JP2007271111A - Glass lining multitubular heat exchanger - Google Patents

Glass lining multitubular heat exchanger Download PDF

Info

Publication number
JP2007271111A
JP2007271111A JP2006094223A JP2006094223A JP2007271111A JP 2007271111 A JP2007271111 A JP 2007271111A JP 2006094223 A JP2006094223 A JP 2006094223A JP 2006094223 A JP2006094223 A JP 2006094223A JP 2007271111 A JP2007271111 A JP 2007271111A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
gap
glass
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006094223A
Other languages
Japanese (ja)
Other versions
JP4567626B2 (en
Inventor
Hiroyoshi Tokuoka
洋由 徳岡
Takahiko Nakamura
隆彦 中村
Shingo Torio
眞吾 鳥生
Takehito Sakahara
岳人 坂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2006094223A priority Critical patent/JP4567626B2/en
Publication of JP2007271111A publication Critical patent/JP2007271111A/en
Application granted granted Critical
Publication of JP4567626B2 publication Critical patent/JP4567626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent separation of a glass lining layer caused by freezing of the water accumulated in a clearance between a heat transfer tube and a metallic tube sheet, in a glass lining heat exchanger having the heat transfer rube provided with glass lining on its inner face. <P>SOLUTION: In this glass lining heat exchanger where a number of heat transfer tubes are arranged and welded to the metallic tube sheet at end portions, a filler not dissolved in the water and a heat medium and not corroded by the water and the heat medium is filled in a clearance portion between the end portions of the welded heat transfer tubes and the metallic tube sheet. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内面にグラスライニングが施された伝熱管を配置してなるグラスライニング製熱交換器であって、グラスライニング層が剥離するのを防止するための改良に関する。   The present invention relates to a glass-lined heat exchanger in which a heat transfer tube having a glass lining on its inner surface is arranged, and relates to an improvement for preventing the glass lining layer from peeling off.

グラスライニング製熱交換器は、その外側を覆う器胴シェルとガラス質内張りヘッドの内部において、多数の伝熱管がその両端を金属管板に一定の間隔で取り付けられて一体化された構造をなしている。そして本件特許出願人も、このようなグラスライニング製の多管式熱交換器に関して、下記特許文献1のような特許出願をなしている。
特開平11−304379号公報
A glass-lined heat exchanger has a structure in which a large number of heat transfer tubes are attached to a metal tube plate at regular intervals inside a shell shell that covers the outside and a vitreous lining head. ing. The present patent applicant has also filed a patent application such as Patent Document 1 below regarding such a glass-lined multi-tube heat exchanger.
Japanese Patent Laid-Open No. 11-304379

このグラスライニング製熱交換器は、その伝熱管の内部へ供給される被熱交換流体に腐食性のあるものが含まれることから、被熱交換流体と接触する伝熱管の内面及び金属管板の外面の全体にわたってグラスライニングが施され、腐食しないようにされている。このグラスライニングが施された伝熱管の金属管板への取り付けは、伝熱管の端部を金属管板に溶接付けすることによりなされる。   In this glass-lined heat exchanger, since the heat exchange fluid supplied to the inside of the heat transfer tube includes a corrosive material, the inner surface of the heat transfer tube in contact with the heat exchange fluid and the metal tube plate Glass lining is applied to the entire outer surface to prevent corrosion. The heat transfer tube to which the glass lining is applied is attached to the metal tube plate by welding the end of the heat transfer tube to the metal tube plate.

このように伝熱管の端部は金属管板に溶接付けされるのであるが、その溶接付けされた端部近傍の内側においては、わずかではあるが伝熱管と金属管板との間にどうしても隙間が生ずることとなる。そして、このようなグラスライニング製熱交換器は、冷媒として水とエチレングリコール等の不凍液を切り替えて用いる場合があり、水や不凍液が上記のような器胴シェル内の伝熱管と金属管板間の隙間に溜まることとなる。   In this way, the end of the heat transfer tube is welded to the metal tube plate, but there is a slight gap between the heat transfer tube and the metal tube plate inside the vicinity of the welded end. Will occur. Such a glass-lined heat exchanger may be used by switching between water and an antifreeze liquid such as ethylene glycol as a refrigerant, and the water or antifreeze liquid may be used between the heat transfer tube and the metal tube plate in the shell shell as described above. Will accumulate in the gap.

