WO2020149014A1 - Satellite selection device and program - Google Patents

Satellite selection device and program Download PDF

Info

Publication number
WO2020149014A1
WO2020149014A1 PCT/JP2019/045961 JP2019045961W WO2020149014A1 WO 2020149014 A1 WO2020149014 A1 WO 2020149014A1 JP 2019045961 W JP2019045961 W JP 2019045961W WO 2020149014 A1 WO2020149014 A1 WO 2020149014A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
satellites
antennas
gps
unit
Prior art date
Application number
PCT/JP2019/045961
Other languages
French (fr)
Japanese (ja)
Inventor
和也 下岡
鈴木 徳祥
朗 宮島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020149014A1 publication Critical patent/WO2020149014A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection

Definitions

  • the present disclosure relates to a satellite selection device and a program.
  • Patent Document 1 when receiving signals from multiple satellites and calculating its own position, position detection that calculates its own position without using some satellite signals among the signals from multiple satellites A device is known (Patent Document 1).
  • the receiver that receives the signal from the satellite, and the Doppler frequency generated by the relative velocity with the satellite the difference between the measured value and the predicted value while the receiver is stationary becomes a threshold value or more It calculates its position without using the signal from.
  • Patent Document 2 There is also known a navigation satellite receiver that calculates the distance from a satellite to a receiver and calculates the position of the receiver without using the distance calculated for some satellites.
  • Patent Document 2 the distance predicted from the satellite to the receiver is used as an approximate distance, and the satellite to the receiver is calculated based on the time difference between the transmission time at which the signal was transmitted from the satellite and the time at the receiver that received the signal.
  • the calculated distance is obtained as a pseudo distance.
  • the position of the receiver is calculated without using the approximate distance and the pseudo distance for a satellite in which the difference between the pseudo distance and the approximate distance (hereinafter referred to as the pseudo distance residual) exceeds the threshold value.
  • Patent Document 1 when the difference between the measured value and the predicted value of the Doppler frequency is equal to or more than the threshold value, it is determined that the influence of the multipath is exerted, and the signal from the satellite is not used. Calculate the position of. At this time, a method of setting a threshold according to the speed of the moving body has been proposed. However, since it is irrelevant whether or not the velocity of the mobile body is in a multipath environment, it is difficult for this method to set an appropriate threshold value considering the prediction error of the Doppler frequency due to the influence of multipath. For example, if the threshold value is too large, satellites with large multipath errors cannot be excluded. If the threshold value is too small, satellites that are not affected by multipath may be excluded.
  • the pseudo distance includes the distance error caused by the estimation error of the receiver position and the estimation error of the receiver time difference.
  • the estimation error of the receiver position does not have a common effect on the calculation accuracy of the pseudorange residual with each satellite. For example, if a position error occurs in the direction of approaching the satellite with the highest elevation angle, the pseudorange residual with the satellite with the highest elevation angle will be small, while the pseudorange residual with other satellites will be large. There is a nature. Therefore, it is difficult to reduce the influence of the accuracy of position estimation.
  • the present disclosure provides a satellite selection device and a program that can select a satellite that can be accurately calculated when determining at least one of the position and speed of the moving body on the earth.
  • a first aspect of the present disclosure is a satellite selection that selects a satellite to be used in a positioning device that calculates a position on the earth of a positioning target location in a mobile body that is different from the installation location of a plurality of satellite antennas installed in the mobile body.
  • a device which acquires satellite information including information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites and information about a distance between each of the plurality of satellites and the mobile body.
  • An estimation pseudo indicating the distance between each of the plurality of satellites and each of the plurality of satellite antennas at each position from the calculated position to be measured based on the satellite information acquired by the acquisition unit.
  • An estimated pseudo distance calculation unit for estimating distance information, and for each of the plurality of satellites, the observation pseudo distance information derived by the observation pseudo distance derivation unit for each satellite antenna of the plurality of satellite antennas, and the estimation Based on a residual difference deriving unit that derives a residual with the estimated pseudo distance information estimated by the pseudo distance calculating unit, and a difference between the residuals of each of the plurality of satellite antennas that is derived by the residual deriving unit. And a satellite selector that selects satellites to be excluded from the satellites to be used.
  • a second aspect of the present disclosure is the satellite selecting apparatus of the first aspect, wherein the satellite selecting unit may exclude, from the satellites to be used, satellites corresponding to the difference of the residuals equal to or larger than a predetermined threshold. ..
  • a third aspect of the present disclosure is the satellite selection device according to the first aspect or the second aspect, further including a reliability determination unit that determines the reliability of each time error of the receivers of the plurality of satellite antennas, The satellite selection unit selects a satellite to be excluded from the satellites to be used, based on the difference between the residuals of the plurality of satellite antennas only when the reliability determination unit determines that the reliability is high. You may.
  • the reliability determination unit determines which one of the residuals derived by the residual deriving unit for a plurality of predetermined different satellites. It may be determined that the reliability of the time error of the receiver is high when the residual error of one satellite antenna is within a threshold with respect to the residual error of another satellite antenna.
  • a fifth aspect of the present disclosure is a satellite that selects a satellite to be used in a speed measurement device that calculates a speed on the earth of a positioning target location in the mobile body that is different from installation locations of a plurality of satellite antennas installed in the mobile body.
  • a satellite information including a position information of each of the plurality of satellites transmitted from each of the plurality of satellites and a relative speed between each of the plurality of satellites and the moving body. Based on the satellite information acquisition unit to be acquired and the satellite information acquired by the satellite information acquisition unit, each of the plurality of satellites observed at each installation location of the plurality of satellite antennas, and the plurality of satellites.
  • An observational Doppler frequency deriving unit that derives observed Doppler frequency information indicating the relative speed between each of the satellite antennas, a speed relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite information.
  • an estimated Doppler frequency calculation unit for estimating estimated Doppler frequency information indicating the relative speed between each of the plurality of satellite antennas, and ,
  • the observed Doppler frequency information derived by the observed Doppler frequency deriving unit, and the estimated Doppler estimated by the estimated Doppler frequency calculator A residual derivation unit that derives a residual with frequency information, and a plurality of satellites based on the difference between the residuals of the plurality of satellite antennas derived by the residual derivation unit of each of the plurality of satellites.
  • a satellite selection device including a satellite selection unit that selects a satellite to be
  • the satellite selection unit may exclude, from the satellites to be used, satellites corresponding to the difference of the residuals equal to or more than a predetermined threshold. ..
  • a seventh aspect of the present disclosure is the satellite selection device according to the fifth aspect or the sixth aspect, further comprising a reliability determination unit that determines the reliability of each change amount of the time error of each receiver of the plurality of satellite antennas. Further, the satellite selection unit excludes from the satellites to be used based on the residual difference of each of the plurality of satellite antennas only when the reliability determination unit determines that the reliability is high. You may select a satellite.
  • the reliability determination unit includes the plurality of residuals derived by the residual derivation unit for a plurality of different predetermined satellites. Even if it is determined that the reliability of the amount of change in the time error of the receiver is high when the residual error of any one of the satellite antennas is less than the threshold value of the residual error of the other satellite antennas. Good.
  • a ninth aspect of the present disclosure is for selecting a satellite to be used by a positioning device that calculates a position on the earth of a position to be measured in the moving body different from the installation position of a plurality of satellite antennas installed in the moving body.
  • a program a satellite information including information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites and information about the distance between each of the plurality of satellites and the mobile body. Based on the satellite information acquired by the satellite information acquisition unit, the plurality of satellites observed at the respective installation locations of the plurality of satellite antennas, and the plurality of satellites.
  • An observation pseudo-range deriving unit for deriving observation pseudo-range information indicating a distance to each of the satellite antennas, a predetermined positional relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite Estimating the distance between each of the plurality of satellites and each of the plurality of satellite antennas at each position from the calculated position to be measured based on the satellite information acquired by the information acquisition unit
  • An estimated pseudo-range calculation unit that estimates pseudo-range information, and for each of the plurality of satellites, the observation pseudo-range information derived by the observation pseudo-range derivation unit for each satellite antenna of the plurality of satellite antennas, and the estimation
  • a residual derivation unit that derives a residual with the estimated pseudo distance information estimated by the pseudo distance calculation unit, and a difference between the residuals of each of the plurality of satellite antennas derived by the residual derivation unit.
  • a program for operating as a satellite selection unit that selects satellites to be excluded from the satellites to be used based on the
  • a tenth aspect of the present disclosure is to select a satellite to be used in a speed measurement device that calculates the speed of the earth on a position to be measured in the moving body different from the installation positions of a plurality of satellite antennas installed on the moving body.
  • a program including the information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites and the information about the relative speed between each of the plurality of satellites and the moving body.
  • a satellite information acquisition unit that acquires satellite information, based on the satellite information acquired by the satellite information acquisition unit, each of the plurality of satellites observed at each installation location of the plurality of satellite antennas, and An observational Doppler frequency deriving unit that derives observed Doppler frequency information indicating relative speed between each of the plurality of satellite antennas, a speed relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite.
  • An estimated Doppler frequency calculation unit that estimates estimated Doppler frequency information indicating the relative speed between each of the plurality of satellites and each of the plurality of satellite antennas based on the satellite information acquired by the information acquisition unit.
  • the observed Doppler frequency information derived by the observed Doppler frequency deriving unit, and the estimated Doppler estimated by the estimated Doppler frequency calculator A residual derivation unit that derives a residual with frequency information, and a plurality of satellites based on the residual difference of each of the plurality of satellite antennas derived by the residual derivation unit of each of the plurality of satellites.
  • the storage medium that stores the program of the present disclosure is not particularly limited, and may be a hard disk or a ROM. Further, it may be a CD-ROM, a DVD disc, a magneto-optical disc or an IC card. Furthermore, the program may be downloaded from a server or the like connected to the network.
  • the satellite selection device and the program of the present disclosure can select a satellite that can be accurately calculated when determining at least one of the position and speed of the moving body on the earth.
  • FIG. 1 is a block diagram showing a positioning device according to the first embodiment
  • FIG. 2 is a diagram showing an example in which two GPS antennas are installed with the positioning target location being the vehicle center
  • FIG. 3A is a diagram showing an example of a vehicle attitude angle calculation result at a certain time
  • FIG. 3B is a diagram showing an example of a vehicle attitude angle calculation result at a certain time
  • FIG. 4A is a diagram for explaining a method of calculating a positional relationship between a positioning target location and an antenna installation location in the ENU coordinate system
  • FIG. 1 is a block diagram showing a positioning device according to the first embodiment
  • FIG. 2 is a diagram showing an example in which two GPS antennas are installed with the positioning target location being the vehicle center
  • FIG. 3A is a diagram showing an example of a vehicle attitude angle calculation result at a certain time
  • FIG. 3B is a diagram showing an example of a vehicle attitude angle calculation result at a certain time
  • FIG. 4A is a diagram for explaining a
  • FIG. 4B is a diagram for explaining a method of calculating the positional relationship between the position to be positioned and the antenna installation position in the ENU coordinate system
  • FIG. 4C is a diagram for explaining a method of calculating a positional relationship between a position to be positioned and an antenna installation position in the ENU coordinate system
  • FIG. 5 is a flowchart showing the contents of a positioning processing routine in the computer of the positioning device according to the first embodiment
  • FIG. 6 is a block diagram showing a positioning device according to the second embodiment
  • FIG. 7 is a flowchart showing the contents of a positioning processing routine in the computer of the positioning device according to the second embodiment
  • FIG. 8 is a block diagram showing a speed measuring device according to a third embodiment
  • FIG. 9A is a diagram showing an example of a vehicle angular velocity and attitude angle calculation result at a certain time
  • FIG. 9B is a diagram showing an example of the angular velocity and attitude angle calculation results of the vehicle at a certain time
  • FIG. 10A is a diagram for explaining a method of calculating a speed relationship between a position to be positioned and an antenna installation position in the ENU coordinate system
  • FIG. 10B is a diagram for explaining a method of calculating a speed relationship between a position to be positioned and an antenna installation position in the ENU coordinate system
  • FIG. 10A is a diagram for explaining a method of calculating a speed relationship between a position to be positioned and an antenna installation position in the ENU coordinate system
  • FIG. 10B is a diagram for explaining a method of calculating a speed relationship between a position to be positioned and an antenna installation position in the ENU coordinate system
  • FIG. 10A is a diagram for explaining a method of calculating a speed relationship between a position to be
  • 10C is a diagram for explaining a method of calculating a speed relationship between a position to be positioned and an antenna installation position in the ENU coordinate system, It is a flow chart which shows the content of the speed measurement processing routine in the computer of the speed measurement device concerning a 3rd embodiment. It is a block diagram which shows the speed measuring device which concerns on 4th Embodiment.
  • the positioning target location does not match the GNSS antenna installation location where the observed value is obtained, and if the GNSS antenna installation location is affected by the multipath error, the multipath error The accuracy of the position and velocity calculated from the satellite information from the affected satellites will be less accurate than that not affected by the multipath error.
  • satellites affected by multipath errors are excluded in advance by appropriately considering the positional relationship and speed relationship between the positioning target location and each GNSS antenna installation location, so that satellites with less error can be detected. It is possible to calculate the position and speed of the position to be measured with high accuracy using only the satellite information of.
  • FIG. 1 shows an example of the configuration of the positioning device according to the first embodiment.
  • the positioning device 10 according to the first embodiment includes a plurality of GPS antennas 12A and 12B for receiving radio waves from GPS satellites, and a plurality of GPS antennas 12A and 12B.
  • the attitude angle sensor 16 Based on the plurality of receivers 14A and 14B that obtain the reception signals, the attitude angle sensor 16, the reception signals from the GPS satellites received by the plurality of receivers 14A and 14B, and the detection values of the attitude angle sensor 16,
  • the satellite selecting device 18 for selecting the GPS satellite to be used and the position deriving unit 40 for executing the positioning process for estimating the position of the own vehicle are provided.
  • the satellite selection device 18 includes a computer 30 that executes a satellite selection process that selects a GPS satellite used to derive the position of the position to be measured, and an output unit 20.
  • FIG. 2 shows an example of installation locations of the plurality of GPS antennas 12A and 12B.
  • the plurality of GPS antennas 12A and 12B are installed in the vehicle interior of the vehicle 50, and are installed in a position different from the position to be measured.
  • the position to be measured is the center of the vehicle and the two GPS antennas 12A and 12B and the receivers 14A and 14B are installed at the positions shown in FIG.
  • the distance of each of the GPS antennas 12A and 12B from the position to be measured is accurately grasped by manually measuring.
  • the receivers 14A and 14B are provided for the GPS antennas 12A and 12B, respectively, and the receivers 14A and 14B receive radio waves from a plurality of GPS satellites via the GPS antennas 12A and 12B and receive all of them. From the received signal from the GPS satellite, the satellite number of the GPS satellite, the orbit information (ephemeris) of the GPS satellite, the time when the GPS satellite transmitted radio waves, the strength of the received signal, the frequency, etc. are acquired as the information of the GPS satellite, and a computer is obtained. Output to 30.
  • the attitude angle sensor 16 is, for example, a geomagnetic sensor and detects geomagnetism.
  • the computer 30 in the satellite selection device 18 is configured by a CPU, a ROM that stores a program for implementing the processes described below, a RAM that temporarily stores data, and a storage device such as an HDD.
  • a satellite information acquisition unit 31 is an example of the satellite information acquisition unit and the observation pseudo distance deriving unit of the present disclosure.
  • the estimated pseudo distance calculation unit 34 is an example of the estimated pseudo distance derivation unit of the present disclosure.
  • the pseudo distance residual calculation unit 35 is an example of the residual derivation unit of the present disclosure.
  • the excluded satellite discriminating unit 37 is an example of a satellite selecting unit of the present disclosure.
  • the satellite information acquisition unit 31 acquires GPS satellite information for all GPS satellites that have received radio waves, and calculates and acquires GPS pseudorange data, Doppler frequency, and GPS satellite position coordinates. Specifically, the satellite information acquisition unit 31 acquires GPS satellite information from all of the receivers 14A and 14B for all GPS satellites that have received radio waves, and the time at which the GPS satellites transmitted radio waves and the host vehicle. The GPS pseudo distance data is calculated based on the time when the radio wave is received in. In addition, the satellite information acquisition unit 31 determines the Doppler frequency of the received signal from each GPS satellite based on the known frequency of the signal transmitted from each GPS satellite and the frequency of the received signal received from each GPS satellite. calculate.
  • the Doppler frequency is an observation of the Doppler shift amount of the carrier frequency due to the relative speed between the GPS satellite and the vehicle.
  • the satellite information acquisition unit 31 also calculates the position coordinates of the GPS satellites based on the orbit information of the GPS satellites and the time when the GPS satellites transmitted radio waves.
  • the antenna position/receiver time error calculation unit 32 obtains the positional relationship between the installation location of each of the GPS antennas 12A and 12B on the earth and the positioning target location calculated based on the attitude angle of the own vehicle, and the acquired satellite information. Based on the position of the position of the positioning target determined by using the position of each of the GPS antennas 12A and 12B, the time difference between the receivers 14A and 14B is calculated.
  • the antenna position/receiver time error calculation unit 32 calculates the attitude angle of the host vehicle from the detection value of the attitude angle sensor 16 as the first step.
  • the attitude angle of the host vehicle at that time is calculated by using the detected value of the attitude angle sensor 16 as the attitude angle of the host vehicle.
  • a case where a geomagnetic sensor is used as the attitude angle sensor 16 to calculate the attitude angle of the vehicle is described as an example.
  • the present embodiment is not limited to this, and for example, using a vehicle velocity vector calculated based on the Doppler frequency, vehicle acceleration and angular velocity detected from the 6-axis gyro sensor, and the like, The attitude angle of the host vehicle may be calculated.
  • FIGS. 3A and 3B show an example of the attitude angle of the host vehicle 50 at a certain time.
  • FIG. 3A shows an attitude angle of the host vehicle 50 from directly above the road surface
  • FIG. 3B shows an attitude angle of the host vehicle 50 from just beside the road surface.
  • the antenna position/receiver time error calculation unit 32 determines, for each of the GPS antennas 12A and 12B, the installation location of the GPS antenna on the earth based on the calculated attitude angle of the own vehicle. , Calculate the positional relationship with the position to be measured. Specifically, first, the antenna position/receiver time error calculation unit 32 determines, in advance, the distance between the installation location of each GPS antenna 12A and 12B on the earth and the positioning target location, and each GPS. Based on the angle of the installation location of the antennas 12A and 12B and the detected attitude angle of the own vehicle, the relationship between the absolute position on the earth between the positioning target location (vehicle center) and the installation location of each GPS antenna is calculated. To do. Specifically, it is calculated by the following procedure. Note that, here, a case where the GPS antenna 12A is targeted will be described.
  • the positional relationship in the ENU (East-North-Up) coordinate system is calculated by the following equation (1).
  • 4A to 4C show an example of the positional relationship between the position to be measured (vehicle center) and the installation position of the GPS antenna 12A.
  • FIG. 4A shows a positional relationship as seen from directly above the road surface
  • FIG. 4B shows a positional relationship as seen from directly beside the road surface
  • FIG. 4C is projected on the ground surface (EN coordinate plane). The positional relationship is shown.
  • is the long radius [m] of the earth
  • f is the oblateness
  • the antenna position/receiver time error calculation unit 32 uses the calculated positional relationship and the acquired satellite information to determine the position of the position to be measured on the earth and the position of each receiver. Calculate the time difference. Specifically, the antenna position/receiver time error calculation unit 32 sets the position of the positioning target location and the time error of each of the plurality of GPS antennas 12A and 12B as unknowns, and determines the position of the positioning target location and the positioning target location.
  • the position of the position to be measured and the time error of each receiver are calculated based on the pseudo distances observed at the installation positions of the plurality of GPS antennas 12A and 12B.
  • This pseudo distance is the distance between the GPS satellite and the GPS antenna based on the GPS pseudo distance data.
  • the total of the three-dimensional position vector (x, y, z) in the ECEF coordinate system of the position to be positioned and the time error between the two receivers 14A and 14B (hereinafter, also referred to as clock bias) is 5
  • the number is unknown and the three-dimensional position vector in the ECEF coordinate system of the installation location of each GPS antenna 12A, 12B is F A (x, y, z) and F B (x, y, z).
  • formula (3) is established for each GPS antenna 12A, 12B and each satellite (here, only the GPS antenna 12A is described. The same applies to the GPS antenna 12B.
  • the position (x, y, z) of the position to be measured is calculated by using the observation results of the GPS antennas 12A and 12B by a total of five or more satellites. Also, the time error of each of the receivers 14A and 14B is calculated. When the number of installed GPS antennas is N, the position (x, y, z) of the position to be measured is calculated by using the observation results of a total of (N+3) or more satellites.
  • the position of the GPS antenna 12A is represented by the following formula.
  • (x, y, z) is the position of the position to be measured
  • Cb A is the clock bias [m] (converted to the distance by multiplying the speed of light) of the receiver 14A of the GPS antenna 12A.
  • PR i is the pseudorange [m] observed for satellite i
  • (X si , Y si , Z si ) is the position of satellite i.
  • the position of the positioning target location can be accurately measured even when using the pseudo distance observed at a position different from the positioning target location. Can be calculated.
  • the antenna position/receiver time error calculation unit 32 uses the positional relationship between the installation location of the GPS antenna and the positioning target location and the position of the positioning target location obtained as described above as the fourth step.
  • the positions of the GPS antennas 12A and 12B are derived. That is, by applying the position of the positioning target location on the earth calculated in the third step to the positional relationship between the installation location of each of the GPS antennas 12A and 12B calculated in the second step and the positioning target location, The positions of the GPS antennas 12A and 12B are derived.
  • the estimated pseudo distance calculation unit 34 estimates, for each of the GPS antennas 12A and 12B, all of the GPS satellites that commonly receive the radio waves by the GPS antennas 12A and 12B among all the GPS satellites that have received the radio waves.
  • a pseudo distance (hereinafter referred to as an estimated pseudo distance) is calculated.
  • the respective positions of the GPS antennas 12A and 12B and the respective time errors of the receivers 14A and 14B derived by the antenna position/receiver time error calculation unit 32 are substituted into the equation (3).
  • the estimated pseudo distance is calculated for each of the GPS antennas 12A and 12B.
  • the excluded satellite discriminating unit 37 is used when estimating the position of the own vehicle based on the difference in the pseudo range residuals of the GPS antennas 12A and 12B of all the GPS satellites calculated by the pseudo range residual calculating unit 35.
  • the exclusion target GPS satellites to be excluded from the GPS satellites are determined.
  • the excluded satellite discriminating unit 37 calculates the pseudo distance of the GPS antenna 12A calculated by the pseudo distance residual calculating unit 35 for each of all the GPS satellites commonly receiving radio waves by the GPS antennas 12A and 12B.
  • the difference between the residual and the pseudorange residual of the GPS antenna 12B (hereinafter referred to as the pseudorange residual difference) is calculated.
  • the GPS satellite of the GPS antenna in which the absolute value of the difference in the pseudorange residual calculated for each GPS satellite is equal to or more than the threshold value is determined as the exclusion target GPS satellite to be excluded from all the GPS satellites that have commonly received radio waves. To do. In this way, the satellite affected by the multipath error can be excluded in advance by appropriately considering the positional relationship and speed relationship between the positioning target location and each GNSS antenna installation location.
  • the position deriving unit 40 derives the position of the position to be measured on the earth using the information of the GPS satellites. Specifically, for example, the position of the positioning target location is calculated using satellite information from GPS satellites other than the exclusion target GPS satellites. Note that the position derivation of the position to be measured by the position derivation unit 40 can be derived by, for example, the same process as the calculation by the first step to the third step in the antenna position/receiver time error calculation unit 32. Description is omitted.
  • FIG. 5 shows an example of the contents of the satellite selection processing routine in the computer of the satellite selection device 18 in the positioning device.
  • the computer 30 of the satellite selection device 18 displays the signals as shown in FIG.
  • the positioning processing routine shown is repeatedly executed.
  • step S100 information on a plurality of GPS satellites is acquired from the GPS receivers 14A and 14B, and GPS pseudorange data, Doppler frequency, and position coordinates of the GPS satellites of the plurality of GPS satellites are calculated and acquired.
  • GPS information for a plurality of GPS satellites acquired at the same time is acquired as a GPS information group.
  • step S102 the position of each installation location of the GPS antennas 12A and 12B and the time error of the receivers 14A and 14B are calculated.
  • the attitude angle of the host vehicle is calculated based on the detection value from the attitude angle sensor 16.
  • the distance between the installation location of each GPS antenna 12A, 12B on the earth and the positioning target location, and the angle of the installation location of each GPS antenna 12A, 12B, which are obtained in advance is calculated.
  • the position of the positioning target position and the time error of each of the receivers 14A and 14B corresponding to the plurality of GPS antennas 12A and 12B are set as unknowns, and the position of the positioning target position and the positioning target position (vehicle Using the positional relationship between the center) and each antenna installation location in the ECEF coordinate system, a plurality of equations describing the positions of the installation locations of the plurality of GPS antennas 12A and 12B and the plurality of GPS antennas 12A and 12B are used.
