JP2007270524A - Circulating flush toilet system - Google Patents

Circulating flush toilet system Download PDF

Info

Publication number
JP2007270524A
JP2007270524A JP2006097835A JP2006097835A JP2007270524A JP 2007270524 A JP2007270524 A JP 2007270524A JP 2006097835 A JP2006097835 A JP 2006097835A JP 2006097835 A JP2006097835 A JP 2006097835A JP 2007270524 A JP2007270524 A JP 2007270524A
Authority
JP
Japan
Prior art keywords
water
reaction tank
flow path
decolorized
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097835A
Other languages
Japanese (ja)
Inventor
Hideto Tanaka
秀人 田中
Kenji Yamada
健二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2006097835A priority Critical patent/JP2007270524A/en
Publication of JP2007270524A publication Critical patent/JP2007270524A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulating flush toilet system reduced as a whole in size and having increased decolorizing efficiency for filtrate water. <P>SOLUTION: This circulating flush toilet system 1 comprises an ozone decolorizing part 8 for decolorize the filtrate water by ozone. The ozone decolorizing part 8 comprises a first reaction tank 31 and a second reaction tank 32, a mixing pump 12, circulating pipes 41 to 47, and an ozone generator 13. By controlling solenoid valves 52 to 54 installed in the circulating pipes 41 to 47, a filtrate water circulation flow passage formed of the circulating pipes 41 to 47 can be alternately changed to a first circulation flow passage and a second circulation flow passage. Since the flush toilet system shares a part of the circulating pipes 41 to 47, the ozone decolorizing part 8 can be reduced in size. Since the circulation decolorization of the filtrate water in the first reaction tank and the circulation decolorization of the filtrate water in the second reaction tank are alternately performed, the filtrate water can be efficiently decolorized in a short time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、循環式水洗トイレシステムに関し、詳細には水洗便器からの汚水を浄化してオゾンにより脱色できる循環式水洗トイレシステムに関する。   The present invention relates to a circulating flush toilet system, and more particularly to a circulating flush toilet system capable of purifying sewage from a flush toilet and decolorizing with ozone.

従来の循環式水洗トイレシステムでは、水洗便器からの汚水は生物処理槽に供給され、微生物による生物処理が行われる。次いで、生物処理槽で生物処理された処理水はろ過槽に供給され、ろ過槽内に配置されたろ過膜を通過することによってろ過される。さらに、そのろ過水は脱色槽に供給され、オゾン発生器で発生したオゾンと混合されることによって脱色される。こうして得られた脱色水はポンプによって水洗便器に戻され、洗浄水として再度使用される。   In the conventional circulating flush toilet system, the sewage from the flush toilet is supplied to a biological treatment tank, and biological treatment with microorganisms is performed. Then, the treated water biologically treated in the biological treatment tank is supplied to the filtration tank and filtered by passing through a filtration membrane disposed in the filtration tank. Further, the filtered water is supplied to a decoloring tank and decolorized by being mixed with ozone generated by an ozone generator. The decolorized water thus obtained is returned to the flush toilet by a pump and used again as wash water.

このような循環式水洗トイレシステムの脱色槽におけるろ過水の脱色方法としては以下の方法が知られている。例えば、混合ポンプを用いてろ過水とオゾンとを混合し、脱色槽との間で循環させることによってろ過水を脱色する方法が知られている。また、脱色槽内に散気管を設置し、その散気管にオゾンを送り込むことによって、脱色槽内のろ過水をオゾン曝気して脱色する方法も知られている。しかし前者の方法では、混合ポンプ内に吸引されるのはろ過水と脱色水との混合水であるので、まだオゾンが作用していないろ過水のみにオゾンを作用させることができない。後者の方法においても、脱色槽でオゾン曝気されるのはろ過水と脱色水との混合水であるので、オゾンが作用していないろ過水のみにオゾンを作用させることができない。したがってこれらの方法ではろ過水とオゾンとの接触効率が悪いという問題があった。   The following methods are known as a method for decolorizing filtered water in a decolorization tank of such a circulating flush toilet system. For example, a method is known in which filtered water and ozone are mixed using a mixing pump, and the filtered water is decolored by circulating between ozone and a decolorizing tank. In addition, a method is known in which a diffuser tube is installed in a decoloring tank, and ozone is aerated to decolorize the filtered water in the decoloring tank by sending ozone into the diffuser pipe. However, in the former method, since it is the mixed water of filtered water and decolorized water that is sucked into the mixing pump, ozone cannot be applied only to the filtered water on which ozone has not yet acted. Even in the latter method, since ozone is aerated in the decolorization tank is a mixed water of filtered water and decolorized water, ozone cannot be applied only to the filtered water on which ozone does not act. Therefore, these methods have a problem that the contact efficiency between filtered water and ozone is poor.

そこで、例えば、原水供給管から原水が流入する第1・第2反応塔と、オゾンを生成するオゾンガス生成手段と、該オゾンガス生成手段、第1・第2反応塔に各々連結されて原水とオゾンガスを混合して反応させる第1・第2ミキシング手段とを備え、第1反応塔と第1ミキシング手段とによる原水とオゾンガスのミキシング作業と、第2反応塔と第2ミキシング手段とによる原水とオゾンガスのミキシング作業とを交互に切換える流路切換手段を備えた脱色脱臭システムが知られている(例えば、特許文献1参照)。この脱色脱臭システムでは、第1・第2ミキシング手段が、循環ポンプ、循環配管、原水及びオゾンガスを互いに混合して反応させるミキシング体をそれぞれ独自に備えている。そして、第1・2反応塔内の原水が、第1・第2ミキシング体によってオゾンガスと混合され、循環ポンプによって循環配管を介して各々循環するようになっている。このように、1つの反応塔ではなく、2つの反応塔を用いることによって、オゾン脱色された脱色水を反応塔から順次貯留槽に供給できるので、原水とオゾンとの接触効率を向上させることができる。
特開2005−230668号公報
Therefore, for example, the first and second reaction towers into which raw water flows from the raw water supply pipe, the ozone gas generating means for generating ozone, and the ozone gas generating means and the first and second reaction towers are respectively connected to the raw water and the ozone gas. And mixing the raw water and ozone gas by the first reaction tower and the first mixing means, and the raw water and ozone gas by the second reaction tower and the second mixing means. There has been known a decolorization and deodorization system provided with a flow path switching means for alternately switching between the above mixing operations (for example, see Patent Document 1). In this decolorization and deodorization system, the first and second mixing means are each independently provided with a mixing body that mixes and reacts a circulation pump, a circulation pipe, raw water, and ozone gas. The raw water in the first and second reaction towers is mixed with ozone gas by the first and second mixing bodies and is circulated through a circulation pipe by a circulation pump. Thus, by using two reaction towers instead of one reaction tower, decolorized water decolored by ozone can be sequentially supplied from the reaction tower to the storage tank, so that the contact efficiency between raw water and ozone can be improved. it can.
Japanese Patent Laid-Open No. 2005-230668

しかしながら、特許文献1に記載の脱色脱臭システムでは、第1・第2ミキシング手段は、それぞれ独自の循環ポンプと、循環配管と、ミキシング体とを備えているので、システム全体が大型化してしまうという問題点があった。また、循環ポンプ、循環配管、ミキシング体はそれぞれ一対あるので、これら部品及び構造体にかかる費用が少なくとも2倍になるという問題点があった。   However, in the decolorization and deodorization system described in Patent Document 1, the first and second mixing means are each provided with their own circulation pump, circulation piping, and mixing body. There was a problem. In addition, since there are a pair of circulation pump, circulation piping, and mixing body, there is a problem that the cost of these parts and structure is at least doubled.

本発明は、上記の課題を解決するためになされたものであり、システム全体をコンパクトにできるとともに、ろ過水の脱色効率を向上できる循環式水洗トイレシステムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a circulating flush toilet system capable of making the entire system compact and improving the decolorization efficiency of filtered water.

上記目的を達成するために、請求項1に係る発明の循環式水洗トイレシステムは、水洗便器と、当該水洗便器からの汚水を受け入れ、生物処理を行う生物処理槽と、当該生物処理槽で処理された生物処理水をろ過するろ過槽と、当該ろ過槽でろ過されたろ過水を受け入れる第1反応槽及び第2反応槽と、オゾンを発生するオゾン発生手段と、当該オゾン発生手段、前記第1反応槽及び前記第2反応槽に各々連結され、ろ過水にオゾンを混合して脱色反応させて脱色水を生成する混合脱色手段と、当該混合脱色手段によって生成した脱色水を受け入れて貯留する貯留槽とを備え、当該貯留槽に貯留された脱色水を洗浄水として前記水洗便器に循環させる循環式水洗トイレシステムにおいて、前記混合脱色手段は、前記オゾン発生手段に連結され、ろ過水にオゾンを混合させる混合ポンプと、当該混合ポンプと、前記第1反応槽及び前記第2反応槽との間に設けられ、前記混合ポンプが動作することによってオゾンが混合されたろ過水が循環する循環配管とから構成され、前記ろ過槽と、前記第1反応槽及び前記第2反応槽との間に設けられたろ過水供給管と、当該ろ過水供給管に設けられ、前記ろ過槽から前記第1反応槽への流路、又は前記ろ過槽から前記第2反応槽への流路に切換可能なろ過水流路切換手段と、前記循環配管に設けられ、前記第1反応槽と前記混合ポンプとをつなぐ環状の循環流路、又は前記第2反応槽と前記混合ポンプとをつなぐ環状の循環流路に切換可能な循環流路切換手段と、前記循環配管に接続され、前記第1反応槽又は前記第2反応槽内の脱色水を前記貯留槽に供給する脱色水供給管と、当該脱色水供給管と前記循環配管との接続部分に設けられ、前記循環配管から前記脱色水供給管への流路を開閉する脱色水供給流路開閉手段と、前記第1反応槽内の貯水量を検知する第1水量検知手段と、前記第2反応槽内の貯水量を検知する第2水量検知手段と、前記ポンプの動作時間を計測する時間計測手段と、当該時間計測手段によって計測された計測時間が、所定時間以上か否かを判断する時間判断手段と、前記第1水量検知手段の検知水量が下限水量以上か未満かを判断する第1下限判断手段と、前記第1水量検知手段の検知水量が上限水量以上か未満かを判断する第1上限判断手段と、前記第2水量検知手段の検知水量が下限水量以上か未満かを判断する第2下限判断手段と、前記第2水量検知手段の検知水量が上限水量以上か未満かを判断する第2上限判断手段と、前記第1上限判断手段が上限水量未満であると判断した場合に、前記第1反応槽への流路を開くように前記ろ過水流路切換手段を指示する第1切換指示手段と、前記第2上限判断手段が上限水量未満であると判断した場合に、前記第2反応槽への流路を開くように前記ろ過水流路切換手段を指示する第2切換指示手段と、前記第1上限判断手段、又は第2上限判断手段が上限水量以上であると判断した場合、前記混合ポンプの動作を指示するポンプ動作指示手段と、前記第1上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第1反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第1循環流路切換制御手段と、前記第2上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第2反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第2循環流路切換制御手段と、前記第1上限判断手段、又は前記第2上限判断手段が上限水量以上であると判断した場合に、前記オゾン発生手段の動作を指示するオゾン発生指示手段と、前記時間判断手段が所定時間以上であると判断した場合に、前記オゾン発生手段を停止させるオゾン発生停止手段と、前記時間判断手段が所定時間以上であると判断した場合に、前記循環配管から前記脱色水供給管への流路を開くように、前記脱色水供給流路開閉手段を指示する脱色水供給流路開放指示手段と、当該脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれ、前記第1反応槽又は前記第2反応槽内の脱色水が、前記脱色水供給管を介して前記貯留槽内に供給され、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記混合ポンプを停止させるポンプ停止手段とを備えている。   To achieve the above object, the circulating flush toilet system of the invention according to claim 1 is a flush toilet, a biological treatment tank that receives sewage from the flush toilet and performs biological treatment, and treatment in the biological treatment tank A filtration tank for filtering the biologically treated water, a first reaction tank and a second reaction tank for receiving the filtered water filtered in the filtration tank, ozone generating means for generating ozone, the ozone generating means, Each of the reaction tank and the second reaction tank is connected to each other, and mixed decoloring means for generating decolorized water by mixing ozone with filtered water to generate decolorized water, and receiving and storing decolorized water generated by the mixed decolorizing means. A circulating flush toilet system in which the decolorized water stored in the reservoir is circulated to the flush toilet as wash water, and the mixed decoloring means is connected to the ozone generating means. A mixed pump that mixes ozone with filtered water, the mixed pump, and the filtered water mixed with ozone by operating the mixing pump is provided between the first reaction tank and the second reaction tank. A circulating pipe that circulates, the filtrate tank, a filtrate supply pipe provided between the first reaction tank and the second reaction tank, and a filtrate supply pipe provided in the filtrate water supply pipe; From the flow path from the filtration tank to the first reaction tank, or from the filtration tank to the second reaction tank, the filtered water flow path switching means, provided in the circulation pipe, the first reaction tank and the An annular circulation channel connecting a mixing pump, or a circulation channel switching means capable of switching to an annular circulation channel connecting the second reaction tank and the mixing pump; and connected to the circulation pipe; Decolorized water in the reaction tank or the second reaction tank Decolorized water supply pipe to be supplied to the distillation tank, and a decolorized water supply flow path opening / closing provided at a connecting portion between the decolorized water supply pipe and the circulation pipe, which opens and closes the flow path from the circulation pipe to the decolorized water supply pipe Means, first water amount detecting means for detecting the amount of water stored in the first reaction tank, second water amount detecting means for detecting the amount of water stored in the second reaction tank, and time for measuring the operation time of the pump Measuring means, time determining means for determining whether the measurement time measured by the time measuring means is equal to or longer than a predetermined time, and first determining whether the detected water amount of the first water amount detecting means is equal to or less than a lower limit water amount. 1 lower limit determining means; first upper limit determining means for determining whether the detected water amount of the first water amount detecting means is greater than or less than an upper limit water amount; and determining whether the detected water amount of the second water amount detecting means is greater than or less than the lower limit water amount Second lower limit judging means for performing the second water amount detection A second upper limit determining means for determining whether the detected water amount is greater than or less than the upper limit water amount, and when the first upper limit determining means determines that the detected water amount is less than the upper limit water amount, the flow path to the first reaction tank is opened. When the first switching instruction means for instructing the filtered water flow path switching means and the second upper limit determination means determine that the amount of water is less than the upper limit water amount, the flow path to the second reaction tank is opened. A pump operation instruction for instructing the operation of the mixing pump when the second switching instruction means for instructing the filtered water flow path switching means and the first upper limit determination means or the second upper limit determination means are determined to be equal to or greater than the upper limit water amount. And when the first upper limit determination means determines that the amount of water is equal to or greater than the upper limit water amount, the circulating flow is switched so as to switch the flow path of the circulation pipe to the flow path connecting the first reaction tank and the mixing means. First circulation channel for instructing path switching means When the conversion control means and the second upper limit determination means determine that the amount is equal to or greater than the upper limit water amount, the flow path of the circulation pipe is switched to the flow path connecting the second reaction tank and the mixing means. When the second circulation flow path switching control means for instructing the circulation flow path switching means and the first upper limit determination means or the second upper limit determination means determine that the amount is equal to or greater than the upper limit water amount, the operation of the ozone generation means The ozone generation instructing means for instructing and the time determining means determine that the ozone generation stopping means for stopping the ozone generating means when the time determining means is longer than a predetermined time, and the time determining means are determined to be longer than the predetermined time. A decoloring water supply channel opening instructing means for instructing the decoloring water supply channel opening / closing means to open a channel from the circulation pipe to the decoloring water supply pipe, and opening the decoloring water supply channel Of indicating means As shown, a flow path from the circulation pipe to the decolorized water supply pipe is opened, and decolorized water in the first reaction tank or the second reaction tank is placed in the storage tank through the decolorized water supply pipe. And a pump stopping means for stopping the mixing pump when the first lower limit judging means or the second lower limit judging means judges that the amount is less than the lower limit water amount.

また、請求項2に係る発明の循環式水洗トイレシステムは、請求項1に記載の発明の構成に加え、前記所定時間は、前記第1反応槽及び前記第2反応槽内のろ過水が目標色度まで脱色されるのに要する時間に調整されたことを特徴とする。   In addition to the configuration of the invention according to claim 1, the circulating flush toilet system of the invention according to claim 2 targets the filtered water in the first reaction tank and the second reaction tank for the predetermined time. The time required for decoloring to chromaticity is adjusted.