しかし、水や不凍液が伝熱管と金属管板間の隙間に溜まること自体は問題はないのであるが、水を冷媒として使用した後に器胴シェル内に0℃以下の不凍液の冷媒を流すと、隙間に溜まった水が凍り、凍った水の体積が膨張することになるので、上記溶接部分に外力がかかり、隙間の近傍に施されたグラスライニング層が剥離するおそれがある。   However, it is not a problem that water or antifreeze liquid accumulates in the gap between the heat transfer tube and the metal tube plate. However, if water of antifreeze liquid of 0 ° C. or less flows through the shell of the shell after using water as a refrigerant, Since the water accumulated in the gap freezes and the volume of the frozen water expands, an external force is applied to the welded portion, and the glass lining layer applied in the vicinity of the gap may be peeled off.

本発明は、このような問題点を解決するためになされたものであって、上記のような伝熱管と金属管板間の隙間に溜まった水が凍ることにより、グラスライニング層が剥離するのを防止することを課題とする。   The present invention has been made to solve such problems, and the glass lining layer is peeled off when the water accumulated in the gap between the heat transfer tube and the metal tube plate is frozen. It is an object to prevent this.

本発明は、このような課題を解決するためになされたもので、請求項1記載の発明は、多数の伝熱管が配置され、その端部で金属管板に溶接付けされてなるグラスライニング製熱交換器であって、前記溶接された伝熱管の端部と金属管板との間隙部に、水及び熱媒体に溶解せず、且つ水や熱媒体によって腐食しない充填剤が充填されていることを特徴とする。また、請求項2記載の発明は、請求項1記載のグラスライニング製多管式熱交換器において、充填剤がエポキシ系合成樹脂であることを特徴とする。   The present invention has been made to solve such problems, and the invention according to claim 1 is a glass-lined product in which a large number of heat transfer tubes are arranged and welded to a metal tube plate at the ends thereof. In the heat exchanger, a gap between the end of the welded heat transfer tube and the metal tube sheet is filled with a filler that does not dissolve in water and the heat medium and does not corrode by water or the heat medium. It is characterized by that. The invention described in claim 2 is the glass-lined multitubular heat exchanger according to claim 1, wherein the filler is an epoxy synthetic resin.

さらに請求項3記載の発明は、多数の伝熱管が配置され、その端部で金属管板に溶接付けされてなるグラスライニング製熱交換器であって、前記溶接された伝熱管の端部と金属管板との間隙部が、0.01mm〜0.2mmに形成されていることを特徴とする。さらに請求項4記載の発明は、多数の伝熱管が配置され、その端部で金属管板に溶接付けされてなるグラスライニング製熱交換器であって、前記溶接された伝熱管の端部と金属管板との間隙部が、0.5mm〜5.0mmに形成されていることを特徴とする。   Furthermore, the invention according to claim 3 is a glass-lined heat exchanger in which a large number of heat transfer tubes are arranged and welded to the metal tube plate at the ends thereof, and the end portions of the welded heat transfer tubes and The gap with the metal tube plate is formed to be 0.01 mm to 0.2 mm. Further, the invention according to claim 4 is a glass-lined heat exchanger in which a large number of heat transfer tubes are arranged and welded to the metal tube plate at the ends thereof, and the end portions of the welded heat transfer tubes and The gap with the metal tube sheet is formed to be 0.5 mm to 5.0 mm.

請求項1記載の発明では、上述のように伝熱管の端部と金属管板との間隙部に、水及び熱媒体に溶解せず、且つ水や熱媒体によって腐食しない充填剤が充填されているため、グラスライニング製熱交換器の内面側を水で洗浄しても、その水が伝熱管と金属管板との間隙部に溜まることがない。従って水が凍ることによるグラスライニング層の剥離という問題も生じないのである。   In the first aspect of the present invention, as described above, the gap between the end of the heat transfer tube and the metal tube plate is filled with the filler that does not dissolve in water and the heat medium and does not corrode by water or the heat medium. Therefore, even if the inner surface side of the glass-lined heat exchanger is washed with water, the water does not collect in the gap between the heat transfer tube and the metal tube plate. Therefore, the problem of peeling of the glass lining layer due to freezing of water does not occur.