  • the position of the positioning target location is calculated based on the pseudo distance observed at each installation location of the GPS antennas 12A and 12B.
  • the time error of the receivers 14A and 14B of the GPS antennas 12A and 12B is calculated.
  • the position of the positioning target location on the earth calculated in the third step is calculated based on the positional relationship between the installation locations of the GPS antennas 12A and 12B calculated in the second step and the positioning target location. By applying, the positions of the GPS antennas 12A and 12B are derived.
  • the positions of the GPS antennas 12A and 12B, and the time difference between the receivers 14A and 14B corresponding to the GPS antennas 12A and 12B, among the commonly received GPS satellites Set the excluded GPS satellites.
  • step S110 for each of the GPS antennas 12A and 12B, the absolute value obtained by subtracting the estimated pseudo distance calculated in step S112 from the observed pseudo distance that is the observed pseudo distance is used to calculate the residual pseudo distance. Is calculated (see Formula (4)).
  • the difference in the pseudorange residual which is the difference between the pseudorange residual of the GPS antenna 12A calculated for the corresponding GPS satellite and the pseudorange residual of the GPS antenna 12B, is calculated.
  • the position deriving unit 40 obtains the satellite information from the GPS satellites other than the selected exclusion target GPS satellite.
  • the position of the position to be measured is calculated using this.
  • the position on the earth is accurately calculated by excluding the GPS satellites estimated to be affected by the multipath error in advance from the positioning target position different from the installation position of the plurality of GPS antennas in the vehicle. be able to.
  • the satellite selection device 18 appropriately considers the positional relationship between the positioning target position and each GPS antenna installation position, and thus the influence of the multipath error. By excluding in advance the GPS satellites that are estimated to have received, it is possible to accurately calculate the position on the earth of the positioning target position in the vehicle.
  • the position of the positioning target location is calculated with high accuracy. Is possible.
  • the first point is that the GPS satellites estimated to be affected by the multipath error are excluded in advance only when the reliability of the calculated time error of the receivers 14A and 14B is high.
  • This embodiment is mainly different from the above embodiment.
  • FIG. 6 shows an example of the configuration of the positioning device according to the second embodiment.
  • the computer 230 of the satellite selection device 218 in the positioning device 210 according to the second embodiment includes a satellite information acquisition unit 31, an antenna position/receiver time error calculation unit 32, and an estimated pseudo distance calculation unit 34. , Pseudo range residual calculation unit 35, receiver time error reliability determination unit 232, and excluded satellite determination unit 237.
  • the receiver time error reliability determination unit 232 is an example of the reliability determination unit of the present disclosure.
  • the receiver time error reliability determination unit 232 determines the reliability of the time error of the receiver calculated by the antenna position/receiver time error calculation unit 32.
  • the reliability of the time error of the receiver may be determined according to the fluctuation of the pseudo range residual in the GPS antenna. For example, if an error occurs in the time error of the receiver, the pseudo range residuals of all GPS satellites are commonly affected. For this reason, the fact that the pseudorange residuals for all GPS satellites are larger than a certain amount indicates that there is a high possibility that the time error calculation of the receiver is erroneous, that is, the reliability is low. On the other hand, when the pseudorange residuals for all GPS satellites are less than a certain value, it is considered that there is a low possibility that the time error calculation of the receiver is erroneous, that is, the reliability is high.
  • the receiver time error reliability determination unit 232 uses the pseudo distance residual calculated by the pseudo distance residual calculation unit 35 to determine whether all of the GPS antennas 12A and 12B commonly receive the same. For GPS satellites, a pseudorange residual is calculated for each GPS antenna. Next, for all GPS satellites commonly received, if the pseudorange residual of one GPS antenna is larger than the pseudorange residual of the other GPS antenna by a predetermined threshold value or more, the pseudorange residual is It is determined that the reliability of the time error of the receiver connected to the larger GPS antenna is low.
  • the error in the calculation of the time error of the receiver has a common effect on the pseudorange residuals of all the GPS satellites that are commonly received, and therefore the pseudorange residuals of all the GPS satellites are The reason why it is larger than a certain amount is that there is a high possibility that the time error calculation of the receiver is wrong. If the pseudorange residual of one GPS antenna is less than the threshold with respect to the pseudorange residual of the other GPS antenna, the reliability of the time error of the receiver connected to the GPS antenna is high. judge.
  • the excluded satellite discriminating unit 237 based on the reliability of the time error of the receiver determined by the receiver time error reliability determining unit 232, calculates the GPS antenna of each GPS satellite calculated by the pseudorange residual calculation unit 35. From the difference between the pseudo-range residuals of 12A and 12B, the GPS satellites to be excluded from the GPS satellites used when estimating the position of the vehicle are determined.
  • the exclusion target GPS satellites are determined based on the difference in the pseudo range residuals of the GPS antennas 12A and 12B of all the GPS satellites.
  • the exclusion target GPS satellites are used. Is not performed. For example, the GPS satellites received by any of the GPS antennas 12A and 12B are output without being excluded from the GPS satellites.
  • satellites similar to those in the first embodiment are selected only when it is determined that the receivers of the GPS antennas 12A and 12B have high reliability of the time difference. This makes it possible to exclude in advance the satellites affected by the multipath error in consideration of the reliability of the time error of the receiver determined based on the pseudorange residuals for all GPS satellites. ..
  • FIG. 7 shows an example of the contents of a satellite selection processing routine in the computer of the satellite selection device 18 as main processing in the positioning device according to the second embodiment.
  • the computer 230 When the GPS antennas 12A, 12B and the receivers 14A, 14B are receiving radio waves from a plurality of GPS satellites, the computer 230 repeatedly executes the positioning processing routine shown in FIG.
  • step S100 information on a plurality of GPS satellites is acquired from the GPS receivers 14A and 14B, and GPS pseudo range data, Doppler frequency, and position coordinates of the GPS satellites of the plurality of GPS satellites are calculated and acquired.
  • GPS information for a plurality of GPS satellites acquired at the same time is acquired as a GPS information group.
  • step S102 the position of each installation location of the GPS antennas 12A and 12B and the time difference between the receivers 14A and 14B of the GPS antennas 12A and 12B are calculated. Then, among the GPS satellites commonly received by the GPS antennas 12A and 12B, the exclusion-targeted GPS satellites are set.
  • step S106 one of the GPS satellites commonly receiving radio waves by the plurality of GPS antennas 12A and 12B is set. Then, in step S108, the estimated pseudo distance of each of the GPS antennas 12A and 12B is calculated, and in step S110, the residual pseudo distance is calculated for each of the GPS antennas 12A and 12B.
  • step S200 it is determined whether or not the above processing has been completed for all GPS satellites by determining whether or not there are remaining GPS satellites that have not executed the processing for calculating the estimated pseudo distance and the residual of the pseudo distance. .. If there are GPS satellites for which the above processing has not been executed, the determination is negative in step S200, the next GPS satellite is set in step S202, and the process returns to step S200. On the other hand, when the execution of the above processing is completed for all GPS satellites, the affirmative determination is made in step S200, and the processing proceeds to step S204.
  • step S204 it is determined whether or not there is a GPS antenna having a pseudo range residual of a threshold value or more among the pseudo range residuals of each GPS antenna for all GPS satellites commonly received by the GPS antennas 12A and 12B. To do. If there is a GPS antenna with a pseudorange residual of a threshold value or more, the affirmative determination is made in step S204, and the process returns to step S100 without executing the process of selecting a GPS satellite to be excluded, which will be described later. On the other hand, if all the pseudorange residuals are less than the threshold value, the determination is negative in step S204, and the process proceeds to step S206 in order to execute the process of selecting the GPS satellite to be excluded.
  • step S206 one of the GPS satellites that are commonly receiving radio waves by the plurality of GPS antennas 12A and 12B is set. Then, in step S108, the estimated pseudo distance of each of the GPS antennas 12A and 12B is calculated, and in step S110, the residual pseudo distance is calculated for each of the GPS antennas 12A and 12B.
  • the difference in the pseudorange residual which is the difference between the pseudorange residual of the GPS antenna 12A and the pseudorange residual of the GPS antenna 12B, is calculated.
  • step S214 it is determined whether or not the above processing has been completed for all GPS satellites by determining whether or not there are GPS satellites that have not been subjected to the above processing. If there are GPS satellites for which the above processing has not been executed, the determination is negative in step S214, the next GPS satellite is set in step S216, and then the process returns to step S208. On the other hand, when the execution of the above process is completed for all GPS satellites, the affirmative answer is obtained in step S214, and the process returns to step S100.
  • the satellite selection device 18 determines the position to be positioned only when the reliability of the time error of the receiver connected to the GPS antenna is high.
  • the position of the vehicle on the earth can be accurately determined. Can be calculated well.
  • FIG. 8 shows an example of the configuration of the speed measuring device according to the third embodiment.
  • the velocity measuring device 310 includes a plurality of GPS antennas 12A and 12B, a plurality of receivers 14A and 14B, an attitude angle sensor 16, a gyro sensor 316, and a plurality of gyro sensors. Based on the signals received from the GPS satellites received by the receivers 14A and 14B of the GPS receiver, and the detection values of the attitude angle sensor 16 and the gyro sensor 316, the satellite selection device 318 that selects the GPS satellite to be used, and the speed of the vehicle.
  • the satellite selection device 318 includes a computer 330 that executes a satellite selection process that selects a GPS satellite used to derive the speed of the host vehicle, and the output unit 20.
  • a satellite information acquisition unit 31 is an example of the satellite information acquisition unit and the observed Doppler frequency derivation unit of the present disclosure.
  • the estimated Doppler frequency calculation unit 334 is an example of the estimated Doppler frequency derivation unit of the present disclosure.
  • the Doppler frequency residual calculation unit 335 is an example of the residual derivation unit of the present disclosure.
  • the excluded satellite discriminating unit 337 is an example of a satellite selecting unit of the present disclosure.
  • the antenna speed/receiver time error change amount calculation unit 332 calculates the speed relationship between the installation location and the positioning target location on the earth of each of the GPS antennas 12A and 12B calculated based on the attitude angle of the own vehicle, and the acquired satellite. The speed of each of the GPS antennas 12A and 12B is calculated based on the speed of the positioning target location determined by using the information. Further, the amount of change in the time difference between the receivers 14A and 14B of the GPS antennas 12A and 12B (hereinafter referred to as clock drift) is calculated.
  • the antenna speed/receiver time error change amount calculation unit 332 calculates the angular velocity of the host vehicle at that time by using the detection value of the gyro sensor 316 as the first step.
  • the antenna velocity/receiver time error change amount calculation unit 332 calculates the attitude angle of the host vehicle from the detection value of the attitude angle sensor 16 as the second step.
  • 9A and 9B show an example of the attitude angle of the host vehicle 50 at a certain time.
  • FIG. 9A shows the attitude angle of the host vehicle 50 from directly above the road surface
  • FIG. 9B shows the attitude angle of the host vehicle 50 from directly beside the road surface. In the following, as shown in FIGS.
  • the rotation is positive)
  • the pitch angle is ⁇
  • the roll angle is zero.
  • the antenna velocity/receiver time error change amount calculation unit 332 as a third step, based on the calculated attitude angle of the own vehicle and the Doppler frequency of the received signal from each GPS satellite, the GPS antenna 12A, For each of the 12B, the speed relationship between the installation location of the GPS antenna on the earth and the positioning target location is calculated.
  • the antenna speed/receiver time error change amount calculation unit 332 determines the distance between the installation location of each GPS antenna 12A, 12B on the earth and the positioning target location, which is obtained in advance, Based on the angles of the installation locations of the GPS antennas 12A and 12B and the detected attitude angles and angular velocities of the own vehicle, the speed relationship on the earth between the positioning target location (vehicle center) and each GPS antenna installation location is shown. calculate. More specifically, it is calculated by the following procedure. Note that, here, a case where the GPS antenna 12A is targeted will be described.
  • FIG. 10A to 10C show an example of the speed relationship between the position to be measured (vehicle center) and the installation position of the GPS antenna 12A.
  • FIG. 10A shows the speed relationship when viewed from directly above the road surface
  • FIG. 10B shows the speed relationship when viewed from just beside the road surface
  • FIG. 10C shows the ground surface (EN coordinate surface). The speed relation when the state projected on is seen is shown.
  • is the long radius [m] of the earth
  • f is the oblateness
  • the antenna speed/receiver time error change amount calculation unit 332 uses the calculated speed relationship and the acquired satellite information to calculate the speed of the position to be measured on the earth and a plurality of positions. Calculate the clock drift for each receiver of the GPS antenna. Specifically, the antenna speed/receiver time error change amount calculation unit 332 sets the speed of the positioning target location and the time error of each of the plurality of GPS antennas 12A and 12B as unknowns, and determines the speed of the positioning target location and the positioning.
  • an equation describing the speed of the installation location of the plurality of GPS antennas 12A, 12B and each of the plurality of GPS antennas 12A, 12B According to the above, the velocity of the positioning target location and the clock drift of each receiver are calculated based on the relative velocity with the satellite obtained from the Doppler frequency observed at each installation location of the plurality of GPS antennas 12A and 12B. ..
  • the three-dimensional velocity vector (Vx, Vy, Vz) in the ECEF coordinate system of the position to be positioned and a total of five clock drifts, which are changes in the clock bias of the two receivers 14A and 14B, are included. Is an unknown number, and the three-dimensional velocity vector in the ECEF coordinate system at the installation location of each GPS antenna 12A, 12B is G A (Vx, Vy, Vz) and G B (Vx, Vy, Vz) Similar to the method (for example, speed calculation by one GPS antenna), formula (7) is established for each GPS antenna 12A, 12B and each satellite (here, only the GPS antenna 12A is described.
  • the velocities (Vx, Vy, Vz) of the position to be positioned are calculated using the observation results of a total of five or more satellites of the GPS antennas 12A and 12B.
  • An example of velocity calculation using one GPS antenna is described in Y. Kojima, "Proposal for a new localization method using tightly coupled integration based on a precise estimation of trajectory from GPS Doppler", Proceedings of AVEC2010, Laughborough UK, 2010. ).
  • the velocity (Vx, Vy, Vz) and the clock drift of the position to be measured are calculated using the observation results from a total of (N+3) or more satellites. ..
  • the speed of the GPS antenna 12A is represented by the following formula.
  • (Vx, Vy, Vz) is the velocity of the position to be measured
  • Cbv A is the clock drift [m/s] (converted to the velocity by multiplying the speed of light) of the receiver 14A of the GPS antenna 12A.
  • (X A , y A , z A ) is the position of the GPS antenna 12A.
  • D i is the Doppler frequency [Hz] observed for the satellite i
  • (X si , Y si , Z si ) is the position of the satellite i
  • r i is represented by the following formula.
  • f 1 is the carrier frequency (1575.42 ⁇ 10 6 ) [Hz]
  • C is the speed of light (2.99792458 ⁇ 10 8 ) [m/s]
  • (V xsi , V ysi , V zsi ) is the satellite i is the speed.
  • the speed of the positioning target location can be accurately measured. Can be calculated.
  • the antenna speed/receiver time error change amount calculation unit 332 determines, as a fifth step, the speed relationship between the installation location of the GPS antenna and the positioning target location obtained as described above, and the position of the positioning target location.
  • the respective velocities of the GPS antennas 12A and 12B are derived by using them. That is, by applying the speed of the positioning target point on the earth calculated in the fourth step to the speed relationship between the installation positions of the GPS antennas 12A and 12B and the positioning target position calculated in the third step, The speed of each of the GPS antennas 12A and 12B is derived.
  • the estimated Doppler frequency calculation unit 334 estimates the GPS antennas 12A and 12B for all the GPS satellites that commonly receive the radio waves among the GPS satellites that have received the radio waves.
  • the Doppler frequency (hereinafter referred to as the estimated Doppler frequency) is calculated. Specifically, the respective speeds of the GPS antennas 12A and 12B and the clock drifts of the receivers 14A and 14B derived by the antenna speed/receiver time error change amount calculation unit 332 are substituted into the equation (7). By doing so, the estimated Doppler frequency is calculated for each of the GPS antennas 12A and 12B.
  • the excluded satellite discriminating unit 337 is used when estimating the speed of the vehicle based on the difference between the Doppler frequency residuals of the GPS antennas 12A and 12B of all the GPS satellites calculated by the Doppler frequency residual calculating unit 335.
  • the exclusion target GPS satellites to be excluded from the GPS satellites are determined.
  • the excluded satellite determination unit 337 calculates the Doppler frequency of the GPS antenna 12A calculated by the Doppler frequency residual calculation unit 335 for each of all the GPS satellites commonly receiving radio waves by the GPS antennas 12A and 12B.
  • the difference between the residual and the Doppler frequency residual of the GPS antenna 12B (hereinafter referred to as the difference of the Doppler frequency residual) is calculated.
  • the GPS satellite of the GPS antenna whose absolute value of the difference between the Doppler frequency residuals calculated for each GPS satellite is greater than or equal to a threshold is determined as an exclusion target GPS satellite to be excluded from all the GPS satellites that have received radio waves in common. To do. In this way, the satellite affected by the multipath error can be excluded in advance by properly considering the speed relationship between the positioning target location and each GNSS antenna installation location.
  • the speed deriving unit 340 derives the speed of the position to be measured on the earth using the information of the GPS satellites. Specifically, for example, satellite information from GPS satellites other than the exclusion-targeted GPS satellites is used to calculate the speed of the positioning target location. Note that the speed of the positioning target location in the speed deriving unit 340 can be derived by, for example, the same processing as the calculation in the first to fourth steps in the antenna speed/receiver time error change amount calculating unit 332. , Detailed description is omitted.
  • FIG. 11 shows an example of the contents of the satellite selection processing routine in the computer of the satellite selection device 318 in the speed measurement device.
  • the attitude angle sensor 16 detects the geomagnetism
  • the gyro sensor 316 detects the angular acceleration
  • the GPS antennas 12A, 12B and the receivers 14A, 14B select satellites while receiving radio waves from a plurality of GPS satellites.
  • the speed measurement processing routine shown in FIG. 11 is repeatedly executed.
  • step S300 information on a plurality of GPS satellites is acquired from the GPS receivers 14A and 14B, and GPS pseudo range data, Doppler frequency, and position coordinates of the GPS satellites of the plurality of GPS satellites are calculated and acquired.
  • GPS information for a plurality of GPS satellites acquired at the same time is acquired as a GPS information group.
  • step S302 the speed of each installation location of the GPS antennas 12A and 12B is calculated. Specifically, in the first stage, the detected value of the gyro sensor 316 is used to calculate the angular velocity of the own vehicle at the time, and in the second stage, the detected value of the posture angle sensor 16 is used to determine the attitude angle of the own vehicle. To calculate. In the next third step, for each of the GPS antennas 12A and 12B, the speed relationship between the location on the earth where the GPS antenna is installed and the location to be measured is calculated. In the next fourth step, the velocity of the location on the earth is calculated using the calculated velocity relationship and the acquired satellite information. Moreover, the clock drift of each receiver 14A, 14B of GPS antenna 12A, 12B is calculated. Then, in a fifth step, the speed of each of the GPS antennas 12A and 12B is derived using the speed relationship between the installation location of the GPS antenna and the positioning target location and the position of the positioning target location that have been obtained.
  • the positions of the GPS antennas 12A and 12B, and the clock drift of the receivers 14A and 14B corresponding to the GPS antennas 12A and 12B, among the commonly received GPS satellites Set the excluded GPS satellites.
  • step S310 the residual value of the Doppler frequency is calculated by subtracting the estimated Doppler frequency calculated in step S308 from the observed Doppler frequency that is the observed Doppler frequency for each GPS antenna 12A, 12B. Is calculated (see equation (8)).
  • the difference of the Doppler frequency residual which is the difference between the residual of the Doppler frequency of the GPS antenna 12A calculated for the corresponding GPS satellite and the residual of the Doppler frequency of the GPS antenna 12B, is calculated. Then, in the next step S314, it is determined whether or not the absolute value of the difference between the Doppler frequency residuals is equal to or more than a threshold value. If the determination is affirmative, in step S316, the GPS satellite of the currently set GPS antenna It is set as an exclusion target GPS satellite to be excluded from all GPS satellites that have received the radio wave, and is output by the output unit 20. This makes it possible to exclude in advance the satellites affected by the multipath error by appropriately considering the positional relationship and speed relationship between the positioning target location and each GNSS antenna installation location.
  • the speed derivation unit 340 causes the satellite information from the GPS satellites other than the selected exclusion target GPS satellites. Is used to calculate the speed of the position to be measured. Accordingly, the GPS satellite estimated to have been affected by the multipath error is excluded in advance from the positioning target position different from the position where the plurality of GPS antennas are installed in the vehicle, thereby accurately calculating the speed on the earth. be able to.
  • the satellite selection device 318 appropriately considers the speed relationship between the position to be positioned and each GPS antenna installation position to reduce the multipath error. By preliminarily excluding GPS satellites that are estimated to have been affected, it is possible to accurately calculate the speed of the earth on the position of the positioning target in the vehicle.
  • the third embodiment is that the GPS satellites estimated to be affected by the multipath error are excluded in advance only when the calculated reliability of the clock drift of each receiver is high.
  • the form is mainly different.
  • FIG. 12 shows an example of the configuration of the speed measuring device according to the fourth embodiment.
  • the computer 430 of the satellite selection device 418 in the speed measurement device 410 according to the fourth embodiment includes a satellite information acquisition unit 31, an antenna speed/receiver time error change amount calculation unit 332, and an estimation.
  • a Doppler frequency calculation unit 334, a Doppler frequency residual calculation unit 335, a receiver clock drift reliability determination unit 436, and an excluded satellite determination unit 437 are provided.
  • the receiver clock drift reliability determination unit 436 is an example of the reliability determination unit of the present disclosure.
  • the receiver clock drift reliability determination unit 436 determines the reliability of the receiver clock drift calculated by the antenna speed/receiver time error change amount calculation unit 332. Specifically, the reliability of the clock drift of the receiver may be determined according to the fluctuation of the Doppler frequency residual in the GPS antenna. For example, if an error occurs in the clock drift of the receiver, it commonly affects the Doppler frequency residuals of all GPS satellites. For this reason, the fact that the Doppler frequency residuals for all GPS satellites are larger than a certain level indicates that there is a high possibility that the clock drift of the receiver is incorrectly calculated, that is, the reliability is low. On the other hand, if the residuals of the Doppler frequencies for all GPS satellites are less than a certain value, it is considered that there is little possibility that the calculation of the clock drift of the receiver is wrong, that is, the reliability is high.
  • the receiver clock drift reliability determination unit 436 uses the Doppler frequency residual calculated by the Doppler frequency residual calculation unit 335 and uses the Doppler frequency residual calculated by the GPS antennas 12A and 12B for all common reception. For GPS satellites, the residual Doppler frequency is calculated for each GPS antenna. Next, for all commonly received GPS satellites, if the residual of the Doppler frequency of one GPS antenna is larger than the residual of the Doppler frequency of the other GPS antenna by a predetermined threshold value or more, It is determined that the reliability of the clock drift of the receiver connected to the GPS antenna with the larger residual is low.
  • the calculation error of the clock drift of the receiver has a common effect on the residuals of the Doppler frequencies of all the GPS satellites that are commonly received, and thus the pseudorange residuals of all the GPS satellites. Is larger than a certain amount because it is considered that there is a high possibility that the calculation of the clock drift of the receiver is incorrect.
  • the residual of the Doppler frequency of one GPS antenna is less than the threshold with respect to the residual of the Doppler frequency of the other GPS antenna, the reliability of the clock drift of the receiver connected to the GPS antenna is high. Judge as high.
  • the excluded satellite discriminating unit 437 uses the GPS antenna of each GPS satellite calculated by the Doppler frequency residual calculating unit 335 based on the reliability of the clock drift of the receiver determined by the receiver clock drift reliability determining unit 436. From the difference between the Doppler frequency residuals of 12A and 12B, the GPS satellites to be excluded from the GPS satellites used when estimating the speed of the vehicle are determined.
  • the exclusion-targeted GPS satellite is determined based on the difference between the Doppler frequency residuals of the GPS antennas 12A and 12B of all the GPS satellites.
  • the exclusion target GPS satellites Is not performed.
  • the GPS satellites received by any of the GPS antennas 12A and 12B are output without being excluded from the GPS satellites.
  • the satellite selection similar to the third embodiment is performed. This makes it possible to exclude in advance the satellites affected by the multipath error in consideration of the reliability of the receiver clock drift determined based on the Doppler frequency residuals for all GPS satellites. ..
  • the speed of the positioning target point on the earth is calculated only when the reliability of the detected clock drift of the receiver of the own vehicle is high. By doing so, the speed on the earth can be stably calculated for the position to be measured.
  • the positioning device or the speed measuring device of the present disclosure is mounted on the mobile device.
  • the body is not limited to a vehicle.
  • the positioning device or the speed measuring device may be mounted on the robot.
  • the technology of the present disclosure is applied to the positioning device or the speed measuring device mounted on the vehicle has been described as an example, but the positioning device and the speed measuring device of the present disclosure are mounted to perform positioning. And the technique of the present disclosure may be applied when deriving the velocity.
  • GPS is used as the satellite navigation system
  • other satellite positioning systems GLONASS, BeiDou, Galileo, QZSS
  • GLONASS BeiDou, Galileo, QZSS

Abstract

This satellite selection device selects satellites to be used by a positioning device for calculating the position on the earth of a location for positioning of a moving body that is different from the mounting locations of a plurality of satellite antennas mounted on the moving body. The satellite selection device: acquires satellite information including information about the positions of satellites and the distances between the satellites and the moving body; uses the satellite information to derive observed pseudo-distance information indicating the distances between the satellites and satellite antennas observed at each of the satellite antenna mounting locations; uses predetermined positional relationships between the satellite antenna mounting locations and the location for positioning and the satellite information to estimate estimated pseudo-distance information indicating the distances between the plurality of satellites and the plurality of satellite antennas according to the positions from the location for positioning; for each of the plurality of satellites, derives residuals between the observed pseudo-distance information and estimated pseudo-distance information for each satellite antenna; and selects a satellite to remove from use on the basis of the differences between the residuals for the plurality of satellite antennas.

