7 m, and with the three satellites excluding the GPS satellite SV22, the sub-positioning solution 22 is 221.2 m. In the described conventional example, since there are a plurality of sub-positioning solutions that are “0”, the master positioning solution is selected, so that a position error of 163.9 m occurs. In the present embodiment, As described above, when the sub-positioning solution 21 is selected, the position error becomes the minimum value 18.2 and the more accurate receiver position can be obtained. It can be calculated to.

Figure 2005077318
なお、上記実施形態においては、重み付けアルゴリズムとして通常のGPS測位計算モデルとしてCancel-B法を適用した場合について説明したが、これに限定されるものではなく、通常のGPS測位計算モデルを下記のように設定して重み付け演算を行うようにしてもよい。
Figure 2005077318
In the above embodiment, the case where the Cancel-B method is applied as a normal GPS positioning calculation model as a weighting algorithm has been described. However, the present invention is not limited to this, and a normal GPS positioning calculation model is as follows. May be set to perform weighting calculation.

Y=H・X
ここで、Yは疑似距離と近似距離の差分ベクトル、Hは視線方向ベクトル、Xは位置誤差ベクトルである。
そして、それぞれの衛星の測定時の測定誤差に応じて、適当な重みを割り当てることにより、位置誤差を軽減することが期待できる。
重みベクトルw=(w1 ,w2 ,……wn )とすると、
w・Y=w・H・X
(wH)T wY=(wH)T wHX
T WY=HT WHX
X=(HT WH)-1T WY
ただし、
Y = H · X
Here, Y is a difference vector between the pseudo distance and the approximate distance, H is a gaze direction vector, and X is a position error vector.
Then, it is expected that the position error can be reduced by assigning an appropriate weight according to the measurement error at the time of measuring each satellite.
If weight vector w = (w 1 , w 2, ... W n ),
w ・ Y = w ・ H ・ X
(WH) T wY = (wH) T wHX
H T WY = H T WHX
X = (H T WH) −1 H T WY
However,

Figure 2005077318
また、上記実施形態では4つの衛星からの電波を受信可能な場合について説明したが、これに限定されるものではなく、5以上の衛星からの電波を受信可能な場合でも、上記実施形態と同様にマルチパス衛星を特定することができる。
Figure 2005077318
In the above embodiment, the case where radio waves from four satellites can be received has been described. However, the present invention is not limited to this, and even when radio waves from five or more satellites can be received, the same as in the above embodiment. Multipath satellites can be identified.

本発明の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of this invention. 受信した衛星番号と変数との関係を表すテーブルを示す図である。It is a figure which shows the table showing the relationship between the received satellite number and a variable. 測位演算処理を示すフローチャートである。It is a flowchart which shows a positioning calculation process. 図3の重み付け演算処理を示すフローチャートである。It is a flowchart which shows the weighting calculation process of FIG. GPS衛星毎の重みと位置誤差の関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the weight for every GPS satellite, and a position error. GPS衛星SV21を除いたサブ測位解を真値としたときの特性線図である。It is a characteristic diagram when the sub-positioning solution excluding the GPS satellite SV21 is a true value. GPS衛星SV14を除いたサブ測位解を真値としたときの特性線図である。It is a characteristic diagram when the sub-positioning solution excluding the GPS satellite SV14 is a true value. GPS衛星SV20を除いたサブ測位解を真値としたときの特性線図である。It is a characteristic diagram when the sub-positioning solution excluding the GPS satellite SV20 is a true value. GPS衛星SV22を除いたサブ測位解を真値としたときの特性線図である。It is a characteristic diagram when the sub-positioning solution excluding the GPS satellite SV22 is a true value.