また請求項3記載の発明では、伝熱管の端部と金属管板との間隙部が0.2mm以下に形成されているため、その間隙部に溜まった水が仮に凍ったとしても、間隙部が狭いので凍った水の体積膨張も少なく、従ってグラスライニング層を剥離させるほどの外力が生ずることもないのである。   In the invention according to claim 3, since the gap between the end of the heat transfer tube and the metal tube plate is formed to be 0.2 mm or less, even if the water accumulated in the gap is frozen, the gap Therefore, the volume expansion of the frozen water is small, so that no external force enough to peel off the glass lining layer is generated.

さらに請求項4記載の発明は、伝熱管の端部と金属管板との間隙部が、0.5mm以上に形成されているため、間隙部に溜まった水が不凍液との接触により間隙部から出ていくこととなり、従ってグラスライニング層の剥離が好適に防止されることとなるのである。   Furthermore, in the invention described in claim 4, since the gap between the end of the heat transfer tube and the metal tube plate is formed to be 0.5 mm or more, the water accumulated in the gap is separated from the gap by contact with the antifreeze liquid. Therefore, peeling of the glass lining layer is preferably prevented.

以下、本発明の実施形態について、図面に従って説明する。
(実施形態1)
本実施形態のグラスライニング製多管式熱交換器1は、図1に示すように、本体部分としての器胴シェル2を備え、その両側にガラス質内張りヘッド3a、3bを備えている。器胴シェル2に設けられるノズル5は、該器胴シェル2内に連通する熱媒体、すなわち熱媒又は冷媒の入口であり、ノズル6は、熱媒又は冷媒の出口である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
As shown in FIG. 1, the glass-lined multitubular heat exchanger 1 according to the present embodiment includes an instrument shell 2 as a main body portion, and glass vitreous lining heads 3a and 3b on both sides thereof. The nozzle 5 provided in the device shell 2 is an inlet of a heat medium, that is, a heat medium or a refrigerant communicating with the device shell 2, and the nozzle 6 is an outlet of the heat medium or the refrigerant.

熱交換器1の内部においては、図2にも示すように、該熱交換器1の長手方向に沿って配置される多数の伝熱管11がその両端を金属管板10に一定の間隔で取り付けられている。伝熱管11の内面にはグラスライニング層21が形成されている。このグラスライニング層21は、伝熱管11の内面へガラス管を内張することにより、または釉薬を塗布した後、高温で焼成することにより形成される。   Inside the heat exchanger 1, as shown in FIG. 2, a large number of heat transfer tubes 11 arranged along the longitudinal direction of the heat exchanger 1 are attached at both ends to the metal tube plate 10 at regular intervals. It has been. A glass lining layer 21 is formed on the inner surface of the heat transfer tube 11. The glass lining layer 21 is formed by lining a glass tube on the inner surface of the heat transfer tube 11 or by baking at a high temperature after applying a glaze.

この金属管板10とガラス質内張りヘッド3a、3bとは、これらのフランジ部により封止結合されている。   The metal tube plate 10 and the vitreous lining heads 3a and 3b are sealed and connected by these flange portions.

熱交換器1によって熱交換される被熱交換流体は、一方のガラス質内張りヘッド3aに設けられる取り入れ口7により熱交換器1の内部へと導かれ、伝熱管11内を通って他方のガラス質内張りヘッド3bに設けられる取り出し口8より排出される。このようにして、熱交換器1の内部に導かれた被熱交換流体は、伝熱管11を介して上記熱媒又は冷媒との熱交換によって加熱又は冷却されることとなる。   The heat exchange fluid to be heat exchanged by the heat exchanger 1 is guided to the inside of the heat exchanger 1 through the intake port 7 provided in the one vitreous lining head 3a and passes through the heat transfer tube 11 to the other glass. It is discharged from a takeout port 8 provided in the quality liner head 3b. In this way, the heat exchange fluid introduced into the heat exchanger 1 is heated or cooled by heat exchange with the heat medium or refrigerant via the heat transfer tube 11.