また、請求項3に係る発明の循環式水洗トイレシステムは、水洗便器と、当該水洗便器からの汚水を受け入れ、生物処理を行う生物処理槽と、当該生物処理槽で処理された生物処理水をろ過するろ過槽と、当該ろ過槽でろ過されたろ過水を受け入れる第1反応槽及び第2反応槽と、オゾンを発生するオゾン発生手段と、当該オゾン発生手段、前記第1反応槽及び前記第2反応槽に各々連結され、ろ過水にオゾンを混合して脱色反応させて脱色水を生成する混合脱色手段と、当該混合脱色手段によって生成した脱色水を受け入れて貯留する貯留槽とを備え、当該貯留槽に貯留された脱色水を洗浄水として前記水洗便器に循環させる循環式水洗トイレシステムにおいて、前記混合脱色手段は、前記オゾン発生手段に連結され、ろ過水にオゾンを混合させる混合ポンプと、当該混合ポンプと、前記第1反応槽及び前記第2反応槽との間に設けられ、前記混合ポンプが動作することによってオゾンが混合されたろ過水が循環する循環配管とから構成され、前記ろ過槽と、前記第1反応槽及び前記第2反応槽との間に設けられたろ過水供給管と、当該ろ過水供給管に設けられ、前記ろ過槽から前記第1反応槽への流路、又は前記ろ過槽から前記第2反応槽への流路に切換可能なろ過水流路切換手段と、前記循環配管に設けられ、前記第1反応槽と前記混合ポンプとをつなぐ環状の循環流路、又は前記第2反応槽と前記混合ポンプとをつなぐ環状の循環流路に切換可能な循環流路切換手段と、前記循環配管に接続され、前記第1反応槽又は前記第2反応槽内の脱色水を前記貯留槽に供給する脱色水供給管と、当該脱色水供給管と前記循環配管との接続部分に設けられ、前記循環配管から前記脱色水供給管への流路を開閉する脱色水供給流路開閉手段と、前記第1反応槽内の貯水量を検知する第1水量検知手段と、前記第2反応槽内の貯水量を検知する第2水量検知手段と、前記ポンプの動作時間を計測する時間計測手段と、当該時間計測手段によって計測された計測時間が、所定時間以上か否かを判断する時間判断手段と、前記第1水量検知手段の検知水量が下限水量以上か未満かを判断する第1下限判断手段と、前記第1水量検知手段の検知水量が上限水量以上か未満かを判断する第1上限判断手段と、前記第2水量検知手段の検知水量が下限水量以上か未満かを判断する第2下限判断手段と、前記第2水量検知手段の検知水量が上限水量以上か未満かを判断する第2上限判断手段と、前記第1上限判断手段が上限水量未満であると判断した場合に、前記第1反応槽への流路を開くように前記ろ過水流路切換手段を指示する第1切換指示手段と、前記第2上限判断手段が上限水量未満であると判断した場合に、前記第2反応槽への流路を開くように前記ろ過水流路切換手段を指示する第2切換指示手段と、前記第1上限判断手段、又は第2上限判断手段が上限水量以上であると判断した場合、前記混合ポンプの動作を指示するポンプ動作指示手段と、前記第1上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第1反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第1循環流路切換制御手段と、前記第2上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第2反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第2循環流路切換制御手段と、前記第1上限判断手段、又は前記第2上限判断手段が上限水量以上であると判断した場合に、前記オゾン発生手段の動作を指示するオゾン発生指示手段と、前記時間判断手段が所定時間以上であると判断した場合に、前記循環配管から前記脱色水供給管への流路を開くように、前記脱色水供給流路開閉手段を指示する脱色水供給流路開放指示手段と、当該脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれた状態で、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記オゾン発生手段を停止させるオゾン発生停止手段と、前記脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれた状態で、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記混合ポンプを停止させるポンプ停止手段とを備えている。   The circulation flush toilet system of the invention according to claim 3 includes a flush toilet, a biological treatment tank that receives sewage from the flush toilet and performs biological treatment, and biological treatment water treated in the biological treatment tank. A filtration tank to be filtered, a first reaction tank and a second reaction tank that receive filtered water filtered in the filtration tank, ozone generating means for generating ozone, the ozone generating means, the first reaction tank, and the first Each of which is connected to two reaction tanks, and includes a mixing and decoloring means for generating decolorized water by mixing ozone with filtered water to generate decolorized water, and a storage tank for receiving and storing the decolorized water generated by the mixed decolorizing means, In the circulating flush toilet system in which the decolorized water stored in the storage tank is circulated to the flush toilet as wash water, the mixed decoloring means is connected to the ozone generating means, and the filtered water is mixed with ozone. A mixing pump and a circulating pipe provided between the first reaction tank and the second reaction tank, and circulating water through which filtered water mixed with ozone by operating the mixing pump is circulated. The filtration tank, the filtrate water supply pipe provided between the first reaction tank and the second reaction tank, and the filtrate water supply pipe provided from the filtration tank to the first reaction tank. Or a filtered water flow path switching means that can be switched to a flow path from the filtration tank to the second reaction tank, and a ring that is provided in the circulation pipe and connects the first reaction tank and the mixing pump. A circulation flow path switching means that can be switched to a circulation flow path, or an annular circulation flow path that connects the second reaction tank and the mixing pump, and the circulation piping, and the first reaction tank or the second Decolorization to supply decolorized water in reaction tank to the storage tank A depigmenting water supply channel opening / closing means provided at a connection portion between the depigmenting water supply tube and the circulation pipe and opening / closing a channel from the circulation pipe to the decolorization water supply pipe; and the first reaction. A first water amount detecting means for detecting the amount of water stored in the tank, a second water amount detecting means for detecting the amount of water stored in the second reaction tank, a time measuring means for measuring the operating time of the pump, and the time measurement. Time determination means for determining whether the measurement time measured by the means is equal to or greater than a predetermined time, first lower limit determination means for determining whether the detected water amount of the first water amount detection means is greater than or equal to a lower limit water amount, and First upper limit determining means for determining whether the detected water amount of the first water amount detecting means is greater than or less than the upper limit water amount; and second lower limit determining means for determining whether the detected water amount of the second water amount detecting means is equal to or greater than the lower limit water amount; The amount of water detected by the second water amount detection means is the upper limit. A second upper limit determining means for determining whether the amount of water is greater than or less than the amount of water; and the filtered water flow path to open the flow path to the first reaction tank when the first upper limit determination means determines that the amount of water is less than the upper limit water volume. When the first switching instruction means for instructing the switching means and the second upper limit determining means determine that the amount of water is less than the upper limit water amount, the filtered water flow path switching means is configured to open the flow path to the second reaction tank. A second switching instruction means for instructing, a pump operation instructing means for instructing an operation of the mixing pump when the first upper limit determining means or the second upper limit determining means determines that the amount of water is not less than an upper limit water amount; When the upper limit determination means determines that the amount of water is equal to or greater than the upper limit water amount, the circulation flow path switching means is instructed to switch the flow path of the circulation pipe to the flow path connecting the first reaction tank and the mixing means. A first circulation channel switching control means; 2 When the upper limit determination means determines that the amount of water is equal to or greater than the upper limit water amount, the circulation flow path switching means is instructed to switch the flow path of the circulation pipe to the flow path connecting the second reaction tank and the mixing means. Ozone generation instruction means for instructing the operation of the ozone generation means when it is determined that the second circulation flow path switching control means, the first upper limit determination means, or the second upper limit determination means is greater than or equal to the upper limit water amount. And the decolored water supply that instructs the decolorized water supply flow path opening / closing means to open the flow path from the circulation pipe to the decolorized water supply pipe when the time determining means determines that the time is longer than a predetermined time. The first lower limit determining means or the second lower limit determination means or the second lower limit determination means or the second lower limit determination means or the second lower limit determination means or the second lower limit determination means or the second lower limit determination means or the second lower limit determination means Lower limit judgment means is lower limit water volume When it is determined that the ozone generation means is full, the ozone generation stop means for stopping the ozone generation means and the flow path from the circulation pipe to the decolorization water supply pipe are opened by an instruction from the decoloration water supply flow path opening instruction means. And a pump stop means for stopping the mixing pump when the first lower limit judgment means or the second lower limit judgment means judges that the amount of water is less than the lower limit water amount.

また、請求項4に係る発明の循環式水洗トイレシステムは、請求項3に記載の発明の構成に加え、前記所定時間は、前記第1反応槽及び前記第2反応槽内のろ過水が目標色度よりも高い所定色度まで脱色されるのに要する時間に調整されていることを特徴とする。   In addition to the configuration of the invention according to claim 3, the circulation flush toilet system of the invention according to claim 4 targets the filtered water in the first reaction tank and the second reaction tank for the predetermined time. The time required for decoloring to a predetermined chromaticity higher than the chromaticity is adjusted.

また、請求項5に係る発明の循環式水洗トイレシステムは、請求項4に記載の発明の構成に加え、前記所定色度は、前記脱色水供給管の出口通過時の脱色水の色度が、前記目標色度にまで脱色されている程度に調整されていることを特徴とする。   Further, in the circulating flush toilet system of the invention according to claim 5, in addition to the configuration of the invention of claim 4, the predetermined chromaticity is the chromaticity of decolorized water when passing through the outlet of the decolorized water supply pipe. The adjustment is made to the extent that the target chromaticity is decolored.

また、請求項6に係る発明の循環式水洗トイレシステムは、請求項1乃至5の何れかに記載の発明の構成に加え、前記貯留槽と前記生物処理槽との間に設けられ、前記貯留槽内の脱色水を前記生物処理槽にオーバーフローさせるオーバーフロー水配管と、前記貯留槽内の満水を検知する満水検知手段と当該満水検知手段が満水を検知しない時に、前記第1反応槽及び前記第2反応槽における脱色処理回数をカウントする脱色回数カウント手段と、当該脱色回数カウント手段のカウント値に基づいて、前記満水検知手段が満水を検知した時に、前記脱色水供給流路開閉手段を開放して、前記貯留槽の脱色水をオーバーフローさせるオーバーフロー回数を設定するオーバーフロー回数設定手段とを備え、前記脱色水供給流路開放指示手段は、前記満水検知手段が満水を検知した時に、前記オーバーフロー回数にしたがって、前記脱色水供給流路開閉手段の開放を指示することを特徴とする。   Moreover, in addition to the structure of the invention in any one of Claims 1 thru | or 5, the circulation type flush toilet system of the invention which concerns on Claim 6 is provided between the said storage tank and the said biological treatment tank, The said storage An overflow water pipe for overflowing decolorized water in the tank to the biological treatment tank, a full water detection means for detecting full water in the storage tank, and the full water detection means when the full water detection means does not detect full water, the first reaction tank and the first 2 Decoloring frequency counting means for counting the number of decoloring treatments in the reaction tank, and when the full water detecting means detects full water based on the count value of the decoloring frequency counting means, the decolorizing water supply channel opening / closing means is opened. And an overflow count setting means for setting an overflow count for overflowing the decolorized water in the storage tank, the decolorized water supply flow path opening instructing means, When the water detecting means detects the full water, according to the overflow number, characterized by instructing the opening of the bleaching water supply passage opening and closing means.

また、請求項7に係る発明の循環式水洗トイレシステムは、請求項6に記載の発明の構成に加え、前記オーバーフロー回数設定手段は、前記カウント値が所定回数以上の場合は、前記カウント値が所定回数未満の場合よりも、前記オーバーフロー回数を多く設定することを特徴とする。   Further, in the circulating flush toilet system of the invention according to claim 7, in addition to the configuration of the invention of claim 6, the overflow count setting means is configured such that the count value is greater than or equal to a predetermined count. The overflow count is set to be larger than the case of less than the predetermined count.

また、請求項8に係る発明の循環式水洗トイレシステムは、請求項1乃至5の何れかに記載の発明の構成に加え、前記脱色槽と前記生物処理槽との間に設けられ、前記貯留槽内の脱色水を前記生物処理槽にオーバーフローさせるオーバーフロー水配管と、前記貯留槽に設けられ、前記貯留槽内における脱色水の満水を検知する満水検知手段と、前記第1反応槽及び前記第2反応槽の少なくとも何れかに設けられ、前記第1反応槽又は前記第2反応槽内に供給されたろ過水の色度を検知するろ過水色度検知手段とを備え、前記ポンプ動作指示手段は、前記満水検知手段が満水を検知し、かつ前記ろ過水色度検知手段の検知した色度が基準色度未満の場合、前記混合ポンプを動作させないことを特徴とする。   Moreover, in addition to the structure of the invention in any one of Claims 1 thru | or 5, the circulation type flush toilet system of the invention which concerns on Claim 8 is provided between the said decoloring tank and the said biological treatment tank, The said storage An overflow water pipe for overflowing the decolorized water in the tank to the biological treatment tank, a full water detection means provided in the storage tank for detecting the full water of the decolorized water in the storage tank, the first reaction tank and the first 2 is provided in at least one of the two reaction tanks, and includes filtered water chromaticity detection means for detecting chromaticity of filtered water supplied into the first reaction tank or the second reaction tank, and the pump operation instruction means includes The mixing pump is not operated when the full water detecting means detects full water and the chromaticity detected by the filtered water chromaticity detecting means is less than a reference chromaticity.

また、請求項9に係る発明の循環式水洗トイレシステムは、水洗便器と、当該水洗便器からの汚水を受け入れ、生物処理を行う生物処理槽と、当該生物処理槽で処理された生物処理水をろ過するろ過槽と、当該ろ過槽でろ過されたろ過水を受け入れる第1反応槽及び第2反応槽と、オゾンを発生するオゾン発生手段と、当該オゾン発生手段、前記第1反応槽及び前記第2反応槽に各々連結され、ろ過水にオゾンを混合して脱色反応させて脱色水を生成する混合脱色手段と、当該混合脱色手段によって生成した脱色水を受け入れて貯留する貯留槽とを備え、当該貯留槽に貯留された脱色水を洗浄水として前記水洗便器に循環させる循環式水洗トイレシステムにおいて、前記混合脱色手段は、前記オゾン発生手段に連結され、ろ過水にオゾンを混合させる混合ポンプと、当該混合ポンプと、前記第1反応槽及び前記第2反応槽との間に設けられ、前記混合ポンプが動作することによってオゾンが混合されたろ過水が循環する循環配管とから構成され、前記ろ過槽と、前記第1反応槽及び前記第2反応槽との間に設けられたろ過水供給管と、当該ろ過水供給管に設けられ、前記ろ過槽から前記第1反応槽への流路、又は前記ろ過槽から前記第2反応槽への流路に切換可能なろ過水流路切換手段と、前記循環配管に設けられ、前記第1反応槽と前記混合ポンプとをつなぐ環状の循環流路、又は前記第2反応槽と前記混合ポンプとをつなぐ環状の循環流路に切換可能な循環流路切換手段と、前記循環配管に接続され、前記第1反応槽又は前記第2反応槽内の脱色水を前記貯留槽に供給する脱色水供給管と、当該脱色水供給管と前記循環配管との接続部分に設けられ、前記循環配管から前記脱色水供給管への流路を開閉する脱色水供給流路開閉手段と、前記第1反応槽内の貯水量を検知する第1水量検知手段と、前記第2反応槽内の貯水量を検知する第2水量検知手段と、前記第1反応槽内の貯水の色度を検知する第1色度検知手段と、前記第2反応槽内の貯水の色度を検知する第2色度検知手段と、前記第1水量検知手段の検知水量が下限水量以上か未満かを判断する第1下限判断手段と、前記第1水量検知手段の検知水量が上限水量以上か未満かを判断する第1上限判断手段と、前記第2水量検知手段の検知水量が下限水量以上か未満かを判断する第2下限判断手段と、前記第2水量検知手段の検知水量が上限水量以上か未満かを判断する第2上限判断手段と、前記第1色度検知手段の検知色度が所定色度以下か否かを判断する第1色度判断手段と、前記第2色度検知手段の検知色度が所定色度以下か否かを判断する第2色度判断手段と、前記第1上限判断手段が上限水量未満であると判断した場合に、前記第1反応槽への流路を開くように前記ろ過水流路切換手段を指示する第1切換指示手段と、前記第2上限判断手段が上限水量未満であると判断した場合に、前記第2反応槽への流路を開くように前記ろ過水流路切換手段を指示する第2切換指示手段と、前記第1上限判断手段、又は第2上限判断手段が上限水量以上であると判断した場合、前記混合ポンプの動作を指示するポンプ動作指示手段と、前記第1上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第1反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第1循環流路切換制御手段と、前記第2上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第2反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第2循環流路切換制御手段と、前記第1上限判断手段、又は前記第2上限判断手段が上限水量以上であると判断した場合に、前記オゾン発生手段の動作を指示するオゾン発生指示手段と、前記第1色度判断手段、又は前記第2色度判断手段が所定色度以下と判断した場合に、前記循環配管から前記脱色水供給管への流路を開くように、前記脱色水供給流路開閉手段を指示する脱色水供給流路開放指示手段と、当該脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれた状態で、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記オゾン発生手段を停止させるオゾン発生停止手段と、前記脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれた状態で、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記混合ポンプを停止させるポンプ停止手段とを備えている。   The circulation flush toilet system of the invention according to claim 9 includes a flush toilet, a biological treatment tank that receives sewage from the flush toilet and performs biological treatment, and biological treatment water treated in the biological treatment tank. A filtration tank to be filtered, a first reaction tank and a second reaction tank that receive filtered water filtered in the filtration tank, ozone generating means for generating ozone, the ozone generating means, the first reaction tank, and the first Each of which is connected to two reaction tanks, and includes a mixing and decoloring means for generating decolorized water by mixing ozone with filtered water to generate decolorized water, and a storage tank for receiving and storing the decolorized water generated by the mixed decolorizing means, In the circulating flush toilet system in which the decolorized water stored in the storage tank is circulated to the flush toilet as wash water, the mixed decoloring means is connected to the ozone generating means, and the filtered water is mixed with ozone. A mixing pump and a circulating pipe provided between the first reaction tank and the second reaction tank, and circulating water through which filtered water mixed with ozone by operating the mixing pump is circulated. The filtration tank, the filtrate water supply pipe provided between the first reaction tank and the second reaction tank, and the filtrate water supply pipe provided from the filtration tank to the first reaction tank. Or a filtered water flow path switching means that can be switched to a flow path from the filtration tank to the second reaction tank, and a ring that is provided in the circulation pipe and connects the first reaction tank and the mixing pump. A circulation flow path switching means that can be switched to a circulation flow path, or an annular circulation flow path that connects the second reaction tank and the mixing pump, and the circulation piping, and the first reaction tank or the second Decolorization to supply decolorized water in reaction tank to the storage tank A depigmenting water supply channel opening / closing means provided at a connection portion between the depigmenting water supply tube and the circulation pipe and opening / closing a channel from the circulation pipe to the decolorization water supply pipe; and the first reaction. First water amount detecting means for detecting the amount of water stored in the tank, second water amount detecting means for detecting the amount of water stored in the second reaction tank, and first detecting the chromaticity of the water stored in the first reaction tank. Chromaticity detection means, second chromaticity detection means for detecting chromaticity of water stored in the second reaction tank, and a first lower limit for determining whether the detected water amount of the first water amount detection means is greater than or less than a lower limit water amount Determining means, first upper limit determining means for determining whether the detected water amount of the first water amount detecting means is equal to or greater than an upper limit water amount, and first determining whether the detected water amount of the second water amount detecting means is equal to or greater than the lower limit water amount. 2 Determine whether the lower limit judgment means and the detected water quantity of the second water quantity detection means are greater than or less than the upper limit water quantity. A second chromaticity detecting means, a first chromaticity judging means for judging whether or not a detected chromaticity of the first chromaticity detecting means is equal to or less than a predetermined chromaticity, and a detected chromaticity of the second chromaticity detecting means A second chromaticity determining means for determining whether or not the chromaticity is equal to or less than a predetermined chromaticity and a flow path to the first reaction tank is opened when the first upper limit determining means determines that the amount is less than the upper limit water amount When the first switching instruction means for instructing the filtrate flow path switching means and the second upper limit determination means determine that the amount of water is less than the upper limit water amount, the filtered water flow is set to open the flow path to the second reaction tank. A second switching instruction means for instructing a path switching means; and a pump operation instruction means for instructing the operation of the mixing pump when the first upper limit determination means or the second upper limit determination means determines that the amount is equal to or greater than the upper limit water amount; , When the first upper limit determining means determines that the amount is equal to or greater than the upper limit water amount, A first circulation flow path switching control means for instructing the circulation flow path switching means to switch a flow path of the ring piping to a flow path connecting the first reaction tank and the mixing means; and the second upper limit determination means. Is determined to be equal to or greater than the upper limit water amount, the second circulation instructing the circulation flow path switching means to switch the flow path of the circulation pipe to the flow path connecting the second reaction tank and the mixing means. An ozone generation instruction means for instructing the operation of the ozone generation means when the flow path switching control means, the first upper limit determination means, or the second upper limit determination means determines that the amount is equal to or greater than the upper limit water amount; When the one chromaticity judging means or the second chromaticity judging means judges that the chromaticity is not more than a predetermined chromaticity, the decolorized water supply flow path is opened and closed so as to open a flow path from the circulation pipe to the decolorized water supply pipe. Decolorizing water supply channel opening instruction hand indicating means And the first lower limit determining means or the second lower limit determining means is a lower limit in a state where the flow path from the circulation pipe to the decolorized water supply pipe is opened by an instruction from the decolorized water supply flow path opening instruction means. When it is determined that the amount of water is less than the amount of water, the ozone generation stop means for stopping the ozone generation means and the flow path from the circulation pipe to the decolorization water supply pipe are instructed by the decoloration water supply flow path opening instruction means. And a pump stopping means for stopping the mixing pump when the first lower limit determining means or the second lower limit determining means determines that it is less than the lower limit water amount in the opened state.

また、請求項10に係る発明の循環式水洗トイレシステムは、請求項9に記載の発明の構成に加え、前記所定色度は、前記脱色水供給管の出口通過時の脱色水の色度が、前記目標色度にまで脱色されている程度に調整されていることを特徴とする。   Further, in the circulating flush toilet system of the invention according to claim 10, in addition to the configuration of the invention of claim 9, the predetermined chromaticity is the chromaticity of decolorized water when passing through the outlet of the decolorized water supply pipe. The adjustment is made so that the color is decolored to the target chromaticity.