Description

衛星選択装置、及びプログラムSatellite selection device and program 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年1月15日に出願された特許出願番号2019-004691号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on the patent application No. 2019-004691 filed on Jan. 15, 2019, and claims the benefit of its priority, the entire contents of which are referenced Incorporated herein by reference.
 本開示は、衛星選択装置、及びプログラムに関する。 The present disclosure relates to a satellite selection device and a program.
 従来より、複数の衛星からの信号を受信して自己の位置を算出する際に、複数の衛星からの信号のうち、一部の衛星の信号を使用せずに自己の位置を計算する位置検出装置が知られている(特許文献1)。この位置検出装置では、衛星からの信号を受信する受信機と、衛星との相対速度により生じるドップラー周波数について、受信機の静止中に測定した測定値と予測値との差が閾値以上となる衛星からの信号を使用せずに自己の位置を計算している。 Conventionally, when receiving signals from multiple satellites and calculating its own position, position detection that calculates its own position without using some satellite signals among the signals from multiple satellites A device is known (Patent Document 1). In this position detecting device, the receiver that receives the signal from the satellite, and the Doppler frequency generated by the relative velocity with the satellite, the difference between the measured value and the predicted value while the receiver is stationary becomes a threshold value or more It calculates its position without using the signal from.
 また、衛星から受信器までの距離を算出して、一部の衛星について算出された距離を使用せずに当該受信機の位置を算出する航法衛星受信機が知られている(特許文献2)。この航法衛星受信機では、衛星から受信器まで予測した距離を近似距離とし、衛星から信号を送信した送信時刻と当該信号を受信した受信機での時刻との時間差に基づき衛星から受信器まで算出した距離を疑似距離として求める。これら疑似距離と近似距離との差(以下、疑似距離残差という。)が閾値を越える衛星に対する近似距離及び疑似距離を使用せずに、当該受信機の位置が算出される。 There is also known a navigation satellite receiver that calculates the distance from a satellite to a receiver and calculates the position of the receiver without using the distance calculated for some satellites (Patent Document 2). .. In this navigation satellite receiver, the distance predicted from the satellite to the receiver is used as an approximate distance, and the satellite to the receiver is calculated based on the time difference between the transmission time at which the signal was transmitted from the satellite and the time at the receiver that received the signal. The calculated distance is obtained as a pseudo distance. The position of the receiver is calculated without using the approximate distance and the pseudo distance for a satellite in which the difference between the pseudo distance and the approximate distance (hereinafter referred to as the pseudo distance residual) exceeds the threshold value.
特開平11-118903号公報Japanese Patent Laid-Open No. 11-118903 特開2003-57327号公報JP, 2003-57327, A
 しかしながら、複数の衛星からの信号を受信して自己の位置を算出する場合には、建物等から反射した信号と衛星からの直接信号とが混在するマルチパスの影響を受ける。上記特許文献1では、ドップラー周波数の測定値と予測値との差が閾値以上となった場合には、マルチパスの影響を受けていると判断し、当該衛星からの信号を使用せずに自己の位置を計算する。このとき、移動体の速度に応じて、閾値を設定する手法が提案されている。しかし、移動体の速度とマルチパス環境かどうかは無関係であるため、当該手法では、マルチパスの影響によるドップラー周波数の予測誤差を考慮した適切な閾値を設定することは困難である。例えば、閾値を大きくし過ぎると、マルチパス誤差の大きな衛星を除外できず、閾値が小さ過ぎると、マルチパスの影響を受けていない衛星を除外してしまう可能性がある。 However, when receiving signals from multiple satellites and calculating its own position, it is affected by multipath in which signals reflected from buildings and direct signals from satellites are mixed. In Patent Document 1, when the difference between the measured value and the predicted value of the Doppler frequency is equal to or more than the threshold value, it is determined that the influence of the multipath is exerted, and the signal from the satellite is not used. Calculate the position of. At this time, a method of setting a threshold according to the speed of the moving body has been proposed. However, since it is irrelevant whether or not the velocity of the mobile body is in a multipath environment, it is difficult for this method to set an appropriate threshold value considering the prediction error of the Doppler frequency due to the influence of multipath. For example, if the threshold value is too large, satellites with large multipath errors cannot be excluded. If the threshold value is too small, satellites that are not affected by multipath may be excluded.
 また、上記特許文献2では、マルチパスの影響を考慮して受信機の位置を算出することが記載されている。しかし、求めた疑似距離残差に大きな誤差が有る場合、マルチパスの影響を受けた誤差であるか否かの判断が困難であるため、適切な閾値の設定が困難である。 Also, in the above-mentioned Patent Document 2, it is described that the position of the receiver is calculated in consideration of the influence of multipath. However, when there is a large error in the obtained pseudorange residual, it is difficult to determine whether or not the error is affected by multipath, and thus it is difficult to set an appropriate threshold value.
 ここで、疑似距離には、受信機位置の推定誤差及び受信機時刻ずれの推定誤差により生じる距離誤差が含まれる。受信機時刻ずれの推定誤差を抑制するには、疑似距離残差をそのまま用いるのではなく、最も仰角が高い衛星の疑似距離残差を基準値とし、疑似距離残差の基準値と各衛星の疑似距離残差との差(疑似距離残差の差)に基づき、マルチパスの影響を受けた疑似距離の誤差の大きな衛星を判別することが考えられる。受信機時刻ズレの誤差は各衛星に共通であるため、受信機時刻ずれの誤差の影響を除外できる。 Here, the pseudo distance includes the distance error caused by the estimation error of the receiver position and the estimation error of the receiver time difference. To suppress the estimation error of the receiver time difference, do not use the pseudorange residual as it is, but use the pseudorange residual of the satellite with the highest elevation angle as the reference value, and the reference value of the pseudorange residual and each satellite. It is conceivable to discriminate satellites having a large pseudo-range error affected by multipath based on the difference from the pseudo-range residual (difference of pseudo-range residual). Since the error of the receiver time difference is common to each satellite, the influence of the error of the receiver time difference can be excluded.
 一方、受信機位置の推定誤差は、各衛星との疑似距離残差の算出精度に与える影響が共通ではない。例えば、最も仰角が高い衛星に近づく方向に位置誤差が生じた場合、最も仰角が高い衛星との疑似距離残差は小さくなるのに対して、その他の衛星との疑似距離残差は大きくなる可能性がある。このため、位置推定の精度の影響を小さくすることは困難である。 On the other hand, the estimation error of the receiver position does not have a common effect on the calculation accuracy of the pseudorange residual with each satellite. For example, if a position error occurs in the direction of approaching the satellite with the highest elevation angle, the pseudorange residual with the satellite with the highest elevation angle will be small, while the pseudorange residual with other satellites will be large. There is a nature. Therefore, it is difficult to reduce the influence of the accuracy of position estimation.
 本開示は、移動体の地球上の位置及び速度の少なくとも一方を求める場合に精度よく計算可能な衛星を選択することができる衛星選択装置及びプログラムを提供する。 The present disclosure provides a satellite selection device and a program that can select a satellite that can be accurately calculated when determining at least one of the position and speed of the moving body on the earth.
 本開示の第1態様は、移動体に設置された複数の衛星アンテナの設置箇所とは異なる前記移動体における測位対象箇所の地球上の位置を計算する測位装置で使用する衛星を選択する衛星選択装置であって、複数の衛星の各々から送信された前記複数の衛星の各々の位置に関する情報、及び前記複数の衛星の各々と前記移動体との間の距離に関する情報を含む衛星情報を取得する衛星情報取得部と、前記衛星情報取得部で取得された前記衛星情報に基づいて、前記複数の衛星アンテナの各々の設置箇所で観測された、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の距離を示す観測疑似距離情報を導出する観測疑似距離導出部と、前記複数の衛星アンテナの各々の設置箇所と前記測位対象箇所との予め定めた位置関係と、前記衛星情報取得部で取得された前記衛星情報とに基づいて、前記複数の衛星の各々と、算出される前記測位対象箇所からの各位置による前記複数の衛星アンテナの各々との間の距離を示す推定疑似距離情報を推定する推定疑似距離算出部と、前記複数の衛星の各々について、前記複数の衛星アンテナの衛星アンテナ毎に、前記観測疑似距離導出部で導出された前記観測疑似距離情報と、前記推定疑似距離算出部で推定された前記推定疑似距離情報との残差を導出する残差導出部と、前記残差導出部で導出された前記複数の衛星アンテナの各々の前記残差の差分に基づいて、前記使用する衛星から除外する衛星を選択する衛星選択部と、を含む衛星選択装置である。 A first aspect of the present disclosure is a satellite selection that selects a satellite to be used in a positioning device that calculates a position on the earth of a positioning target location in a mobile body that is different from the installation location of a plurality of satellite antennas installed in the mobile body. A device, which acquires satellite information including information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites and information about a distance between each of the plurality of satellites and the mobile body. A satellite information acquisition unit, and each of the plurality of satellites observed at each installation location of the plurality of satellite antennas based on the satellite information acquired by the satellite information acquisition unit, and the plurality of satellite antennas Observation pseudo-range deriving unit for deriving observation pseudo-range information indicating a distance to each of the satellite antennas, a predetermined positional relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite information. An estimation pseudo indicating the distance between each of the plurality of satellites and each of the plurality of satellite antennas at each position from the calculated position to be measured based on the satellite information acquired by the acquisition unit. An estimated pseudo distance calculation unit for estimating distance information, and for each of the plurality of satellites, the observation pseudo distance information derived by the observation pseudo distance derivation unit for each satellite antenna of the plurality of satellite antennas, and the estimation Based on a residual difference deriving unit that derives a residual with the estimated pseudo distance information estimated by the pseudo distance calculating unit, and a difference between the residuals of each of the plurality of satellite antennas that is derived by the residual deriving unit. And a satellite selector that selects satellites to be excluded from the satellites to be used.
 本開示の第2態様は、第1態様の衛星選択装置において、前記衛星選択部は、予め定めた閾値以上の前記残差の差分に対応する衛星を、前記使用する衛星から除外してもよい。 A second aspect of the present disclosure is the satellite selecting apparatus of the first aspect, wherein the satellite selecting unit may exclude, from the satellites to be used, satellites corresponding to the difference of the residuals equal to or larger than a predetermined threshold. ..
 本開示の第3態様は、第1態様又は第2態様の衛星選択装置において、前記複数の衛星アンテナの各々の受信機の時刻誤差の各々の信頼度を判定する信頼度判定部をさらに含み、前記衛星選択部は、前記信頼度判定部により前記信頼度が高いと判定された場合のみ、前記複数の衛星アンテナの各々の残差の差分に基づいて、前記使用する衛星から除外する衛星を選択してもよい。 A third aspect of the present disclosure is the satellite selection device according to the first aspect or the second aspect, further including a reliability determination unit that determines the reliability of each time error of the receivers of the plurality of satellite antennas, The satellite selection unit selects a satellite to be excluded from the satellites to be used, based on the difference between the residuals of the plurality of satellite antennas only when the reliability determination unit determines that the reliability is high. You may.
 本開示の第4態様は、第3態様の衛星選択装置において、前記信頼度判定部は、予め定めた所定数の異なる複数の衛星について、前記残差導出部で導出された残差のうち何れか1つの衛星アンテナの残差が、他の衛星アンテナの残差に対して閾値以内の場合に前記受信機の時刻誤差の信頼度が高いと判定してもよい。 According to a fourth aspect of the present disclosure, in the satellite selection device according to the third aspect, the reliability determination unit determines which one of the residuals derived by the residual deriving unit for a plurality of predetermined different satellites. It may be determined that the reliability of the time error of the receiver is high when the residual error of one satellite antenna is within a threshold with respect to the residual error of another satellite antenna.
 本開示の第5態様は、移動体に設置された複数の衛星アンテナの設置箇所とは異なる前記移動体における測位対象箇所の地球上の速度を計算する速度測定装置で使用する衛星を選択する衛星選択装置であって、複数の衛星の各々から送信された前記複数の衛星の各々の位置に関する情報、及び前記複数の衛星の各々と前記移動体との間の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部と、前記衛星情報取得部で取得された前記衛星情報に基づいて、前記複数の衛星アンテナの各々の設置箇所で観測された、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の相対速度を示す観測ドップラー周波数情報を導出する観測ドップラー周波数導出部と、前記複数の衛星アンテナの各々の設置箇所と前記測位対象箇所との速度関係と、前記衛星情報取得部で取得された前記衛星情報とに基づいて、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の相対速度を示す推定ドップラー周波数情報を推定する推定ドップラー周波数算出部と、前記複数の衛星の各々について、前記複数の衛星アンテナの衛星アンテナ毎に、前記観測ドップラー周波数導出部で導出された前記観測ドップラー周波数情報と、前記推定ドップラー周波数算出部で推定された前記推定ドップラー周波数情報との残差を導出する残差導出部と、前記複数の衛星の各々における前記残差導出部で導出された前記複数の衛星アンテナの各々の前記残差の差分に基づいて、複数の衛星から使用する衛星を選択する衛星選択部と、を含む衛星選択装置である。 A fifth aspect of the present disclosure is a satellite that selects a satellite to be used in a speed measurement device that calculates a speed on the earth of a positioning target location in the mobile body that is different from installation locations of a plurality of satellite antennas installed in the mobile body. A satellite information including a position information of each of the plurality of satellites transmitted from each of the plurality of satellites and a relative speed between each of the plurality of satellites and the moving body. Based on the satellite information acquisition unit to be acquired and the satellite information acquired by the satellite information acquisition unit, each of the plurality of satellites observed at each installation location of the plurality of satellite antennas, and the plurality of satellites. An observational Doppler frequency deriving unit that derives observed Doppler frequency information indicating the relative speed between each of the satellite antennas, a speed relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite information. Based on the satellite information acquired by the acquisition unit, each of the plurality of satellites, an estimated Doppler frequency calculation unit for estimating estimated Doppler frequency information indicating the relative speed between each of the plurality of satellite antennas, and , For each of the plurality of satellites, for each satellite antenna of the plurality of satellite antennas, the observed Doppler frequency information derived by the observed Doppler frequency deriving unit, and the estimated Doppler estimated by the estimated Doppler frequency calculator A residual derivation unit that derives a residual with frequency information, and a plurality of satellites based on the difference between the residuals of the plurality of satellite antennas derived by the residual derivation unit of each of the plurality of satellites. A satellite selection device including a satellite selection unit that selects a satellite to be used from the satellites.
 本開示の第6態様は、第5態様の衛星選択装置において、前記衛星選択部は、予め定めた閾値以上の前記残差の差分に対応する衛星を、前記使用する衛星から除外してもよい。 According to a sixth aspect of the present disclosure, in the satellite selection device of the fifth aspect, the satellite selection unit may exclude, from the satellites to be used, satellites corresponding to the difference of the residuals equal to or more than a predetermined threshold. ..
 本開示の第7態様は、第5態様又は第6態様の衛星選択装置において、前記複数の衛星アンテナの各々の受信機の時刻誤差の変化量の各々の信頼度を判定する信頼度判定部をさらに含み、前記衛星選択部は、前記信頼度判定部により前記信頼度が高いと判定された場合のみ、前記複数の衛星アンテナの各々の残差の差分に基づいて、前記使用する衛星から除外する衛星を選択してもよい。 A seventh aspect of the present disclosure is the satellite selection device according to the fifth aspect or the sixth aspect, further comprising a reliability determination unit that determines the reliability of each change amount of the time error of each receiver of the plurality of satellite antennas. Further, the satellite selection unit excludes from the satellites to be used based on the residual difference of each of the plurality of satellite antennas only when the reliability determination unit determines that the reliability is high. You may select a satellite.
 本開示の第8態様は、第7態様の衛星選択装置において、前記信頼度判定部は、予め定めた所定数の異なる衛星について、前記残差導出部で導出された残差のうち、前記複数の衛星アンテナの何れか1つの衛星アンテナの残差が、他の衛星アンテナの残差に対して閾値以内の場合に、前記受信機の時刻誤差の変化量の信頼度が高いと判定してもよい。 According to an eighth aspect of the present disclosure, in the satellite selection device according to the seventh aspect, the reliability determination unit includes the plurality of residuals derived by the residual derivation unit for a plurality of different predetermined satellites. Even if it is determined that the reliability of the amount of change in the time error of the receiver is high when the residual error of any one of the satellite antennas is less than the threshold value of the residual error of the other satellite antennas. Good.
 本開示の第9態様は、移動体に設置された複数の衛星アンテナの設置箇所とは異なる前記移動体における測位対象箇所の地球上の位置を計算する測位装置で使用する衛星を選択するためのプログラムであって、コンピュータを、複数の衛星の各々から送信された前記複数の衛星の各々の位置に関する情報、及び前記複数の衛星の各々と前記移動体との間の距離に関する情報を含む衛星情報を取得する衛星情報取得部、前記衛星情報取得部で取得された前記衛星情報に基づいて、前記複数の衛星アンテナの各々の設置箇所で観測された、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の距離を示す観測疑似距離情報を導出する観測疑似距離導出部、前記複数の衛星アンテナの各々の設置箇所と前記測位対象箇所との予め定めた位置関係と、前記衛星情報取得部で取得された前記衛星情報とに基づいて、前記複数の衛星の各々と、算出される前記測位対象箇所からの各位置による前記複数の衛星アンテナの各々との間の距離を示す推定疑似距離情報を推定する推定疑似距離算出部、前記複数の衛星の各々について、前記複数の衛星アンテナの衛星アンテナ毎に、前記観測疑似距離導出部で導出された前記観測疑似距離情報と、前記推定疑似距離算出部で推定された前記推定疑似距離情報との残差を導出する残差導出部、および、前記残差導出部で導出された前記複数の衛星アンテナの各々の前記残差の差分に基づいて、前記使用する衛星から除外する衛星を選択する衛星選択部、として機能させるためのプログラムである。 A ninth aspect of the present disclosure is for selecting a satellite to be used by a positioning device that calculates a position on the earth of a position to be measured in the moving body different from the installation position of a plurality of satellite antennas installed in the moving body. A program, a satellite information including information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites and information about the distance between each of the plurality of satellites and the mobile body. Based on the satellite information acquired by the satellite information acquisition unit, the plurality of satellites observed at the respective installation locations of the plurality of satellite antennas, and the plurality of satellites. An observation pseudo-range deriving unit for deriving observation pseudo-range information indicating a distance to each of the satellite antennas, a predetermined positional relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite Estimating the distance between each of the plurality of satellites and each of the plurality of satellite antennas at each position from the calculated position to be measured based on the satellite information acquired by the information acquisition unit An estimated pseudo-range calculation unit that estimates pseudo-range information, and for each of the plurality of satellites, the observation pseudo-range information derived by the observation pseudo-range derivation unit for each satellite antenna of the plurality of satellite antennas, and the estimation A residual derivation unit that derives a residual with the estimated pseudo distance information estimated by the pseudo distance calculation unit, and a difference between the residuals of each of the plurality of satellite antennas derived by the residual derivation unit. A program for operating as a satellite selection unit that selects satellites to be excluded from the satellites to be used based on the above.
 本開示の第10態様は、移動体に設置された複数の衛星アンテナの設置箇所とは異なる前記移動体における測位対象箇所の地球上の速度を計算する速度測定装置で使用する衛星を選択するためのプログラムであって、コンピュータを、複数の衛星の各々から送信された前記複数の衛星の各々の位置に関する情報、及び前記複数の衛星の各々と前記移動体との間の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部、前記衛星情報取得部で取得された前記衛星情報に基づいて、前記複数の衛星アンテナの各々の設置箇所で観測された、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の相対速度を示す観測ドップラー周波数情報を導出する観測ドップラー周波数導出部、前記複数の衛星アンテナの各々の設置箇所と前記測位対象箇所との速度関係と、前記衛星情報取得部で取得された前記衛星情報とに基づいて、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の相対速度を示す推定ドップラー周波数情報を推定する推定ドップラー周波数算出部、前記複数の衛星の各々について、前記複数の衛星アンテナの衛星アンテナ毎に、前記観測ドップラー周波数導出部で導出された前記観測ドップラー周波数情報と、前記推定ドップラー周波数算出部で推定された前記推定ドップラー周波数情報との残差を導出する残差導出部、および、前記複数の衛星の各々における前記残差導出部で導出された前記複数の衛星アンテナの各々の前記残差の差分に基づいて、複数の衛星から使用する衛星を選択する衛星選択部、として機能させるためのプログラムである。 A tenth aspect of the present disclosure is to select a satellite to be used in a speed measurement device that calculates the speed of the earth on a position to be measured in the moving body different from the installation positions of a plurality of satellite antennas installed on the moving body. A program including the information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites and the information about the relative speed between each of the plurality of satellites and the moving body. A satellite information acquisition unit that acquires satellite information, based on the satellite information acquired by the satellite information acquisition unit, each of the plurality of satellites observed at each installation location of the plurality of satellite antennas, and An observational Doppler frequency deriving unit that derives observed Doppler frequency information indicating relative speed between each of the plurality of satellite antennas, a speed relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite. An estimated Doppler frequency calculation unit that estimates estimated Doppler frequency information indicating the relative speed between each of the plurality of satellites and each of the plurality of satellite antennas based on the satellite information acquired by the information acquisition unit. , For each of the plurality of satellites, for each satellite antenna of the plurality of satellite antennas, the observed Doppler frequency information derived by the observed Doppler frequency deriving unit, and the estimated Doppler estimated by the estimated Doppler frequency calculator A residual derivation unit that derives a residual with frequency information, and a plurality of satellites based on the residual difference of each of the plurality of satellite antennas derived by the residual derivation unit of each of the plurality of satellites. Is a program for functioning as a satellite selection unit that selects a satellite to be used from the satellites.
 なお、本開示のプログラムを記憶する記憶媒体は、特に限定されず、ハードディスクであってもよいし、ROMであってもよい。また、CD-ROMやDVDディスク、光磁気ディスクやICカードであってもよい。更にまた、該プログラムを、ネットワークに接続されたサーバ等からダウンロードしてもよい。 The storage medium that stores the program of the present disclosure is not particularly limited, and may be a hard disk or a ROM. Further, it may be a CD-ROM, a DVD disc, a magneto-optical disc or an IC card. Furthermore, the program may be downloaded from a server or the like connected to the network.
 上記態様によれば、本開示の衛星選択装置及びプログラムは、移動体の地球上の位置及び速度の少なくとも一方を求める場合に精度よく計算可能な衛星を選択することができる。 According to the above aspect, the satellite selection device and the program of the present disclosure can select a satellite that can be accurately calculated when determining at least one of the position and speed of the moving body on the earth.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1の実施形態に係る測位装置を示すブロック図であり、 図2は、測位対象箇所を車両中心とし、2つのGPSアンテナを設置した場合の例を示す図であり、 図3Aは、ある時刻における車両の姿勢角算出結果の例を示す図であり、 図3Bは、ある時刻における車両の姿勢角算出結果の例を示す図であり、 図4Aは、ENU座標系における、測位対象箇所とアンテナ設置箇所との位置関係算出手法を説明するための図であり、 図4Bは、ENU座標系における、測位対象箇所とアンテナ設置箇所との位置関係算出手法を説明するための図であり、 図4Cは、ENU座標系における、測位対象箇所とアンテナ設置箇所との位置関係算出手法を説明するための図であり、 図5は、第1の実施形態に係る測位装置のコンピュータにおける測位処理ルーチンの内容を示すフローチャートであり、 図6は、第2の実施形態に係る測位装置を示すブロック図であり、 図7は、第2の実施形態に係る測位装置のコンピュータにおける測位処理ルーチンの内容を示すフローチャートであり、 図8は、第3の実施形態に係る速度測定装置を示すブロック図であり、 図9Aは、ある時刻における車両の角速度及び姿勢角算出結果の例を示す図であり、 図9Bは、ある時刻における車両の角速度及び姿勢角算出結果の例を示す図であり、 図10Aは、ENU座標系における、測位対象箇所とアンテナ設置箇所との速度関係算出手法を説明するための図であり、 図10Bは、ENU座標系における、測位対象箇所とアンテナ設置箇所との速度関係算出手法を説明するための図であり、 図10Cは、ENU座標系における、測位対象箇所とアンテナ設置箇所との速度関係算出手法を説明するための図であり、 第3の実施形態に係る速度測定装置のコンピュータにおける速度測定処理ルーチンの内容を示すフローチャートであり、 第4の実施形態に係る速度測定装置を示すブロック図である。
The above and other objects, features and advantages of the present disclosure will become more apparent by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a block diagram showing a positioning device according to the first embodiment, FIG. 2 is a diagram showing an example in which two GPS antennas are installed with the positioning target location being the vehicle center, FIG. 3A is a diagram showing an example of a vehicle attitude angle calculation result at a certain time, FIG. 3B is a diagram showing an example of a vehicle attitude angle calculation result at a certain time, FIG. 4A is a diagram for explaining a method of calculating a positional relationship between a positioning target location and an antenna installation location in the ENU coordinate system, FIG. 4B is a diagram for explaining a method of calculating the positional relationship between the position to be positioned and the antenna installation position in the ENU coordinate system, FIG. 4C is a diagram for explaining a method of calculating a positional relationship between a position to be positioned and an antenna installation position in the ENU coordinate system, FIG. 5 is a flowchart showing the contents of a positioning processing routine in the computer of the positioning device according to the first embodiment, FIG. 6 is a block diagram showing a positioning device according to the second embodiment, FIG. 7 is a flowchart showing the contents of a positioning processing routine in the computer of the positioning device according to the second embodiment, FIG. 8 is a block diagram showing a speed measuring device according to a third embodiment, FIG. 9A is a diagram showing an example of a vehicle angular velocity and attitude angle calculation result at a certain time, FIG. 9B is a diagram showing an example of the angular velocity and attitude angle calculation results of the vehicle at a certain time, FIG. 10A is a diagram for explaining a method of calculating a speed relationship between a position to be positioned and an antenna installation position in the ENU coordinate system, FIG. 10B is a diagram for explaining a method of calculating a speed relationship between a position to be positioned and an antenna installation position in the ENU coordinate system, FIG. 10C is a diagram for explaining a method of calculating a speed relationship between a position to be positioned and an antenna installation position in the ENU coordinate system, It is a flow chart which shows the content of the speed measurement processing routine in the computer of the speed measurement device concerning a 3rd embodiment. It is a block diagram which shows the speed measuring device which concerns on 4th Embodiment.
 以下、図面を参照して本開示の技術を実現する実施形態を詳細に説明する。なお、本実施形態では、車両に搭載され、GPS衛星から発信されたGPS情報を取得して測位を行う測位装置に、本開示の技術を適用した場合を一例として説明する。 Hereinafter, embodiments that implement the technology of the present disclosure will be described in detail with reference to the drawings. Note that, in the present embodiment, a case where the technology of the present disclosure is applied to a positioning device that is mounted on a vehicle and performs positioning by acquiring GPS information transmitted from a GPS satellite will be described as an example.
<本実施形態の概要>
 複数のGNSSアンテナを用いて測位を行う場合、測位対象箇所と、観測値が得られるGNSSアンテナ設置箇所とは一致せず、GNSSアンテナ設置箇所でマルチパス誤差の影響を受けると、マルチパス誤差の影響を受けた衛星からの衛星情報により算出される位置、および速度の精度はマルチパス誤差の影響を受けないものより低精度になる。
<Outline of this embodiment>
When performing positioning using a plurality of GNSS antennas, the positioning target location does not match the GNSS antenna installation location where the observed value is obtained, and if the GNSS antenna installation location is affected by the multipath error, the multipath error The accuracy of the position and velocity calculated from the satellite information from the affected satellites will be less accurate than that not affected by the multipath error.
 本実施形態では、測位対象箇所と各GNSSアンテナ設置箇所との位置関係や速度関係を適切に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することで、誤差の少ない衛星からの衛星情報のみを用いて、高精度に、測位対象箇所の位置、および速度の算出が可能となる。 In this embodiment, satellites affected by multipath errors are excluded in advance by appropriately considering the positional relationship and speed relationship between the positioning target location and each GNSS antenna installation location, so that satellites with less error can be detected. It is possible to calculate the position and speed of the position to be measured with high accuracy using only the satellite information of.
<第1の実施形態>
 図1に、第1の実施形態に係る測位装置の構成の一例を示す。
 図1に示すように、第1の実施形態に係る測位装置10は、GPS衛星からの電波を受信するための複数のGPSアンテナ12A、12Bと、複数のGPSアンテナ12A、12BによってGPS衛星からの受信信号を取得する複数の受信機14A、14Bと、姿勢角センサ16と、複数の受信機14A、14Bによって受信されたGPS衛星からの受信信号、及び姿勢角センサ16の検出値に基づいて、使用するGPS衛星を選択する衛星選択装置18と、自車両の位置を推定する測位処理を実行する位置導出部40とを備えている。衛星選択装置18は、測位対象箇所の位置を導出するために用いるGPS衛星を選択する衛星選択処理を実行するコンピュータ30と、出力部20とを備えている。
<First Embodiment>
FIG. 1 shows an example of the configuration of the positioning device according to the first embodiment.
As shown in FIG. 1, the positioning device 10 according to the first embodiment includes a plurality of GPS antennas 12A and 12B for receiving radio waves from GPS satellites, and a plurality of GPS antennas 12A and 12B. Based on the plurality of receivers 14A and 14B that obtain the reception signals, the attitude angle sensor 16, the reception signals from the GPS satellites received by the plurality of receivers 14A and 14B, and the detection values of the attitude angle sensor 16, The satellite selecting device 18 for selecting the GPS satellite to be used and the position deriving unit 40 for executing the positioning process for estimating the position of the own vehicle are provided. The satellite selection device 18 includes a computer 30 that executes a satellite selection process that selects a GPS satellite used to derive the position of the position to be measured, and an output unit 20.
 図2に、複数のGPSアンテナ12A、12Bの設置個所の一例を示す。
 複数のGPSアンテナ12A、12Bは、例えば、図2に示すように、自車両50の車室内に設置されており、測位対象箇所とは異なる箇所に設置されている。本実施形態では、測位対象箇所を車両中心とし、2台のGPSアンテナ12A、12B、および受信機14A、14Bを、それぞれ図1に示す位置に設置した場合の一例を考える。ここで、それぞれのGPSアンテナ12A、12Bの、測位対象箇所(車両中心)からの距離については、人手により測定することで、正確に把握できているものとする。
FIG. 2 shows an example of installation locations of the plurality of GPS antennas 12A and 12B.
For example, as shown in FIG. 2, the plurality of GPS antennas 12A and 12B are installed in the vehicle interior of the vehicle 50, and are installed in a position different from the position to be measured. In the present embodiment, an example will be considered in which the position to be measured is the center of the vehicle and the two GPS antennas 12A and 12B and the receivers 14A and 14B are installed at the positions shown in FIG. Here, it is assumed that the distance of each of the GPS antennas 12A and 12B from the position to be measured (vehicle center) is accurately grasped by manually measuring.
 受信機14A、14Bは、GPSアンテナ12A、12B毎に設けられており、受信機14A、14Bは、GPSアンテナ12A、12Bを介して複数のGPS衛星からの電波を受信して、受信した全てのGPS衛星からの受信信号から、GPS衛星の情報として、GPS衛星の衛星番号、GPS衛星の軌道情報(エフェメリス)、GPS衛星が電波を送信した時刻、受信信号の強度、周波数などを取得し、コンピュータ30に出力する。
 姿勢角センサ16は、一例として、地磁気センサであり、地磁気を検出する。
The receivers 14A and 14B are provided for the GPS antennas 12A and 12B, respectively, and the receivers 14A and 14B receive radio waves from a plurality of GPS satellites via the GPS antennas 12A and 12B and receive all of them. From the received signal from the GPS satellite, the satellite number of the GPS satellite, the orbit information (ephemeris) of the GPS satellite, the time when the GPS satellite transmitted radio waves, the strength of the received signal, the frequency, etc. are acquired as the information of the GPS satellite, and a computer is obtained. Output to 30.
The attitude angle sensor 16 is, for example, a geomagnetic sensor and detects geomagnetism.
 衛星選択装置18におけるコンピュータ30は、CPU、後述する処理を実現するためのプログラムを記憶したROM、データを一時的に記憶するRAM、及びHDD等の記憶装置で構成されている。 The computer 30 in the satellite selection device 18 is configured by a CPU, a ROM that stores a program for implementing the processes described below, a RAM that temporarily stores data, and a storage device such as an HDD.
 コンピュータ30を機能ブロックで表すと、図1に示すように、衛星情報取得部31、アンテナ位置・受信機時刻誤差算出部32、推定疑似距離算出部34、疑似距離残差算出部35、及び除外衛星判別部37を備えている。第1実施形態に係る衛星情報取得部31は、本開示の衛星情報取得部及び観測疑似距離導出部の一例である。推定疑似距離算出部34は、本開示の推定疑似距離導出部の一例である。疑似距離残差算出部35は、本開示の残差導出部の一例である。除外衛星判別部37は、本開示の衛星選択部の一例である。 When the computer 30 is represented by functional blocks, as shown in FIG. 1, a satellite information acquisition unit 31, an antenna position/receiver time error calculation unit 32, an estimated pseudo distance calculation unit 34, a pseudo distance residual calculation unit 35, and exclusion. The satellite discriminating unit 37 is provided. The satellite information acquisition unit 31 according to the first embodiment is an example of the satellite information acquisition unit and the observation pseudo distance deriving unit of the present disclosure. The estimated pseudo distance calculation unit 34 is an example of the estimated pseudo distance derivation unit of the present disclosure. The pseudo distance residual calculation unit 35 is an example of the residual derivation unit of the present disclosure. The excluded satellite discriminating unit 37 is an example of a satellite selecting unit of the present disclosure.
 衛星情報取得部31は、電波を受信した全てのGPS衛星について、GPS衛星の情報を取得すると共に、GPS疑似距離データ、ドップラー周波数、及びGPS衛星の位置座標を算出して取得する。具体的には、衛星情報取得部31は、各受信機14A、14Bから、電波を受信した全てのGPS衛星について、GPS衛星の情報を取得すると共に、GPS衛星が電波を送信した時刻及び自車両で電波を受信した時刻に基づいて、GPS疑似距離データを算出する。また、衛星情報取得部31は、各GPS衛星から送信される信号の既知の周波数と、各GPS衛星から受信した受信信号の周波数とに基づいて、各GPS衛星からの受信信号のドップラー周波数を各々算出する。なお、ドップラー周波数は、GPS衛星と自車両との相対速度による、搬送波周波数のドップラーシフト量を観測したものである。また、衛星情報取得部31は、GPS衛星の軌道情報及びGPS衛星が電波を送信した時刻に基づいて、GPS衛星の位置座標を各々算出する。 The satellite information acquisition unit 31 acquires GPS satellite information for all GPS satellites that have received radio waves, and calculates and acquires GPS pseudorange data, Doppler frequency, and GPS satellite position coordinates. Specifically, the satellite information acquisition unit 31 acquires GPS satellite information from all of the receivers 14A and 14B for all GPS satellites that have received radio waves, and the time at which the GPS satellites transmitted radio waves and the host vehicle. The GPS pseudo distance data is calculated based on the time when the radio wave is received in. In addition, the satellite information acquisition unit 31 determines the Doppler frequency of the received signal from each GPS satellite based on the known frequency of the signal transmitted from each GPS satellite and the frequency of the received signal received from each GPS satellite. calculate. The Doppler frequency is an observation of the Doppler shift amount of the carrier frequency due to the relative speed between the GPS satellite and the vehicle. The satellite information acquisition unit 31 also calculates the position coordinates of the GPS satellites based on the orbit information of the GPS satellites and the time when the GPS satellites transmitted radio waves.
 アンテナ位置・受信機時刻誤差算出部32は、自車両の姿勢角に基づき計算されるGPSアンテナ12A、12Bの各々の地球上における設置箇所と測位対象箇所との位置関係、及び取得した衛星情報を用いて定まる測位対象箇所の位置に基づいて、GPSアンテナ12A、12Bの各々の位置、及び受信機14A、14Bの時刻誤差を計算する。 The antenna position/receiver time error calculation unit 32 obtains the positional relationship between the installation location of each of the GPS antennas 12A and 12B on the earth and the positioning target location calculated based on the attitude angle of the own vehicle, and the acquired satellite information. Based on the position of the position of the positioning target determined by using the position of each of the GPS antennas 12A and 12B, the time difference between the receivers 14A and 14B is calculated.
 具体的には、アンテナ位置・受信機時刻誤差算出部32は、第1工程として、姿勢角センサ16の検出値から自車両の姿勢角を算出する。本実施形態では、自車両の姿勢角として、姿勢角センサ16の検出値を用いることにより、当該時刻の自車両の姿勢角が算出される。なお、本実施形態では、姿勢角センサ16として地磁気センサを用いて自車両の姿勢角を算出する場合を例に説明している。しかしながら、本実施形態は、これに限定されるものではなく、例えば、ドップラー周波数に基づいて算出される車両の速度ベクトルや、6軸ジャイロセンサから検出される車両の加速度及び角速度などを用いて、自車両の姿勢角を算出してもよい。 Specifically, the antenna position/receiver time error calculation unit 32 calculates the attitude angle of the host vehicle from the detection value of the attitude angle sensor 16 as the first step. In the present embodiment, the attitude angle of the host vehicle at that time is calculated by using the detected value of the attitude angle sensor 16 as the attitude angle of the host vehicle. In the present embodiment, a case where a geomagnetic sensor is used as the attitude angle sensor 16 to calculate the attitude angle of the vehicle is described as an example. However, the present embodiment is not limited to this, and for example, using a vehicle velocity vector calculated based on the Doppler frequency, vehicle acceleration and angular velocity detected from the 6-axis gyro sensor, and the like, The attitude angle of the host vehicle may be calculated.
 図3A、図3Bに、ある時刻における自車両50の姿勢角の一例を示す。図3Aは、路面に対する真上からの自車両50の姿勢角を示し、図3Bは、路面に対する真横からの自車両50の姿勢角を示している。以降では、図3A、図3Bに示すように、ある時刻における自車両50の姿勢角が、ヨー角=θ(真北をゼロとして時計回りを正)、ピッチ角=α、ロール角=ゼロであったとする。 3A and 3B show an example of the attitude angle of the host vehicle 50 at a certain time. FIG. 3A shows an attitude angle of the host vehicle 50 from directly above the road surface, and FIG. 3B shows an attitude angle of the host vehicle 50 from just beside the road surface. After that, as shown in FIGS. 3A and 3B, the attitude angle of the host vehicle 50 at a certain time is yaw angle=θ (clockwise is positive with true north being zero), pitch angle=α, and roll angle=zero. Suppose there is.
 次に、アンテナ位置・受信機時刻誤差算出部32は、第2工程として、算出された自車両の姿勢角に基づいて、GPSアンテナ12A、12Bの各々について、地球上におけるGPSアンテナの設置箇所と、測位対象箇所との位置関係を計算する。具体的には、まず、アンテナ位置・受信機時刻誤差算出部32は、予め求められた、地球上における各GPSアンテナ12A、12Bの設置箇所と、測位対象箇所との間の距離と、各GPSアンテナ12A、12Bの設置箇所の角度と、検出された自車両の姿勢角とに基づいて、測位対象箇所(車両中心)と各GPSアンテナの設置箇所との、地球上における絶対位置の関係を算出する。具体的には、以下の手順で算出する。なお、ここでは、GPSアンテナ12Aを対象とした場合について説明する。 Next, as a second step, the antenna position/receiver time error calculation unit 32 determines, for each of the GPS antennas 12A and 12B, the installation location of the GPS antenna on the earth based on the calculated attitude angle of the own vehicle. , Calculate the positional relationship with the position to be measured. Specifically, first, the antenna position/receiver time error calculation unit 32 determines, in advance, the distance between the installation location of each GPS antenna 12A and 12B on the earth and the positioning target location, and each GPS. Based on the angle of the installation location of the antennas 12A and 12B and the detected attitude angle of the own vehicle, the relationship between the absolute position on the earth between the positioning target location (vehicle center) and the installation location of each GPS antenna is calculated. To do. Specifically, it is calculated by the following procedure. Note that, here, a case where the GPS antenna 12A is targeted will be described.
(手順1) 以下に示す式(1)により、ENU(East-North-Up)座標系における位置関係を算出する。
 図4A~図4Cに、測位対象箇所(車両中心)とGPSアンテナ12Aの設置箇所との位置関係の一例を示す。図4Aは、路面に対して真上から見た位置関係を示し、図4Bは、路面に対して真横から見た位置関係を示し、図4Cは、地表面(EN座標面)に投影された位置関係を示す。
(Procedure 1) The positional relationship in the ENU (East-North-Up) coordinate system is calculated by the following equation (1).
4A to 4C show an example of the positional relationship between the position to be measured (vehicle center) and the installation position of the GPS antenna 12A. FIG. 4A shows a positional relationship as seen from directly above the road surface, FIG. 4B shows a positional relationship as seen from directly beside the road surface, and FIG. 4C is projected on the ground surface (EN coordinate plane). The positional relationship is shown.
Figure JPOXMLDOC01-appb-M000001