次に、伝熱管11が取り付けられる金属管板10の部分について説明する。金属管板10は、器胴シェル2に応じた外径が選定されるが、器胴シェル2には200A以上の炭素鋼鋼管が用いられている。伝熱管11は、JIS G 3454 に定められる呼び径25Aのスケジュール60の炭素鋼鋼管が用いられており、その内径d1が26.2mmに、肉厚tが3.9mmに、外径d2が34mmに形成されている。   Next, the portion of the metal tube plate 10 to which the heat transfer tube 11 is attached will be described. The outer diameter of the metal tube plate 10 is selected according to the shell 2, and a carbon steel pipe of 200 A or more is used for the shell 2. As the heat transfer tube 11, a carbon steel tube having a nominal diameter of 25A defined in JIS G 3454 is used. The inner diameter d1 is 26.2 mm, the wall thickness t is 3.9 mm, and the outer diameter d2 is 34 mm. Is formed.

金属管板10の外面にはグラスライニング層22が形成されている。そして、内面にグラスライニング層21が形成された伝熱管11を金属管板10に溶接した後に、その溶接部を含む近傍に再度グラスライニングが施されている。伝熱管11の溶接される端部16の内径側部分から金属管板10の外面にわたる部分のグラスライニングの被覆を形成できるので、これらの部分に接触する被熱交換流体が腐食性の流体であっても、多管式熱交換器1は腐食を受けることがない。   A glass lining layer 22 is formed on the outer surface of the metal tube plate 10. And after welding the heat exchanger tube 11 in which the glass lining layer 21 was formed in the inner surface to the metal tube plate 10, the glass lining is again given to the vicinity containing the welding part. Since a glass-lined coating can be formed from the inner diameter side portion of the end 16 to be welded of the heat transfer tube 11 to the outer surface of the metal tube sheet 10, the heat exchange fluid that contacts these portions is a corrosive fluid. However, the multi-tube heat exchanger 1 is not subject to corrosion.

図3に示すように、伝熱管11の金属管板10への取り付けは、伝熱管11の端部16を金属管板10に溶接することによる。そして、かかる端部16と、該端部16が取り付けられる金属管板10の部分と、これらの溶接部15とは、一定の曲率半径により丸み付けが施された曲面状をなすアール部12に形成されている。このアール部12は、端部16を金属管板10へ溶接した後に、これら溶接された部分のグラインダー等による面取り加工によって形成できる。   As shown in FIG. 3, the heat transfer tube 11 is attached to the metal tube plate 10 by welding the end 16 of the heat transfer tube 11 to the metal tube plate 10. And this edge part 16, the part of the metal tube sheet 10 to which this edge part 16 is attached, and these welding parts 15 are the rounded part 12 which made the round shape by the fixed curvature radius. Is formed. The rounded portion 12 can be formed by chamfering the welded portion with a grinder after the end portion 16 is welded to the metal tube sheet 10.

図3には図示していないが、伝熱管11の端部16と金属管板10との間には、図4及び図5に示すように、間隙部4が形成されている。そして本実施形態においては、図5のように、間隙部4内に充填剤9が充填されている。この充填剤は、本実施形態ではエポキシ系樹脂で構成されている。尚、本実施形態では、図4に示す間隙部4の寸法Lは、0.3mmに形成されている。   Although not shown in FIG. 3, a gap 4 is formed between the end 16 of the heat transfer tube 11 and the metal tube plate 10 as shown in FIGS. 4 and 5. In the present embodiment, as shown in FIG. 5, the gap portion 4 is filled with a filler 9. In this embodiment, the filler is composed of an epoxy resin. In the present embodiment, the dimension L of the gap 4 shown in FIG. 4 is 0.3 mm.

上記のような構成からなるグラスライニング製多管式熱交換器1は、被熱交換流体の種類などにより器胴シェル2内に導入する冷媒として水と、エチレングリコール等の不凍液が使用されるが、上記のように伝熱管11の端部16と金属管板10間にどうしても間隙部4が形成されるので、冷媒として水を使用すると間隙部4に水が溜まることとなる。   In the glass-lined multi-tube heat exchanger 1 having the above-described configuration, water and an antifreeze liquid such as ethylene glycol are used as the refrigerant introduced into the shell 2 depending on the type of heat exchange fluid. As described above, the gap portion 4 is inevitably formed between the end portion 16 of the heat transfer tube 11 and the metal tube plate 10, so that water is accumulated in the gap portion 4 when water is used as the refrigerant.