また、請求項11に係る発明の循環式水洗トイレシステムは、請求項9又は10に記載の発明の構成に加え、前記貯留槽と前記生物処理槽との間に設けられ、前記貯留槽内の脱色水を前記生物処理槽にオーバーフローさせるオーバーフロー水配管と、前記貯留槽内の満水を検知する満水検知手段と当該満水検知手段が満水を検知しない時に、前記第1反応槽及び前記第2反応槽における脱色処理回数をカウントする脱色回数カウント手段と、当該脱色回数カウント手段のカウント値に基づいて、前記満水検知手段が満水を検知した時に、前記脱色水供給流路開閉手段を開放して、前記貯留槽の脱色水をオーバーフローさせるオーバーフロー回数を設定するオーバーフロー回数設定手段とを備え、前記脱色水供給流路開放指示手段は、前記満水検知手段が満水を検知した時に、前記オーバーフロー回数にしたがって、前記脱色水供給流路開閉手段の開放を指示することを特徴とする。   Moreover, in addition to the structure of the invention of Claim 9 or 10, the circulation flush toilet system of the invention which concerns on Claim 11 is provided between the said storage tank and the said biological treatment tank, An overflow water pipe for overflowing decolorized water into the biological treatment tank, a full water detection means for detecting full water in the storage tank, and the first reaction tank and the second reaction tank when the full water detection means does not detect full water Based on the count value of the decoloring frequency counting means, and when the full water detection means detects full water, the decoloring water supply flow path opening / closing means is opened, An overflow count setting means for setting an overflow count for overflowing the decolorized water in the storage tank, and the decolorized water supply flow path opening instructing means is configured to fill the full water When the knowledge device detects the full water, according to the overflow number, characterized by instructing the opening of the bleaching water supply passage opening and closing means.

また、請求項12に係る発明の循環式水洗トイレシステムは、請求項11に記載の発明の構成に加え、前記オーバーフロー回数設定手段は、前記カウント値が所定回数以上の場合は、前記カウント値が所定回数未満の場合よりも、前記オーバーフロー回数を多く設定することを特徴とする。   Further, in the circulating flush toilet system of the invention according to claim 12, in addition to the configuration of the invention of claim 11, the overflow count setting means is configured such that the count value is greater than or equal to a predetermined count. The overflow count is set to be larger than the case of less than the predetermined count.

また、請求項13に係る発明の循環式水洗トイレシステムは、請求項9又は10に記載の発明の構成に加え、前記脱色槽と前記生物処理槽との間に設けられ、前記貯留槽内の脱色水を前記生物処理槽にオーバーフローさせるオーバーフロー水配管と、前記貯留槽に設けられ、前記貯留槽内における脱色水の満水を検知する満水検知手段と、前記第1反応槽及び前記第2反応槽の少なくとも何れかに設けられ、前記第1反応槽又は前記第2反応槽内に供給されたろ過水の色度を検知するろ過水色度検知手段とを備え、前記ポンプ動作指示手段は、前記満水検知手段が満水を検知し、かつ前記ろ過水色度検知手段の検知した色度が基準色度未満の場合、前記混合ポンプを動作させないことを特徴とする。   Moreover, the circulating flush toilet system of the invention according to claim 13 is provided between the decoloring tank and the biological treatment tank in addition to the configuration of the invention according to claim 9 or 10, and is provided in the storage tank. An overflow water pipe for overflowing decolorized water to the biological treatment tank, a full water detection means provided in the storage tank for detecting the full water of the decolorized water in the storage tank, the first reaction tank and the second reaction tank And a filtered water chromaticity detecting means for detecting the chromaticity of the filtered water supplied into the first reaction tank or the second reaction tank, and the pump operation instruction means includes the full water When the detection means detects full water and the chromaticity detected by the filtered water chromaticity detection means is less than a reference chromaticity, the mixing pump is not operated.

請求項1に係る循環式水洗トイレシステムでは、水洗便器からの汚水は生物処理槽で処理され、ろ過槽でろ過される。ろ過水は、第1反応槽および第2反応槽に供給されるとともに、混合脱色手段によってオゾン脱色される。オゾン脱色された脱色水は貯留槽に供給され、再度水洗便器に循環されて使用される。この循環式水洗トイレシステムにおいて、ろ過槽内のろ過水は、ろ過水供給管内の流路を流れることによって、第1反応槽又は第2反応槽に向かって供給される。そして、ろ過水供給管内の流路は、ろ過水供給切換手段の切換動作によって、第1反応槽への流路と、第2反応槽への流路とに各々切り換えられる。また、第1反応槽の貯水量は第1水量検知手段によって検知され、第2反応槽の貯水量は第2水量検知手段によって検知される。ここで、例えば、第1上限判断手段によって第1反応槽の貯水量が上限水量未満であると判断されると、第1切換指示手段によって、第1反応槽への流路を開くようにろ過水流路切換手段が指示される。これにより、第1反応槽内にろ過水を供給できる。一方、第2上限判断手段によって第2反応槽の貯水量が上限水量未満であると判断されると、第2切換指示手段によって、第2反応槽への流路を開くようにろ過水流路切換手段が指示される。これにより、第2反応槽内にろ過水を供給できる。   In the circulating flush toilet system according to claim 1, sewage from the flush toilet is treated in a biological treatment tank and filtered in a filtration tank. The filtered water is supplied to the first reaction tank and the second reaction tank, and ozone decolorized by the mixed decoloring means. The decolorized water that has been decolorized by ozone is supplied to the storage tank and is recycled to the flush toilet. In this circulating flush toilet system, the filtrate in the filtration tank is supplied toward the first reaction tank or the second reaction tank by flowing through the flow path in the filtrate supply pipe. And the flow path in a filtrate supply pipe | tube is each switched to the flow path to a 1st reaction tank, and the flow path to a 2nd reaction tank by the switching operation of a filtrate water supply switching means. The amount of water stored in the first reaction tank is detected by the first water amount detection means, and the amount of water stored in the second reaction tank is detected by the second water amount detection means. Here, for example, when the first upper limit determination means determines that the amount of water stored in the first reaction tank is less than the upper limit water volume, the first switching instruction means performs filtration so as to open the flow path to the first reaction tank. A water flow path switching means is instructed. Thereby, filtered water can be supplied in a 1st reaction tank. On the other hand, when the second upper limit determination means determines that the amount of water stored in the second reaction tank is less than the upper limit water volume, the second switching instruction means switches the filtered water flow path so as to open the flow path to the second reaction tank. Means are indicated. Thereby, filtered water can be supplied in a 2nd reaction tank.

そして、第1反応槽又は第2反応槽内のろ過水は、循環配管を通過し、混合ポンプによってオゾン発生手段によって発生されたオゾンと混合されて反応する。さらに、混合ポンプでオゾンが混合されたろ過水は、該混合ポンプの吐出動作によって、循環配管を介し、第1反応槽又は第2反応槽との間を循環する。そして、この循環流路は、循環流路切換手段の動作によって、混合ポンプと第1反応槽とをつなぐ流路と、混合ポンプと第2反応槽とをつなぐ流路とに切り換えられる。ここで、例えば、第1上限判断手段によって第1反応槽の貯水量が上限水量以上であると判断されると、第1循環流路切換制御手段によって、循環配管の流路を、第1反応槽と混合ポンプとをつなぐ流路に切り換えるように、循環流路切換手段が制御される。そして、オゾン発生指示手段によってオゾン発生手段の動作が指示される。さらに、ポンプ動作指示手段によって混合ポンプの動作が指示される。これにより、第1反応槽と混合ポンプとの間で、第1反応槽内のろ過水を循環配管を介して循環させることができるので、ろ過水を効率よく脱色することができる。   And the filtered water in a 1st reaction tank or a 2nd reaction tank passes through circulation piping, is mixed with the ozone generated by the ozone generation means with the mixing pump, and reacts. Furthermore, the filtered water mixed with ozone by the mixing pump circulates between the first reaction tank or the second reaction tank through the circulation pipe by the discharge operation of the mixing pump. The circulation channel is switched to a channel connecting the mixing pump and the first reaction tank and a channel connecting the mixing pump and the second reaction tank by the operation of the circulation channel switching means. Here, for example, when the first upper limit determination means determines that the amount of water stored in the first reaction tank is greater than or equal to the upper limit water amount, the first circulation flow path switching control means causes the flow of the circulation pipe to be changed to the first reaction flow. The circulation flow path switching means is controlled so as to switch to the flow path connecting the tank and the mixing pump. Then, the operation of the ozone generation means is instructed by the ozone generation instruction means. Further, the operation of the mixing pump is instructed by the pump operation instruction means. Thereby, since the filtered water in a 1st reaction tank can be circulated through a circulation piping between a 1st reaction tank and a mixing pump, filtered water can be decolored efficiently.

一方、第2上限判断手段によって、第2反応槽の貯水量が上限水量以上であると判断されると、第2循環流路切換制御手段によって、循環配管の流路を、第2反応槽と混合ポンプとをつなぐ流路に切り換えるように、循環流路切換手段が制御される。そして、オゾン発生指示手段によってオゾン発生手段の動作が指示される。さらに、ポンプ動作指示手段によって混合ポンプの動作が指示される。これにより、第2反応槽内のろ過水を、第2反応槽と混合ポンプとの間で、循環配管を介して循環させることができるので、ろ過水を効率よく脱色することができる。   On the other hand, when the second upper limit determination means determines that the amount of water stored in the second reaction tank is greater than or equal to the upper limit water amount, the second circulation path switching control means causes the circulation pipe to be connected to the second reaction tank. The circulation flow path switching means is controlled so as to switch to the flow path connecting to the mixing pump. Then, the operation of the ozone generation means is instructed by the ozone generation instruction means. Further, the operation of the mixing pump is instructed by the pump operation instruction means. Thereby, since the filtered water in a 2nd reaction tank can be circulated through a circulation piping between a 2nd reaction tank and a mixing pump, filtered water can be decolored efficiently.

このように、第1反応槽及び第2反応槽内のろ過水をそれぞれ循環脱色する際に、循環流路切換手段の動作が制御されることによって、循環配管内の流路がそれぞれ切り換わるので1つの循環配管を共有することができる。これにより、循環式水洗トイレシステムをコンパクトにできるので、設置スペースの縮小化を図ることができる。さらに、1個の混合ポンプで、第1反応槽及び第2反応槽内のろ過水を循環させることができるので、循環式水洗トイレシステムをさらにコンパクトにできる。また、循環配管及び混合ポンプを共有できるので部品コストを節約することができる。   As described above, when the filtered water in the first reaction tank and the second reaction tank is circulated and decolored, the operation of the circulation flow path switching means is controlled, so that the flow paths in the circulation piping are respectively switched. One circulation pipe can be shared. Thereby, since a circulating flush toilet system can be made compact, installation space can be reduced. Furthermore, since the filtered water in the first reaction tank and the second reaction tank can be circulated with a single mixing pump, the circulating flush toilet system can be made more compact. In addition, since the circulation pipe and the mixing pump can be shared, the cost of parts can be saved.

また、混合ポンプの動作時間は時間計測手段によって計測される。そして、所定時間判断手段によって、計測時間が所定時間以上であると判断されると、オゾン発生停止手段によってオゾン発生手段の動作が停止される。さらに、脱色水供給流路開放指示手段によって、循環配管から脱色水供給管への流路を開くように、脱色水供給流路開閉手段が指示される。これにより、第1反応槽又は第2反応槽内に生成した脱色水を循環配管、脱色水供給管を介して貯留槽に供給することができる。そして、第1下限判断手段又は第2下限判断手段が下限水量未満であると判断した場合は、貯留槽に供給すべき脱色水が第1反応槽又は第2反応槽にはないので、ポンプ停止手段によって混合ポンプが停止される。これにより、第1反応槽又は第2反応槽の脱色水がない場合は、自動的に混合ポンプを停止することができるので電力コストを節約することができる。   The operation time of the mixing pump is measured by a time measuring means. Then, when the predetermined time determination means determines that the measurement time is equal to or longer than the predetermined time, the operation of the ozone generation means is stopped by the ozone generation stop means. Further, the decolorized water supply flow path opening instruction means instructs the decolorized water supply flow path opening / closing means to open the flow path from the circulation pipe to the decolorized water supply pipe. Thereby, the decolorized water produced | generated in the 1st reaction tank or the 2nd reaction tank can be supplied to a storage tank via a circulation piping and a decolored water supply pipe. When the first lower limit determination means or the second lower limit determination means determines that the amount of water is less than the lower limit water amount, the decolorizing water to be supplied to the storage tank is not in the first reaction tank or the second reaction tank, so the pump is stopped. The mixing pump is stopped by means. Thereby, when there is no decoloring water of a 1st reaction tank or a 2nd reaction tank, since a mixing pump can be stopped automatically, electric power cost can be saved.

また、請求項2に係る発明の循環式水洗トイレシステムでは、請求項1に記載の発明の効果に加え、所定時間は、第1反応槽及び第2反応槽内のろ過水が目標色度まで脱色されるのに要する時間に調整されているので、混合ポンプが所定時間動作することで、第1反応槽又は第2反応槽内のろ過水を目標色度まで自動的に脱色することができる。よって、貯留槽内には常に目標色度にまで脱色された脱色水を供給することができる。   In addition, in the circulating flush toilet system of the invention according to claim 2, in addition to the effect of the invention of claim 1, the filtered water in the first reaction tank and the second reaction tank reaches the target chromaticity for a predetermined time. Since the time required for decolorization is adjusted, the filtered water in the first reaction tank or the second reaction tank can be automatically decolored to the target chromaticity by operating the mixing pump for a predetermined time. . Therefore, decolored water that has been decolored to the target chromaticity can always be supplied into the storage tank.

また、請求項3に係る発明の循環式水洗トイレシステムでは、水洗便器からの汚水は生物処理槽で処理され、ろ過槽でろ過される。ろ過水は、第1反応槽および第2反応槽に供給されるとともに、混合脱色手段によってオゾン脱色される。オゾン脱色された脱色水は貯留槽に供給され、再度水洗便器に循環されて使用される。この循環式水洗トイレシステムにおいて、ろ過槽内のろ過水は、ろ過水供給管内の流路を流れることによって、第1反応槽又は第2反応槽に向かって供給される。そして、ろ過水供給管内の流路は、ろ過水供給切換手段の切換動作によって、第1反応槽への流路と、第2反応槽への流路とに各々切り換えられる。また、第1反応槽の貯水量は第1水量検知手段によって検知され、第2反応槽の貯水量は第2水量検知手段によって検知される。ここで、例えば、第1上限判断手段によって第1反応槽の貯水量が上限水量未満であると判断されると、第1切換指示手段によって、第1反応槽への流路を開くようにろ過水流路切換手段が指示される。これにより、第1反応槽内にろ過水を供給できる。一方、第2上限判断手段によって第2反応槽の貯水量が上限水量未満であると判断されると、第2切換指示手段によって、第2反応槽への流路を開くようにろ過水流路切換手段が指示される。これにより、第2反応槽内にろ過水を供給できる。   In the circulating flush toilet system of the invention according to claim 3, the sewage from the flush toilet is treated in the biological treatment tank and filtered in the filtration tank. The filtered water is supplied to the first reaction tank and the second reaction tank, and ozone decolorized by the mixed decoloring means. The decolorized water that has been decolorized by ozone is supplied to the storage tank and is recycled to the flush toilet. In this circulating flush toilet system, the filtrate in the filtration tank is supplied toward the first reaction tank or the second reaction tank by flowing through the flow path in the filtrate supply pipe. And the flow path in a filtrate supply pipe | tube is each switched to the flow path to a 1st reaction tank, and the flow path to a 2nd reaction tank by the switching operation of a filtrate water supply switching means. The amount of water stored in the first reaction tank is detected by the first water amount detection means, and the amount of water stored in the second reaction tank is detected by the second water amount detection means. Here, for example, when the first upper limit determination means determines that the amount of water stored in the first reaction tank is less than the upper limit water volume, the first switching instruction means performs filtration so as to open the flow path to the first reaction tank. A water flow path switching means is instructed. Thereby, filtered water can be supplied in a 1st reaction tank. On the other hand, when the second upper limit determination means determines that the amount of water stored in the second reaction tank is less than the upper limit water volume, the second switching instruction means switches the filtered water flow path so as to open the flow path to the second reaction tank. Means are indicated. Thereby, filtered water can be supplied in a 2nd reaction tank.

そして、第1反応槽又は第2反応槽内のろ過水は、循環配管を通過し、混合ポンプによってオゾン発生手段によって発生されたオゾンと混合されて反応する。さらに、混合ポンプでオゾンが混合されたろ過水は、該混合ポンプの吐出動作によって、循環配管を介し、第1反応槽又は第2反応槽との間を循環する。そして、この循環流路は、循環流路切換手段の動作によって、混合ポンプと第1反応槽とをつなぐ流路と、混合ポンプと第2反応槽とをつなぐ流路とに切り換えられる。ここで、例えば、第1上限判断手段によって第1反応槽の貯水量が上限水量以上であると判断されると、第1循環流路切換制御手段によって、循環配管の流路を、第1反応槽と混合ポンプとをつなぐ流路に切り換えるように、循環流路切換手段が制御される。そして、オゾン発生指示手段によってオゾン発生手段の動作が指示される。さらに、ポンプ動作指示手段によって混合ポンプの動作が指示される。これにより、第1反応槽と混合ポンプとの間で、第1反応槽内のろ過水を循環配管を介して循環させることができるので、ろ過水を効率よく脱色することができる。   And the filtered water in a 1st reaction tank or a 2nd reaction tank passes through circulation piping, is mixed with the ozone generated by the ozone generation means with the mixing pump, and reacts. Furthermore, the filtered water mixed with ozone by the mixing pump circulates between the first reaction tank or the second reaction tank through the circulation pipe by the discharge operation of the mixing pump. The circulation channel is switched to a channel connecting the mixing pump and the first reaction tank and a channel connecting the mixing pump and the second reaction tank by the operation of the circulation channel switching means. Here, for example, when the first upper limit determination means determines that the amount of water stored in the first reaction tank is greater than or equal to the upper limit water amount, the first circulation flow path switching control means causes the flow of the circulation pipe to be changed to the first reaction flow. The circulation flow path switching means is controlled so as to switch to the flow path connecting the tank and the mixing pump. Then, the operation of the ozone generation means is instructed by the ozone generation instruction means. Further, the operation of the mixing pump is instructed by the pump operation instruction means. Thereby, since the filtered water in a 1st reaction tank can be circulated through a circulation piping between a 1st reaction tank and a mixing pump, filtered water can be decolored efficiently.

一方、第2上限判断手段によって、第2反応槽の貯水量が上限水量以上であると判断されると、第2循環流路切換制御手段によって、循環配管の流路を、第2反応槽と混合ポンプとをつなぐ流路に切り換えるように、循環流路切換手段が制御される。そして、オゾン発生指示手段によってオゾン発生手段の動作が指示される。さらに、ポンプ動作指示手段によって混合ポンプの動作が指示される。これにより、第2反応槽内のろ過水を、第2反応槽と混合ポンプとの間で、循環配管を介して循環させることができるので、ろ過水を効率よく脱色することができる。   On the other hand, when the second upper limit determination means determines that the amount of water stored in the second reaction tank is greater than or equal to the upper limit water amount, the second circulation path switching control means causes the circulation pipe to be connected to the second reaction tank. The circulation flow path switching means is controlled so as to switch to the flow path connecting to the mixing pump. Then, the operation of the ozone generation means is instructed by the ozone generation instruction means. Further, the operation of the mixing pump is instructed by the pump operation instruction means. Thereby, since the filtered water in a 2nd reaction tank can be circulated through a circulation piping between a 2nd reaction tank and a mixing pump, filtered water can be decolored efficiently.