(1)
Figure JPOXMLDOC01-appb-M000001

(1)
(手順2) 以下に示す式(2)により、ENU座標系からECEF(Earth-Centered Earth-Fixed)座標系に変換することにより、地球上における絶対位置の関係を算出する。同様に、GPSアンテナ12Bの設置箇所についても、測位対象箇所との位置関係を算出する。以降では、このようにして得られた位置関係の算出結果を、「GPSアンテナ12Aの設置箇所=FA(測位対象箇所)」のように表記する。 (Procedure 2) The relationship between absolute positions on the earth is calculated by converting from the ENU coordinate system to the ECEF (Earth-Centered Earth-Fixed) coordinate system using the following equation (2). Similarly, regarding the installation location of the GPS antenna 12B, the positional relationship with the positioning target location is calculated. In the following, the calculation result of the positional relationship obtained in this way will be described as “installation location of GPS antenna 12A=F A (positioning target location)”.
Figure JPOXMLDOC01-appb-M000002

(2)
Figure JPOXMLDOC01-appb-M000002

(2)
ここで、
Figure JPOXMLDOC01-appb-I000003
here,
Figure JPOXMLDOC01-appb-I000003
 また、αは、地球の長半径[m]であり、fは、扁平率である。 Also, α is the long radius [m] of the earth, and f is the oblateness.
 そして、アンテナ位置・受信機時刻誤差算出部32は、第3工程として、計算された位置関係と、取得した衛星情報とを用いて、地球上における測位対象箇所の位置、および、各受信機の時刻誤差を計算する。具体的には、アンテナ位置・受信機時刻誤差算出部32は、測位対象箇所の位置、及び複数のGPSアンテナ12A、12Bの各々の時刻誤差を未知数とし、測位対象箇所の位置、及び測位対象箇所(車両中心)と各アンテナ設置箇所との、地球上における絶対位置の関係を用いて、複数のGPSアンテナ12A、12Bの設置箇所の位置を記述した方程式と、複数のGPSアンテナ12A、12Bの各々により、複数のGPSアンテナ12A、12Bの各々の設置箇所で観測された疑似距離とに基づいて、測位対象箇所の位置、および、各受信機の時刻誤差を算出する。この疑似距離は、上記GPS疑似距離データによるGPS衛星とGPSアンテナとの間の距離である。 Then, as a third step, the antenna position/receiver time error calculation unit 32 uses the calculated positional relationship and the acquired satellite information to determine the position of the position to be measured on the earth and the position of each receiver. Calculate the time difference. Specifically, the antenna position/receiver time error calculation unit 32 sets the position of the positioning target location and the time error of each of the plurality of GPS antennas 12A and 12B as unknowns, and determines the position of the positioning target location and the positioning target location. An equation describing the positions of the installation locations of the plurality of GPS antennas 12A and 12B using the relationship of the absolute position on the earth between the (vehicle center) and the respective installation locations of the antennas, and each of the plurality of GPS antennas 12A and 12B. Thus, the position of the position to be measured and the time error of each receiver are calculated based on the pseudo distances observed at the installation positions of the plurality of GPS antennas 12A and 12B. This pseudo distance is the distance between the GPS satellite and the GPS antenna based on the GPS pseudo distance data.
 より具体的には、測位対象箇所のECEF座標系における3次元位置ベクトル(x,y,z)、および、2台の受信機14A、14Bの時刻誤差(以降、クロックバイアスとも表記)の合計5個を未知数とし、各GPSアンテナ12A、12Bの設置箇所のECEF座標系における3次元位置ベクトルをF(x,y,z)、およびF(x,y,z)とした上で、従来(1台のGPSアンテナによる測位)と同様、各GPSアンテナ12A、12B毎及び衛星毎に式(3)を立式することにより(ここでは、GPSアンテナ12Aについてのみ記載。GPSアンテナ12Bについても同様)、GPSアンテナ12A、12Bの合計5個以上の衛星による観測結果を用いて、測位対象箇所の位置(x,y,z)を算出する。また、受信機14A、14Bの各々の時刻誤差も算出する。なお、設置されたGPSアンテナがN個である場合には、合計(N+3)個以上の衛星による観測結果を用いて、測位対象箇所の位置(x,y,z)を算出する。 More specifically, the total of the three-dimensional position vector (x, y, z) in the ECEF coordinate system of the position to be positioned and the time error between the two receivers 14A and 14B (hereinafter, also referred to as clock bias) is 5 The number is unknown and the three-dimensional position vector in the ECEF coordinate system of the installation location of each GPS antenna 12A, 12B is F A (x, y, z) and F B (x, y, z). Similar to (positioning by one GPS antenna), formula (3) is established for each GPS antenna 12A, 12B and each satellite (here, only the GPS antenna 12A is described. The same applies to the GPS antenna 12B. ), the position (x, y, z) of the position to be measured is calculated by using the observation results of the GPS antennas 12A and 12B by a total of five or more satellites. Also, the time error of each of the receivers 14A and 14B is calculated. When the number of installed GPS antennas is N, the position (x, y, z) of the position to be measured is calculated by using the observation results of a total of (N+3) or more satellites.
Figure JPOXMLDOC01-appb-M000004