符号の説明Explanation of symbols

1…全地球測位システム、2…GPS受信機、SV21,SV14,SV20,SV22…GPS衛星、3…アンテナ、4…低雑音増幅器、5…周波数変換部、6…GPS復調・演算部   DESCRIPTION OF SYMBOLS 1 ... Global positioning system, 2 ... GPS receiver, SV21, SV14, SV20, SV22 ... GPS satellite, 3 ... Antenna, 4 ... Low noise amplifier, 5 ... Frequency conversion part, 6 ... GPS demodulation and calculation part

Claims (4)

衛星からの電波を受信するアンテナ部と、複数N個の衛星からの受信信号を復調する検波部と、該検波部で復調した信号から衛星航法メッセージを集めて解析するデータ解析部と、衛星から信号が送信された送信時刻を演算する送信時刻換算部と、衛星での前記送信時刻と受信機での受信時刻との差から電波の伝搬距離を表す疑似距離を演算する疑似距離演算部と、該疑似距離演算部で演算した疑似距離と衛星座標位置とに基づいて受信機位置を演算する測位演算部とを備えた全地球測位システムにおいて、
前記測位演算部は、受信信号を受信した全ての衛星の疑似距離と衛星位置とに基づいて受信機位置を演算するマスタ測位演算手段と、全ての衛星のうち順次1つを除いた残りの衛星の疑似距離と衛星位置とに基づいて複数N個の受信機位置を演算するサブ測位演算手段と、前記衛星座標位置から受信機概略座標位置までの座標空間距離を表す近似距離を演算する近似距離演算部と、前記マスタ測位演算手段で算出した受信機位置と衛星位置に基づいて、前記近似距離演算部で演算した衛星毎の近似距離と前記疑似距離との偏差の二乗値を加算した帰納的残差を演算する帰納的残差演算手段と、前記サブ測位演算手段で演算した受信機位置の最大差を演算する最大差演算手段と、前記帰納的残差及び最大差に基づいてマルチパス発生の有無を判定するマルチパス判定手段と、該マルチパス判定手段の判定結果がマルチパスの発生がないときには前記マスタ測位演算手段で演算した受信機位置を選択する正常時選択手段と、前記マルチパス判定手段の判定結果がマルチパスの発生があるときには、衛星毎に重み付け演算を行って、その演算結果からマルチパスが発生した衛星を特定し、当該マルチバスが発生した衛星を除いたサブ測位演算手段で演算した受信機位置を選択するマルチパス発生状態選択手段とを備えていることを特徴とする全地球測位システム。
An antenna unit that receives radio waves from a satellite, a detection unit that demodulates received signals from a plurality of N satellites, a data analysis unit that collects and analyzes satellite navigation messages from signals demodulated by the detection unit, and a satellite A transmission time conversion unit for calculating a transmission time at which a signal is transmitted, a pseudo distance calculation unit for calculating a pseudo distance representing a propagation distance of radio waves from a difference between the transmission time at the satellite and the reception time at the receiver, In a global positioning system including a positioning calculation unit that calculates a receiver position based on a pseudorange calculated by the pseudorange calculation unit and a satellite coordinate position,
The positioning calculation unit includes master positioning calculation means for calculating the receiver position based on the pseudoranges and satellite positions of all the satellites that have received the received signals, and the remaining satellites except for one of all the satellites in sequence. Sub-position calculating means for calculating a plurality of N receiver positions based on the pseudo-range and the satellite position, and an approximate distance for calculating an approximate distance representing a coordinate space distance from the satellite coordinate position to the receiver approximate coordinate position Based on the receiver position and satellite position calculated by the calculation unit and the master positioning calculation means, an inductive value obtained by adding the square value of the deviation between the approximate distance calculated by the approximate distance calculation unit and the pseudo distance Inductive residual calculation means for calculating a residual, maximum difference calculation means for calculating a maximum difference in receiver position calculated by the sub-positioning calculation means, and multipath generation based on the inductive residual and the maximum difference Whether or not Multipath determination means, a normal time selection means for selecting a receiver position calculated by the master positioning calculation means when the determination result of the multipath determination means is no multipath, and determination by the multipath determination means When there is a multipath occurrence, weighting calculation is performed for each satellite, the satellite where the multipath occurred is identified from the calculation result, and the sub-positioning calculation means excluding the satellite where the multibus is generated is used. A global positioning system comprising multipath generation state selection means for selecting a receiver position.
前記マルチパス判定手段は、前記帰納的残差が帰納的残差閾値未満であり、且つ最大偏差が最大偏差閾値未満となるマルチパス非発生条件を満足するときにマルチパス非発生状態であると判定し、当該マルチパス非発生条件を満足しないときにマルチパス発生状態であると判定するように構成されていることを特徴とする請求項1に記載の全地球測位システム。   The multipath determination means is in a multipath non-occurrence state when the recursive residual is less than a recursive residual threshold and satisfies a multipath non-occurrence condition in which a maximum deviation is less than a maximum deviation threshold. The global positioning system according to claim 1, wherein the global positioning system is configured to determine and determine that the multipath generation state is satisfied when the multipath non-occurrence condition is not satisfied. 前記マルチパス発生状態選択手段は、サブ測位演算手段で演算した複数N個の受信機位置を順次真値として、衛星毎に少なくとも異なる2つの重み付けを行った測位値、及び前記マスタ測位演算手段で演算した測位値の3つの測位値のそれぞれについて、位置誤差を算出する位置誤差算出手段と、該位置誤差算出手段で算出した位置誤差のうち、真値に設定された受信機位置の演算から除かれた衛星のみに対して、重みの増加に比例して位置誤差が増加するときに当該衛星をマルチパスが発生した衛星として特定するように構成されていることを特徴とする請求項1又は2に記載の全地球測位システム。   The multipath occurrence state selection means includes a plurality of N receiver positions calculated by the sub-positioning calculation means as true values sequentially, a positioning value obtained by performing at least two different weights for each satellite, and the master positioning calculation means. For each of the three positioning values calculated, the position error calculating means for calculating the position error and the position error calculated by the position error calculating means are excluded from the calculation of the receiver position set to the true value. 3. Only a selected satellite is configured to identify the satellite as a multipath-generated satellite when the position error increases in proportion to an increase in weight. The global positioning system described in. 前記マルチパス発生状態選択手段は、前記位置誤差算出手段で算出した位置誤差のうち真値に設定された受信機位置の演算から除かれた衛星に対して、位置誤差が衛星の重みの増加に比例して増加する組が複数存在する場合に、重みの増加に対する位置誤差の増加率が最大となる衛星をマルチパスが発生した衛星として特定するように構成されていることを特徴とする請求項3に記載の全地球測位システム。   The multipath generation state selection unit is configured to increase the weight of the satellite with respect to a satellite that is excluded from the calculation of the receiver position set to a true value among the position errors calculated by the position error calculation unit. The satellite is configured to identify a satellite having a maximum position error increase rate with respect to an increase in weight as a satellite in which a multipath has occurred when there are a plurality of proportionally increasing pairs. The global positioning system according to 3.
JP2003310074A 2003-09-02 2003-09-02 Global positioning system Withdrawn JP2005077318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310074A JP2005077318A (en) 2003-09-02 2003-09-02 Global positioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310074A JP2005077318A (en) 2003-09-02 2003-09-02 Global positioning system