このように、第1反応槽及び第2反応槽内のろ過水をそれぞれ循環脱色する際に、循環流路切換手段の動作が制御されることによって、循環配管内の流路がそれぞれ切り換わるので1つの循環配管を共有することができる。これにより、循環式水洗トイレシステムをコンパクトにできるので、設置スペースの縮小化を図ることができる。さらに、1個の混合ポンプで、第1反応槽及び第2反応槽内のろ過水を循環させることができるので、循環式水洗トイレシステムをさらにコンパクトにできる。また、循環配管及び混合ポンプを共有できるので部品コストを節約することができる。   As described above, when the filtered water in the first reaction tank and the second reaction tank is circulated and decolored, the operation of the circulation flow path switching means is controlled, so that the flow paths in the circulation piping are respectively switched. One circulation pipe can be shared. Thereby, since a circulating flush toilet system can be made compact, installation space can be reduced. Furthermore, since the filtered water in the first reaction tank and the second reaction tank can be circulated with a single mixing pump, the circulating flush toilet system can be made more compact. In addition, since the circulation pipe and the mixing pump can be shared, the cost of parts can be saved.

また、混合ポンプの動作時間は時間計測手段によって計測される。そして、所定時間判断手段によって、計測時間が所定時間以上であると判断されると、脱色水供給流路開放指示手段によって、循環配管から脱色水供給管への流路を開くように、脱色水供給流路開閉手段が指示される。このとき、オゾン発生手段はオゾンを発生し続けているので、混合ポンプではさらに脱色水にオゾンが混合される。これにより、脱色水供給管内を通過する際にもオゾンによる混合脱色がなされるので、ろ過水のオゾン脱色にかかる時間をさらに短縮することができる。   The operation time of the mixing pump is measured by a time measuring means. When the predetermined time determining means determines that the measurement time is equal to or longer than the predetermined time, the decolorized water supply flow path opening instructing means opens the flow path from the circulation pipe to the decolorized water supply pipe. Supply channel opening / closing means is instructed. At this time, since the ozone generating means continues to generate ozone, the mixing pump further mixes ozone with decolorized water. Thereby, even when passing through the decolorized water supply pipe, the mixed decolorization is performed by ozone, so that the time required for ozone decoloration of the filtered water can be further shortened.

そして、脱色水供給流路開放指示手段の指示によって、循環配管から脱色水供給管への流路が開かれた状態で、第1下限判断手段又は第2下限判断手段が下限水量未満であると判断した場合に、オゾン発生停止手段によってオゾン発生手段が停止される。さらに、ポンプ停止手段によって、混合ポンプの動作が停止される。これにより、貯留槽に供給すべき脱色水が第1反応槽又は第2反応槽にない場合は、自動的にオゾン発生手段と、混合ポンプとを共に停止することができる。   And when the flow path from the circulation pipe to the decolorized water supply pipe is opened by the instruction of the decolorized water supply flow path opening instruction means, the first lower limit determination means or the second lower limit determination means is less than the lower limit water amount. When the determination is made, the ozone generation means is stopped by the ozone generation stop means. Further, the operation of the mixing pump is stopped by the pump stop means. Thereby, when there is no decolorized water which should be supplied to a storage tank in a 1st reaction tank or a 2nd reaction tank, both an ozone generation means and a mixing pump can be stopped automatically.

また、請求項4に係る発明の循環式水洗トイレシステムでは、請求項3に記載の発明の効果に加え、脱色水供給管内を通過する際にもオゾンによる混合脱色がなされるので、ろ過水のオゾン脱色にかかる所定時間を、目標色度よりも高い所定色度まで脱色されるのに要する時間にまで短縮することができる。これにより、ろ過水の循環脱色を開始してから貯留槽に供給し終えるまでの時間を短縮できるので、ろ過水を効率的かつ迅速に脱色することができる。   In addition, in the circulating flush toilet system of the invention according to claim 4, in addition to the effect of the invention of claim 3, mixed decolorization with ozone is also performed when passing through the decolorized water supply pipe, so filtered water The predetermined time required for ozone decolorization can be shortened to the time required for decoloring to a predetermined chromaticity higher than the target chromaticity. Thereby, since it is possible to shorten the time from the start of circulating decolorization of the filtered water to the completion of the supply to the storage tank, the filtered water can be decolorized efficiently and quickly.

また、請求項5に係る発明の循環式水洗トイレシステムでは、請求項4に記載の発明の効果に加え、所定色度は、脱色水供給管の出口通過時の脱色水の色度が、目標色度にまで脱色されている程度に調整されている。これにより、第1反応槽又は第2反応槽で所定時間循環脱色された脱色水は所定色度にまで脱色され、さらに脱色水供給管を通過する際に脱色されるので、脱色水供給管の出口通過時には目標色度にまで脱色された脱色水を得ることができる。   In addition, in the circulating flush toilet system of the invention according to claim 5, in addition to the effect of the invention of claim 4, the predetermined chromaticity is the chromaticity of decolorized water when passing through the outlet of the decolorized water supply pipe. It is adjusted to the extent that it has been decolored to chromaticity. As a result, the decolorized water that has been decolorized in the first reaction tank or the second reaction tank for a predetermined time is decolored to a predetermined chromaticity, and further decolorized when passing through the decolorized water supply pipe. When passing through the exit, decolorized water that has been decolored to the target chromaticity can be obtained.

また、請求項6に係る発明の循環式水洗トイレシステムでは、請求項1乃至5の何れかに記載の発明の効果に加え、混合ポンプで貯留槽に脱色水を供給することによって、貯留層内の脱色水をオーバーフロー水配管を介し、生物処理槽にオーバーフローさせることができる。これにより、オーバーフロー水量を調整することによって、生物処理槽内の生物処理水の色度を希釈することができるので、ろ過水の色度を調整することができる。   Further, in the circulating flush toilet system of the invention according to claim 6, in addition to the effect of the invention according to any one of claims 1 to 5, by supplying decolorized water to the storage tank with a mixing pump, The decolorized water can be overflowed into the biological treatment tank through the overflow water pipe. Thereby, since the chromaticity of the biological treatment water in a biological treatment tank can be diluted by adjusting the amount of overflow water, the chromaticity of filtered water can be adjusted.

また、脱色回数カウント手段は、満水検知手段が満水を検知しない時に、第1反応槽及び第2反応槽における脱色処理回数をカウントできる。例えば、昼間のような使用頻度の高い時間帯では、貯留槽内の脱色水は常に使用され続けて満水にならない。よって、脱色回数カウント手段は、昼間の時間帯における脱色処理回数をカウントできる。そして、オーバーフロー回数設定手段は、この脱色回数カウント手段がカウントしたカウント値に応じて、貯留槽の脱色水をオーバーフローさせるオーバーフロー回数を設定できる。さらに、脱色回数カウント手段のカウント値から、水洗便器の使用頻度を推測でき、ろ過水の色度も推測できる。これにより、ろ過水の色度に応じて、オーバーフロー水量を調節できるので、ろ過水の色度を調節することができる。   Further, the decoloring frequency counting means can count the number of decoloring treatments in the first reaction tank and the second reaction tank when the full water detection means does not detect full water. For example, in a time zone with high usage frequency such as daytime, the decolorized water in the storage tank is always used and does not become full. Therefore, the decoloring number counting means can count the number of decoloring processes in the daytime. And the overflow frequency setting means can set the overflow frequency that causes the decolorized water in the storage tank to overflow according to the count value counted by the decolorization frequency counting means. Furthermore, the use frequency of the flush toilet can be estimated from the count value of the decoloring frequency counting means, and the chromaticity of the filtered water can be estimated. Thereby, since the amount of overflow water can be adjusted according to the chromaticity of filtered water, the chromaticity of filtered water can be adjusted.

また、請求項7に係る発明の循環式水洗トイレシステムでは、請求項6に記載の発明の効果に加え、脱色回数カウント手段のカウント値に対し、水洗便器の使用頻度と、ろ過水の色度とが比例する傾向にあるので、オーバーフロー回数設定手段は、ろ過水の色度に比例させて、オーバーフロー回数を設定することができる。さらに、オーバーフロー回数設定手段は、脱色回数カウント手段のカウント値が所定回数以上の場合は、所定回数未満の場合よりも、オーバーフロー回数を多く設定するので、ろ過水の色度に対応させて、オーバーフロー水量を調節することができる。よって、ろ過水の色度に応じて、ろ過水が希釈されるので、ろ過水の色度を一定レベルに維持することができる。さらに、ろ過水の色度を一定レベルに維持できることによって、オゾン発生手段にかかる負荷を軽減することができる。   Further, in the circulating flush toilet system of the invention according to claim 7, in addition to the effect of the invention of claim 6, the frequency of use of the flush toilet and the chromaticity of filtrate water with respect to the count value of the decoloring frequency counting means Therefore, the overflow count setting means can set the overflow count in proportion to the chromaticity of the filtered water. Furthermore, the overflow count setting means sets the overflow count more when the count value of the decolorization count count means is equal to or greater than the predetermined count, compared with the case where the count value is less than the predetermined count. The amount of water can be adjusted. Therefore, since filtered water is diluted according to the chromaticity of filtered water, the chromaticity of filtered water can be maintained at a fixed level. Furthermore, the load applied to the ozone generating means can be reduced by maintaining the chromaticity of the filtered water at a constant level.

また、請求項8に係る発明の循環式水洗トイレシステムでは、請求項1乃至5の何れかに記載の発明の効果に加え、混合ポンプで貯留槽に脱色水を供給することによって、貯留槽内の脱色水をオーバーフロー水配管を介し、生物処理槽にオーバーフローさせることができる。これにより、オーバーフロー水量を調整することによって、生物処理槽内の生物処理水の色度を希釈することができるので、ろ過水の色度を調整することができる。   In addition, in the circulating flush toilet system of the invention according to claim 8, in addition to the effect of the invention according to any one of claims 1 to 5, by supplying decolorized water to the storage tank with a mixing pump, The decolorized water can be overflowed into the biological treatment tank through the overflow water pipe. Thereby, since the chromaticity of the biological treatment water in a biological treatment tank can be diluted by adjusting the amount of overflow water, the chromaticity of filtered water can be adjusted.

そして、満水検知手段が貯留槽の満水を検知した際に、ろ過水色度検知手段の検知した第1反応槽又は第2反応槽に供給されたろ過水の色度が基準色度未満の場合は、水洗便器の使用頻度が少なかったことが推測される。この場合、ポンプ動作指示手段は混合ポンプを動作させないので、貯留槽内の脱色水を生物処理槽にオーバーフローさせない。   And when the full water detection means detects that the storage tank is full, the chromaticity of the filtrate supplied to the first reaction tank or the second reaction tank detected by the filtrate chromaticity detection means is less than the reference chromaticity. It is estimated that the frequency of use of flush toilets was low. In this case, since the pump operation instruction means does not operate the mixing pump, the decolorized water in the storage tank does not overflow into the biological treatment tank.

これとは逆に、ろ過水色度検知手段の検知した第1反応槽又は第2反応槽に供給されたろ過水の色度が基準色度以上の場合は、水洗便器の使用頻度が多かったことが推測される。この場合、ポンプ動作指示手段は通常通り混合ポンプを動作させて、貯留槽内の脱色水を生物処理槽にオーバーフローさせる。これにより、ろ過水の色度が低下するので、上昇した洗浄水の色度を低下させることができる。このように、ろ過水の色度によって、オーバーフロー水量を調整することができるので、ろ過水の色度を一定の範囲内に維持することができる。   On the contrary, when the chromaticity of the filtrate supplied to the first reaction tank or the second reaction tank detected by the filtered water chromaticity detection means is equal to or higher than the reference chromaticity, the flush toilet was used frequently. Is guessed. In this case, the pump operation instruction means operates the mixing pump as usual to overflow the decolorized water in the storage tank into the biological treatment tank. Thereby, since the chromaticity of filtered water falls, the chromaticity which rose can be lowered | hung. Thus, since the amount of overflow water can be adjusted with the chromaticity of filtered water, the chromaticity of filtered water can be maintained within a fixed range.

また、請求項9に係る発明の循環式水洗トイレシステムでは、水洗便器からの汚水は生物処理槽で処理され、ろ過槽でろ過される。ろ過水は、第1反応槽および第2反応槽に供給されるとともに、混合脱色手段によってオゾン脱色される。オゾン脱色された脱色水は貯留槽に供給され、再度水洗便器に循環されて使用される。この循環式水洗トイレシステムにおいて、ろ過槽内のろ過水は、ろ過水供給管内の流路を流れることによって、第1反応槽又は第2反応槽に向かって供給される。そして、ろ過水供給管内の流路は、ろ過水供給切換手段の切換動作によって、第1反応槽への流路と、第2反応槽への流路とに各々切り換えられる。また、第1反応槽の貯水量は第1水量検知手段によって検知され、第2反応槽の貯水量は第2水量検知手段によって検知される。ここで、例えば、第1下限判断手段によって第1反応槽の貯水量が下限水量未満であると判断されると、第1切換指示手段によって、第1反応槽への流路を開くようにろ過水流路切換手段が指示される。これにより、第1反応槽内にろ過水が供給されるので、第1反応槽内のろ過水を下限水量以上に維持できる。一方、第2下限判断手段によって第2反応槽の貯水量が下限水量未満であると判断されると、第2切換指示手段によって、第2反応槽への流路を開くようにろ過水流路切換手段が指示される。これにより、第2反応槽内にろ過水が供給されるので、第2反応槽内のろ過水を下限水量以上に維持できる。   In the circulating flush toilet system of the invention according to claim 9, sewage from the flush toilet is treated in a biological treatment tank and filtered in a filtration tank. The filtered water is supplied to the first reaction tank and the second reaction tank, and ozone decolorized by the mixed decoloring means. The decolorized water that has been decolorized by ozone is supplied to the storage tank and is recycled to the flush toilet. In this circulating flush toilet system, the filtrate in the filtration tank is supplied toward the first reaction tank or the second reaction tank by flowing through the flow path in the filtrate supply pipe. And the flow path in a filtrate supply pipe | tube is each switched to the flow path to a 1st reaction tank, and the flow path to a 2nd reaction tank by the switching operation of a filtrate water supply switching means. The amount of water stored in the first reaction tank is detected by the first water amount detection means, and the amount of water stored in the second reaction tank is detected by the second water amount detection means. Here, for example, if the first lower limit determination means determines that the amount of water stored in the first reaction tank is less than the lower limit water volume, the first switching instruction means performs filtration so as to open the flow path to the first reaction tank. A water flow path switching means is instructed. Thereby, since filtered water is supplied in a 1st reaction tank, the filtered water in a 1st reaction tank can be maintained more than a minimum amount of water. On the other hand, when the second lower limit judging means judges that the amount of water stored in the second reaction tank is less than the lower limit water quantity, the second switching instruction means switches the filtered water flow path so as to open the flow path to the second reaction tank. Means are indicated. Thereby, since filtered water is supplied in a 2nd reaction tank, the filtered water in a 2nd reaction tank can be maintained more than a minimum amount of water.

そして、第1反応槽又は第2反応槽内のろ過水は、循環配管を通過し、混合ポンプによってオゾン発生手段によって発生されたオゾンと混合されて反応する。さらに、混合ポンプでオゾンが混合されたろ過水は、該混合ポンプの吐出動作によって、循環配管を介し、第1反応槽又は第2反応槽との間を循環する。そして、この循環流路は、循環流路切換手段の動作によって、混合ポンプと第1反応槽とをつなぐ流路と、混合ポンプと第2反応槽とをつなぐ流路とに切り換えられる。ここで、例えば、第1上限判断手段によって第1反応槽の貯水量が上限水量以上であると判断されると、第1循環流路切換制御手段によって、循環配管の流路を、第1反応槽と混合ポンプとをつなぐ流路に切り換えるように、循環流路切換手段が制御される。そして、オゾン発生指示手段によってオゾン発生手段の動作が指示される。さらに、ポンプ動作指示手段によって混合ポンプの動作が指示される。これにより、第1反応槽と混合ポンプとの間で、第1反応槽内のろ過水を循環配管を介して循環させることができるので、ろ過水を効率よく脱色することができる。   And the filtered water in a 1st reaction tank or a 2nd reaction tank passes through circulation piping, is mixed with the ozone generated by the ozone generation means with the mixing pump, and reacts. Furthermore, the filtered water mixed with ozone by the mixing pump circulates between the first reaction tank or the second reaction tank through the circulation pipe by the discharge operation of the mixing pump. The circulation channel is switched to a channel connecting the mixing pump and the first reaction tank and a channel connecting the mixing pump and the second reaction tank by the operation of the circulation channel switching means. Here, for example, when the first upper limit determination means determines that the amount of water stored in the first reaction tank is greater than or equal to the upper limit water amount, the first circulation flow path switching control means causes the flow of the circulation pipe to be changed to the first reaction flow. The circulation flow path switching means is controlled so as to switch to the flow path connecting the tank and the mixing pump. Then, the operation of the ozone generation means is instructed by the ozone generation instruction means. Further, the operation of the mixing pump is instructed by the pump operation instruction means. Thereby, since the filtered water in a 1st reaction tank can be circulated through a circulation piping between a 1st reaction tank and a mixing pump, filtered water can be decolored efficiently.

一方、第2上限判断手段によって、第2反応槽の貯水量が上限水量以上であると判断されると、第2循環流路切換制御手段によって、循環配管の流路を、第2反応槽と混合ポンプとをつなぐ流路に切り換えるように、循環流路切換手段が制御される。そして、オゾン発生指示手段によってオゾン発生手段の動作が指示される。さらに、ポンプ動作指示手段によって混合ポンプの動作が指示される。これにより、第2反応槽内のろ過水を、第2反応槽と混合ポンプとの間で、循環配管を介して循環させることができるので、ろ過水を効率よく脱色することができる。   On the other hand, when the second upper limit determination means determines that the amount of water stored in the second reaction tank is greater than or equal to the upper limit water amount, the second circulation path switching control means causes the circulation pipe to be connected to the second reaction tank. The circulation flow path switching means is controlled so as to switch to the flow path connecting to the mixing pump. Then, the operation of the ozone generation means is instructed by the ozone generation instruction means. Further, the operation of the mixing pump is instructed by the pump operation instruction means. Thereby, since the filtered water in a 2nd reaction tank can be circulated through a circulation piping between a 2nd reaction tank and a mixing pump, filtered water can be decolored efficiently.

このように、第1反応槽及び第2反応槽内のろ過水をそれぞれ循環脱色する際に、循環流路切換手段の動作が制御されることによって、循環配管内の流路がそれぞれ切り換わるので1つの循環配管を共有することができる。これにより、循環式水洗トイレシステムをコンパクトにできるので、設置スペースの縮小化を図ることができる。さらに、1個の混合ポンプで、第1反応槽及び第2反応槽内のろ過水を循環させることができるので、循環式水洗トイレシステムをさらにコンパクトにできる。また、循環配管及び混合ポンプを共有できるので部品コストを節約することができる。   As described above, when the filtered water in the first reaction tank and the second reaction tank is circulated and decolored, the operation of the circulation flow path switching means is controlled, so that the flow paths in the circulation piping are respectively switched. One circulation pipe can be shared. Thereby, since a circulating flush toilet system can be made compact, installation space can be reduced. Furthermore, since the filtered water in the first reaction tank and the second reaction tank can be circulated with a single mixing pump, the circulating flush toilet system can be made more compact. In addition, since the circulation pipe and the mixing pump can be shared, the cost of parts can be saved.