一方、伝熱管11にエチレングリコール等の0℃以下の冷媒を流すと、前記間隙部4に溜まった水が凍り、凍った水の体積が膨張することになるので、上記溶接部15の近傍に外力がかかり、或いは間隙部4の近傍に施されたグラスライニング層が剥離するおそれがある。   On the other hand, when a refrigerant of 0 ° C. or less such as ethylene glycol is allowed to flow through the heat transfer tube 11, the water accumulated in the gap 4 is frozen and the volume of the frozen water expands. There is a possibility that an external force is applied or the glass lining layer applied in the vicinity of the gap 4 is peeled off.

しかしながら、本実施形態では、間隙部4内に充填剤9が充填されているので、そもそも水がその間隙部4内に流入することがない。従って、凍った水の体積が膨張し、溶接部15の近傍に外力がかかり、間隙部4の近傍に施されたグラスライニング層が剥離する等の現象を未然に防止することができるのである。   However, in the present embodiment, since the gap portion 4 is filled with the filler 9, water does not flow into the gap portion 4 in the first place. Therefore, it is possible to prevent such a phenomenon that the volume of the frozen water expands, an external force is applied in the vicinity of the welded portion 15, and the glass lining layer applied in the vicinity of the gap portion 4 is peeled off.

(実施形態2)
本実施形態では、上記実施形態1のように伝熱管11の端部16と金属管板10との間の間隙部4に充填剤9は充填されていない。ただし、図4に示す間隙部4の寸法Lは、0.15mmと実施形態1よりも狭く形成されている。
(Embodiment 2)
In the present embodiment, the filler 9 is not filled in the gap portion 4 between the end portion 16 of the heat transfer tube 11 and the metal tube plate 10 as in the first embodiment. However, the dimension L of the gap 4 shown in FIG. 4 is 0.15 mm, which is narrower than that of the first embodiment.

本実施形態では、実施形態1のように間隙部4に充填剤9が充填されていないので、間隙部4に洗浄水が流入することとなる。しかしながら、間隙部4に溜まった水が仮に凍ったとしても、間隙部4が実施形態1より狭いので、凍った水の体積膨張も少なく、従ってグラスライニング層を剥離させるほどの外力が生ずることもない。ちなみに、水の体積膨張が少なく、グラスライニング層を剥離させるほどの外力が生じさせることのない間隙部4の寸法Lは、0.2mm以下であると認められる。
ただし0.01mm未満になると、実質的に伝熱管11を金属管板10の孔に挿入する作業が困難になるおそれがあるので、本実施形態において間隙部4の寸法Lの好ましい範囲は、0.01mm〜0.2mmであると考えられる。
In the present embodiment, since the gap portion 4 is not filled with the filler 9 as in the first embodiment, the cleaning water flows into the gap portion 4. However, even if the water accumulated in the gap 4 is frozen, the gap 4 is narrower than that in the first embodiment, so that the volume expansion of the frozen water is small, and thus an external force that causes the glass lining layer to peel off may be generated. Absent. By the way, it is recognized that the dimension L of the gap portion 4 that does not cause an external force enough to peel off the glass lining layer is 0.2 mm or less because the volume expansion of water is small.
However, if it is less than 0.01 mm, there is a risk that the operation of substantially inserting the heat transfer tube 11 into the hole of the metal tube plate 10 may be difficult. Therefore, in this embodiment, the preferred range of the dimension L of the gap 4 is 0. It is considered to be 0.01 mm to 0.2 mm.

(実施形態3)
本実施形態においても、実施形態2と同様に、伝熱管11の端部16と金属管板10との間の間隙部4に充填剤9は充填されていない。ただし、間隙部4の寸法Lは、0.8mmと実施形態1よりも広く形成されている。
(Embodiment 3)
Also in this embodiment, the filler 9 is not filled in the gap portion 4 between the end portion 16 of the heat transfer tube 11 and the metal tube plate 10 as in the second embodiment. However, the dimension L of the gap 4 is 0.8 mm, which is wider than that of the first embodiment.