・・・(3)
Figure JPOXMLDOC01-appb-M000004

...(3)
 ここで、GPSアンテナ12Aの位置は以下の式で表される。
Figure JPOXMLDOC01-appb-I000005
Here, the position of the GPS antenna 12A is represented by the following formula.
Figure JPOXMLDOC01-appb-I000005
 また、(x,y,z)は、測位対象箇所の位置であり、Cbは、GPSアンテナ12Aの受信機14Aのクロックバイアス[m](光速をかけて距離に換算したもの)である。また、PRは、衛星iについて観測された疑似距離[m]であり、(Xsi,Ysi,Zsi)は、衛星iの位置である。 Further, (x, y, z) is the position of the position to be measured, and Cb A is the clock bias [m] (converted to the distance by multiplying the speed of light) of the receiver 14A of the GPS antenna 12A. Also, PR i is the pseudorange [m] observed for satellite i, and (X si , Y si , Z si ) is the position of satellite i.
 このように、測位対象箇所とアンテナ設置箇所との位置関係を適切に考慮することにより、測位対象箇所とは異なる位置で観測された疑似距離を用いても、高精度に、測位対象箇所の位置を算出することが可能となる。 In this way, by appropriately considering the positional relationship between the positioning target location and the antenna installation location, the position of the positioning target location can be accurately measured even when using the pseudo distance observed at a position different from the positioning target location. Can be calculated.
 次に、アンテナ位置・受信機時刻誤差算出部32は、第4工程として、上述のようにして求めたGPSアンテナの設置箇所と測位対象箇所との位置関係、及び測位対象箇所の位置を用いて、GPSアンテナ12A、12Bの各々の位置を導出する。すなわち、第2工程で算出されたGPSアンテナ12A、12Bの各々の設置箇所と測位対象箇所との位置関係に、第3工程で算出された地球上における測位対象箇所の位置を適用することで、GPSアンテナ12A、12Bの各々の位置を導出する。 Next, the antenna position/receiver time error calculation unit 32 uses the positional relationship between the installation location of the GPS antenna and the positioning target location and the position of the positioning target location obtained as described above as the fourth step. , The positions of the GPS antennas 12A and 12B are derived. That is, by applying the position of the positioning target location on the earth calculated in the third step to the positional relationship between the installation location of each of the GPS antennas 12A and 12B calculated in the second step and the positioning target location, The positions of the GPS antennas 12A and 12B are derived.
 推定疑似距離算出部34は、電波を受信した全てのGPS衛星のうち、GPSアンテナ12A、12Bで共通に電波を受信した全てのGPS衛星の各々について、GPSアンテナ12A、12B毎に、推定される疑似距離(以下、推定疑似距離という。)を算出する。具体的には、アンテナ位置・受信機時刻誤差算出部32で導出されたGPSアンテナ12A、12Bの各々の位置、および受信機14A、14Bの各々の時刻誤差を、式(3)に代入することにより、GPSアンテナ12A、12B毎に推定疑似距離を算出する。 The estimated pseudo distance calculation unit 34 estimates, for each of the GPS antennas 12A and 12B, all of the GPS satellites that commonly receive the radio waves by the GPS antennas 12A and 12B among all the GPS satellites that have received the radio waves. A pseudo distance (hereinafter referred to as an estimated pseudo distance) is calculated. Specifically, the respective positions of the GPS antennas 12A and 12B and the respective time errors of the receivers 14A and 14B derived by the antenna position/receiver time error calculation unit 32 are substituted into the equation (3). Thus, the estimated pseudo distance is calculated for each of the GPS antennas 12A and 12B.
 疑似距離残差算出部35は、GPSアンテナ12A、12B毎に、観測された疑似距離(以下、観測疑似距離という。)と、推定された推定疑似距離との差分(以下、疑似距離の残差という。)を算出する。具体的には、電波を受信した全てのGPS衛星のうち、GPSアンテナ12A、12Bで共通に電波を受信した全てのGPS衛星の各々について、GPSアンテナ12A、12B毎に、式(4)により、疑似距離の残差を算出する。
 
(疑似距離の残差)=|(観測疑似距離)-(推定疑似距離)| ・・・(4)
 
The pseudo-range residual calculation unit 35 calculates the difference between the observed pseudo-range (hereinafter referred to as the observed pseudo-range) and the estimated estimated pseudo-range (hereinafter referred to as the pseudo-range residual) for each of the GPS antennas 12A and 12B. That is)) is calculated. Specifically, among all the GPS satellites that have received the radio waves, for each of all the GPS satellites that commonly receive the radio waves by the GPS antennas 12A and 12B, for each of the GPS antennas 12A and 12B, using formula (4), Calculate the residual of the pseudorange.

(Residual of pseudo distance)=|(observed pseudo distance)−(estimated pseudo distance)| (4)
 除外衛星判別部37は、疑似距離残差算出部35で算出された全GPS衛星各々のGPSアンテナ12A、12Bの疑似距離残差の差に基づいて、自車両の位置を推定する際に使用するGPS衛星とから除外する除外対象のGPS衛星を判別する。具体的には、除外衛星判別部37は、GPSアンテナ12A、12Bで共通に電波を受信した全てのGPS衛星の各々について、疑似距離残差算出部35で算出された、GPSアンテナ12Aの疑似距離残差と、GPSアンテナ12Bの疑似距離残差との差分(以下、疑似距離残差の差という。)を計算する。そして、GPS衛星毎に計算された疑似距離残差の差の絶対値が閾値以上となるGPSアンテナのGPS衛星を、共通に電波を受信した全てのGPS衛星から除外する除外対象のGPS衛星として判別する。このようにして、測位対象箇所と各GNSSアンテナ設置箇所との位置関係や速度関係を適切に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することが可能となる。 The excluded satellite discriminating unit 37 is used when estimating the position of the own vehicle based on the difference in the pseudo range residuals of the GPS antennas 12A and 12B of all the GPS satellites calculated by the pseudo range residual calculating unit 35. The exclusion target GPS satellites to be excluded from the GPS satellites are determined. Specifically, the excluded satellite discriminating unit 37 calculates the pseudo distance of the GPS antenna 12A calculated by the pseudo distance residual calculating unit 35 for each of all the GPS satellites commonly receiving radio waves by the GPS antennas 12A and 12B. The difference between the residual and the pseudorange residual of the GPS antenna 12B (hereinafter referred to as the pseudorange residual difference) is calculated. Then, the GPS satellite of the GPS antenna in which the absolute value of the difference in the pseudorange residual calculated for each GPS satellite is equal to or more than the threshold value is determined as the exclusion target GPS satellite to be excluded from all the GPS satellites that have commonly received radio waves. To do. In this way, the satellite affected by the multipath error can be excluded in advance by appropriately considering the positional relationship and speed relationship between the positioning target location and each GNSS antenna installation location.
 位置導出部40は、GPS衛星の情報を用いて地球上における測位対象箇所の位置を導出する。具体的には、例えば、除外対象のGPS衛星を除くGPS衛星からの衛星情報を用いて、測位対象箇所の位置を算出する。なお、位置導出部40における測位対象箇所の位置の導出は、例えば、アンテナ位置・受信機時刻誤差算出部32における第1工程から第3工程による算出と同様の処理によって導出可能であるため、詳細な説明を省略する。 The position deriving unit 40 derives the position of the position to be measured on the earth using the information of the GPS satellites. Specifically, for example, the position of the positioning target location is calculated using satellite information from GPS satellites other than the exclusion target GPS satellites. Note that the position derivation of the position to be measured by the position derivation unit 40 can be derived by, for example, the same process as the calculation by the first step to the third step in the antenna position/receiver time error calculation unit 32. Description is omitted.
 以上のようにして、測位対象箇所と各GNSSアンテナ設置箇所との位置関係や速度関係を適切に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することで、誤差の少ない衛星からの衛星情報のみを用いて、高精度に、測位対象箇所の位置、および速度の算出が可能となる。 As described above, by appropriately considering the positional relationship and speed relationship between the positioning target location and each GNSS antenna installation location, satellites affected by the multipath error are excluded in advance, so that satellites with less error It is possible to calculate the position and velocity of the position to be measured with high accuracy using only the satellite information from.
 次に、第1の実施形態に係る測位装置10の作用について説明する。
 図5に、測位装置における衛星選択装置18のコンピュータにおける衛星選択処理ルーチンの内容の一例を示す。
Next, the operation of the positioning device 10 according to the first embodiment will be described.
FIG. 5 shows an example of the contents of the satellite selection processing routine in the computer of the satellite selection device 18 in the positioning device.
 姿勢角センサ16によって地磁気を検出すると共に、GPSアンテナ12A、12B、受信機14A、14Bによって、複数のGPS衛星から電波を受信しているときに、衛星選択装置18のコンピュータ30において、図5に示す測位処理ルーチンが繰り返し実行される。 When the attitude angle sensor 16 detects the geomagnetism and the GPS antennas 12A and 12B and the receivers 14A and 14B are receiving radio waves from a plurality of GPS satellites, the computer 30 of the satellite selection device 18 displays the signals as shown in FIG. The positioning processing routine shown is repeatedly executed.
 ステップS100で、GPS受信機14A、14Bから複数のGPS衛星の情報を取得すると共に、複数のGPS衛星のGPS疑似距離データ、ドップラー周波数、GPS衛星の位置座標を算出して取得する。同一時刻に取得された複数のGPS衛星分のGPS情報を、GPS情報群として取得する。 In step S100, information on a plurality of GPS satellites is acquired from the GPS receivers 14A and 14B, and GPS pseudorange data, Doppler frequency, and position coordinates of the GPS satellites of the plurality of GPS satellites are calculated and acquired. GPS information for a plurality of GPS satellites acquired at the same time is acquired as a GPS information group.
 次に、ステップS102で、GPSアンテナ12A、12Bの各々の設置箇所の位置、及び受信機14A、14Bの時刻誤差を算出する。 Next, in step S102, the position of each installation location of the GPS antennas 12A and 12B and the time error of the receivers 14A and 14B are calculated.
 具体的には、第1段階で、姿勢角センサ16からの検出値に基づいて、自車両の姿勢角を算出する。次に、第2段階で、予め求められた、地球上における各GPSアンテナ12A、12Bの設置箇所と、測位対象箇所との間の距離と、各GPSアンテナ12A、12Bの設置箇所の角度と、検出された自車両の姿勢角とに基づいて、測位対象箇所(車両中心)と各アンテナ設置箇所との、ECEF座標系における位置関係を算出する。そして、第3段階では、測位対象箇所の位置、及び複数のGPSアンテナ12A、12Bに対応する各々の受信機14A、14Bの時刻誤差を未知数とし、測位対象箇所の位置、及び測位対象箇所(車両中心)と各アンテナ設置箇所とのECEF座標系における位置関係を用いて、複数のGPSアンテナ12A、12Bの設置箇所の位置を記述した方程式と、複数のGPSアンテナ12A、12Bの各々により、複数のGPSアンテナ12A、12Bの各々の設置箇所で観測された疑似距離とに基づいて、測位対象箇所の位置を計算する。また、GPSアンテナ12A、12Bの各々の受信機14A、14Bの時刻誤差を計算する。次に、第4段階で、第2段階で算出されたGPSアンテナ12A、12Bの各々の設置箇所と測位対象箇所との位置関係に、第3段階で算出された地球上における測位対象箇所の位置を適用することで、GPSアンテナ12A、12Bの各々の位置を導出する。 Specifically, in the first step, the attitude angle of the host vehicle is calculated based on the detection value from the attitude angle sensor 16. Next, in the second step, the distance between the installation location of each GPS antenna 12A, 12B on the earth and the positioning target location, and the angle of the installation location of each GPS antenna 12A, 12B, which are obtained in advance, Based on the detected attitude angle of the host vehicle, the positional relationship in the ECEF coordinate system between the positioning target location (vehicle center) and each antenna installation location is calculated. Then, in the third stage, the position of the positioning target position and the time error of each of the receivers 14A and 14B corresponding to the plurality of GPS antennas 12A and 12B are set as unknowns, and the position of the positioning target position and the positioning target position (vehicle Using the positional relationship between the center) and each antenna installation location in the ECEF coordinate system, a plurality of equations describing the positions of the installation locations of the plurality of GPS antennas 12A and 12B and the plurality of GPS antennas 12A and 12B are used. The position of the positioning target location is calculated based on the pseudo distance observed at each installation location of the GPS antennas 12A and 12B. Also, the time error of the receivers 14A and 14B of the GPS antennas 12A and 12B is calculated. Next, in the fourth step, the position of the positioning target location on the earth calculated in the third step is calculated based on the positional relationship between the installation locations of the GPS antennas 12A and 12B calculated in the second step and the positioning target location. By applying, the positions of the GPS antennas 12A and 12B are derived.
 そして、GPS情報群、GPSアンテナ12A、12Bの各々の位置、及びGPSアンテナ12A、12Bに対応する各々の受信機14A、14Bの時刻誤差に基づいて、共通に受信しているGPS衛星のうち、除外対象のGPS衛星を設定する。 Then, based on the GPS information group, the positions of the GPS antennas 12A and 12B, and the time difference between the receivers 14A and 14B corresponding to the GPS antennas 12A and 12B, among the commonly received GPS satellites, Set the excluded GPS satellites.
 具体的には、ステップS106で、GPS衛星からの電波を、複数のGPSアンテナ12A、12Bで共通に受信している全てのGPS衛星(例えばn個)のうち何れか1つのGPS衛星(i=1)を設定し、次のステップS108で、ステップS102において導出されたGPSアンテナ12A、12Bの各々の位置、および受信機14A、14Bの各々の時刻誤差を用いて、GPSアンテナ12A、12Bの各々の推定疑似距離を算出する。次にステップS110では、GPSアンテナ12A、12B毎に、観測された疑似距離である観測疑似距離からステップS112で算出された推定疑似距離を減算した絶対値を算出することで、疑似距離の残差を算出する(式(4)参照)。 Specifically, in step S106, one of the GPS satellites (i.e., n) of all the GPS satellites (e.g., n) commonly receiving the radio waves from the GPS satellites by the plurality of GPS antennas 12A and 12B is used (i= 1) is set, and in the next step S108, each of the GPS antennas 12A and 12B is calculated using the position of each of the GPS antennas 12A and 12B derived in step S102 and the time error of each of the receivers 14A and 14B. Calculate the estimated pseudo distance of. Next, in step S110, for each of the GPS antennas 12A and 12B, the absolute value obtained by subtracting the estimated pseudo distance calculated in step S112 from the observed pseudo distance that is the observed pseudo distance is used to calculate the residual pseudo distance. Is calculated (see Formula (4)).
 次のステップS112では、該当するGPS衛星について算出されたGPSアンテナ12Aの疑似距離残差と、GPSアンテナ12Bの疑似距離残差との差分である疑似距離残差の差を計算する。そして、次のステップS114では、疑似距離残差の差の絶対値が閾値以上か否かを判断し、肯定判断の場合は、ステップS116で、現在設定されているGPSアンテナのGPS衛星を、共通に電波を受信した全てのGPS衛星から除外する除外対象のGPS衛星として設定し、出力部20により出力する。これによって、測位対象箇所と各GNSSアンテナ設置箇所との位置関係や速度関係を適切に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することが可能となる。 In the next step S112, the difference in the pseudorange residual, which is the difference between the pseudorange residual of the GPS antenna 12A calculated for the corresponding GPS satellite and the pseudorange residual of the GPS antenna 12B, is calculated. Then, in the next step S114, it is determined whether or not the absolute value of the difference between the pseudorange residuals is equal to or larger than a threshold value. It is set as an exclusion target GPS satellite to be excluded from all GPS satellites that have received the radio wave, and is output by the output unit 20. This makes it possible to exclude in advance the satellites affected by the multipath error by appropriately considering the positional relationship and speed relationship between the positioning target location and each GNSS antenna installation location.
 一方、ステップS114で否定判断の場合は、ステップS118へ処理を移行する。ステップS118では、上記処理を未実行のGPS衛星が残存するか否かを判別することで、全GPS衛星に対して上記処理が終了した(i≧n)かを判断する。上記処理を未実行のGPS衛星が残存する場合は、ステップS118で否定され、ステップS120で、次のGPS衛星(i=i+1)を設定した後に、上記ステップS108へ戻る。一方、全てのGPS衛星について上記処理の実行が終了した場合は、ステップS118で肯定され、上記ステップS100へ戻る。 On the other hand, in the case of negative determination in step S114, the process proceeds to step S118. In step S118, it is determined whether or not the above processing has been completed (i≧n) for all GPS satellites by determining whether or not there are remaining GPS satellites for which the above processing has not been executed. If there are GPS satellites for which the above processing has not been executed, the determination is negative in step S118, the next GPS satellite (i=i+1) is set in step S120, and the process returns to step S108. On the other hand, when the execution of the above processing is completed for all GPS satellites, the affirmative determination is made in step S118, and the process returns to step S100.
 本実施形態に係る測位装置10では、上記のようにして、除外対象のGPS衛星が選択されると、位置導出部40は、選択された除外対象のGPS衛星を除くGPS衛星からの衛星情報を用いて、測位対象箇所の位置を算出する。これによって、車両における複数のGPSアンテナの設置箇所とは異なる測位対象箇所について、マルチパス誤差の影響を受けたと推定されるGPS衛星を事前に除外することで、地球上の位置を精度よく計算することができる。 In the positioning device 10 according to the present embodiment, when the exclusion target GPS satellite is selected as described above, the position deriving unit 40 obtains the satellite information from the GPS satellites other than the selected exclusion target GPS satellite. The position of the position to be measured is calculated using this. Thus, the position on the earth is accurately calculated by excluding the GPS satellites estimated to be affected by the multipath error in advance from the positioning target position different from the installation position of the plurality of GPS antennas in the vehicle. be able to.
 以上説明したように、第1の実施形態に係る測位装置によれば、衛星選択装置18によって、測位対象箇所と各GPSアンテナ設置箇所との位置関係を適切に考慮して、マルチパス誤差の影響を受けたと推定されるGPS衛星を事前に除外することにより、車両における測位対象箇所について、地球上の位置を精度よく計算することができる。 As described above, according to the positioning device according to the first embodiment, the satellite selection device 18 appropriately considers the positional relationship between the positioning target position and each GPS antenna installation position, and thus the influence of the multipath error. By excluding in advance the GPS satellites that are estimated to have received, it is possible to accurately calculate the position on the earth of the positioning target position in the vehicle.
 また、測位対象箇所が、各GPSアンテナ設置箇所の重心ではない場合、あるいは、測位対象箇所と各GPSアンテナ設置箇所が離れている場合であっても、高精度に、測位対象箇所の位置の算出が可能である。 Further, even if the positioning target location is not the center of gravity of each GPS antenna installation location, or even if the positioning target location and each GPS antenna installation location are distant, the position of the positioning target location is calculated with high accuracy. Is possible.
<第2の実施形態>
 次に、第2の実施形態について説明する。なお、第2の実施形態の測位装置について、第1の実施形態の測位装置10と同一の構成については、同一の符号を付して説明を省略する。
<Second Embodiment>
Next, a second embodiment will be described. Regarding the positioning device of the second embodiment, the same components as those of the positioning device 10 of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 第2の実施形態では、算出される受信機14A、14Bの時刻誤差の信頼度が高い場合にのみ、マルチパス誤差の影響を受けたと推定されるGPS衛星を事前に除外する点が、第1の実施形態と主に異なっている。 In the second embodiment, the first point is that the GPS satellites estimated to be affected by the multipath error are excluded in advance only when the reliability of the calculated time error of the receivers 14A and 14B is high. This embodiment is mainly different from the above embodiment.
 図6に、第2の実施形態に係る測位装置の構成の一例を示す。
 図6に示すように、第2の実施形態に係る測位装置210における衛星選択装置218のコンピュータ230は、衛星情報取得部31、アンテナ位置・受信機時刻誤差算出部32、推定疑似距離算出部34、疑似距離残差算出部35、受信機時刻誤差信頼度判定部232、および除外衛星判別部237を備えている。受信機時刻誤差信頼度判定部232は、本開示の信頼度判定部の一例である。
FIG. 6 shows an example of the configuration of the positioning device according to the second embodiment.
As shown in FIG. 6, the computer 230 of the satellite selection device 218 in the positioning device 210 according to the second embodiment includes a satellite information acquisition unit 31, an antenna position/receiver time error calculation unit 32, and an estimated pseudo distance calculation unit 34. , Pseudo range residual calculation unit 35, receiver time error reliability determination unit 232, and excluded satellite determination unit 237. The receiver time error reliability determination unit 232 is an example of the reliability determination unit of the present disclosure.
 受信機時刻誤差信頼度判定部232は、アンテナ位置・受信機時刻誤差算出部32によって算出された受信機の時刻誤差の信頼度を判定する。具体的には、GPSアンテナにおける疑似距離残差の変動に応じて受信機の時刻誤差の信頼度を判定すればよい。例えば、受信機の時刻誤差に誤りが生じた場合、全GPS衛星の各々の疑似距離残差に対して共通に影響する。このため、全GPS衛星についての疑似距離残差が一定以上大きくなっているということは、当該受信機の時刻誤差算出が誤っている可能性が高い、すなわち、信頼度が低いと考えられる。一方、全GPS衛星についての疑似距離残差が一定未満であることは、当該受信機の時刻誤差算出が誤っている可能性が低い、すなわち、信頼度が高いと考えられる。 The receiver time error reliability determination unit 232 determines the reliability of the time error of the receiver calculated by the antenna position/receiver time error calculation unit 32. Specifically, the reliability of the time error of the receiver may be determined according to the fluctuation of the pseudo range residual in the GPS antenna. For example, if an error occurs in the time error of the receiver, the pseudo range residuals of all GPS satellites are commonly affected. For this reason, the fact that the pseudorange residuals for all GPS satellites are larger than a certain amount indicates that there is a high possibility that the time error calculation of the receiver is erroneous, that is, the reliability is low. On the other hand, when the pseudorange residuals for all GPS satellites are less than a certain value, it is considered that there is a low possibility that the time error calculation of the receiver is erroneous, that is, the reliability is high.
 より具体的には、受信機時刻誤差信頼度判定部232は、疑似距離残差算出部35で算出された疑似距離残差を用いて、GPSアンテナ12A、12Bで共通に受信している全てのGPS衛星について、各GPSアンテナ毎に、疑似距離残差を算出する。次に、共通に受信している全てのGPS衛星について、一方のGPSアンテナの疑似距離残差が、他方のGPSアンテナの疑似距離残差より予め定めた閾値以上大きい場合は、疑似距離残差が大きい方のGPSアンテナに接続されている受信機の時刻誤差の信頼度が低いと判定する。これは、受信機の時刻誤差の算出の誤りは、共通に受信している全てのGPS衛星各々の疑似距離残差に対して共通に影響するため、全てのGPS衛星についての疑似距離残差が一定以上大きくなっているということは、当該受信機の時刻誤差算出が誤っている可能性が高いと考えられるためである。また、一方のGPSアンテナの疑似距離残差が、他方のGPSアンテナの疑似距離残差に対して閾値未満の場合は、当該GPSアンテナに接続されている受信機の時刻誤差の信頼度が高いと判定する。 More specifically, the receiver time error reliability determination unit 232 uses the pseudo distance residual calculated by the pseudo distance residual calculation unit 35 to determine whether all of the GPS antennas 12A and 12B commonly receive the same. For GPS satellites, a pseudorange residual is calculated for each GPS antenna. Next, for all GPS satellites commonly received, if the pseudorange residual of one GPS antenna is larger than the pseudorange residual of the other GPS antenna by a predetermined threshold value or more, the pseudorange residual is It is determined that the reliability of the time error of the receiver connected to the larger GPS antenna is low. This is because the error in the calculation of the time error of the receiver has a common effect on the pseudorange residuals of all the GPS satellites that are commonly received, and therefore the pseudorange residuals of all the GPS satellites are The reason why it is larger than a certain amount is that there is a high possibility that the time error calculation of the receiver is wrong. If the pseudorange residual of one GPS antenna is less than the threshold with respect to the pseudorange residual of the other GPS antenna, the reliability of the time error of the receiver connected to the GPS antenna is high. judge.
 除外衛星判別部237は、受信機時刻誤差信頼度判定部232によって判定された受信機の時刻誤差の信頼度に基づいて、疑似距離残差算出部35で算出された全GPS衛星各々のGPSアンテナ12A、12Bの疑似距離残差の差から自車両の位置を推定する際に使用するGPS衛星とから除外する除外対象のGPS衛星を判別する。 The excluded satellite discriminating unit 237, based on the reliability of the time error of the receiver determined by the receiver time error reliability determining unit 232, calculates the GPS antenna of each GPS satellite calculated by the pseudorange residual calculation unit 35. From the difference between the pseudo-range residuals of 12A and 12B, the GPS satellites to be excluded from the GPS satellites used when estimating the position of the vehicle are determined.
 具体的には、全てのGPS衛星についての疑似距離残差が閾値未満で、受信機時刻誤差信頼度判定部232によって受信機の時刻誤差の信頼度が高いと判定された場合には、上記第1の実施形態と同様に、全GPS衛星各々のGPSアンテナ12A、12Bの疑似距離残差の差に基づいて、除外対象のGPS衛星を判別する。 Specifically, when the pseudo-range residuals for all GPS satellites are less than the threshold and the receiver time error reliability determination unit 232 determines that the time error reliability of the receiver is high, Similar to the first embodiment, the exclusion target GPS satellites are determined based on the difference in the pseudo range residuals of the GPS antennas 12A and 12B of all the GPS satellites.
 一方、全てのGPS衛星についての疑似距離残差が閾値以上で、受信機時刻誤差信頼度判定部232によって受信機の時刻誤差の信頼度が低いと判定された場合には、除外対象のGPS衛星を判別することを実施しない。例えば、GPSアンテナ12A、12Bの何れのGPSアンテナで受信されたGPS衛星を、除外対象のGPS衛星することなく出力する。 On the other hand, if the pseudo-range residuals for all GPS satellites are equal to or greater than the threshold value and the receiver time error reliability determination unit 232 determines that the reliability of the receiver time error is low, the exclusion target GPS satellites are used. Is not performed. For example, the GPS satellites received by any of the GPS antennas 12A and 12B are output without being excluded from the GPS satellites.
 このように、GPSアンテナ12A、12Bの各々の受信機ともに、時刻誤差の信頼度が高いと判定された場合についてのみ、上記第1実施形態と同様の衛星選択を行う。これによって、全てのGPS衛星についての疑似距離残差に基づき判定された受信機の時刻誤差の信頼度に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することが可能となる。 In this way, satellites similar to those in the first embodiment are selected only when it is determined that the receivers of the GPS antennas 12A and 12B have high reliability of the time difference. This makes it possible to exclude in advance the satellites affected by the multipath error in consideration of the reliability of the time error of the receiver determined based on the pseudorange residuals for all GPS satellites. ..
 次に、第2の実施形態に係る測位装置210の作用について説明する。なお、第1の実施形態と同様の処理となる部分については、同一符号を付して詳細な説明を省略する。
 図7に、第2の実施形態に係る測位装置における主な処理として、衛星選択装置18のコンピュータにおける衛星選択処理ルーチンの内容の一例を示す。
Next, the operation of the positioning device 210 according to the second embodiment will be described. In addition, about the part which becomes the same process as 1st Embodiment, the same code|symbol is attached and detailed description is abbreviate|omitted.
FIG. 7 shows an example of the contents of a satellite selection processing routine in the computer of the satellite selection device 18 as main processing in the positioning device according to the second embodiment.
 GPSアンテナ12A、12B、受信機14A、14Bによって、複数のGPS衛星から電波を受信しているときに、コンピュータ230において、図7に示す測位処理ルーチンが繰り返し実行される。 When the GPS antennas 12A, 12B and the receivers 14A, 14B are receiving radio waves from a plurality of GPS satellites, the computer 230 repeatedly executes the positioning processing routine shown in FIG.
 ステップS100で、GPS受信機14A、14Bから複数のGPS衛星の情報を取得すると共に、複数のGPS衛星のGPS疑似距離データ、ドップラー周波数、GPS衛星の位置座標を算出して取得する。同一時刻に取得された複数のGPS衛星分のGPS情報を、GPS情報群として取得する。 In step S100, information on a plurality of GPS satellites is acquired from the GPS receivers 14A and 14B, and GPS pseudo range data, Doppler frequency, and position coordinates of the GPS satellites of the plurality of GPS satellites are calculated and acquired. GPS information for a plurality of GPS satellites acquired at the same time is acquired as a GPS information group.
 次に、上記と同様にして、ステップS102で、GPSアンテナ12A、12Bの各々の設置箇所の位置、及びGPSアンテナ12A、12Bの各々の受信機14A、14Bの時刻誤差を計算する。そして、GPSアンテナ12A、12Bの各々で共通に受信しているGPS衛星のうち、除外対象のGPS衛星を設定する。 Next, similarly to the above, in step S102, the position of each installation location of the GPS antennas 12A and 12B and the time difference between the receivers 14A and 14B of the GPS antennas 12A and 12B are calculated. Then, among the GPS satellites commonly received by the GPS antennas 12A and 12B, the exclusion-targeted GPS satellites are set.
 まず、ステップS106で、複数のGPSアンテナ12A、12Bで共通に電波を受信している全てのGPS衛星のうち何れか1つのGPS衛星を設定する。そして、ステップS108で、GPSアンテナ12A、12Bの各々の推定疑似距離を算出し、ステップS110で、GPSアンテナ12A、12B毎に、疑似距離の残差を算出する。 First, in step S106, one of the GPS satellites commonly receiving radio waves by the plurality of GPS antennas 12A and 12B is set. Then, in step S108, the estimated pseudo distance of each of the GPS antennas 12A and 12B is calculated, and in step S110, the residual pseudo distance is calculated for each of the GPS antennas 12A and 12B.
 ステップS200では、推定疑似距離、および疑似距離の残差の算出処理を未実行のGPS衛星が残存するか否かを判別することで、全GPS衛星に対して上記処理が終了したかを判断する。上記処理を未実行のGPS衛星が残存する場合は、ステップS200で否定され、ステップS202で、次のGPS衛星を設定した後に、上記ステップS200へ戻る。一方、全てのGPS衛星について上記処理の実行が終了した場合は、ステップS200で肯定され、ステップS204へ処理を移行する。 In step S200, it is determined whether or not the above processing has been completed for all GPS satellites by determining whether or not there are remaining GPS satellites that have not executed the processing for calculating the estimated pseudo distance and the residual of the pseudo distance. .. If there are GPS satellites for which the above processing has not been executed, the determination is negative in step S200, the next GPS satellite is set in step S202, and the process returns to step S200. On the other hand, when the execution of the above processing is completed for all GPS satellites, the affirmative determination is made in step S200, and the processing proceeds to step S204.
 ステップS204では、GPSアンテナ12A、12Bで共通に受信している全てのGPS衛星に対する、各GPSアンテナ毎の疑似距離残差のうち、閾値以上の疑似距離残差のGPSアンテナが存在するかを判断する。疑似距離残差が閾値以上のGPSアンテナが存在する場合はステップS204で肯定され、後述する除外対象のGPS衛星を選択する処理を実行することなく、ステップS100へ戻る。一方、疑似距離残差が全て閾値未満である場合はステップS204で否定され、除外対象のGPS衛星を選択する処理を実行するために、ステップS206へ処理を移行する。 In step S204, it is determined whether or not there is a GPS antenna having a pseudo range residual of a threshold value or more among the pseudo range residuals of each GPS antenna for all GPS satellites commonly received by the GPS antennas 12A and 12B. To do. If there is a GPS antenna with a pseudorange residual of a threshold value or more, the affirmative determination is made in step S204, and the process returns to step S100 without executing the process of selecting a GPS satellite to be excluded, which will be described later. On the other hand, if all the pseudorange residuals are less than the threshold value, the determination is negative in step S204, and the process proceeds to step S206 in order to execute the process of selecting the GPS satellite to be excluded.
 ステップS206では、複数のGPSアンテナ12A、12Bで共通に電波を受信している全てのGPS衛星のうち何れか1つのGPS衛星を設定する。そして、ステップS108で、GPSアンテナ12A、12Bの各々の推定疑似距離を算出し、ステップS110で、GPSアンテナ12A、12B毎に、疑似距離の残差を算出する。 In step S206, one of the GPS satellites that are commonly receiving radio waves by the plurality of GPS antennas 12A and 12B is set. Then, in step S108, the estimated pseudo distance of each of the GPS antennas 12A and 12B is calculated, and in step S110, the residual pseudo distance is calculated for each of the GPS antennas 12A and 12B.
 次のステップS208では、GPSアンテナ12Aの疑似距離残差と、GPSアンテナ12Bの疑似距離残差との差分である疑似距離残差の差を計算する。次のステップS210では、疑似距離残差の差の絶対値が閾値以上か否かを判断し、肯定判断の場合は、ステップS212で、現在設定されているGPS衛星を、共通に電波を受信した全てのGPS衛星から除外する除外対象のGPS衛星として設定し、出力部20により出力する。これによって、受信機の時刻誤差の信頼度を考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することが可能となる。 In the next step S208, the difference in the pseudorange residual, which is the difference between the pseudorange residual of the GPS antenna 12A and the pseudorange residual of the GPS antenna 12B, is calculated. In the next step S210, it is determined whether or not the absolute value of the difference of the pseudorange residuals is equal to or more than a threshold value. If the determination is affirmative, in step S212, the currently set GPS satellite commonly receives radio waves. It is set as an exclusion target GPS satellite to be excluded from all GPS satellites, and is output by the output unit 20. This makes it possible to exclude satellites affected by the multipath error in advance in consideration of the reliability of the time error of the receiver.
 一方、ステップS210で否定判断の場合は、ステップS214へ処理を移行する。ステップS214では、上記処理を未実行のGPS衛星が残存するか否かを判別することで、全GPS衛星に対して上記処理が終了したかを判断する。上記処理を未実行のGPS衛星が残存する場合は、ステップS214で否定され、ステップS216で、次のGPS衛星を設定した後に、ステップS208へ戻る。一方、全てのGPS衛星について上記処理の実行が終了した場合は、ステップS214で肯定され、上記ステップS100へ戻る。 On the other hand, in the case of negative determination in step S210, the process proceeds to step S214. In step S214, it is determined whether or not the above processing has been completed for all GPS satellites by determining whether or not there are GPS satellites that have not been subjected to the above processing. If there are GPS satellites for which the above processing has not been executed, the determination is negative in step S214, the next GPS satellite is set in step S216, and then the process returns to step S208. On the other hand, when the execution of the above process is completed for all GPS satellites, the affirmative answer is obtained in step S214, and the process returns to step S100.
 以上説明したように、第2の実施形態に係る測位装置によれば、衛星選択装置18によって、GPSアンテナに接続されている受信機の時刻誤差の信頼度が高い場合にのみ、測位対象箇所と各GPSアンテナ設置箇所との位置関係を適切に考慮して、マルチパス誤差の影響を受けたと推定されるGPS衛星を事前に除外することにより、車両における測位対象箇所について、地球上の位置を精度よく計算することができる。 As described above, according to the positioning device of the second embodiment, the satellite selection device 18 determines the position to be positioned only when the reliability of the time error of the receiver connected to the GPS antenna is high. By appropriately considering the positional relationship with each GPS antenna installation location and excluding GPS satellites that are estimated to have been affected by the multipath error in advance, the position of the vehicle on the earth can be accurately determined. Can be calculated well.
<第3の実施形態>
 次に、第3の実施形態について説明する。第3の実施形態では、自車両の速度を算出する速度測定装置に、本開示の技術を適用した場合を例に説明する。なお、第3の実施形態の速度測定装置について、第1の実施形態の測位装置10と同一の構成については、同一の符号を付して説明を省略する。
<Third Embodiment>
Next, a third embodiment will be described. In the third embodiment, a case where the technology of the present disclosure is applied to a speed measurement device that calculates the speed of the host vehicle will be described as an example. In addition, about the structure same as the positioning device 10 of 1st Embodiment about the speed measuring device of 3rd Embodiment, the same code|symbol is attached|subjected and description is abbreviate|omitted.
 図8に、第3の実施形態に係る速度測定装置の構成の一例を示す。
 図8に示すように、第3の実施形態に係る速度測定装置310は、複数のGPSアンテナ12A、12Bと、複数の受信機14A、14Bと、姿勢角センサ16と、ジャイロセンサ316と、複数の受信機14A、14Bによって受信されたGPS衛星からの受信信号、及び姿勢角センサ16、ジャイロセンサ316の検出値に基づいて、使用するGPS衛星を選択する衛星選択装置318と、自車両の速度を導出する速度導出処理を実行する速度導出部340とを備えている。衛星選択装置318は、自車両の速度を導出するために用いるGPS衛星を選択する衛星選択処理を実行するコンピュータ330と、出力部20とを備えている。
FIG. 8 shows an example of the configuration of the speed measuring device according to the third embodiment.
As shown in FIG. 8, the velocity measuring device 310 according to the third embodiment includes a plurality of GPS antennas 12A and 12B, a plurality of receivers 14A and 14B, an attitude angle sensor 16, a gyro sensor 316, and a plurality of gyro sensors. Based on the signals received from the GPS satellites received by the receivers 14A and 14B of the GPS receiver, and the detection values of the attitude angle sensor 16 and the gyro sensor 316, the satellite selection device 318 that selects the GPS satellite to be used, and the speed of the vehicle. And a speed derivation unit 340 that executes a speed derivation process that derives The satellite selection device 318 includes a computer 330 that executes a satellite selection process that selects a GPS satellite used to derive the speed of the host vehicle, and the output unit 20.
 コンピュータ330を機能ブロックで表すと、図8に示すように、衛星情報取得部31と、アンテナ速度・受信機時刻誤差変化量算出部332と、推定ドップラー周波数算出部334と、ドップラー周波数残差算出部335と、除外衛星判別部337を備えている。第3実施形態に係る衛星情報取得部31は、本開示の衛星情報取得部及び観測ドップラー周波数導出部の一例である。推定ドップラー周波数算出部334は、本開示の推定ドップラー周波数導出部の一例である。ドップラー周波数残差算出部335は、本開示の残差導出部の一例である。除外衛星判別部337は、本開示の衛星選択部の一例である。 When the computer 330 is represented by functional blocks, as shown in FIG. 8, a satellite information acquisition unit 31, an antenna speed/receiver time error change amount calculation unit 332, an estimated Doppler frequency calculation unit 334, and a Doppler frequency residual calculation. A section 335 and an excluded satellite discriminating section 337 are provided. The satellite information acquisition unit 31 according to the third embodiment is an example of the satellite information acquisition unit and the observed Doppler frequency derivation unit of the present disclosure. The estimated Doppler frequency calculation unit 334 is an example of the estimated Doppler frequency derivation unit of the present disclosure. The Doppler frequency residual calculation unit 335 is an example of the residual derivation unit of the present disclosure. The excluded satellite discriminating unit 337 is an example of a satellite selecting unit of the present disclosure.
 アンテナ速度・受信機時刻誤差変化量算出部332は、自車両の姿勢角に基づき計算されるGPSアンテナ12A、12Bの各々の地球上における設置箇所と測位対象箇所との速度関係、及び取得した衛星情報を用いて定まる測位対象箇所の速度に基づいて、GPSアンテナ12A、12Bの各々の速度を計算する。また、GPSアンテナ12A、12Bの各々の受信機14A、14Bの時刻誤差の変化量(以降、クロックドリフトと表記する。)を計算する。 The antenna speed/receiver time error change amount calculation unit 332 calculates the speed relationship between the installation location and the positioning target location on the earth of each of the GPS antennas 12A and 12B calculated based on the attitude angle of the own vehicle, and the acquired satellite. The speed of each of the GPS antennas 12A and 12B is calculated based on the speed of the positioning target location determined by using the information. Further, the amount of change in the time difference between the receivers 14A and 14B of the GPS antennas 12A and 12B (hereinafter referred to as clock drift) is calculated.
 具体的には、アンテナ速度・受信機時刻誤差変化量算出部332は、第1工程として、ジャイロセンサ316の検出値を用いることにより、当該時刻の自車両の角速度を算出する。次に、アンテナ速度・受信機時刻誤差変化量算出部332は、第2工程として、姿勢角センサ16の検出値から自車両の姿勢角を算出する。
 図9A、図9Bに、ある時刻における自車両50の姿勢角の一例を示す。図9Aは、路面に対する真上からの自車両50の姿勢角を示し、図9Bは、路面に対する真横からの自車両50の姿勢角を示している。以降では、図9A、図9Bに示すように、ある時刻における角速度が、ヨーレート=ω、ピッチレート=ゼロ、ロールレート=ゼロ、また、姿勢角が、ヨー角=θ(真北をゼロとして時計回りを正)、ピッチ角=α、ロール角=ゼロであったとする。
Specifically, the antenna speed/receiver time error change amount calculation unit 332 calculates the angular velocity of the host vehicle at that time by using the detection value of the gyro sensor 316 as the first step. Next, the antenna velocity/receiver time error change amount calculation unit 332 calculates the attitude angle of the host vehicle from the detection value of the attitude angle sensor 16 as the second step.
9A and 9B show an example of the attitude angle of the host vehicle 50 at a certain time. FIG. 9A shows the attitude angle of the host vehicle 50 from directly above the road surface, and FIG. 9B shows the attitude angle of the host vehicle 50 from directly beside the road surface. In the following, as shown in FIGS. 9A and 9B, the angular velocity at a certain time is yaw rate=ω, pitch rate=0, roll rate=0, and the attitude angle is yaw angle=θ The rotation is positive), the pitch angle is α, and the roll angle is zero.
 次に、アンテナ速度・受信機時刻誤差変化量算出部332は、第3工程として、算出された自車両の姿勢角、および各GPS衛星からの受信信号のドップラー周波数に基づいて、GPSアンテナ12A、12Bの各々について、地球上におけるGPSアンテナの設置箇所と、測位対象箇所との速度関係を計算する。
 具体的には、まず、アンテナ速度・受信機時刻誤差変化量算出部332は、予め求められた、地球上における各GPSアンテナ12A、12Bの設置箇所と、測位対象箇所との間の距離と、各GPSアンテナ12A、12Bの設置箇所の角度と、検出された自車両の姿勢角及び角速度とに基づいて、測位対象箇所(車両中心)と各GPSアンテナ設置箇所との、地球上における速度関係を算出する。より具体的には、次の手順で算出する。なお、ここでは、GPSアンテナ12Aを対象とした場合について説明する。
Next, the antenna velocity/receiver time error change amount calculation unit 332, as a third step, based on the calculated attitude angle of the own vehicle and the Doppler frequency of the received signal from each GPS satellite, the GPS antenna 12A, For each of the 12B, the speed relationship between the installation location of the GPS antenna on the earth and the positioning target location is calculated.
Specifically, first, the antenna speed/receiver time error change amount calculation unit 332 determines the distance between the installation location of each GPS antenna 12A, 12B on the earth and the positioning target location, which is obtained in advance, Based on the angles of the installation locations of the GPS antennas 12A and 12B and the detected attitude angles and angular velocities of the own vehicle, the speed relationship on the earth between the positioning target location (vehicle center) and each GPS antenna installation location is shown. calculate. More specifically, it is calculated by the following procedure. Note that, here, a case where the GPS antenna 12A is targeted will be described.
(手順1) 以下に示す式(5)により、ENU(East-North-Up)座標系における速度関係を算出する。
 図10A~図10Cに、測位対象箇所(車両中心)とGPSアンテナ12Aの設置箇所との速度関係の一例を示す。図10Aは、路面に対して真上から見た場合の速度関係を示し、図10Bは、路面に対して真横から見た場合の速度関係を示し、図10Cは、地表面(EN座標面)に投影された状態を見た場合の速度関係を示す。
(Procedure 1) The velocity relationship in the ENU (East-North-Up) coordinate system is calculated by the following equation (5).
10A to 10C show an example of the speed relationship between the position to be measured (vehicle center) and the installation position of the GPS antenna 12A. FIG. 10A shows the speed relationship when viewed from directly above the road surface, FIG. 10B shows the speed relationship when viewed from just beside the road surface, and FIG. 10C shows the ground surface (EN coordinate surface). The speed relation when the state projected on is seen is shown.
Figure JPOXMLDOC01-appb-M000006