Publications (1)

Publication Number Publication Date
JP2005077318A true JP2005077318A (en) 2005-03-24

Family

ID=34412048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310074A Withdrawn JP2005077318A (en) 2003-09-02 2003-09-02 Global positioning system

Country Status (1)

Country Link
JP (1) JP2005077318A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281551A (en) * 2007-04-09 2008-11-20 Seiko Epson Corp Present position locating method and program, storage medium, positioning device, and electronic equipment
JP2009103548A (en) * 2007-10-23 2009-05-14 Seiko Epson Corp Positioning method, program, positioning apparatus, and electronic equipment
JP2009133716A (en) * 2007-11-30 2009-06-18 Seiko Epson Corp Positioning method, program and positioning apparatus
JP2012100087A (en) * 2010-11-02 2012-05-24 Denso Corp Receiver for spread spectrum signal
WO2014002211A1 (en) * 2012-06-27 2014-01-03 三菱電機株式会社 Positioning device
US10598794B2 (en) 2016-04-14 2020-03-24 Seiko Epson Corporation Positioning control method and positioning device
JP2020180868A (en) * 2019-04-25 2020-11-05 株式会社豊田中央研究所 Position estimation device and position estimation program
CN115291261A (en) * 2022-08-10 2022-11-04 湖南北云科技有限公司 Satellite positioning method, device, electronic equipment and storage medium