また、第1反応槽内の貯水の色度は、第1色度検知手段によって検知される。一方、第2反応槽内の貯水の色度は、第2色度検知手段によって検知される。そして、第1反応槽又は第2反応槽内のろ過水の脱色処理が進行し、第1色度判断手段又は前記第2色度判断手段によって所定色度以下と判断された場合は、脱色水供給流路開放指示手段によって、循環配管から脱色水供給管への流路を開くように、脱色水供給流路開閉手段が指示される。このとき、オゾン発生手段はオゾンを発生し続けているので、混合ポンプではさらに脱色水にオゾンが混合される。これにより、脱色水供給管内を通過する際にもオゾンによる混合脱色がなされるので、ろ過水のオゾン脱色にかかる時間をさらに短縮することができる。   Further, the chromaticity of the water stored in the first reaction tank is detected by the first chromaticity detection means. On the other hand, the chromaticity of the stored water in the second reaction tank is detected by the second chromaticity detection means. And when the decolorization process of the filtered water in a 1st reaction tank or a 2nd reaction tank advances and it is judged that it is below predetermined chromaticity by the 1st chromaticity judgment means or the said 2nd chromaticity judgment means, decolored water The decoloring water supply flow path opening / closing means is instructed by the supply flow path opening instructing means to open the flow path from the circulation pipe to the decolorized water supply pipe. At this time, since the ozone generating means continues to generate ozone, the mixing pump further mixes ozone with decolorized water. Thereby, even when passing through the decolorized water supply pipe, the mixed decolorization is performed by ozone, so that the time required for ozone decoloration of the filtered water can be further shortened.

そして、脱色水供給流路開放指示手段の指示によって、循環配管から脱色水供給管への流路が開かれた状態で、第1下限判断手段又は第2下限判断手段が下限水量未満であると判断した場合に、オゾン発生停止手段によってオゾン発生手段が停止される。さらに、ポンプ停止手段によって、混合ポンプの動作が停止される。これにより、貯留槽に供給すべき脱色水が第1反応槽又は第2反応槽にない場合は、自動的にオゾン発生手段と、混合ポンプとを共に停止することができる。   And when the flow path from the circulation pipe to the decolorized water supply pipe is opened by the instruction of the decolorized water supply flow path opening instruction means, the first lower limit determination means or the second lower limit determination means is less than the lower limit water amount. When the determination is made, the ozone generation means is stopped by the ozone generation stop means. Further, the operation of the mixing pump is stopped by the pump stop means. Thereby, when there is no decolorized water which should be supplied to a storage tank in a 1st reaction tank or a 2nd reaction tank, both an ozone generation means and a mixing pump can be stopped automatically.

また、請求項10に係る発明の循環式水洗トイレシステムでは、請求項9に記載の発明の効果に加え、所定色度は、脱色水供給管の出口通過時の脱色水の色度が、目標色度にまで脱色されている程度に調整されている。これにより、第1反応槽又は第2反応槽で所定時間循環脱色された脱色水は所定色度にまで脱色され、さらに脱色水供給管を通過する際に脱色されるので、脱色水供給管の出口通過時には目標色度にまで脱色された脱色水を得ることができる。   In addition, in the circulating flush toilet system of the invention according to claim 10, in addition to the effect of the invention of claim 9, the predetermined chromaticity is the chromaticity of the decolorized water when passing through the outlet of the decolorized water supply pipe. It is adjusted to the extent that it has been decolored to chromaticity. As a result, the decolorized water that has been decolorized in the first reaction tank or the second reaction tank for a predetermined time is decolored to a predetermined chromaticity, and further decolorized when passing through the decolorized water supply pipe. When passing through the exit, decolorized water that has been decolored to the target chromaticity can be obtained.

また、請求項11に係る発明の循環式水洗トイレシステムでは、請求項9又は10に記載の発明の効果に加え、混合ポンプで貯留槽に脱色水を供給することによって、貯留槽内の脱色水をオーバーフロー水配管を介し、生物処理槽にオーバーフローさせることができる。これにより、オーバーフロー水量を調整することによって、生物処理槽内の生物処理水の色度を希釈することができるので、ろ過水の色度を調整することができる。   In addition, in the circulating flush toilet system of the invention according to claim 11, in addition to the effect of the invention of claim 9 or 10, decolorized water in the storage tank is supplied by supplying decolorized water to the storage tank with a mixing pump. Can overflow into the biological treatment tank via the overflow water pipe. Thereby, since the chromaticity of the biological treatment water in a biological treatment tank can be diluted by adjusting the amount of overflow water, the chromaticity of filtered water can be adjusted.

また、脱色回数カウント手段は、満水検知手段が満水を検知しない時に、第1反応槽及び第2反応槽における脱色処理回数をカウントできる。例えば、昼間のような使用頻度の高い時間帯では、貯留槽内の脱色水は常に使用され続けて満水にならない。よって、脱色回数カウント手段は、昼間の時間帯における脱色処理回数をカウントできる。そして、オーバーフロー回数設定手段は、この脱色回数カウント手段がカウントしたカウント値に応じて、貯留槽の脱色水をオーバーフローさせるオーバーフロー回数を設定できる。さらに、脱色回数カウント手段のカウント値から、水洗便器の使用頻度を推測でき、ろ過水の色度も推測できる。これにより、ろ過水の色度に応じて、オーバーフロー水量を調節できるので、ろ過水の色度を調節することができる。   Further, the decoloring frequency counting means can count the number of decoloring treatments in the first reaction tank and the second reaction tank when the full water detection means does not detect full water. For example, in a time zone with high usage frequency such as daytime, the decolorized water in the storage tank is always used and does not become full. Therefore, the decoloring number counting means can count the number of decoloring processes in the daytime. And the overflow frequency setting means can set the overflow frequency that causes the decolorized water in the storage tank to overflow according to the count value counted by the decolorization frequency counting means. Furthermore, the use frequency of the flush toilet can be estimated from the count value of the decoloring frequency counting means, and the chromaticity of the filtered water can be estimated. Thereby, since the amount of overflow water can be adjusted according to the chromaticity of filtered water, the chromaticity of filtered water can be adjusted.

また、請求項12に係る発明の循環式水洗トイレシステムでは、請求項11に記載の発明の効果に加え、脱色回数カウント手段のカウント値に対し、水洗便器の使用頻度と、ろ過水の色度とが比例する傾向にあるので、オーバーフロー回数設定手段は、ろ過水の色度に比例させて、オーバーフロー回数を設定することができる。さらに、オーバーフロー回数設定手段は、脱色回数カウント手段のカウント値が所定回数以上の場合は、所定回数未満の場合よりも、オーバーフロー回数を多く設定するので、ろ過水の色度に対応させて、オーバーフロー水量を調節することができる。よって、ろ過水の色度に応じて、ろ過水が希釈されるので、ろ過水の色度を一定レベルに維持することができる。さらに、ろ過水の色度を一定レベルに維持できることによって、オゾン発生手段にかかる負荷を軽減することができる。   Further, in the circulating flush toilet system of the invention according to claim 12, in addition to the effect of the invention of claim 11, the frequency of use of the flush toilet and the chromaticity of filtrate water with respect to the count value of the decoloring frequency counting means Therefore, the overflow count setting means can set the overflow count in proportion to the chromaticity of the filtered water. Furthermore, the overflow count setting means sets the overflow count more when the count value of the decolorization count count means is equal to or greater than the predetermined count, compared with the case where the count value is less than the predetermined count. The amount of water can be adjusted. Therefore, since filtered water is diluted according to the chromaticity of filtered water, the chromaticity of filtered water can be maintained at a fixed level. Furthermore, the load applied to the ozone generating means can be reduced by maintaining the chromaticity of the filtered water at a constant level.

また、請求項13に係る発明の循環式水洗トイレシステムでは、請求項9又は10に記載の発明の効果に加え、混合ポンプで脱色槽に脱色水を供給することによって、脱色槽内の脱色水をオーバーフロー水配管を介し、生物処理槽にオーバーフローさせることができる。これにより、オーバーフロー水量を調整することによって、生物処理槽内の生物処理水の色度を薄めることができ、ろ過槽でろ過されるろ過水の色度を調整することができる。   Further, in the circulating flush toilet system of the invention according to claim 13, in addition to the effect of the invention of claim 9 or 10, decolorizing water in the decoloring tank is supplied by supplying decoloring water to the decoloring tank with a mixing pump. Can overflow into the biological treatment tank via the overflow water pipe. Thereby, by adjusting the amount of overflow water, the chromaticity of the biologically treated water in the biologically treated tank can be diluted, and the chromaticity of the filtered water filtered in the filtration tank can be adjusted.

そして、満水検知手段が貯留槽の満水を検知した際に、ろ過水色度検知手段の検知した第1反応槽又は第2反応槽に供給されたろ過水の色度が基準色度未満の場合は、水洗便器の使用頻度が少なかったことが推測される。この場合、ポンプ動作指示手段は混合ポンプを動作させないので、貯留槽内の脱色水を生物処理槽にオーバーフローさせない。   And when the full water detection means detects that the storage tank is full, the chromaticity of the filtrate supplied to the first reaction tank or the second reaction tank detected by the filtrate chromaticity detection means is less than the reference chromaticity. It is estimated that the frequency of use of flush toilets was low. In this case, since the pump operation instruction means does not operate the mixing pump, the decolorized water in the storage tank does not overflow into the biological treatment tank.

これとは逆に、ろ過水色度検知手段の検知した第1反応槽又は第2反応槽に供給されたろ過水の色度が基準色度以上の場合は、水洗便器の使用頻度が多かったことが推測される。この場合、ポンプ動作指示手段は通常通り混合ポンプを動作させて、貯留槽内の脱色水を生物処理槽にオーバーフローさせる。これにより、ろ過水の色度が低下するので、上昇した洗浄水の色度を低下させることができる。このように、ろ過水の色度によって、オーバーフロー水量を調整することができるので、ろ過水の色度を一定の範囲内に維持することができる。   On the contrary, when the chromaticity of the filtrate supplied to the first reaction tank or the second reaction tank detected by the filtered water chromaticity detection means is equal to or higher than the reference chromaticity, the flush toilet was used frequently. Is guessed. In this case, the pump operation instruction means operates the mixing pump as usual to overflow the decolorized water in the storage tank into the biological treatment tank. Thereby, since the chromaticity of filtered water falls, the chromaticity which rose can be lowered | hung. Thus, since the amount of overflow water can be adjusted with the chromaticity of filtered water, the chromaticity of filtered water can be maintained within a fixed range.

以下、本発明の第1の実施形態である循環式水洗トイレシステム1について、図面に基づいて説明する。図1は、循環式水洗トイレシステム1のブロック図であり、図2は、循環式水洗トイレシステム1の構成図であり、図3は、オゾン脱色部8及びコントローラ10の構成を示す構成図であり、図4は、オゾン脱色部8における処理の流れを示す説明図(第1反応槽31にろ過水供給)であり、図5は、オゾン脱色部8における処理の流れを示す説明図(第1反応槽31の脱色処理:第2反応槽32にろ過水供給)であり、図6は、オゾン脱色部8における処理の流れを示す説明図(第1反応槽31から貯留槽9に脱色水供給)であり、図7は、オゾン脱色部8における処理の流れを示す説明図(第2反応槽32の脱色処理:第1反応槽31にろ過水供給)であり、図8は、オゾン脱色部8における処理の流れを示す説明図(第2反応槽32から貯留槽9に脱色水供給)であり、図9は、CPU10aによる第1反応槽脱色処理の制御動作を示すフローチャート(第1の実施形態)であり、図10は、CPU10aによる第2反応槽脱色処理の制御動作を示すフローチャート(第1の実施形態)である。   Hereinafter, the circulating flush toilet system 1 which is the 1st Embodiment of this invention is demonstrated based on drawing. FIG. 1 is a block diagram of the circulating flush toilet system 1, FIG. 2 is a configuration diagram of the circulating flush toilet system 1, and FIG. 3 is a configuration diagram illustrating configurations of the ozone decoloring unit 8 and the controller 10. FIG. 4 is an explanatory diagram showing the flow of processing in the ozone decoloring unit 8 (filtrated water supply to the first reaction tank 31), and FIG. 5 is an explanatory diagram showing the processing flow in the ozone decoloring unit 8 (first FIG. 6 is an explanatory diagram showing the flow of processing in the ozone decoloring unit 8 (decolored water from the first reaction tank 31 to the storage tank 9). FIG. 7 is an explanatory diagram showing the flow of processing in the ozone decoloring section 8 (decoloring processing of the second reaction tank 32: supplying filtered water to the first reaction tank 31), and FIG. Explanatory drawing which shows the flow of the process in the part 8 (the second reaction tank 32 or FIG. 9 is a flowchart (first embodiment) showing the control operation of the first reaction tank decoloring process by the CPU 10a, and FIG. 10 is the second reaction tank decolorization by the CPU 10a. It is a flowchart (1st Embodiment) which shows the control operation | movement of a process.

なお、第1の実施形態の循環式水洗トイレシステム1は、ろ過水をオゾン脱色するオゾン脱色部8を備えている。このオゾン脱色部8は、2つの反応槽(第1反応槽31,第2反応槽32)と、混合ポンプ12と、循環配管41〜47と、オゾン発生器13とを主体に構成されている。そして、循環配管41〜47にそれぞれ設けられた電磁弁52〜54を各々制御することで、循環配管41〜47で構成されるろ過水の循環流路を、第1循環流路と第2循環流路とに切り換えることができる点が特徴である。   In addition, the circulation type flush toilet system 1 of 1st Embodiment is provided with the ozone decoloring part 8 which deozones filtrate water. The ozone decoloring unit 8 is mainly composed of two reaction tanks (first reaction tank 31 and second reaction tank 32), a mixing pump 12, circulation pipes 41 to 47, and an ozone generator 13. . Then, by controlling the electromagnetic valves 52 to 54 respectively provided in the circulation pipes 41 to 47, the filtrate water circulation path constituted by the circulation pipes 41 to 47 is changed into the first circulation path and the second circulation. It is characterized in that it can be switched to a flow path.

はじめに、循環式水洗トイレシステム1の全体構成について概略的に説明する。図1に示すように、循環式水洗トイレシステム1は、水洗便器5と、該水洗便器5からの汚水を受け入れ、汚水中に含まれる有機物を分解するとともに、硝化脱窒を行う生物処理槽6と、該生物処理槽6で処理され、汚泥が混在する生物処理水を固液分離(ろ過)するろ過槽7と、該ろ過槽7でろ過されたろ過水にオゾンを混合して、循環脱色を行うオゾン脱色部8と、該オゾン脱色部8で循環脱色された脱色水を貯留する貯留槽9とを主体に構成されている。そして、貯留槽9と水洗便器5の間には洗浄水供給管15が設けられ、該洗浄水供給管15にはポンプ16が設けられている。このポンプ16が運転することで、貯留槽9に貯留された脱色水が洗浄水供給管15を介して水洗便器5に供給され、洗浄水として再利用される。さらに、循環式水洗トイレシステム1は、上記各処理槽における処理動作を制御するコントローラ10(図2参照)を備えている。   First, the overall configuration of the circulating flush toilet system 1 will be schematically described. As shown in FIG. 1, a circulating flush toilet system 1 includes a flush toilet 5 and a biological treatment tank 6 that receives sewage from the flush urinal 5, decomposes organic matter contained in the sewage, and performs nitrification and denitrification. And by mixing ozone into the filtration tank 7 for solid-liquid separation (filtration) of the biological treatment water treated with the biological treatment tank 6 and mixed with sludge, and circulating decolorization by mixing ozone with the filtered water filtered in the filtration tank 7 The ozone decoloring unit 8 that performs the above and a storage tank 9 that stores the decolorized water circulated and decolored by the ozone decoloring unit 8 are mainly configured. A washing water supply pipe 15 is provided between the storage tank 9 and the flush toilet 5, and a pump 16 is provided in the washing water supply pipe 15. By operating the pump 16, the decolorized water stored in the storage tank 9 is supplied to the flush toilet 5 through the cleaning water supply pipe 15 and reused as cleaning water. Furthermore, the circulating flush toilet system 1 includes a controller 10 (see FIG. 2) that controls the processing operation in each processing tank.

次に、生物処理槽6について説明する。図2に示すように、生物処理槽6は、汚水中のアンモニアを硝化処理して、硝酸に変換する硝化槽6bと、硝化槽6bで硝化処理された硝酸を脱窒処理して窒素ガスに変換して大気中に放出する脱窒槽6aとから構成されている。なお、硝化槽6bと脱窒槽6aとの間を仕切る壁には、生物処理水が移動するための穴(図示外)が設けられている。また、硝化槽6bの底部には散気管19が設置され、該散気管19は、配管18aを介して間欠式のブロワー18に接続されている。さらに、硝化槽6bには水中ポンプ(図示外)が設けられ、該水中ポンプの稼働によって、硝化槽6b内の生物処理水がろ過槽7に供給される。   Next, the biological treatment tank 6 will be described. As shown in FIG. 2, the biological treatment tank 6 nitrifies ammonia in sewage and converts it into nitric acid, and the nitric acid nitrified in the nitrification tank 6b is denitrified and converted into nitrogen gas. It comprises a denitrification tank 6a that converts and discharges it into the atmosphere. In addition, the wall (not shown) for a biological treatment water to move is provided in the wall which partitions between the nitrification tank 6b and the denitrification tank 6a. Further, an air diffuser 19 is installed at the bottom of the nitrification tank 6b, and the air diffuser 19 is connected to an intermittent blower 18 through a pipe 18a. Furthermore, the nitrification tank 6b is provided with an underwater pump (not shown), and the biologically treated water in the nitrification tank 6b is supplied to the filtration tank 7 by the operation of the submersible pump.

次に、ろ過槽7について説明する。図2に示すように、ろ過槽7には、複数のろ過膜を支持枠(図示外)の内側に支持するろ過装置17が配置されている。このろ過装置17は、汚泥が混在する生物処理水をろ過できる。また、ろ過装置17のろ過水が流出する出口にはろ過水供給管25が接続され、該ろ過水供給管25の下流側一端部は、オゾン脱色部8の後述する電磁弁51の入口に接続されている。なお、ろ過槽7の水面は、オゾン脱色部8の第1反応槽31及び第2反応槽32の水面よりも高くなっている。これにより、ろ過槽7に供給された生物処理水は、ろ過装置17の複数のろ過膜を通過し、ろ過水供給管25を介して、オゾン脱色部8に自然に流入する。   Next, the filtration tank 7 will be described. As shown in FIG. 2, a filtration device 17 that supports a plurality of filtration membranes inside a support frame (not shown) is disposed in the filtration tank 7. This filtration device 17 can filter biologically treated water in which sludge is mixed. A filtered water supply pipe 25 is connected to the outlet of the filtered device 17 through which filtrate water flows out, and one end on the downstream side of the filtered water supply pipe 25 is connected to an inlet of an electromagnetic valve 51 described later of the ozone decoloring section 8. Has been. The water surface of the filtration tank 7 is higher than the water surfaces of the first reaction tank 31 and the second reaction tank 32 of the ozone decoloring unit 8. Thereby, the biologically treated water supplied to the filtration tank 7 passes through the plurality of filtration membranes of the filtration device 17 and naturally flows into the ozone decoloring section 8 through the filtrate water supply pipe 25.