本実施形態においても、間隙部4に充填剤9が充填されていないので、間隙部4に洗浄水が流入することとなる。しかしながら、間隙部4に溜まった水が不凍液との接触により間隙部から出て行くため、これによってグラスライニング層の剥離が防止されることとなるのである。ちなみに、このような間隙部からの水の逃げを生じさせる間隙部4の寸法Lは、0.5mm以上であると認められる。ただし5.0mmを超えると、実質的に伝熱管11の端部16を金属管板10に溶接する作業が困難となるおそれがあるので、本実施形態において間隙部4の寸法Lの好ましい範囲は、0.5mm〜5.0mmであると考えられる。   Also in the present embodiment, since the gap portion 4 is not filled with the filler 9, the washing water flows into the gap portion 4. However, since the water accumulated in the gap 4 comes out of the gap due to contact with the antifreeze, the glass lining layer is prevented from being peeled off. Incidentally, it is recognized that the dimension L of the gap 4 that causes such water escape from the gap is 0.5 mm or more. However, if it exceeds 5.0 mm, the operation of welding the end 16 of the heat transfer tube 11 to the metal tube plate 10 may be difficult, so in this embodiment, the preferred range of the dimension L of the gap 4 is , 0.5 mm to 5.0 mm.

(その他の実施形態)
尚、上記実施形態1では、間隙部4に充填する充填剤9として、エポキシ樹脂系のものを使用したが、充填剤9の材質は該実施形態に限定されるものではなく、他の合成樹脂を用いることも可能である。また、合成樹脂以外の材質のものを用いることも可能である。たとえばセメント、半田等の無機物質であってもよい。
(Other embodiments)
In the first embodiment, an epoxy resin-based material is used as the filler 9 filled in the gap 4. However, the material of the filler 9 is not limited to this embodiment, and other synthetic resins are used. It is also possible to use. It is also possible to use a material other than the synthetic resin. For example, an inorganic substance such as cement or solder may be used.

要は、水及び熱媒体に溶解せず、且つ水や熱媒体によって腐食しない充填剤が用いられていればよいのである。ここで、「水及び熱媒体に溶解せず、且つ水や熱媒体によって腐食しない」とは、水や熱媒体と接触して全く溶解又は腐食することがない難溶解性のものを厳格に意味するものではなく、上記充填剤9として十分機能しうる程度に不溶性又は耐腐食性のものであればよいことを意味する。   In short, it is only necessary to use a filler that does not dissolve in water and the heat medium and does not corrode by water or the heat medium. Here, “does not dissolve in water and heat medium and does not corrode by water or heat medium” strictly means a hardly soluble material that does not dissolve or corrode at all by contact with water or heat medium. It does not mean that it should be insoluble or corrosion resistant to such an extent that it can sufficiently function as the filler 9.

さらに、熱交換器1の内部の構造等は、適宜設計変更することが可能である。   Furthermore, the internal structure of the heat exchanger 1 can be appropriately changed in design.

本発明は、上記のように内面にグラスライニングが施された伝熱管を配置してなるグラスライニング製多管式熱交換器に広く適用することができる。   The present invention can be widely applied to a glass-lined multi-tube heat exchanger in which a heat transfer tube having a glass lining on its inner surface is disposed as described above.

一実施形態としてのグラスライニング製多管式熱交換器の一部断面側面図。The partial cross section side view of the glass lining multi-tube heat exchanger as one embodiment. A−A方向から見た要部平面図。The principal part top view seen from the AA direction. 伝熱管の端部周辺の拡大断面図。The expanded sectional view around the edge part of a heat exchanger tube. 図3の要部をさらに拡大して示す拡大断面図。The expanded sectional view which expands and shows the principal part of FIG. 間隙部に充填剤を充填した状態の拡大断面図。The expanded sectional view of the state which filled the gap | interval part with the filler.

符号の説明Explanation of symbols

4…間隙部 9…充填剤
10…金属管板 11…伝熱管
15…溶接部 16…端部
4 ... Gap portion 9 ... Filler 10 ... Metal tube plate 11 ... Heat transfer tube 15 ... Welding portion 16 ... End

Claims (4)