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281551A (en) * 2007-04-09 2008-11-20 Seiko Epson Corp Present position locating method and program, storage medium, positioning device, and electronic equipment
JP2009103548A (en) * 2007-10-23 2009-05-14 Seiko Epson Corp Positioning method, program, positioning apparatus, and electronic equipment
JP2009133716A (en) * 2007-11-30 2009-06-18 Seiko Epson Corp Positioning method, program and positioning apparatus
US8339310B2 (en) 2007-11-30 2012-12-25 Seiko Epson Corporation Positioning method, positioning device, and program
JP2012100087A (en) * 2010-11-02 2012-05-24 Denso Corp Receiver for spread spectrum signal
JP5855249B2 (en) * 2012-06-27 2016-02-09 三菱電機株式会社 Positioning device
WO2014002211A1 (en) * 2012-06-27 2014-01-03 三菱電機株式会社 Positioning device
CN104412065B (en) * 2012-06-27 2016-10-05 三菱电机株式会社 Positioner
US9864064B2 (en) 2012-06-27 2018-01-09 Mitsubishi Electric Corporation Positioning device
US10598794B2 (en) 2016-04-14 2020-03-24 Seiko Epson Corporation Positioning control method and positioning device
US11067701B2 (en) 2016-04-14 2021-07-20 Seiko Epson Corporation Positioning control method and positioning device
JP2020180868A (en) * 2019-04-25 2020-11-05 株式会社豊田中央研究所 Position estimation device and position estimation program
JP7115726B2 (en) 2019-04-25 2022-08-09 株式会社豊田中央研究所 Position estimation device and position estimation program
CN115291261A (en) * 2022-08-10 2022-11-04 湖南北云科技有限公司 Satellite positioning method, device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
EP1952174B1 (en) Methods and apparatus to detect and correct integrity failures in satellite positioning system receivers
US7724184B2 (en) System and method for detecting false navigation signals
EP1762824B1 (en) Position determination using carrier phase measurements of satellite signals
JP4896746B2 (en) Positioning of mobile terminals using satellites
US6861979B1 (en) Method and apparatus for detecting anomalous measurements in a satellite navigation receiver
US7710316B1 (en) Method and apparatus for determining smoothed code coordinates of a mobile rover
KR101437346B1 (en) Positioning method of GPS receiver, Recording medium storing a program for performing the method and GPS receiver
EP3124998B1 (en) Positioning device
JPH10508686A (en) Differential GPS ground station system
JP2013019893A (en) Error detection for satellite navigation system based on biased measurement
WO2012035992A1 (en) Satellite navigation augmentation system and satellite navigation augmentation method
JP2003057327A (en) Navigation satellite signal receiver
CN102004259A (en) Satellite navigation positioning resolving method based on Doppler smoothing pseudorange under high-sensitivity environment
US20100271259A1 (en) Methods and Systems to Diminish False-Alarm Rates in Multi-Hypothesis Signal Detection Through Combinatoric Navigation
US11209552B2 (en) Method and apparatus for improving the quality of position determination using GNSS data
JP2005077318A (en) Global positioning system
JP4777353B2 (en) GPS positioning method and GPS positioning device
JP4215264B2 (en) Position and orientation estimation device
EP2813864A2 (en) Receivers and methods for multi-mode navigation
WO2020149014A1 (en) Satellite selection device and program
US9112571B1 (en) Method for correlating a received satellite radio-navigation signal and correlation device implementing the method
US10386495B1 (en) Method and apparatus for detecting poor Doppler measurement results in global navigation satellite system navigation
KR102479978B1 (en) Apparatus and method for detecting and mitigating spoofing signal for global navigation satellite system using array antenna
JP2007051951A (en) Positioning system
JP2006126005A (en) Global positioning system receiving system and position measuring method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107