また、ろ過槽7の底部には、散気管20が設置され、該散気管20は、配管18bを介して間欠式のブロワー18に接続されている。よって、散気管20から送出された気泡によって、散気管20の上方に配置されたろ過装置17のろ過膜の表面に付着した汚泥等の異物が除去される。さらに、ろ過槽7には、汚泥を含む生物処理水が貯留され、散気管20によって曝気されるので、ろ過槽7でも微生物による硝化反応が行われている。   In addition, a diffuser pipe 20 is installed at the bottom of the filtration tank 7, and the diffuser pipe 20 is connected to the intermittent blower 18 via a pipe 18b. Therefore, foreign matters such as sludge adhering to the surface of the filtration membrane of the filtration device 17 disposed above the diffuser tube 20 are removed by the bubbles sent from the diffuser tube 20. Furthermore, since the biologically treated water containing sludge is stored in the filtration tank 7 and aerated by the air diffuser 20, the nitrification reaction by microorganisms is also performed in the filtration tank 7.

次に、本発明の特徴であるオゾン脱色部8について説明する。図2に示すように、このオゾン脱色部8は、第1反応槽31及び第2反応槽32と、該第1反応槽31又は第2反応槽32内のろ過水にオゾンを混合して反応させる混合ポンプ12と、該混合ポンプ12と第1反応槽31又は第2反応槽32との間でオゾン混合水を循環させる循環配管41〜47と、空気を原料としてオゾンを発生して、混合ポンプ12に供給するオゾン発生器13とを主体に構成されている。   Next, the ozone decoloring part 8 which is a feature of the present invention will be described. As shown in FIG. 2, the ozone decoloring unit 8 reacts by mixing ozone into the first reaction tank 31 and the second reaction tank 32 and the filtered water in the first reaction tank 31 or the second reaction tank 32. The mixing pump 12, the circulation pipes 41 to 47 for circulating the ozone mixed water between the mixing pump 12 and the first reaction tank 31 or the second reaction tank 32, and the ozone as a raw material to generate and mix An ozone generator 13 supplied to the pump 12 is mainly used.

まず、第1反応槽31、第2反応槽32について説明する。図3に示すように、第1反応槽31及び第2反応槽32は、ろ過水供給管25から供給されるろ過水を受け入れるとともに、混合ポンプ12との間を循環して生成する脱色水を貯留する槽である。そして、第1反応槽31の内側には、第1反応槽31の上部から下側まで延設されたフロート取付板35が配設されている。このフロート取付板35の上部には、第1反応槽31の水位が上限水位に到達したか否かを検知する第1上限フロート70が固定され、下部には、第1反応槽31の水位が下限水位未満か否かを検知する第1下限フロート71が固定されている。なお、第1上限フロート70の固定位置は、第1反応槽31内におけるろ過水(又は脱色水)の上限水位の位置に調整され、第1下限フロート71の固定位置は、第1反応槽31内におけるろ過水(又は脱色水)の下限水位の位置に調整されている。   First, the 1st reaction tank 31 and the 2nd reaction tank 32 are demonstrated. As shown in FIG. 3, the first reaction tank 31 and the second reaction tank 32 receive the filtered water supplied from the filtered water supply pipe 25 and circulate between the mixing pump 12 and generate decolorized water that is generated. It is a storage tank. A float mounting plate 35 extending from the upper side to the lower side of the first reaction tank 31 is disposed inside the first reaction tank 31. A first upper limit float 70 for detecting whether or not the water level of the first reaction tank 31 has reached the upper limit water level is fixed to the upper part of the float mounting plate 35, and the water level of the first reaction tank 31 is fixed to the lower part. A first lower limit float 71 for detecting whether or not it is lower than the lower limit water level is fixed. The fixed position of the first upper limit float 70 is adjusted to the position of the upper limit water level of filtered water (or decolored water) in the first reaction tank 31, and the fixed position of the first lower limit float 71 is adjusted to the first reaction tank 31. The lower limit water level of filtered water (or decolorized water) is adjusted.

一方、第2反応槽32の内側にも、第2反応槽32の上部から下側まで延設されたフロート取付板36が配設されている。このフロート取付板36の上部には、第2反応槽32の水位が上限水位に到達したか否かを検知する第2上限フロート73が固定され、下部には、第2反応槽32の水位が下限水位未満か否かを検知する第2下限フロート74が固定されている。そして、第2上限フロート73の固定位置は、第2反応槽32内におけるろ過水(又は脱色水)の上限水位の位置に調整され、第2下限フロート74の固定位置は、第2反応槽32内におけるろ過水(又は脱色水)の下限水位の位置に調整されている。   On the other hand, a float mounting plate 36 extending from the upper part to the lower part of the second reaction tank 32 is also arranged inside the second reaction tank 32. A second upper limit float 73 for detecting whether or not the water level of the second reaction tank 32 has reached the upper limit water level is fixed to the upper part of the float mounting plate 36, and the water level of the second reaction tank 32 is fixed to the lower part. A second lower limit float 74 for detecting whether or not it is lower than the lower limit water level is fixed. The fixing position of the second upper limit float 73 is adjusted to the position of the upper limit water level of filtered water (or decolored water) in the second reaction tank 32, and the fixing position of the second lower limit float 74 is adjusted to the second reaction tank 32. It is adjusted to the position of the lower limit water level of the filtered water (or decolorized water) inside.

なお、これら各種フロートは一般的なフロートスイッチであり、第1反応槽31及び第2反応槽32の各水位によってスイッチのオンオフが切り替わる。そして、これら第1上限フロート70、第1下限フロート71、第2上限フロート73、第2下限フロート74は、コントローラ10の後述するI/Oインタフェイス10dに接続され、各種フロートから出力されたオンオフ信号が各々入力される。これにより、コントローラ10の後述するCPU10aは、第1反応槽31及び第2反応槽32の各水位を検知できる。   These various floats are general float switches, and the switches are turned on and off depending on the water levels in the first reaction tank 31 and the second reaction tank 32. The first upper limit float 70, the first lower limit float 71, the second upper limit float 73, and the second lower limit float 74 are connected to an I / O interface 10d (to be described later) of the controller 10 and are turned on / off output from various floats. Each signal is input. Thereby, CPU10a mentioned later of the controller 10 can detect each water level of the 1st reaction tank 31 and the 2nd reaction tank 32. FIG.

次に、第1反応槽31及び第2反応槽32にろ過水を供給するための配管構成について説明する。図3に示すように、第1反応槽31の側壁の上段には、ろ過水が流入するろ過水配管38の一端部が接続され、第2反応槽32の側壁の上段には、ろ過水が流入するろ過水配管39の一端部が接続されている。そして、このろ過水配管38の他端部と、ろ過水配管39の他端部との間には、一つの入口及び二つの出口を備えた三方電磁弁である電磁弁51の各出口が接続されている。この電磁弁51のバルブ内には二つの弁座が設けられ、常に何れか一方の弁座が開かれ、他方の弁座は閉じられた状態となっている。これにより、電磁弁51のバルブ内では2つの流路を互いに切り換えることができる。また、電磁弁51の入口には、ろ過水供給管25の下流側一端部が接続されている。よって、ろ過水供給管25から供給されたろ過水は、電磁弁51からろ過水配管38に、又はろ過水配管39に流れるので、第1反応槽31又は第2反応槽32に各々供給することができる。   Next, the piping configuration for supplying filtered water to the first reaction tank 31 and the second reaction tank 32 will be described. As shown in FIG. 3, one end of filtrate water pipe 38 into which filtrate flows in is connected to the upper stage of the side wall of first reaction tank 31, and filtered water is fed to the upper stage of the side wall of second reaction tank 32. One end of the inflowing filtrate pipe 39 is connected. And between each other end of this filtrate water piping 38 and the other end of filtrate water piping 39, each outlet of electromagnetic valve 51 which is a three-way electromagnetic valve provided with one inlet and two outlets is connected. Has been. Two valve seats are provided in the valve of the electromagnetic valve 51, and one of the valve seats is always opened and the other valve seat is closed. Thereby, the two flow paths can be switched to each other in the valve of the electromagnetic valve 51. The downstream end of the filtrate water supply pipe 25 is connected to the inlet of the electromagnetic valve 51. Therefore, the filtrate supplied from the filtrate supply pipe 25 flows from the solenoid valve 51 to the filtrate water pipe 38 or to the filtrate water pipe 39, and is thus supplied to the first reaction tank 31 or the second reaction tank 32, respectively. Can do.

次に、混合ポンプ12について説明する。この混合ポンプ12は、周知の気液混合ポンプである。混合ポンプ12は、ポンプ本体と、オゾンが流入するためのオゾン入口と、ろ過水が流入するためのろ過水入口と、オゾン混合水が流出するための混合水出口とを備えている。よって、ろ過水入口から流入したろ過水は、ポンプ本体内でオゾン入口から流入したオゾンと混合され、混合水出口からオゾン混合水となって外部に流出させることができる。   Next, the mixing pump 12 will be described. This mixing pump 12 is a well-known gas-liquid mixing pump. The mixing pump 12 includes a pump body, an ozone inlet through which ozone flows in, a filtered water inlet through which filtered water flows in, and a mixed water outlet through which ozone mixed water flows out. Therefore, the filtered water flowing in from the filtered water inlet is mixed with the ozone flowing in from the ozone inlet in the pump body, and can be discharged to the outside from the mixed water outlet as ozone mixed water.

次に、循環配管41〜47の配管構成について説明する。図3に示すように、第1反応槽31の側壁の中段には、循環配管41の一端部が接続され、第2反応槽32の側壁の中段には、循環配管42の一端部が接続されている。そして、循環配管41の他端部と、循環配管42の他端部との間には、一つの入口及び二つの出口を備えた三方電磁弁である電磁弁52の各出口が接続されている。一方、第1反応槽31の側壁の下段には、循環配管43の一端部が接続され、第2反応槽32の側壁の下段には、循環配管44の一端部が接続されている。そして、循環配管44の他端部と、循環配管43の他端部との間には、二つの入口及び一つの出口を備えた三方電磁弁である電磁弁53の各入口が接続されている。   Next, the piping configuration of the circulation piping 41 to 47 will be described. As shown in FIG. 3, one end of the circulation pipe 41 is connected to the middle stage of the side wall of the first reaction tank 31, and one end of the circulation pipe 42 is connected to the middle stage of the side wall of the second reaction tank 32. ing. And each outlet of the solenoid valve 52 which is a three-way solenoid valve provided with one inlet and two outlets is connected between the other end of the circulation pipe 41 and the other end of the circulation pipe 42. . On the other hand, one end of the circulation pipe 43 is connected to the lower stage of the side wall of the first reaction tank 31, and one end of the circulation pipe 44 is connected to the lower stage of the side wall of the second reaction tank 32. And between the other end part of the circulation piping 44 and the other end part of the circulation piping 43, each inlet of the solenoid valve 53 which is a three-way solenoid valve provided with two inlets and one outlet is connected. .

また、混合ポンプ12の混合水出口には、循環配管45の一端部が接続されている。さらに、その循環配管45の他端部には、一つの入口及び二つの出口を備えた三方電磁弁である電磁弁54の入口が接続されている。さらに、その電磁弁54の一方の出口と、電磁弁52の入口との間には、循環配管46が接続されている。また、電磁弁53の出口と、混合ポンプ12のろ過水入口との間には、循環配管47が接続されている。また、電磁弁54の他方の出口には、脱色水供給管50の一端部が接続され、他端部は貯留槽9に接続されている。なお、循環配管46には、流路の開閉を手動で行う手動弁61が設けられ、脱色水供給管50にも、流路の開閉を手動で行う手動弁62が設けられている。これら手動弁61,62は常時半開状態にあり、循環配管46及び脱色水供給管50内での水圧を高く保つことでオゾンをより多く溶解させ、脱色反応を促進させるようにしている。このように配置された循環配管41〜47と、電磁弁52〜54とによって、第1反応槽31と混合ポンプ12とをつなぐ第1循環流路と、第2反応槽32と混合ポンプ12とをつなぐ第2循環流路とをそれぞれ形成することができる。なお、これら第1循環流路と第2循環流路については後述する。   One end of the circulation pipe 45 is connected to the mixed water outlet of the mixing pump 12. Further, the other end of the circulation pipe 45 is connected to an inlet of an electromagnetic valve 54 that is a three-way electromagnetic valve having one inlet and two outlets. Further, a circulation pipe 46 is connected between one outlet of the electromagnetic valve 54 and the inlet of the electromagnetic valve 52. A circulation pipe 47 is connected between the outlet of the electromagnetic valve 53 and the filtered water inlet of the mixing pump 12. Further, one end of the decolorized water supply pipe 50 is connected to the other outlet of the electromagnetic valve 54, and the other end is connected to the storage tank 9. The circulation pipe 46 is provided with a manual valve 61 that manually opens and closes the flow path, and the decolorized water supply pipe 50 is also provided with a manual valve 62 that manually opens and closes the flow path. These manual valves 61 and 62 are always in a half-open state, and by keeping the water pressure in the circulation pipe 46 and the decolorized water supply pipe 50 high, more ozone is dissolved and the decolorization reaction is promoted. The first circulation passage that connects the first reaction tank 31 and the mixing pump 12, the second reaction tank 32, the mixing pump 12, and the circulation pipes 41 to 47 and the solenoid valves 52 to 54 arranged in this way. And a second circulation channel connecting the two. The first circulation channel and the second circulation channel will be described later.

次に、コントローラ10について説明する。図3に示すように、コントローラ10は、中央演算処理装置としてのCPU10aと、該CPU10aを中心に相互に接続されたROM10bと、RAM10cと、タイマ10eとを備えている。なお、RAM10cは実行中のプログラムを一時的に記憶したり、各種データ等を記憶する読み出し及び書き込み可能なメモリであり、ROM10bは内蔵されている各種プログラム等を記憶する読み出し専用のメモリである。また、CPU10aにはI/Oインタフェイス10dが接続されている。このI/Oインタフェイス10dには、図示外の配線を介して、電磁弁51,52,53,54と、ブロワー18と、混合ポンプ12と、オゾン発生器13と、第1上限フロート70、第1下限フロート71、第2上限フロート73及び第2下限フロート74とが各々接続されている。   Next, the controller 10 will be described. As shown in FIG. 3, the controller 10 includes a CPU 10a as a central processing unit, a ROM 10b, a RAM 10c, and a timer 10e connected to each other around the CPU 10a. The RAM 10c is a readable / writable memory that temporarily stores a program being executed and stores various data, and the ROM 10b is a read-only memory that stores various programs built therein. Further, an I / O interface 10d is connected to the CPU 10a. This I / O interface 10d is connected to electromagnetic valves 51, 52, 53, 54, a blower 18, a mixing pump 12, an ozone generator 13, a first upper limit float 70, via wires not shown. A first lower limit float 71, a second upper limit float 73, and a second lower limit float 74 are connected to each other.

次に、オゾン脱色部8の第1循環流路及び第2循環流路について説明する。上記したように、オゾン脱色部8では、循環配管41〜47に設けられた電磁弁52〜54を制御することにより、第1反応槽31と混合ポンプ12との間をつなぎ、第1反応槽31内のろ過水にオゾンを混合して循環させる第1循環流路と、第2反応槽32と混合ポンプ12との間をつなぎ、第2反応槽32内のろ過水にオゾンを混合して循環させる第2循環流路とにそれぞれ切り換えることができる。   Next, the first circulation channel and the second circulation channel of the ozone decoloring unit 8 will be described. As described above, in the ozone decoloring unit 8, the first reaction tank 31 and the mixing pump 12 are connected by controlling the electromagnetic valves 52 to 54 provided in the circulation pipes 41 to 47. The first circulating flow path for mixing and circulating ozone in the filtered water in 31, the second reaction tank 32 and the mixing pump 12 are connected, and the filtered water in the second reaction tank 32 is mixed with ozone. It can switch to the 2nd circulation flow path made to circulate, respectively.

そして、第1循環流路とは、図5に示すように、第1反応槽31から循環配管43、循環配管47、混合ポンプ12、循環配管45、循環配管46、循環配管41の順で構成されるループ状の流路である。一方、第2循環流路は、図7に示すように、第2反応槽32から循環配管44、循環配管47、混合ポンプ12、循環配管45、循環配管46、循環配管42の順で構成されるループ状の流路である。そして、これら第1循環流路と、第2循環流路とを交互に切り換えることによって、第1反応槽31のろ過水の循環脱色と、第2反応槽32のろ過水の循環脱色とを交互に行うことができる。また、第1循環流路及び第2循環流路は、循環配管41〜47のうち、循環配管45,46,47を共有しているので、少ない配管構成で2つの循環流路を形成できる。これにより、オゾン脱色部8の構成をコンパクトに纏めることができるので、設置スペースの狭い場所でも設置可能となる。   As shown in FIG. 5, the first circulation channel is configured in the order of the first reaction tank 31 to the circulation pipe 43, the circulation pipe 47, the mixing pump 12, the circulation pipe 45, the circulation pipe 46, and the circulation pipe 41. Loop-shaped flow path. On the other hand, as shown in FIG. 7, the second circulation flow path is configured from the second reaction tank 32 to the circulation pipe 44, the circulation pipe 47, the mixing pump 12, the circulation pipe 45, the circulation pipe 46, and the circulation pipe 42. It is a loop-shaped flow path. Then, by alternately switching between the first circulation channel and the second circulation channel, the circulation decoloration of the filtrate in the first reaction tank 31 and the circulation decoloration of the filtrate in the second reaction tank 32 are alternately performed. Can be done. Moreover, since the 1st circulation channel and the 2nd circulation channel share the circulation piping 45, 46, 47 among the circulation piping 41-47, two circulation channels can be formed with few piping structures. Thereby, since the structure of the ozone decoloring part 8 can be put together compactly, it becomes possible to install even in a small installation space.