多数の伝熱管が配置され、その端部で金属管板に溶接付けされてなるグラスライニング製熱交換器であって、前記溶接された伝熱管の端部と金属管板との間隙部に、水及び熱媒体に溶解せず、且つ水や熱媒体によって腐食しない充填剤が充填されていることを特徴とするグラスライニング製多管式熱交換器。   A heat exchanger made of glass lining, in which a large number of heat transfer tubes are arranged and welded to the metal tube plate at the end thereof, in the gap between the end of the welded heat transfer tube and the metal tube plate, A glass-lining multitubular heat exchanger, which is filled with a filler that does not dissolve in water and a heat medium and does not corrode by water or a heat medium. 充填剤がエポキシ系合成樹脂である請求項1記載のグラスライニング製多管式熱交換器。   The glass-lined multitubular heat exchanger according to claim 1, wherein the filler is an epoxy-based synthetic resin. 多数の伝熱管が配置され、その端部で金属管板に溶接付けされてなるグラスライニング製熱交換器であって、前記溶接された伝熱管の端部と金属管板との間隙部が、0.01mm〜0.2mmに形成されていることを特徴とするグラスライニング製多管式熱交換器。   A heat exchanger made of glass lining in which a large number of heat transfer tubes are arranged and welded to a metal tube plate at the end thereof, and a gap between the end of the welded heat transfer tube and the metal tube plate is A glass-lined multitubular heat exchanger characterized by being formed to a thickness of 0.01 mm to 0.2 mm. 多数の伝熱管が配置され、その端部で金属管板に溶接付けされてなるグラスライニング製熱交換器であって、前記溶接された伝熱管の端部と金属管板との間隙部が、
0.5mm〜5.0mmに形成されていることを特徴とするグラスライニング製多管式熱交換器。
A heat exchanger made of glass lining in which a large number of heat transfer tubes are arranged and welded to a metal tube plate at the end thereof, and a gap between the end of the welded heat transfer tube and the metal tube plate is
A glass-lined multi-tubular heat exchanger characterized by being formed to have a thickness of 0.5 mm to 5.0 mm.
JP2006094223A 2006-03-30 2006-03-30 Glass-lined multi-tube heat exchanger Active JP4567626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094223A JP4567626B2 (en) 2006-03-30 2006-03-30 Glass-lined multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094223A JP4567626B2 (en) 2006-03-30 2006-03-30 Glass-lined multi-tube heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008148802A Division JP4805977B2 (en) 2008-06-06 2008-06-06 How to use glass-lined multi-tube heat exchangers

Publications (2)

Publication Number Publication Date
JP2007271111A true JP2007271111A (en) 2007-10-18
JP4567626B2 JP4567626B2 (en) 2010-10-20

Family

ID=38674108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094223A Active JP4567626B2 (en) 2006-03-30 2006-03-30 Glass-lined multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP4567626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093030A (en) * 2010-10-27 2012-05-17 Fuji Electric Retail Systems Co Ltd Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093030A (en) * 2010-10-27 2012-05-17 Fuji Electric Retail Systems Co Ltd Heat exchanger

Also Published As

Publication number Publication date
JP4567626B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
EP2413083B1 (en) Method of repairing a tubular member of an apparatus
JP2009524004A (en) Multi-tube heat exchanger
JP2001056194A (en) High performance heat exchanger
JP5934569B2 (en) Heat exchanger with protective member
JP2009250562A (en) Heat exchanger
JP4754959B2 (en) Heat exchanger
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2007271111A (en) Glass lining multitubular heat exchanger
EP1347261B1 (en) Heat exchanger with reduced fouling
CA2708055A1 (en) Heat exchanger for cooling reaction gas, including a tubular connection between a cooled tube and an uncooled tube
JP4805977B2 (en) How to use glass-lined multi-tube heat exchangers
US20080142205A1 (en) Protected carbon steel pipe for conveying flue gases in a heat exchange apparatus
JP2010091202A (en) Refrigerant piping joint structure
JP2008014624A (en) Water heat exchanger for water heater, and manufacturing method therefor
US11371694B2 (en) Fire tube
KR101205366B1 (en) Sacrificial anode apparatus for ship
CN201331290Y (en) High-efficiency stainless steel heat exchange tube
JP2008241166A (en) Soot removing device
JP2005241145A (en) Heat exchanger and solid phase separating method for heat exchanger
KR100380289B1 (en) fixed structure for nozzle sleeve
US11703282B2 (en) Fire tube
CN217504437U (en) Sleeve type heat exchanger
JPH11304379A (en) Glass lining type multipipe exchanger
KR20090039953A (en) Structure for the prevention of corrosion for tube of heat exchange
JP2003042689A (en) Corrosion prevention method of multitubular heat exchanger and multitubular heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080801

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4567626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250