(5)
Figure JPOXMLDOC01-appb-M000006

(5)
(手順2) 以下に示す式(6)により、ENU座標系からECEF(Earth-Centered Earth-Fixed)座標系に変換することにより、地球上における速度関係を算出する。同様に、GPSアンテナ12Bの設置箇所についても、測位対象箇所との速度関係を算出する。以降では、このようにして得られた速度関係の算出結果を、「GPSアンテナ12Aの設置箇所の速度=G(測位対象箇所の速度)」のように表記する。 (Procedure 2) The velocity relationship on the earth is calculated by converting from the ENU coordinate system to the ECEF (Earth-Centered Earth-Fixed) coordinate system using the following equation (6). Similarly, for the installation location of the GPS antenna 12B, the speed relationship with the location of the positioning target is calculated. In the following, the calculation results of the thus obtained speed relationship specified as "speed of installation location of the GPS antenna 12A = G A (rate of a positioning target location)."
Figure JPOXMLDOC01-appb-M000007

(6)
Figure JPOXMLDOC01-appb-M000007

(6)
ここで、
Figure JPOXMLDOC01-appb-I000008
here,
Figure JPOXMLDOC01-appb-I000008
 また、αは、地球の長半径[m]であり、fは、扁平率である。 Also, α is the long radius [m] of the earth, and f is the oblateness.
 そして、アンテナ速度・受信機時刻誤差変化量算出部332は、第4工程として、計算された速度関係と、取得した衛星情報とを用いて、地球上における測位対象箇所の速度、および、複数のGPSアンテナの各々の受信機のクロックドリフトを計算する。
 具体的には、アンテナ速度・受信機時刻誤差変化量算出部332は、測位対象箇所の速度、及び複数のGPSアンテナ12A、12Bの各々の時刻誤差を未知数とし、測位対象箇所の速度、及び測位対象箇所(車両中心)と各アンテナ設置箇所との、地球上における速度関係を用いて、複数のGPSアンテナ12A、12Bの設置箇所の速度を記述した方程式と、複数のGPSアンテナ12A、12Bの各々により、複数のGPSアンテナ12A、12Bの各々の設置箇所で観測されたドップラー周波数から得られる衛星との相対速度とに基づいて、測位対象箇所の速度、および、各受信機のクロックドリフトを算出する。
Then, as a fourth step, the antenna speed/receiver time error change amount calculation unit 332 uses the calculated speed relationship and the acquired satellite information to calculate the speed of the position to be measured on the earth and a plurality of positions. Calculate the clock drift for each receiver of the GPS antenna.
Specifically, the antenna speed/receiver time error change amount calculation unit 332 sets the speed of the positioning target location and the time error of each of the plurality of GPS antennas 12A and 12B as unknowns, and determines the speed of the positioning target location and the positioning. Using the speed relationship on the earth between the target location (vehicle center) and each antenna installation location, an equation describing the speed of the installation location of the plurality of GPS antennas 12A, 12B and each of the plurality of GPS antennas 12A, 12B According to the above, the velocity of the positioning target location and the clock drift of each receiver are calculated based on the relative velocity with the satellite obtained from the Doppler frequency observed at each installation location of the plurality of GPS antennas 12A and 12B. ..
 より具体的には、測位対象箇所のECEF座標系における3次元速度ベクトル(Vx,Vy,Vz)、および、2台の受信機14A、14Bのクロックバイアスの変化量であるクロックドリフトの合計5個を未知数とし、各GPSアンテナ12A、12Bの設置箇所のECEF座標系における3次元速度ベクトルをG(Vx,Vy,Vz)、およびG(Vx,Vy,Vz)とした上で、周知の方法(例えば、1台のGPSアンテナによる速度算出)と同様に、各GPSアンテナ12A、12B毎及び衛星毎に式(7)を立式することにより(ここでは、GPSアンテナ12Aについてのみ記載。GPSアンテナ12Bについても同様)、GPSアンテナ12A、12Bの合計5個以上の衛星による観測結果を用いて、測位対象箇所の速度(Vx,Vy,Vz)を算出する。1台のGPSアンテナによる速度算出の一例は、文献(Y. Kojima, “Proposal for a new localization method using tightly coupled integration based on a precise estimation of trajectory from GPS Doppler", Proceedings of AVEC2010, Laughborough UK, 2010.)に記載された技術が挙げられる。なお、設置されたGPSアンテナがN個である場合には、合計(N+3)個以上の衛星による観測結果を用いて、測位対象箇所の速度(Vx,Vy,Vz)、およびクロックドリフトを算出する。 More specifically, the three-dimensional velocity vector (Vx, Vy, Vz) in the ECEF coordinate system of the position to be positioned and a total of five clock drifts, which are changes in the clock bias of the two receivers 14A and 14B, are included. Is an unknown number, and the three-dimensional velocity vector in the ECEF coordinate system at the installation location of each GPS antenna 12A, 12B is G A (Vx, Vy, Vz) and G B (Vx, Vy, Vz) Similar to the method (for example, speed calculation by one GPS antenna), formula (7) is established for each GPS antenna 12A, 12B and each satellite (here, only the GPS antenna 12A is described. The same applies to the antenna 12B), and the velocities (Vx, Vy, Vz) of the position to be positioned are calculated using the observation results of a total of five or more satellites of the GPS antennas 12A and 12B. An example of velocity calculation using one GPS antenna is described in Y. Kojima, "Proposal for a new localization method using tightly coupled integration based on a precise estimation of trajectory from GPS Doppler", Proceedings of AVEC2010, Laughborough UK, 2010. ). When the number of GPS antennas installed is N, the velocity (Vx, Vy, Vz) and the clock drift of the position to be measured are calculated using the observation results from a total of (N+3) or more satellites. ..
Figure JPOXMLDOC01-appb-M000009