次に、オゾン脱色部8の脱色水供給流路について説明する。図3に示すように、オゾン脱色部8では、電磁弁54を制御することで、第1反応槽31又は第2反応槽32に貯留された脱色水を、脱色水供給管50を介して貯留槽9に供給できる脱色水供給流路に切り換えることができる。この脱色水供給流路とは、図6又は図8に示すように、混合ポンプ12から循環配管45、混合ポンプ12、脱色水供給管50の順に構成される流路である。よって、第1反応槽31に貯留された脱色水は、図6に示すように、循環配管43、循環配管47、混合ポンプ12を介して脱色水供給管50に流れ込み、貯留槽9に供給される。一方、第2反応槽32に貯留された脱色水は、図8に示すように、循環配管44、循環配管47、混合ポンプ12を介して脱色水供給管50に流れ込み、貯留槽9に供給される。   Next, the decolorized water supply flow path of the ozone decoloring unit 8 will be described. As shown in FIG. 3, the ozone decoloring unit 8 stores the decolorized water stored in the first reaction tank 31 or the second reaction tank 32 through the decolorized water supply pipe 50 by controlling the electromagnetic valve 54. It can switch to the decolored water supply flow path which can be supplied to the tank 9. FIG. As shown in FIG. 6 or FIG. 8, the decolorized water supply flow path is a flow path configured in the order of the mixing pump 12, the circulation pipe 45, the mixing pump 12, and the decolorized water supply pipe 50. Therefore, the decolorized water stored in the first reaction tank 31 flows into the decolorized water supply pipe 50 through the circulation pipe 43, the circulation pipe 47, and the mixing pump 12, as shown in FIG. The On the other hand, the decolorized water stored in the second reaction tank 32 flows into the decolorized water supply pipe 50 via the circulation pipe 44, the circulation pipe 47, and the mixing pump 12, as shown in FIG. The

次に、オゾン発生器13を運転させる設定時間t1について説明する。図3に示すように、オゾン発生器13で発生されるオゾンは、オゾン供給管27を介して、混合ポンプ12に供給される。そして、このオゾン供給量はオゾン発生器13の運転時間によって調整される。そこで、本実施形態では、このオゾン発生器13の運転時間を、各反応槽(第1反応槽31又は第2反応槽32)の脱色処理において、各反応槽に貯留されたろ過水が目標色度にまで脱色されるのに要する時間(設定時間t1)として設定される。   Next, the set time t1 for operating the ozone generator 13 will be described. As shown in FIG. 3, the ozone generated by the ozone generator 13 is supplied to the mixing pump 12 via the ozone supply pipe 27. The ozone supply amount is adjusted by the operation time of the ozone generator 13. Therefore, in the present embodiment, the operation time of the ozone generator 13 is set so that the filtered water stored in each reaction tank is the target color in the decolorization processing of each reaction tank (the first reaction tank 31 or the second reaction tank 32). It is set as the time (set time t1) required for decoloring to the extent.

例えば、図5(図7)に示すように、第1反応槽31(又は第2反応槽32)のろ過水を、第1循環流路(又は第2循環流路)に循環させ、かつオゾン発生器13を運転させた場合、オゾン発生器13を運転させてから設定時間t1が経過した後に、オゾン発生器13を停止させれば、第1反応槽31(又は第2反応槽32)には目標色度にまで脱色された脱色水を得ることができる。   For example, as shown in FIG. 5 (FIG. 7), the filtered water of the first reaction tank 31 (or the second reaction tank 32) is circulated through the first circulation channel (or the second circulation channel), and ozone is added. When the generator 13 is operated, if the ozone generator 13 is stopped after the set time t1 has elapsed after the ozone generator 13 is operated, the first reaction tank 31 (or the second reaction tank 32) is stopped. Can obtain decolorized water decolorized to the target chromaticity.

次に、オゾン脱色部8におけるCPU10aの制御動作について、図9,図10に示す各フローチャートと、図5乃至図8に示す処理水の流れの説明図を参照して説明する。なお、本説明において、処理開始時には、第1反応槽31及び第2反応槽32にはろ過水がまだ供給されていないものとする。はじめに、循環式水洗トイレシステム1の起動スイッチ(図示外)がオンされると、第1反応槽31のろ過水のオゾン循環脱色を行う第1反応槽脱色処理(図9参照)と、第2反応槽32のろ過水のオゾン循環脱色を行う第2反応槽脱色処理(図10参照)とが同時に実行される。   Next, the control operation of the CPU 10a in the ozone decoloring unit 8 will be described with reference to the flowcharts shown in FIGS. 9 and 10 and the explanatory views of the flow of treated water shown in FIGS. In this description, it is assumed that filtered water is not yet supplied to the first reaction tank 31 and the second reaction tank 32 at the start of processing. First, when the activation switch (not shown) of the circulating flush toilet system 1 is turned on, a first reaction tank decoloring process (see FIG. 9) that performs ozone circulation decolorization of the filtered water in the first reaction tank 31; The 2nd reaction tank decoloring process (refer FIG. 10) which performs ozone circulation decoloration of the filtered water of the reaction tank 32 is performed simultaneously.

しかしながら、第1反応槽脱色処理と、第2反応槽脱色処理とでは、互いに共有する循環配管45,46,47を同時に使用できない。そこで、第1反応槽脱色処理を、第2反応槽脱色処理よりも先に進行させる。よって、図10に示す第2反応槽脱色処理では、まず、後述する第1反応槽脱色処理において、第2反応槽32の処理開始を許可するための第2反応槽処理開始信号(図9:S14参照)が出力されたか否かが判断される(S31)。そして、第2反応槽処理開始信号が出力されるまでは(S31:NO)、処理を進行せず、第2反応槽処理開始信号が出力されるまではS31に戻って待機状態とされる。   However, in the first reaction tank decoloring process and the second reaction tank decoloring process, the circulation pipes 45, 46, and 47 shared with each other cannot be used at the same time. Therefore, the first reaction tank decoloring process is advanced before the second reaction tank decoloring process. Therefore, in the 2nd reaction tank decoloring process shown in FIG. 10, first, in the 1st reaction tank decoloring process mentioned later, the 2nd reaction tank process start signal for permitting the process start of the 2nd reaction tank 32 (FIG. 9 :). It is determined whether or not (see S14) is output (S31). Until the second reaction tank treatment start signal is output (S31: NO), the process does not proceed, and until the second reaction tank treatment start signal is output, the process returns to S31 and enters a standby state.

一方、第1反応槽脱色処理では、図9に示すように、はじめに、第1反応槽31が上限水位未満か否かが判断される(S11)。ここで、第1反応槽31のろ過水の水位が上限水位未満の場合(S11:YES)、電磁弁51におけるろ過水配管38側の弁座が開かれ、ろ過水配管39側の弁座が閉じられる。すると、図4に示すように、ろ過水供給管25を流れるろ過水は電磁弁51からろ過水配管38に流れ込み、第1反応槽31内に供給される(S12)。一方、第1反応槽31が上限水位以上の場合(S11:NO)は、第1反応槽31にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S14)。   On the other hand, in the first reaction tank decoloring process, as shown in FIG. 9, it is first determined whether or not the first reaction tank 31 is less than the upper limit water level (S11). Here, when the filtrate water level in the first reaction tank 31 is less than the upper limit water level (S11: YES), the valve seat on the filtrate water pipe 38 side in the electromagnetic valve 51 is opened, and the valve seat on the filtrate water pipe 39 side is opened. Closed. Then, as shown in FIG. 4, the filtrate flowing through the filtrate water supply pipe 25 flows into the filtrate water pipe 38 from the electromagnetic valve 51 and is supplied into the first reaction tank 31 (S12). On the other hand, when the 1st reaction tank 31 is more than an upper limit water level (S11: NO), since it is not necessary to supply filtered water to the 1st reaction tank 31, the start of the process of the 2nd reaction tank 32 is permitted. A reaction tank processing start signal is output (S14).

また、第1反応槽31内にろ過水が供給されると(S12)、次に、第1反応槽31内のろ過水が上限水位以上か否かが判断される(S13)。そして、第1反応槽31内のろ過水が上限水位以上でないと判断された場合は(S13:NO)、S12に戻って、ろ過水が引き続き供給される。さらに、ろ過水が供給され、第1反応槽31内のろ過水が上限水位以上と判断された場合は(S13:YES)、第1反応槽31にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S14)。   Moreover, if filtered water is supplied in the 1st reaction tank 31 (S12), it will be judged next whether the filtered water in the 1st reaction tank 31 is more than an upper limit water level (S13). And when it is judged that the filtered water in the 1st reaction tank 31 is not more than an upper limit water level (S13: NO), it returns to S12 and filtered water is supplied continuously. Furthermore, when filtered water is supplied and the filtered water in the first reaction tank 31 is determined to be equal to or higher than the upper limit water level (S13: YES), there is no need to supply filtered water to the first reaction tank 31, The 2nd reaction tank process start signal which permits the start of the process of 2 reaction tank 32 is output (S14).

なお、後述するが、第2反応槽処理開始信号が出力されると、第2反応槽脱色処理では、電磁弁51におけるろ過水配管39側の弁座が開かれ、ろ過水配管38側の弁座が閉じられる。そして、図5に示すように、第2反応槽32にろ過水が供給される(図10:S33)。   As will be described later, when the second reaction tank treatment start signal is output, in the second reaction tank decolorization process, the valve seat on the filtrate water pipe 39 side in the electromagnetic valve 51 is opened, and the valve on the filtrate water pipe 38 side is opened. The seat is closed. And as shown in FIG. 5, filtered water is supplied to the 2nd reaction tank 32 (FIG. 10: S33).

次に、第2反応槽32が循環脱色処理中か否かが判断される(S15)。ここで、第2反応槽32のろ過水が循環脱色処理中である場合、循環配管45,47を使用できない。よって、第2反応槽32が循環脱色処理中の場合は(S15:YES)、S13に戻って処理が繰り返される。また、第2反応槽32が循環脱色処理中でない場合は(S15:NO)、電磁弁52,53,54が各々切り換えられることで、第1循環流路が開放される(S16)。具体的に言うと、電磁弁53では、循環配管43から循環配管47に流路をつなぐように弁座が開かれ、電磁弁54では、循環配管45から循環配管46に流路をつなぐように弁座が開かれ、電磁弁52では、循環配管46から循環配管41に流路をつなぐように弁座が開かれる。これにより、第1循環流路が開放される。さらに、オゾン発生器13が運転され(S17)、混合ポンプ12が運転される(S18)。そして、タイマカウンタkがリセットされるとともにスタートされる(S19)。すると、図5に示すように、第1反応槽31のろ過水が、第1循環流路を循環することでオゾンと反応して脱色が進む。   Next, it is determined whether or not the second reaction tank 32 is in a circulation decoloring process (S15). Here, when the filtered water in the second reaction tank 32 is in a circulation decolorization process, the circulation pipes 45 and 47 cannot be used. Therefore, when the 2nd reaction tank 32 is performing the circulation decoloring process (S15: YES), it returns to S13 and a process is repeated. Further, when the second reaction tank 32 is not in the process of circulating decolorization (S15: NO), the first circulation channel is opened by switching each of the electromagnetic valves 52, 53, 54 (S16). Specifically, in the solenoid valve 53, the valve seat is opened so as to connect the flow path from the circulation pipe 43 to the circulation pipe 47, and in the solenoid valve 54, the flow path is connected from the circulation pipe 45 to the circulation pipe 46. The valve seat is opened, and the solenoid valve 52 is opened so as to connect the flow path from the circulation pipe 46 to the circulation pipe 41. As a result, the first circulation channel is opened. Further, the ozone generator 13 is operated (S17), and the mixing pump 12 is operated (S18). Then, the timer counter k is reset and started (S19). Then, as shown in FIG. 5, the filtered water in the first reaction tank 31 reacts with ozone by circulating through the first circulation channel, and decolorization proceeds.

その後、オゾン発生器13の運転時間、即ち、タイマカウンタkの値が設定時間t1に到達したか否かが判断される(S20)。ここで、タイマカウンタkの値が設定時間t1にまだ到達していない場合は(S20:NO)、第1反応槽31のろ過水が目標色度にまで脱色されていないと推測できる。よって、S20に戻り、オゾン発生器13をそのまま運転させ、循環脱色処理を継続させるとともに、タイマカウンタkの値が監視される。そして、タイマカウンタkの値が設定時間t1に到達した場合は(S20:YES)、オゾン発生器13が停止される(S21)。このとき、第1反応槽31には目標色度の脱色水が生成している。   Thereafter, it is determined whether or not the operation time of the ozone generator 13, that is, the value of the timer counter k has reached the set time t1 (S20). Here, when the value of the timer counter k has not yet reached the set time t1 (S20: NO), it can be estimated that the filtered water in the first reaction tank 31 has not been decolorized to the target chromaticity. Therefore, the process returns to S20, the ozone generator 13 is operated as it is, the circulation decoloring process is continued, and the value of the timer counter k is monitored. When the value of the timer counter k reaches the set time t1 (S20: YES), the ozone generator 13 is stopped (S21). At this time, decolorized water having a target chromaticity is generated in the first reaction tank 31.

次いで、第1反応槽31内の脱色水を貯留槽9に供給するため、電磁弁54が切り換えられて脱色水供給流路が開放される(S22)。具体的に言うと、電磁弁54では、循環配管45から脱色水供給管50に流路をつなぐように弁座が開かれる。これにより、図6に示すように、第1反応槽31内の脱色水が、循環配管43、循環配管47、混合ポンプ12、循環配管45、脱色水供給管50を流れ、貯留槽9に供給され、第1反応槽31内の脱色水は徐々に減少する。   Next, in order to supply the decolorized water in the first reaction tank 31 to the storage tank 9, the electromagnetic valve 54 is switched and the decolorized water supply flow path is opened (S22). Specifically, in the electromagnetic valve 54, the valve seat is opened so as to connect the flow path from the circulation pipe 45 to the decolorized water supply pipe 50. Accordingly, as shown in FIG. 6, the decolorized water in the first reaction tank 31 flows through the circulation pipe 43, the circulation pipe 47, the mixing pump 12, the circulation pipe 45, and the decolorized water supply pipe 50 and is supplied to the storage tank 9. The decolorized water in the first reaction tank 31 is gradually reduced.

さらに、第1反応槽31の脱色水の水位が下限水位未満か否かが判断される(S23)。ここで、水位がまだ下限水位以上の場合は(S23:NO)、S23に戻り、脱色水を貯留槽9に引き続き供給し水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S23:YES)は、第1反応槽31には、貯留槽9に供給するだけの脱色水はもう存在しないので、混合ポンプ12が停止される(S24)。続いて、電磁弁54が切り換えられて脱色水供給流路が閉塞される(S25)。さらに、後述する第2反応槽脱色処理において、第1反応槽処理開始信号(図10:S35参照)が出力されたか否かが判断される(S26)。この第1反応槽処理開始信号が出力されていない間は(S26:NO)、第2反応槽32にろ過水が供給されていると推測できるので、S26に戻って待機状態とされる。そして、第2反応槽32へのろ過水供給が終了し、第2反応槽脱色処理において、第1反応槽処理開始信号が出力された場合(S26:YES)、S11に戻って処理を繰り返す。   Further, it is determined whether or not the level of decolorized water in the first reaction tank 31 is less than the lower limit water level (S23). Here, when the water level is still higher than the lower limit water level (S23: NO), the process returns to S23, the decolorized water is continuously supplied to the storage tank 9, and the water level is monitored. And when a water level falls to less than a minimum water level (S23: YES), since the decolorizing water only to supply to the storage tank 9 no longer exists in the 1st reaction tank 31, the mixing pump 12 is stopped ( S24). Subsequently, the solenoid valve 54 is switched to close the decolorized water supply channel (S25). Further, in the second reaction tank decoloring process to be described later, it is determined whether or not a first reaction tank process start signal (see FIG. 10: S35) is output (S26). While this first reaction tank processing start signal is not output (S26: NO), it can be estimated that filtered water is being supplied to the second reaction tank 32, so the process returns to S26 and enters a standby state. And when the filtered water supply to the 2nd reaction tank 32 is complete | finished and a 1st reaction tank process start signal is output in a 2nd reaction tank decoloring process (S26: YES), it returns to S11 and repeats a process.

次に、第2反応槽脱色処理について説明する。上記したように、この第2反応槽脱色処理は、第1反応槽脱色処理と同時に実行される。この第2反応槽脱色処理では、図10に示すように、まず、第2反応槽処理開始信号があったか否かが判断される(S31)。まだ、第1反応槽脱色処理において、第2反応槽処理開始信号が出力されていない場合(S31:NO)、第1反応槽31にろ過水が供給されていると推測できるので、S31に戻って待機状態とされる。そして、第2反応槽処理開始信号があった場合(S31:YES)、第1反応槽31へのろ過水供給が終了しているので、続いて、第2反応槽32のろ過水の水位が上限水位未満か否かが判断される(S32)。ここで、上限水位未満の場合(S32:YES)、電磁弁51のろ過水配管39側の弁座が開かれ、ろ過水配管38側の弁座が閉じられる。すると、図5に示すように、ろ過水供給管25から供給されたろ過水は、電磁弁51からろ過水配管39に流れ込み、第2反応槽32内に供給される(S33)。そして、第2反応槽32が上限水位以上の場合(S32:NO)は、第2反応槽32にろ過水を供給する必要がない。よって、第1反応槽31の処理の開始を許可する第1反応槽処理開始信号が出力される(S35)。これにより、第1反応槽脱色処理にて、この第1反応槽処理開始信号が認識されることで(図9に示すS26:YES)、図9に示すS11からの処理が実行される。   Next, the second reaction tank decoloring process will be described. As described above, the second reaction tank decoloring process is performed simultaneously with the first reaction tank decoloring process. In this second reaction tank decoloring process, as shown in FIG. 10, it is first determined whether or not there is a second reaction tank process start signal (S31). In the first reaction tank decoloring process, if the second reaction tank process start signal is not output (S31: NO), it can be assumed that filtered water is supplied to the first reaction tank 31, and the process returns to S31. To enter a standby state. And when there exists a 2nd reaction tank process start signal (S31: YES), since the filtered water supply to the 1st reaction tank 31 is complete | finished, the water level of the 2nd reaction tank 32 continues. It is determined whether or not the water level is lower than the upper limit water level (S32). Here, when it is less than the upper limit water level (S32: YES), the valve seat on the filtrate water piping 39 side of the solenoid valve 51 is opened, and the valve seat on the filtrate water piping 38 side is closed. Then, as shown in FIG. 5, the filtrate supplied from the filtrate supply pipe 25 flows into the filtrate water pipe 39 from the electromagnetic valve 51 and is supplied into the second reaction tank 32 (S33). And when the 2nd reaction tank 32 is more than an upper limit water level (S32: NO), it is not necessary to supply filtered water to the 2nd reaction tank 32. FIG. Therefore, the first reaction tank process start signal that permits the start of the process in the first reaction tank 31 is output (S35). Thereby, the process from S11 shown in FIG. 9 is performed by recognizing this first reaction tank process start signal in the first reaction tank decoloring process (S26: YES shown in FIG. 9).

また、第2反応槽32内にろ過水が供給されると(S33)、次に、第2反応槽32内のろ過水が上限水位以上か否かが判断される(S34)。そして、第2反応槽32内のろ過水が上限水位以上でないと判断された場合は(S34:NO)、S33に戻って、ろ過水が引き続き供給される。さらに、ろ過水が供給され、第2反応槽32内のろ過水が上限水位以上と判断された場合は(S34:YES)、第2反応槽32にろ過水を供給する必要がないので、第1反応槽31の処理の開始を許可する第1反応槽処理開始信号が出力される(S35)。   Moreover, if filtered water is supplied in the 2nd reaction tank 32 (S33), it will be judged next whether the filtered water in the 2nd reaction tank 32 is more than an upper limit water level (S34). And when it is judged that the filtered water in the 2nd reaction tank 32 is not more than an upper limit water level (S34: NO), it returns to S33 and filtered water is supplied continuously. Furthermore, when filtered water is supplied and the filtered water in the second reaction tank 32 is determined to be equal to or higher than the upper limit water level (S34: YES), there is no need to supply filtered water to the second reaction tank 32. A first reaction tank process start signal that permits the start of the process in one reaction tank 31 is output (S35).