・・・(7)
Figure JPOXMLDOC01-appb-M000009

...(7)
 ここで、GPSアンテナ12Aの速度は以下の式で表される。
Figure JPOXMLDOC01-appb-I000010
Here, the speed of the GPS antenna 12A is represented by the following formula.
Figure JPOXMLDOC01-appb-I000010
 また、(Vx,Vy,Vz)は測位対象箇所の速度であり、Cbvは、GPSアンテナ12Aの受信機14Aのクロックドリフト[m/s](光速をかけて速度に換算したもの)である。(x,y,z)は、GPSアンテナ12Aの位置である。また、Dは、衛星iについて観測されたドップラー周波数[Hz]であり、(Xsi,Ysi,Zsi)は、衛星iの位置であり、rは、以下の式で表わされる。
Figure JPOXMLDOC01-appb-I000011
Further, (Vx, Vy, Vz) is the velocity of the position to be measured, and Cbv A is the clock drift [m/s] (converted to the velocity by multiplying the speed of light) of the receiver 14A of the GPS antenna 12A. .. (X A , y A , z A ) is the position of the GPS antenna 12A. Further, D i is the Doppler frequency [Hz] observed for the satellite i, (X si , Y si , Z si ) is the position of the satellite i, and r i is represented by the following formula.
Figure JPOXMLDOC01-appb-I000011
 また、fは、搬送波周波数(1575.42×106)[Hz]であり、Cは光速(2.99792458×108)[m/s]であり、(Vxsi,Vysi,Vzsi)は、衛星iの速度である。 Further, f 1 is the carrier frequency (1575.42×10 6 ) [Hz], C is the speed of light (2.99792458×10 8 ) [m/s], and (V xsi , V ysi , V zsi ) is the satellite i is the speed.
 このように、測位対象箇所とアンテナ設置箇所との速度関係を適切に考慮することにより、測位対象箇所とは異なる位置で観測されたドップラー周波数を用いても、高精度に、測位対象箇所の速度を算出することが可能となる。 In this way, by properly considering the speed relationship between the positioning target location and the antenna installation location, even if the Doppler frequency observed at a position different from the positioning target location is used, the speed of the positioning target location can be accurately measured. Can be calculated.
 次に、アンテナ速度・受信機時刻誤差変化量算出部332は、第5工程として、上述のようにして求めたGPSアンテナの設置箇所と測位対象箇所との速度関係、及び測位対象箇所の位置を用いて、GPSアンテナ12A、12Bの各々の速度を導出する。すなわち、第3工程で算出されたGPSアンテナ12A、12Bの各々の設置箇所と測位対象箇所との速度関係に、第4工程で算出された地球上における測位対象箇所の速度を適用することで、GPSアンテナ12A、12Bの各々の速度を導出する。 Next, the antenna speed/receiver time error change amount calculation unit 332 determines, as a fifth step, the speed relationship between the installation location of the GPS antenna and the positioning target location obtained as described above, and the position of the positioning target location. The respective velocities of the GPS antennas 12A and 12B are derived by using them. That is, by applying the speed of the positioning target point on the earth calculated in the fourth step to the speed relationship between the installation positions of the GPS antennas 12A and 12B and the positioning target position calculated in the third step, The speed of each of the GPS antennas 12A and 12B is derived.
 推定ドップラー周波数算出部334は、電波を受信した全てのGPS衛星のうち、GPSアンテナ12A、12Bで共通に電波を受信した全てのGPS衛星の各々について、GPSアンテナ12A、12B毎に、推定されるドップラー周波数(以下、推定ドップラー周波数という。)を算出する。具体的には、アンテナ速度・受信機時刻誤差変化量算出部332で導出されたGPSアンテナ12A、12Bの各々の速度、および受信機14A、14Bの各々のクロックドリフトを、式(7)に代入することにより、GPSアンテナ12A、12B毎に推定ドップラー周波数を算出する。 The estimated Doppler frequency calculation unit 334 estimates the GPS antennas 12A and 12B for all the GPS satellites that commonly receive the radio waves among the GPS satellites that have received the radio waves. The Doppler frequency (hereinafter referred to as the estimated Doppler frequency) is calculated. Specifically, the respective speeds of the GPS antennas 12A and 12B and the clock drifts of the receivers 14A and 14B derived by the antenna speed/receiver time error change amount calculation unit 332 are substituted into the equation (7). By doing so, the estimated Doppler frequency is calculated for each of the GPS antennas 12A and 12B.
 ドップラー周波数残差算出部335は、GPSアンテナ12A、12B毎に、観測されたドップラー周波数(以下、観測ドップラー周波数という。)と、推定された推定ドップラー周波数との差分(以下、ドップラー周波数残差という。)を算出する。具体的には、電波を受信した全てのGPS衛星のうち、GPSアンテナ12A、12Bで共通に電波を受信した全てのGPS衛星の各々について、GPSアンテナ12A、12B毎に、式(8)により、ドップラー周波数の残差を算出する。
 
(ドップラー周波数残差)=|(観測ドップラー周波数)-(推定ドップラー周波数)|
                                  ・・・(8)
 
The Doppler frequency residual calculation unit 335, for each of the GPS antennas 12A and 12B, the difference between the observed Doppler frequency (hereinafter referred to as the observed Doppler frequency) and the estimated estimated Doppler frequency (hereinafter referred to as the Doppler frequency residual). .) is calculated. Specifically, among all the GPS satellites that have received the radio waves, for each of all the GPS satellites that commonly receive the radio waves with the GPS antennas 12A and 12B, for each of the GPS antennas 12A and 12B, using the formula (8), Calculate the residual of the Doppler frequency.

(Residual Doppler frequency) = | (Observed Doppler frequency)-(Estimated Doppler frequency) |
...(8)
 除外衛星判別部337は、ドップラー周波数残差算出部335で算出された全GPS衛星各々のGPSアンテナ12A、12Bのドップラー周波数残差の差に基づいて、自車両の速度を推定する際に使用するGPS衛星とから除外する除外対象のGPS衛星を判別する。具体的には、除外衛星判別部337は、GPSアンテナ12A、12Bで共通に電波を受信した全てのGPS衛星の各々について、ドップラー周波数残差算出部335で算出された、GPSアンテナ12Aのドップラー周波数残差と、GPSアンテナ12Bのドップラー周波数残差との差分(以下、ドップラー周波数残差の差という。)を計算する。そして、GPS衛星毎に計算されたドップラー周波数残差の差の絶対値が閾値以上となるGPSアンテナのGPS衛星を、共通に電波を受信した全てのGPS衛星から除外する除外対象のGPS衛星として判別する。このようにして、測位対象箇所と各GNSSアンテナ設置箇所との速度関係を適切に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することが可能となる。 The excluded satellite discriminating unit 337 is used when estimating the speed of the vehicle based on the difference between the Doppler frequency residuals of the GPS antennas 12A and 12B of all the GPS satellites calculated by the Doppler frequency residual calculating unit 335. The exclusion target GPS satellites to be excluded from the GPS satellites are determined. Specifically, the excluded satellite determination unit 337 calculates the Doppler frequency of the GPS antenna 12A calculated by the Doppler frequency residual calculation unit 335 for each of all the GPS satellites commonly receiving radio waves by the GPS antennas 12A and 12B. The difference between the residual and the Doppler frequency residual of the GPS antenna 12B (hereinafter referred to as the difference of the Doppler frequency residual) is calculated. Then, the GPS satellite of the GPS antenna whose absolute value of the difference between the Doppler frequency residuals calculated for each GPS satellite is greater than or equal to a threshold is determined as an exclusion target GPS satellite to be excluded from all the GPS satellites that have received radio waves in common. To do. In this way, the satellite affected by the multipath error can be excluded in advance by properly considering the speed relationship between the positioning target location and each GNSS antenna installation location.
 速度導出部340は、GPS衛星の情報を用いて地球上における測位対象箇所の速度を導出する。具体的には、例えば、除外対象のGPS衛星を除くGPS衛星からの衛星情報を用いて、測位対象箇所の速度を算出する。なお、速度導出部340における測位対象箇所の速度の導出は、例えば、アンテナ速度・受信機時刻誤差変化量算出部332における第1工程から第4工程による算出と同様の処理によって導出可能であるため、詳細な説明を省略する。 The speed deriving unit 340 derives the speed of the position to be measured on the earth using the information of the GPS satellites. Specifically, for example, satellite information from GPS satellites other than the exclusion-targeted GPS satellites is used to calculate the speed of the positioning target location. Note that the speed of the positioning target location in the speed deriving unit 340 can be derived by, for example, the same processing as the calculation in the first to fourth steps in the antenna speed/receiver time error change amount calculating unit 332. , Detailed description is omitted.
 以上のようにして、測位対象箇所と各GNSSアンテナ設置箇所との速度関係を適切に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することで、誤差の少ない衛星からの衛星情報のみを用いて、高精度に、測位対象箇所の位置、および速度の算出が可能となる。 As described above, by appropriately considering the speed relationship between the location to be positioned and each GNSS antenna installation location, satellites affected by the multipath error are excluded in advance, so that satellites from satellites with less error are It is possible to calculate the position and speed of the position to be measured with high accuracy using only the information.
 次に、第3の実施形態に係る速度測定装置310の作用について説明する。
 図11に、速度測定装置における衛星選択装置318のコンピュータにおける衛星選択処理ルーチンの内容の一例を示す。
Next, the operation of the speed measuring device 310 according to the third embodiment will be described.
FIG. 11 shows an example of the contents of the satellite selection processing routine in the computer of the satellite selection device 318 in the speed measurement device.
 姿勢角センサ16によって地磁気を検出し、ジャイロセンサ316によって角加速度を検出すると共に、GPSアンテナ12A、12B、受信機14A、14Bによって、複数のGPS衛星から電波を受信しているときに、衛星選択装置318のコンピュータ330において、図11に示す速度測定処理ルーチンが繰り返し実行される。 The attitude angle sensor 16 detects the geomagnetism, the gyro sensor 316 detects the angular acceleration, and the GPS antennas 12A, 12B and the receivers 14A, 14B select satellites while receiving radio waves from a plurality of GPS satellites. In the computer 330 of the device 318, the speed measurement processing routine shown in FIG. 11 is repeatedly executed.
 ステップS300で、GPS受信機14A、14Bから複数のGPS衛星の情報を取得すると共に、複数のGPS衛星のGPS疑似距離データ、ドップラー周波数、GPS衛星の位置座標を算出して取得する。同一時刻に取得された複数のGPS衛星分のGPS情報を、GPS情報群として取得する。 In step S300, information on a plurality of GPS satellites is acquired from the GPS receivers 14A and 14B, and GPS pseudo range data, Doppler frequency, and position coordinates of the GPS satellites of the plurality of GPS satellites are calculated and acquired. GPS information for a plurality of GPS satellites acquired at the same time is acquired as a GPS information group.
 次に、ステップS302で、GPSアンテナ12A、12Bの各々の設置箇所の速度を算出する。具体的には、第1段階で、ジャイロセンサ316の検出値を用いることにより、当該時刻の自車両の角速度を算出し、第2段階で、姿勢角センサ16の検出値から自車両の姿勢角を算出する。次の第3段階で、GPSアンテナ12A、12Bの各々について、地球上におけるGPSアンテナの設置箇所と、測位対象箇所との速度関係を計算する。次の第4段階で、計算された速度関係と、取得した衛星情報とを用いて、地球上における測位対象箇所の速度を計算する。また、GPSアンテナ12A、12Bの各々の受信機14A、14Bのクロックドリフトを計算する。そして、第5段階で、求めたGPSアンテナの設置箇所と測位対象箇所との速度関係、及び測位対象箇所の位置を用いて、GPSアンテナ12A、12Bの各々の速度を導出する。 Next, in step S302, the speed of each installation location of the GPS antennas 12A and 12B is calculated. Specifically, in the first stage, the detected value of the gyro sensor 316 is used to calculate the angular velocity of the own vehicle at the time, and in the second stage, the detected value of the posture angle sensor 16 is used to determine the attitude angle of the own vehicle. To calculate. In the next third step, for each of the GPS antennas 12A and 12B, the speed relationship between the location on the earth where the GPS antenna is installed and the location to be measured is calculated. In the next fourth step, the velocity of the location on the earth is calculated using the calculated velocity relationship and the acquired satellite information. Moreover, the clock drift of each receiver 14A, 14B of GPS antenna 12A, 12B is calculated. Then, in a fifth step, the speed of each of the GPS antennas 12A and 12B is derived using the speed relationship between the installation location of the GPS antenna and the positioning target location and the position of the positioning target location that have been obtained.
 そして、GPS情報群、GPSアンテナ12A、12Bの各々の位置、及びGPSアンテナ12A、12Bに対応する各々の受信機14A、14Bのクロックドリフトに基づいて、共通に受信しているGPS衛星のうち、除外対象のGPS衛星を設定する。 Then, based on the GPS information group, the positions of the GPS antennas 12A and 12B, and the clock drift of the receivers 14A and 14B corresponding to the GPS antennas 12A and 12B, among the commonly received GPS satellites, Set the excluded GPS satellites.
 具体的には、ステップS306で、複数のGPSアンテナ12A、12BにおいてGPS衛星からの電波を共通に受信している全てのGPS衛星(例えばn個)のうち何れか1つのGPS衛星(i=1)を設定し、次のステップS308で、ステップS304において導出されたGPSアンテナ12A、12Bの各々の速度、および受信機14A、14Bの各々のクロックドリフトを用いて、GPSアンテナ12A、12Bの各々の推定ドップラー周波数を算出する。次にステップS310では、GPSアンテナ12A、12B毎に、観測されたドップラー周波数である観測ドップラー周波数からステップS308で算出された推定ドップラー周波数を減算した絶対値を算出することで、ドップラー周波数の残差を算出する(式(8)参照)。 Specifically, in step S306, one of the GPS satellites (i.e., n) of all the GPS satellites (e.g., n) that commonly receive radio waves from the GPS satellites in the plurality of GPS antennas 12A and 12B is used (i=1 ) Is set, and in the next step S308, the velocity of each of the GPS antennas 12A and 12B derived in step S304 and the clock drift of each of the receivers 14A and 14B are used to determine the GPS antennas 12A and 12B. Calculate the estimated Doppler frequency. Next, in step S310, the residual value of the Doppler frequency is calculated by subtracting the estimated Doppler frequency calculated in step S308 from the observed Doppler frequency that is the observed Doppler frequency for each GPS antenna 12A, 12B. Is calculated (see equation (8)).
 次のステップS312では、該当するGPS衛星について算出されたGPSアンテナ12Aのドップラー周波数の残差と、GPSアンテナ12Bのドップラー^周波数の残差との差分であるドップラー周波数残差の差を計算する。そして、次のステップS314では、ドップラー周波数残差の差の絶対値が閾値以上か否かを判断し、肯定判断の場合は、ステップS316で、現在設定されているGPSアンテナのGPS衛星を、共通に電波を受信した全てのGPS衛星から除外する除外対象のGPS衛星として設定し、出力部20により出力する。これによって、測位対象箇所と各GNSSアンテナ設置箇所との位置関係や速度関係を適切に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することが可能となる。 In the next step S312, the difference of the Doppler frequency residual, which is the difference between the residual of the Doppler frequency of the GPS antenna 12A calculated for the corresponding GPS satellite and the residual of the Doppler frequency of the GPS antenna 12B, is calculated. Then, in the next step S314, it is determined whether or not the absolute value of the difference between the Doppler frequency residuals is equal to or more than a threshold value. If the determination is affirmative, in step S316, the GPS satellite of the currently set GPS antenna It is set as an exclusion target GPS satellite to be excluded from all GPS satellites that have received the radio wave, and is output by the output unit 20. This makes it possible to exclude in advance the satellites affected by the multipath error by appropriately considering the positional relationship and speed relationship between the positioning target location and each GNSS antenna installation location.
 一方、ステップS314で否定判断の場合は、ステップS318へ処理を移行する。ステップS318では、上記処理を未実行のGPS衛星が残存するか否かを判別することで、全GPS衛星に対して上記処理が終了した(i≧n)かを判断する。上記処理を未実行のGPS衛星が残存する場合は、ステップS318で否定され、ステップS320で、次のGPS衛星(i=i+1)を設定した後に、上記ステップS308へ戻る。一方、全てのGPS衛星について上記処理の実行が終了した場合は、ステップS318で肯定され、上記ステップS300へ戻る。 On the other hand, in the case of negative determination in step S314, the process proceeds to step S318. In step S318, it is determined whether or not the above processing has been completed (i≧n) for all GPS satellites by determining whether or not the GPS satellites for which the above processing has not been executed remain. If there are remaining GPS satellites for which the above processing has not been executed, the determination is negative in step S318, the next GPS satellite (i=i+1) is set in step S320, and the process returns to step S308. On the other hand, when the execution of the above processing is completed for all the GPS satellites, the affirmative answer is obtained in step S318, and the process returns to step S300.
 本実施形態に係る速度測定装置310では、上記のようにして、除外対象のGPS衛星が選択されると、速度導出部340は、選択された除外対象のGPS衛星を除くGPS衛星からの衛星情報を用いて、測位対象箇所の速度を算出する。これによって、車両における複数のGPSアンテナの設置箇所とは異なる測位対象箇所について、マルチパス誤差の影響を受けたと推定されるGPS衛星を事前に除外することで、地球上の速度を精度よく計算することができる。 In the speed measurement device 310 according to the present embodiment, when the exclusion target GPS satellites are selected as described above, the speed derivation unit 340 causes the satellite information from the GPS satellites other than the selected exclusion target GPS satellites. Is used to calculate the speed of the position to be measured. Accordingly, the GPS satellite estimated to have been affected by the multipath error is excluded in advance from the positioning target position different from the position where the plurality of GPS antennas are installed in the vehicle, thereby accurately calculating the speed on the earth. be able to.
 以上説明したように、第3の実施形態に係る速度測定装置によれば、衛星選択装置318によって、測位対象箇所と各GPSアンテナ設置箇所との速度関係を適切に考慮して、マルチパス誤差の影響を受けたと推定されるGPS衛星を事前に除外することにより、車両における測位対象箇所について、地球上の速度を精度よく計算することができる。 As described above, according to the speed measurement device according to the third embodiment, the satellite selection device 318 appropriately considers the speed relationship between the position to be positioned and each GPS antenna installation position to reduce the multipath error. By preliminarily excluding GPS satellites that are estimated to have been affected, it is possible to accurately calculate the speed of the earth on the position of the positioning target in the vehicle.
<第4の実施形態>
 次に、第4の実施形態について説明する。なお、第4の実施形態の速度測定装置について、第3の実施形態の速度測定装置310と同一の構成については、同一の符号を付して説明を省略する。
<Fourth Embodiment>
Next, a fourth embodiment will be described. In addition, about the speed measuring apparatus of 4th Embodiment, the same structure as the speed measuring apparatus 310 of 3rd Embodiment is attached|subjected the same code|symbol, and description is abbreviate|omitted.
 第4の実施形態では、算出される受信機各々のクロックドリフトの信頼度が高い場合にのみ、マルチパス誤差の影響を受けたと推定されるGPS衛星を事前に除外する点が、第3の実施形態と主に異なっている。 In the fourth embodiment, the third embodiment is that the GPS satellites estimated to be affected by the multipath error are excluded in advance only when the calculated reliability of the clock drift of each receiver is high. The form is mainly different.
 図12に、第4の実施形態に係る速度測定装置の構成の一例を示す。
 図12に示すように、第4の実施形態に係る速度測定装置410における衛星選択装置418のコンピュータ430は、衛星情報取得部31と、アンテナ速度・受信機時刻誤差変化量算出部332と、推定ドップラー周波数算出部334と、ドップラー周波数残差算出部335と、受信機クロックドリフト信頼度判定部436と、除外衛星判別部437を備えている。受信機クロックドリフト信頼度判定部436は、本開示の信頼度判定部の一例である。
FIG. 12 shows an example of the configuration of the speed measuring device according to the fourth embodiment.
As illustrated in FIG. 12, the computer 430 of the satellite selection device 418 in the speed measurement device 410 according to the fourth embodiment includes a satellite information acquisition unit 31, an antenna speed/receiver time error change amount calculation unit 332, and an estimation. A Doppler frequency calculation unit 334, a Doppler frequency residual calculation unit 335, a receiver clock drift reliability determination unit 436, and an excluded satellite determination unit 437 are provided. The receiver clock drift reliability determination unit 436 is an example of the reliability determination unit of the present disclosure.
 受信機クロックドリフト信頼度判定部436は、アンテナ速度・受信機時刻誤差変化量算出部332によって算出された受信機のクロックドリフトの信頼度を判定する。具体的には、GPSアンテナにおけるドップラー周波数残差の変動に応じて受信機のクロックドリフトの信頼度を判定すればよい。例えば、受信機のクロックドリフトに誤りが生じた場合、全GPS衛星の各々のドップラー周波数残差に対して共通に影響する。このため、全GPS衛星についてのドップラー周波数残差が一定以上大きくなっているということは、当該受信機のクロックドリフトの算出が誤っている可能性は高い、すなわち、信頼度が低いと考えられる。一方、全GPS衛星についてのドップラー周波数の残差が一定未満であることは、当該受信機のクロックドリフトの算出が誤っている可能性は低い、すなわち、信頼度が高いと考えられる。 The receiver clock drift reliability determination unit 436 determines the reliability of the receiver clock drift calculated by the antenna speed/receiver time error change amount calculation unit 332. Specifically, the reliability of the clock drift of the receiver may be determined according to the fluctuation of the Doppler frequency residual in the GPS antenna. For example, if an error occurs in the clock drift of the receiver, it commonly affects the Doppler frequency residuals of all GPS satellites. For this reason, the fact that the Doppler frequency residuals for all GPS satellites are larger than a certain level indicates that there is a high possibility that the clock drift of the receiver is incorrectly calculated, that is, the reliability is low. On the other hand, if the residuals of the Doppler frequencies for all GPS satellites are less than a certain value, it is considered that there is little possibility that the calculation of the clock drift of the receiver is wrong, that is, the reliability is high.
 より具体的には、受信機クロックドリフト信頼度判定部436は、ドップラー周波数残差算出部335で算出されたドップラー周波数残差を用いて、GPSアンテナ12A、12Bで共通に受信している全てのGPS衛星について、各GPSアンテナ毎に、ドップラー周波数の残差を算出する。次に、共通に受信している全てのGPS衛星について、一方のGPSアンテナのドップラー周波数の残差が、他方のGPSアンテナのドップラー周波数の残差より予め定めた閾値以上大きい場合は、ドップラー周波数の残差が大きい方のGPSアンテナに接続されている受信機のクロックドリフトの信頼度が低いと判定する。これは、受信機のクロックドリフトの算出の誤りは、共通に受信している全てのGPS衛星各々のドップラー周波数の残差に対して共通に影響するため、全てのGPS衛星についての疑似距離残差が一定以上大きくなっているということは、当該受信機のクロックドリフトの算出が誤っている可能性が高いと考えられるためである。また、一方のGPSアンテナのドップラー周波数の残差が、他方のGPSアンテナのドップラー周波数の残差に対して閾値未満の場合は、当該GPSアンテナに接続されている受信機のクロックドリフトの信頼度が高いと判定する。 More specifically, the receiver clock drift reliability determination unit 436 uses the Doppler frequency residual calculated by the Doppler frequency residual calculation unit 335 and uses the Doppler frequency residual calculated by the GPS antennas 12A and 12B for all common reception. For GPS satellites, the residual Doppler frequency is calculated for each GPS antenna. Next, for all commonly received GPS satellites, if the residual of the Doppler frequency of one GPS antenna is larger than the residual of the Doppler frequency of the other GPS antenna by a predetermined threshold value or more, It is determined that the reliability of the clock drift of the receiver connected to the GPS antenna with the larger residual is low. This is because the calculation error of the clock drift of the receiver has a common effect on the residuals of the Doppler frequencies of all the GPS satellites that are commonly received, and thus the pseudorange residuals of all the GPS satellites. Is larger than a certain amount because it is considered that there is a high possibility that the calculation of the clock drift of the receiver is incorrect. When the residual of the Doppler frequency of one GPS antenna is less than the threshold with respect to the residual of the Doppler frequency of the other GPS antenna, the reliability of the clock drift of the receiver connected to the GPS antenna is high. Judge as high.
 除外衛星判別部437は、受信機クロックドリフト信頼度判定部436によって判定された受信機のクロックドリフトの信頼度に基づいて、ドップラー周波数残差算出部335で算出された全GPS衛星各々のGPSアンテナ12A、12Bのドップラー周波数残差の差から自車両の速度を推定する際に使用するGPS衛星とから除外する除外対象のGPS衛星を判別する。 The excluded satellite discriminating unit 437 uses the GPS antenna of each GPS satellite calculated by the Doppler frequency residual calculating unit 335 based on the reliability of the clock drift of the receiver determined by the receiver clock drift reliability determining unit 436. From the difference between the Doppler frequency residuals of 12A and 12B, the GPS satellites to be excluded from the GPS satellites used when estimating the speed of the vehicle are determined.
 具体的には、全てのGPS衛星についてのドップラー周波数残差が閾値未満で、受信機クロックドリフト信頼度判定部436によって受信機のクロックドリフトの信頼度が高いと判定された場合には、上記第3の実施形態と同様に、全GPS衛星各々のGPSアンテナ12A、12Bのドップラー周波数残差の差に基づいて、除外対象のGPS衛星を判別する。 Specifically, when the Doppler frequency residuals for all GPS satellites are less than the threshold value and the receiver clock drift reliability determination unit 436 determines that the reliability of the clock drift of the receiver is high, Similar to the third embodiment, the exclusion-targeted GPS satellite is determined based on the difference between the Doppler frequency residuals of the GPS antennas 12A and 12B of all the GPS satellites.
 一方、全てのGPS衛星についてのドップラー周波数残差が閾値以上で、受信機クロックドリフト信頼度判定部436によって受信機のクロックドリフトの信頼度が低いと判定された場合には、除外対象のGPS衛星を判別することを実施しない。例えば、GPSアンテナ12A、12Bの何れのGPSアンテナで受信されたGPS衛星を、除外対象のGPS衛星することなく出力する。 On the other hand, when the Doppler frequency residuals for all GPS satellites are equal to or greater than the threshold and the receiver clock drift reliability determination unit 436 determines that the reliability of the receiver clock drift is low, the exclusion target GPS satellites Is not performed. For example, the GPS satellites received by any of the GPS antennas 12A and 12B are output without being excluded from the GPS satellites.
 このように、GPSアンテナ12A、12Bの各々の受信機ともに、クロックドリフトの信頼度が高いと判定された場合についてのみ、上記第3実施形態と同様の衛星選択を行う。これによって、全てのGPS衛星についてのドップラー周波数残差に基づき判定された受信機のクロックドリフトの信頼度に考慮して、マルチパス誤差の影響を受けた衛星を事前に除外することが可能となる。 As described above, only when it is determined that the reliability of the clock drift is high in both the receivers of the GPS antennas 12A and 12B, the satellite selection similar to the third embodiment is performed. This makes it possible to exclude in advance the satellites affected by the multipath error in consideration of the reliability of the receiver clock drift determined based on the Doppler frequency residuals for all GPS satellites. ..
 なお、第4の実施形態に係る速度測定装置410の他の構成及び作用については、第2の実施形態、第3の実施形態と同様であるため、説明を省略する。 Note that other configurations and operations of the speed measurement device 410 according to the fourth embodiment are the same as those of the second and third embodiments, and thus description thereof will be omitted.
 以上説明したように、第4の実施形態に係る速度測定装置によれば、検出された自車両の受信機のクロックドリフトの信頼度が高い場合にのみ、地球上における測位対象箇所の速度を計算することにより、測位対象箇所について、地球上の速度を安定して計算することができる。 As described above, according to the speed measuring device according to the fourth embodiment, the speed of the positioning target point on the earth is calculated only when the reliability of the detected clock drift of the receiver of the own vehicle is high. By doing so, the speed on the earth can be stably calculated for the position to be measured.
 なお、上記の実施形態において、車両に搭載される測位装置又は速度測定装置に、本開示の技術を適用する場合を例に説明したが、本開示の測位装置又は速度測定装置が搭載される移動体は車両に限定されない。例えば、測位装置又は速度測定装置をロボットに搭載してもよい。 In the above embodiment, the case where the technology of the present disclosure is applied to the positioning device or the speed measuring device mounted on the vehicle has been described as an example, but the positioning device or the speed measuring device of the present disclosure is mounted on the mobile device. The body is not limited to a vehicle. For example, the positioning device or the speed measuring device may be mounted on the robot.
 また、上記の実施形態では、車両に搭載される測位装置又は速度測定装置に、本開示の技術を適用する場合を例に説明したが、本開示の測位装置および速度測定装置を搭載し、測位および速度を導出する場合に本開示の技術を適用してもよい。 Further, in the above embodiment, the case where the technology of the present disclosure is applied to the positioning device or the speed measuring device mounted on the vehicle has been described as an example, but the positioning device and the speed measuring device of the present disclosure are mounted to perform positioning. And the technique of the present disclosure may be applied when deriving the velocity.
 また、衛星航法システムとしてGPSを用いた場合を例に説明したが、他の衛星測位システム(GLONASS,BeiDou,Galileo,QZSS)を用いてもよいし、これらを併用してもよい。 Also, the case where GPS is used as the satellite navigation system has been described as an example, but other satellite positioning systems (GLONASS, BeiDou, Galileo, QZSS) may be used, or these may be used together.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described according to the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than them are also within the scope and spirit of the present disclosure.

Claims (10)

  1.  移動体に設置された複数の衛星アンテナの設置箇所とは異なる前記移動体における測位対象箇所の地球上の位置を計算する測位装置で使用する衛星を選択する衛星選択装置であって、
     複数の衛星の各々から送信された前記複数の衛星の各々の位置に関する情報、及び前記複数の衛星の各々と前記移動体との間の距離に関する情報を含む衛星情報を取得する衛星情報取得部と、
     前記衛星情報取得部で取得された前記衛星情報に基づいて、前記複数の衛星アンテナの各々の設置箇所で観測された、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の距離を示す観測疑似距離情報を導出する観測疑似距離導出部と、
     前記複数の衛星アンテナの各々の設置箇所と前記測位対象箇所との予め定めた位置関係と、前記衛星情報取得部で取得された前記衛星情報とに基づいて、前記複数の衛星の各々と、算出される前記測位対象箇所からの各位置による前記複数の衛星アンテナの各々との間の距離を示す推定疑似距離情報を推定する推定疑似距離算出部と、
     前記複数の衛星の各々について、前記複数の衛星アンテナの衛星アンテナ毎に、前記観測疑似距離導出部で導出された前記観測疑似距離情報と、前記推定疑似距離算出部で推定された前記推定疑似距離情報との残差を導出する残差導出部と、
     前記残差導出部で導出された前記複数の衛星アンテナの各々の前記残差の差分に基づいて、前記使用する衛星から除外する衛星を選択する衛星選択部と、
     を含む衛星選択装置。
    A satellite selection device for selecting a satellite to be used in a positioning device for calculating the position on the earth of a positioning target position in the moving body different from the installation positions of a plurality of satellite antennas installed in the moving body,
    A satellite information acquisition unit for acquiring satellite information including information about the positions of the plurality of satellites transmitted from each of the plurality of satellites and information about a distance between each of the plurality of satellites and the moving body; ,
    Based on the satellite information acquired by the satellite information acquisition unit, between each of the plurality of satellites and each of the plurality of satellite antennas observed at each installation location of the plurality of satellite antennas An observation pseudorange derivation unit that derives observation pseudorange information indicating a distance,
    Based on the predetermined positional relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite information acquired by the satellite information acquisition unit, each of the plurality of satellites, An estimated pseudo distance calculation unit that estimates estimated pseudo distance information indicating the distance between each of the plurality of satellite antennas at each position from the positioning target location,
    For each of the plurality of satellites, for each satellite antenna of the plurality of satellite antennas, the observation pseudorange information derived by the observation pseudorange deriving unit and the estimated pseudorange estimated by the estimated pseudorange calculation unit. A residual derivation unit for deriving a residual with information,
    A satellite selecting unit that selects a satellite to be excluded from the satellites to be used, based on a difference between the residuals of each of the plurality of satellite antennas derived by the residual deriving unit;
    Satellite selection device including.
  2.  前記衛星選択部は、予め定めた閾値以上の前記残差の差分に対応する衛星を、前記使用する衛星から除外する
     請求項1に記載の衛星選択装置。
    The satellite selection device according to claim 1, wherein the satellite selection unit excludes, from the satellites to be used, satellites corresponding to the difference of the residuals equal to or greater than a predetermined threshold.
  3.  前記複数の衛星アンテナの各々の受信機の時刻誤差の各々の信頼度を判定する信頼度判定部をさらに含み、
     前記衛星選択部は、前記信頼度判定部により前記信頼度が高いと判定された場合のみ、前記複数の衛星アンテナの各々の残差の差分に基づいて、前記使用する衛星から除外する衛星を選択する
     請求項1又は請求項2に記載の衛星選択装置。
    Further comprising a reliability determination unit for determining the reliability of each time error of each receiver of the plurality of satellite antennas,
    The satellite selection unit selects a satellite to be excluded from the satellites to be used, based on the difference between the residuals of the plurality of satellite antennas only when the reliability determination unit determines that the reliability is high. The satellite selection device according to claim 1 or 2.
  4.  前記信頼度判定部は、予め定めた所定数の異なる複数の衛星について、前記残差導出部で導出された残差のうち何れか1つの衛星アンテナの残差が、他の衛星アンテナの残差に対して閾値以内の場合に前記受信機の時刻誤差の信頼度が高いと判定する
     請求項3に記載の衛星選択装置。
    The reliability determination unit is configured such that, for a plurality of predetermined number of different satellites, the residual of any one of the residuals derived by the residual deriving unit is the residual of the other satellite antennas. The satellite selection device according to claim 3, wherein it is determined that the reliability of the time error of the receiver is high when the difference is within the threshold.
  5.  移動体に設置された複数の衛星アンテナの設置箇所とは異なる前記移動体における測位対象箇所の地球上の速度を計算する速度測定装置で使用する衛星を選択する衛星選択装置であって、
     複数の衛星の各々から送信された前記複数の衛星の各々の位置に関する情報、及び前記複数の衛星の各々と前記移動体との間の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部と、
     前記衛星情報取得部で取得された前記衛星情報に基づいて、前記複数の衛星アンテナの各々の設置箇所で観測された、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の相対速度を示す観測ドップラー周波数情報を導出する観測ドップラー周波数導出部と、
     前記複数の衛星アンテナの各々の設置箇所と前記測位対象箇所との速度関係と、前記衛星情報取得部で取得された前記衛星情報とに基づいて、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の相対速度を示す推定ドップラー周波数情報を推定する推定ドップラー周波数算出部と、
     前記複数の衛星の各々について、前記複数の衛星アンテナの衛星アンテナ毎に、前記観測ドップラー周波数導出部で導出された前記観測ドップラー周波数情報と、前記推定ドップラー周波数算出部で推定された前記推定ドップラー周波数情報との残差を導出する残差導出部と、
     前記複数の衛星の各々における前記残差導出部で導出された前記複数の衛星アンテナの各々の前記残差の差分に基づいて、複数の衛星から使用する衛星を選択する衛星選択部と、
     を含む衛星選択装置。
    A satellite selection device for selecting a satellite to be used in a speed measurement device for calculating the speed of the earth at a position to be positioned in the moving body different from the installation positions of a plurality of satellite antennas installed in the moving body,
    A satellite information acquisition unit that acquires satellite information including information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites, and information about the relative speed between each of the plurality of satellites and the moving body. When,
    Based on the satellite information acquired by the satellite information acquisition unit, between each of the plurality of satellites and each of the plurality of satellite antennas observed at each installation location of the plurality of satellite antennas An observation Doppler frequency derivation unit that derives observation Doppler frequency information indicating the relative velocity,
    Each of the plurality of satellites and the plurality of satellites based on the velocity relationship between the installation location of each of the plurality of satellite antennas and the positioning target location and the satellite information acquired by the satellite information acquisition unit. An estimated Doppler frequency calculator that estimates estimated Doppler frequency information indicating the relative speed between each of the antennas,
    For each of the plurality of satellites, for each satellite antenna of the plurality of satellite antennas, the observed Doppler frequency information derived by the observed Doppler frequency derivation unit, and the estimated Doppler frequency estimated by the estimated Doppler frequency calculation unit A residual derivation unit for deriving a residual with information,
    A satellite selection unit that selects a satellite to be used from a plurality of satellites based on a difference between the residuals of each of the plurality of satellite antennas derived by the residual derivation unit in each of the plurality of satellites;
    Satellite selection device including.
  6.  前記衛星選択部は、予め定めた閾値以上の前記残差の差分に対応する衛星を、前記使用する衛星から除外する
     請求項5に記載の衛星選択装置。
    The satellite selection device according to claim 5, wherein the satellite selection unit excludes satellites corresponding to the difference of the residuals equal to or more than a predetermined threshold from the satellites to be used.
  7.  前記複数の衛星アンテナの各々の受信機の時刻誤差の変化量の各々の信頼度を判定する信頼度判定部をさらに含み、
     前記衛星選択部は、前記信頼度判定部により前記信頼度が高いと判定された場合のみ、前記複数の衛星アンテナの各々の残差の差分に基づいて、前記使用する衛星から除外する衛星を選択する
     請求項5又は請求項6に記載の衛星選択装置。
    Further comprising a reliability determination unit that determines the reliability of each change amount of the time error of each receiver of the plurality of satellite antennas,
    The satellite selection unit selects a satellite to be excluded from the satellites to be used, based on the difference between the residuals of the plurality of satellite antennas only when the reliability determination unit determines that the reliability is high. The satellite selection device according to claim 5 or 6.
  8.  前記信頼度判定部は、予め定めた所定数の異なる衛星について、前記残差導出部で導出された残差のうち、前記複数の衛星アンテナのうち何れか1つの衛星アンテナの残差が、他の衛星アンテナの残差に対して閾値以内の場合に、前記受信機の時刻誤差の変化量の信頼度が高いと判定する
     請求項7に記載の衛星選択装置。
    Among the residuals derived by the residual deriving unit for the predetermined number of different satellites, the reliability determination unit determines that the residual of any one of the plurality of satellite antennas is The satellite selection device according to claim 7, wherein it is determined that the reliability of the amount of change in the time error of the receiver is high when the residual of the satellite antenna is within a threshold value.
  9.  移動体に設置された複数の衛星アンテナの設置箇所とは異なる前記移動体における測位対象箇所の地球上の位置を計算する測位装置で使用する衛星を選択するためのプログラムであって、
     コンピュータを、
     複数の衛星の各々から送信された前記複数の衛星の各々の位置に関する情報、及び前記複数の衛星の各々と前記移動体との間の距離に関する情報を含む衛星情報を取得する衛星情報取得部、
     前記衛星情報取得部で取得された前記衛星情報に基づいて、前記複数の衛星アンテナの各々の設置箇所で観測された、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の距離を示す観測疑似距離情報を導出する観測疑似距離導出部、
     前記複数の衛星アンテナの各々の設置箇所と前記測位対象箇所との予め定めた位置関係と、前記衛星情報取得部で取得された前記衛星情報とに基づいて、前記複数の衛星の各々と、算出される前記測位対象箇所からの各位置による前記複数の衛星アンテナの各々との間の距離を示す推定疑似距離情報を推定する推定疑似距離算出部、
     前記複数の衛星の各々について、前記複数の衛星アンテナの衛星アンテナ毎に、前記観測疑似距離導出部で導出された前記観測疑似距離情報と、前記推定疑似距離算出部で推定された前記推定疑似距離情報との残差を導出する残差導出部、および、
     前記残差導出部で導出された前記複数の衛星アンテナの各々の前記残差の差分に基づいて、前記使用する衛星から除外する衛星を選択する衛星選択部、
     として機能させるためのプログラム。
    A program for selecting a satellite to be used in a positioning device that calculates a position on the earth of a positioning target position in the moving body different from the installation positions of a plurality of satellite antennas installed in the moving body,
    Computer,
    A satellite information acquisition unit that acquires satellite information including information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites and information about the distance between each of the plurality of satellites and the mobile body,
    Based on the satellite information acquired by the satellite information acquisition unit, between each of the plurality of satellites and each of the plurality of satellite antennas observed at each installation location of the plurality of satellite antennas An observation pseudorange derivation unit that derives observation pseudorange information indicating a distance,
    Based on the predetermined positional relationship between the installation location of each of the plurality of satellite antennas and the positioning target location, and the satellite information acquired by the satellite information acquisition unit, each of the plurality of satellites, An estimated pseudo distance calculation unit that estimates estimated pseudo distance information indicating a distance from each of the plurality of satellite antennas at each position from the positioning target location,
    For each of the plurality of satellites, for each satellite antenna of the plurality of satellite antennas, the observation pseudorange information derived by the observation pseudorange deriving unit and the estimated pseudorange estimated by the estimated pseudorange calculation unit. A residual derivation unit that derives a residual with information, and
    A satellite selection unit that selects a satellite to be excluded from the satellites to be used, based on the difference between the residuals of each of the plurality of satellite antennas derived by the residual derivation unit.
    Program to function as.
  10.  移動体に設置された複数の衛星アンテナの設置箇所とは異なる前記移動体における測位対象箇所の地球上の速度を計算する速度測定装置で使用する衛星を選択するためのプログラムであって、
     コンピュータを、
     複数の衛星の各々から送信された前記複数の衛星の各々の位置に関する情報、及び前記複数の衛星の各々と前記移動体との間の相対速度に関する情報を含む衛星情報を取得する衛星情報取得部、
     前記衛星情報取得部で取得された前記衛星情報に基づいて、前記複数の衛星アンテナの各々の設置箇所で観測された、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の相対速度を示す観測ドップラー周波数情報を導出する観測ドップラー周波数導出部、
     前記複数の衛星アンテナの各々の設置箇所と前記測位対象箇所との速度関係と、前記衛星情報取得部で取得された前記衛星情報とに基づいて、前記複数の衛星の各々と、前記複数の衛星アンテナの各々との間の相対速度を示す推定ドップラー周波数情報を推定する推定ドップラー周波数算出部、
     前記複数の衛星の各々について、前記複数の衛星アンテナの衛星アンテナ毎に、前記観測ドップラー周波数導出部で導出された前記観測ドップラー周波数情報と、前記推定ドップラー周波数算出部で推定された前記推定ドップラー周波数情報との残差を導出する残差導出部、および、
     前記複数の衛星の各々における前記残差導出部で導出された前記複数の衛星アンテナの各々の前記残差の差分に基づいて、複数の衛星から使用する衛星を選択する衛星選択部、
     として機能させるためのプログラム。
    A program for selecting a satellite to be used in a speed measuring device that calculates the speed of the positioning target point on the earth different from the installation location of a plurality of satellite antennas installed on the mobile object,
    Computer,
    A satellite information acquisition unit that acquires satellite information including information about the position of each of the plurality of satellites transmitted from each of the plurality of satellites, and information about the relative speed between each of the plurality of satellites and the moving body. ,
    Based on the satellite information acquired by the satellite information acquisition unit, between each of the plurality of satellites and each of the plurality of satellite antennas observed at each installation location of the plurality of satellite antennas Observation Doppler frequency derivation unit that derives observation Doppler frequency information indicating relative velocity,
    Each of the plurality of satellites and the plurality of satellites based on the velocity relationship between the installation location of each of the plurality of satellite antennas and the positioning target location and the satellite information acquired by the satellite information acquisition unit. An estimated Doppler frequency calculator that estimates estimated Doppler frequency information indicating the relative speed between each of the antennas,
    For each of the plurality of satellites, for each satellite antenna of the plurality of satellite antennas, the observed Doppler frequency information derived by the observed Doppler frequency derivation unit, and the estimated Doppler frequency estimated by the estimated Doppler frequency calculation unit A residual derivation unit that derives a residual with information, and
    A satellite selection unit that selects a satellite to be used from a plurality of satellites based on a difference between the residuals of each of the plurality of satellite antennas derived by the residual derivation unit in each of the plurality of satellites,
    Program to function as.
PCT/JP2019/045961 2019-01-15 2019-11-25 Satellite selection device and program WO2020149014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019004691A JP7111298B2 (en) 2019-01-15 2019-01-15 Satellite selection device and program
JP2019-004691 2019-01-15

Publications (1)

Publication Number Publication Date
WO2020149014A1 true WO2020149014A1 (en) 2020-07-23

Family

ID=71613272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045961 WO2020149014A1 (en) 2019-01-15 2019-11-25 Satellite selection device and program

Country Status (2)

Country Link
JP (1) JP7111298B2 (en)
WO (1) WO2020149014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11442173B2 (en) * 2019-01-30 2022-09-13 Mitsubishi Electric Research Laboratories, Inc. GNSS-based timing synchronization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135683A1 (en) * 2022-01-12 2023-07-20 日本電信電話株式会社 Satellite signal receiving device, satellite signal selection method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151725A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Gnss receiving apparatus and positioning method
JP2014153085A (en) * 2013-02-05 2014-08-25 Railway Technical Research Institute Vehicle position measuring method and vehicle position measuring system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766341B2 (en) * 2014-11-13 2017-09-19 Novatel Inc. GNSS positioning system employing a reconfigurable antenna subsystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151725A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Gnss receiving apparatus and positioning method
JP2014153085A (en) * 2013-02-05 2014-08-25 Railway Technical Research Institute Vehicle position measuring method and vehicle position measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11442173B2 (en) * 2019-01-30 2022-09-13 Mitsubishi Electric Research Laboratories, Inc. GNSS-based timing synchronization

Also Published As

Publication number Publication date
JP7111298B2 (en) 2022-08-02
JP2020112494A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP5673071B2 (en) Position estimation apparatus and program
JP4781313B2 (en) Multipath detection device, positioning device, posture orientation determination device, multipath detection method, and multipath detection program
EP1253439B1 (en) Apparatus and method for determining positioning error range
EP2816374B1 (en) Vehicle positioning in high-reflection environments
CN110133700B (en) Shipborne integrated navigation positioning method
JP2012203721A (en) Relative position estimation device and program
JP2014077769A (en) Sensor tilt determination device and program
JP2010256301A (en) Multipath determination device and program
WO2020149014A1 (en) Satellite selection device and program
JP5879977B2 (en) Speed estimation apparatus and program
JP2012098185A (en) Azimuth angle estimation device and program
US20210286084A1 (en) Positioning device, speed measuring device, and computer program product
JP2008051572A (en) Navigation apparatus, method therefor, and program therefor
JP2011163817A (en) Positioning apparatus and program
JP7148039B2 (en) Mobile object information estimation device and program
JP5994237B2 (en) Positioning device and program
CN116626726A (en) Method for determining integrity information on a GNSS-based positioning of a vehicle
JP2010112759A (en) Mobile body positioning apparatus
JP2010145178A (en) Moving body position specification device
JP7140443B2 (en) Antenna relative position estimation method and antenna relative position estimation program
JP2023548513A (en) Method for evaluating at least one GNSS satellite signal by ambiguity resolution
JP2014153113A (en) Velocity estimation device and program
JP2010054243A (en) Positioning apparatus and program
CN110850459A (en) Accurate positioning method for seamless connection of indoor and outdoor environments of pedestrian positioning navigation system
KR101061965B1 (en) Method for performance enhancement of gps carrier phase ambiguity resolution in weak signal environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910122

Country of ref document: EP

Kind code of ref document: A1