次いで、第1反応槽31が脱色処理中か否かが判断される(S36)。ここで、第1反応槽31のろ過水が脱色処理中である場合、循環配管45,46,47を使用できない。よって、第1反応槽31が循環脱色処理中の場合は(S36:YES)、S34に戻って処理が繰り返される。また、第1反応槽31が循環脱色処理中でない場合は(S36:NO)、電磁弁52,53,54が各々切り換えられることで、第2循環流路が開放される(S37)。具体的に言うと、電磁弁53では、循環配管44から循環配管47に流路をつなぐように弁座が開かれ、電磁弁54では、循環配管45から循環配管46に流路をつなぐように弁座が開かれ、電磁弁52では、循環配管46から循環配管42に流路をつなぐように弁座が開かれる。これにより、第2循環流路が開放される。さらに、オゾン発生器13が運転され(S38)、混合ポンプ12が運転される(S39)。そして、タイマカウンタkがリセットされるとともにスタートされる(S40)。こうして、図7に示すように、第2反応槽32内のろ過水が、第2循環流路を循環することでオゾンと反応して脱色が進む。   Next, it is determined whether or not the first reaction tank 31 is being decolorized (S36). Here, when the filtered water in the first reaction tank 31 is being decolorized, the circulation pipes 45, 46, and 47 cannot be used. Therefore, when the 1st reaction tank 31 is in the process of circulation decoloring (S36: YES), it returns to S34 and a process is repeated. Further, when the first reaction tank 31 is not in the circulation decoloring process (S36: NO), the second circulation channel is opened by switching each of the electromagnetic valves 52, 53, and 54 (S37). Specifically, in the solenoid valve 53, the valve seat is opened so as to connect the flow path from the circulation pipe 44 to the circulation pipe 47, and in the electromagnetic valve 54, the flow path is connected from the circulation pipe 45 to the circulation pipe 46. The valve seat is opened, and the solenoid valve 52 is opened so as to connect the flow path from the circulation pipe 46 to the circulation pipe 42. As a result, the second circulation channel is opened. Further, the ozone generator 13 is operated (S38), and the mixing pump 12 is operated (S39). Then, the timer counter k is reset and started (S40). In this way, as shown in FIG. 7, the filtered water in the second reaction tank 32 reacts with ozone by circulating through the second circulation channel, and decolorization proceeds.

その後、オゾン発生器13の運転時間、即ち、タイマカウンタkの値が設定時間t1に到達したか否かが判断される(S41)。ここで、タイマカウンタkの値が設定時間t1にまだ到達していない場合は(S41:NO)、第2反応槽32のろ過水が目標色度にまで脱色されていないと推測できる。よって、S41に戻り、オゾン発生器13がそのまま運転され、循環脱色処理が継続するとともに、タイマカウンタkの値が監視される。そして、タイマカウンタkの値が設定時間t1に到達した場合は(S41:YES)、オゾン発生器13が停止される(S42)。このとき、第2反応槽32には目標色度の脱色水が生成している。   Thereafter, it is determined whether or not the operating time of the ozone generator 13, that is, the value of the timer counter k has reached the set time t1 (S41). Here, when the value of the timer counter k has not yet reached the set time t1 (S41: NO), it can be estimated that the filtered water in the second reaction tank 32 has not been decolorized to the target chromaticity. Therefore, returning to S41, the ozone generator 13 is operated as it is, the circulation decoloring process is continued, and the value of the timer counter k is monitored. When the value of the timer counter k reaches the set time t1 (S41: YES), the ozone generator 13 is stopped (S42). At this time, decolorized water having a target chromaticity is generated in the second reaction tank 32.

次いで、第2反応槽32内の脱色水を貯留槽9に供給するため、電磁弁54が切り換えられて脱色水供給流路が開放される(S43)。具体的に言うと、電磁弁54では、循環配管45から脱色水供給管50に流路をつなぐように弁座が開かれる。これにより、図8に示すように、第2反応槽32内の脱色水が、循環配管44、循環配管47、混合ポンプ12、循環配管45、脱色水供給管50を流れ、貯留槽9に供給される。よって、第2反応槽32内の脱色水の水位は徐々に減少する。   Next, in order to supply the decolorized water in the second reaction tank 32 to the storage tank 9, the electromagnetic valve 54 is switched and the decolorized water supply flow path is opened (S43). Specifically, in the electromagnetic valve 54, the valve seat is opened so as to connect the flow path from the circulation pipe 45 to the decolorized water supply pipe 50. As a result, as shown in FIG. 8, the decolorized water in the second reaction tank 32 flows through the circulation pipe 44, the circulation pipe 47, the mixing pump 12, the circulation pipe 45, and the decolorized water supply pipe 50 and is supplied to the storage tank 9. Is done. Therefore, the water level of decolorized water in the second reaction tank 32 gradually decreases.

さらに、第2反応槽32の脱色水の水位が下限水位未満か否かが判断される(S44)。ここで、水位がまだ下限水位以上の場合は(S44:NO)、S44に戻り、脱色水が貯留槽9に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S44:YES)は、第2反応槽32には、貯留槽9に供給するだけの脱色水は存在しないので、混合ポンプ12が停止される(S45)。続いて、電磁弁54が切り換えられて脱色水供給流路が閉塞される(S46)。その後、S31に戻って処理が繰り返される。   Further, it is determined whether or not the water level of the decolorized water in the second reaction tank 32 is less than the lower limit water level (S44). If the water level is still higher than the lower limit water level (S44: NO), the process returns to S44, the decolorized water is continuously supplied to the storage tank 9, and the water level is monitored. And when a water level falls to less than a minimum water level (S44: YES), since the decolorizing water only to supply to the storage tank 9 does not exist in the 2nd reaction tank 32, the mixing pump 12 is stopped (S45). ). Subsequently, the solenoid valve 54 is switched to close the decolorized water supply channel (S46). Then, it returns to S31 and a process is repeated.

以上説明したように、第1の実施形態である循環式水洗トイレシステム1は、オゾン脱色部8を備えている。このオゾン脱色部8は、2つの反応槽(第1反応槽31,第2反応槽32)と、混合ポンプ12と、循環配管41〜47と、オゾン発生器13とを備えている。そして、オゾン脱色部8は、2つの反応槽(第1反応槽31、第2反応槽32)にそれぞれろ過水を溜めてから、オゾンによる脱色処理をそれぞれ行う。これにより、オゾンをろ過水に確実に作用させることができるので、オゾン及びろ過水の接触効率を向上させることができる。さらに、各処理槽内に生成した脱色水には新たなろ過水が供給されて混合することがないので、安定した色度の脱色水を短時間で得ることができる。   As described above, the circulating flush toilet system 1 according to the first embodiment includes the ozone decoloring unit 8. The ozone decoloring unit 8 includes two reaction tanks (a first reaction tank 31 and a second reaction tank 32), a mixing pump 12, circulation pipes 41 to 47, and an ozone generator 13. And the ozone decoloring part 8 accumulates filtered water in two reaction tanks (the 1st reaction tank 31 and the 2nd reaction tank 32), respectively, respectively, and performs the decoloring process by ozone, respectively. Thereby, since ozone can be made to act on filtered water reliably, the contact efficiency of ozone and filtered water can be improved. Furthermore, since the decolorized water generated in each treatment tank is not supplied with fresh filtered water and mixed, decolorized water with stable chromaticity can be obtained in a short time.

また、オゾン脱色部8では、循環配管41〜47に設けられた電磁弁52〜54を制御することによって、循環配管41〜47の流路を、第1循環流路及び第2循環流路の何れかに切り換えることができる。そして、第1反応槽31のろ過水の循環脱色と、第2反応槽32のろ過水の循環脱色とが交互に実行されるので、ろ過水を短時間で効率的に脱色することができる。例えば、第1反応槽31のろ過水が脱色処理中の間に、第2反応槽32にろ過水を供給できる。さらに、第2反応槽32のろ過水が脱色処理中の間に、第1反応槽31にろ過水を供給できる。これにより、ろ過水を短時間で効率的に脱色することができる。また、循環配管41〜47のうち一部の配管を互いに共有するので、オゾン脱色部8をコンパクトに纏めることができる。また、第1循環流路と、第2循環流路とにおいて、1個の混合ポンプ12を互いに共有しているので、オゾン脱色部8の構成をさらにコンパクトに纏めることができる。   Moreover, in the ozone decoloring part 8, the flow path of the circulation piping 41-47 is made into the 1st circulation flow path and the 2nd circulation flow path by controlling the solenoid valves 52-54 provided in the circulation piping 41-47. It can be switched to either. And since the circulating decoloration of the filtered water of the 1st reaction tank 31 and the circulating decoloring of the filtered water of the 2nd reaction tank 32 are performed alternately, filtered water can be decolored efficiently in a short time. For example, the filtered water can be supplied to the second reaction tank 32 while the filtered water in the first reaction tank 31 is being decolorized. Furthermore, the filtered water can be supplied to the first reaction tank 31 while the filtered water in the second reaction tank 32 is being decolorized. Thereby, filtered water can be efficiently decolored in a short time. Moreover, since some piping is mutually shared among the circulation piping 41-47, the ozone decoloring part 8 can be put together compactly. In addition, since one mixing pump 12 is shared by the first circulation channel and the second circulation channel, the configuration of the ozone decoloring unit 8 can be further compacted.

さらに、オゾン発生器13の動作時間は、第1反応槽31及び第2反応槽32の各脱色処理において、第1反応槽31又は第2反応槽32に貯留されたろ過水が目標色度にまで脱色されるのに要する時間、即ち設定時間t1に設定されている。これにより、オゾン発生器13が稼働を開始してから設定時間t1が経過した時にオゾン発生器13を停止させることで、第1反応槽31又は第2反応槽32内に目標色度の脱色水を得ることができる。   Further, the operation time of the ozone generator 13 is such that the filtered water stored in the first reaction tank 31 or the second reaction tank 32 is set to the target chromaticity in each decolorization process of the first reaction tank 31 and the second reaction tank 32. Is set to the time required for decoloring, that is, the set time t1. Thereby, when the set time t1 has elapsed since the ozone generator 13 started operation, the ozone generator 13 is stopped, so that decolorized water having the target chromaticity is contained in the first reaction tank 31 or the second reaction tank 32. Can be obtained.

次に、第2の実施形態である循環式水洗トイレシステムについて説明する。図11は、CPU10aによる第1反応槽脱色処理の制御動作を示すフローチャート(第2の実施形態)であり、図12は、CPU10aによる第2反応槽脱色処理の制御動作を示すフローチャート(第2の実施形態)である。   Next, the circulation type flush toilet system which is 2nd Embodiment is demonstrated. FIG. 11 is a flowchart (second embodiment) showing the control operation of the first reaction tank decoloring process by the CPU 10a, and FIG. 12 is a flowchart (second example) showing the control operation of the second reaction tank decoloring process by the CPU 10a. Embodiment).

この循環式水洗トイレシステムは、第1の実施形態である循環式水洗トイレシステム1と同じ構成を備えるが、CPU10aの制御動作が異なる。つまり、各反応槽(第1反応槽31、第2反応槽32)に貯留されたろ過水が目標色度まで脱色される前に脱色水供給流路を開放し、脱色水供給管50の管内でさらにオゾンと反応させることで、オゾン脱色処理にかかる時間をさらに短縮できる。よって、ここでは、第2の実施形態である循環式水洗トイレシステムの構造については説明を省略し、第1の実施形態とは異なるCPU10aの制御動作を中心に説明する。   This circulating flush toilet system has the same configuration as the circulating flush toilet system 1 according to the first embodiment, but the control operation of the CPU 10a is different. That is, before the filtered water stored in each reaction tank (the first reaction tank 31 and the second reaction tank 32) is decolored to the target chromaticity, the decolorized water supply flow path is opened, By further reacting with ozone, the time required for the ozone decoloring treatment can be further shortened. Therefore, here, the description of the structure of the circulating flush toilet system according to the second embodiment will be omitted, and the control operation of the CPU 10a different from the first embodiment will be mainly described.

まず、脱色水供給流路を開放するタイミングについて説明する。上記したように、脱色水供給流路の開閉は、電磁弁54の切換えを制御することで行われる。第2の実施形態では、この電磁弁54による脱色水供給流路を開放するタイミングが、オゾン発生器13が運転を開始してから設定時間t2後に設定される。さらに、この設定時間t2は、各反応槽内のろ過水が目標色度よりも高い基準色度(以下、脱色水基準色度と呼ぶ。)まで脱色されるのに要する時間として設定される。つまり、オゾン発生器13が運転を開始してから設定時間t2経過後には、ろ過水は脱色水基準色度まで脱色される。さらに、オゾン発生器13を運転させたままの状態で脱色水供給流路が開放されるので、混合ポンプ12でオゾンがさらに混合され、脱色水供給管50の管内でオゾン脱色反応が起こる。よって、脱色水供給管50の出口通過時には、目標色度の脱色水が貯留槽9に供給される。なお、脱色水基準色度は、脱色水供給管50の出口通過時の脱色水の色度が目標色度まで脱色されるように設定される。例えば、目標色度を30度に設定した場合、オゾン発生器13の能力、脱色水供給管50の管径、長さ、混合ポンプ12の送出能力等に基づいて、脱色水基準色度(例えば100度)が設定される。   First, the timing for opening the decolorized water supply channel will be described. As described above, opening and closing of the decolorized water supply flow path is performed by controlling switching of the electromagnetic valve 54. In the second embodiment, the timing for opening the decolorized water supply flow path by the electromagnetic valve 54 is set after a set time t2 after the ozone generator 13 starts operation. Further, the set time t2 is set as a time required for the filtered water in each reaction tank to be decolored to a reference chromaticity higher than the target chromaticity (hereinafter referred to as decolorized water reference chromaticity). That is, the filtrated water is decolored to the decolorized water reference chromaticity after the set time t2 has elapsed since the ozone generator 13 started operation. Further, since the decolorized water supply flow path is opened while the ozone generator 13 is kept in operation, ozone is further mixed by the mixing pump 12 and an ozone decolorization reaction occurs in the tube of the decolorized water supply pipe 50. Therefore, the decolorized water having the target chromaticity is supplied to the storage tank 9 when passing through the outlet of the decolorized water supply pipe 50. The decolorized water reference chromaticity is set so that the chromaticity of the decolorized water when passing through the outlet of the decolorized water supply pipe 50 is decolored to the target chromaticity. For example, when the target chromaticity is set to 30 degrees, based on the ability of the ozone generator 13, the diameter and length of the decolorized water supply pipe 50, the delivery capacity of the mixing pump 12, etc., the decolorized water reference chromaticity (for example, 100 degrees) is set.

次に、第2の実施形態におけるCPU10aの制御動作について、図11,図12に示す各フローチャートを参照して説明する。なお、本説明における処理開始時には、第1反応槽31及び第2反応槽32にはろ過水がまだ供給されていないものとする。はじめに、循環式水洗トイレシステムの起動スイッチ(図示外)がオンされると、第1反応槽脱色処理(図11参照)と、第2反応槽脱色処理(図12参照)とが同時に実行される。そして、第1の実施形態と同じように、第1反応槽脱色処理を第2反応槽脱色処理よりも先に進行させる。よって、図12に示す第2反応槽脱色処理では、まず、第1反応槽脱色処理において、第2反応槽32の処理開始を許可するための後述する第2反応槽処理開始信号が出力されたか否かが判断される(S71)。そして、第2反応槽処理開始信号が出力されるまでは(S71:NO)、処理を進行せず、第2反応槽処理開始信号が出力されるまでは待機状態とされる(S71)。   Next, the control operation of the CPU 10a in the second embodiment will be described with reference to the flowcharts shown in FIGS. It is assumed that filtered water is not yet supplied to the first reaction tank 31 and the second reaction tank 32 at the start of processing in this description. First, when the activation switch (not shown) of the circulating flush toilet system is turned on, the first reaction tank decoloring process (see FIG. 11) and the second reaction tank decoloring process (see FIG. 12) are performed simultaneously. . And like 1st Embodiment, a 1st reaction tank decoloring process is advanced before a 2nd reaction tank decoloring process. Therefore, in the second reaction tank decoloring process shown in FIG. 12, first, in the first reaction tank decoloring process, was a second reaction tank process start signal (described later) for permitting the start of the process in the second reaction tank 32 output? It is determined whether or not (S71). Then, the process does not proceed until the second reaction tank treatment start signal is output (S71: NO), and the standby state is maintained until the second reaction tank treatment start signal is output (S71).

まず、第1反応槽脱色処理について説明する。図11に示すように、はじめに、第1反応槽31が上限水位未満か否かが判断される(S51)。ここで、既に、第1反応槽31が上限水位以上であると判断された場合は(S51:NO)、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S54)。また、第1反応槽31のろ過水の水位が上限水位未満の場合(S51:YES)、電磁弁51におけるろ過水配管38側の弁座が開かれ、ろ過水が第1反応槽31内に供給される(S52)。一方、第1反応槽31が上限水位以上の場合(S51:NO)は、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S54)。   First, the 1st reaction tank decoloring process is demonstrated. As shown in FIG. 11, first, it is determined whether or not the first reaction tank 31 is less than the upper limit water level (S51). Here, when it is already determined that the first reaction tank 31 is equal to or higher than the upper limit water level (S51: NO), a second reaction tank process start signal that permits the start of the process of the second reaction tank 32 is output. (S54). Moreover, when the water level of the filtrate of the 1st reaction tank 31 is less than an upper limit water level (S51: YES), the valve seat by the side of the filtrate water piping 38 in the solenoid valve 51 is opened, and filtrate water enters the 1st reaction tank 31. Is supplied (S52). On the other hand, when the 1st reaction tank 31 is more than an upper limit water level (S51: NO), the 2nd reaction tank process start signal which permits the start of the process of the 2nd reaction tank 32 is output (S54).

また、第1反応槽31内にろ過水が供給されると(S52)、次に、第1反応槽31内のろ過水が上限水位以上か否かが判断される(S53)。そして、第1反応槽31内のろ過水が上限水位以上でないと判断された場合は(S53:NO)、S52に戻って、ろ過水が引き続き供給される。さらに、ろ過水が供給され、第1反応槽31内のろ過水が上限水位以上と判断された場合は(S53:YES)、第1反応槽31にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S54)。   Moreover, if filtered water is supplied in the 1st reaction tank 31 (S52), it will be judged next whether the filtered water in the 1st reaction tank 31 is more than an upper limit water level (S53). And when it is judged that the filtered water in the 1st reaction tank 31 is not more than an upper limit water level (S53: NO), it returns to S52 and filtered water is supplied continuously. Furthermore, when filtrate water is supplied and the filtrate water in the 1st reaction tank 31 is judged to be more than an upper limit water level (S53: YES), since it is not necessary to supply filtrate water to the 1st reaction tank 31, 1st The 2nd reaction tank process start signal which permits the start of the process of the 2 reaction tank 32 is output (S54).

次いで、第2反応槽32が循環脱色処理中か否かが判断される(S55)。ここで、第2反応槽32のろ過水が循環脱色処理中である場合(S55:YES)、循環配管45,46,47を使用できないので、S53に戻って待機状態とされる。また、第2反応槽32が循環脱色処理中でない場合は(S55:NO)、電磁弁52,53,54が切り換えられ、第1循環流路が開放される(S56)。さらに、オゾン発生器13が運転され(S57)、混合ポンプ12が運転される(S58)。そして、タイマカウンタkがリセットされるとともにスタートされる(S59)。すると、第1反応槽31のろ過水が、第1循環流路を循環することでオゾンと反応して脱色が進む。   Next, it is determined whether or not the second reaction tank 32 is in a circulation decoloring process (S55). Here, when the filtered water in the second reaction tank 32 is being circulated and decolored (S55: YES), the circulation pipes 45, 46, and 47 cannot be used, so the process returns to S53 to be in a standby state. Further, when the second reaction tank 32 is not in the process of circulating decolorization (S55: NO), the solenoid valves 52, 53, 54 are switched, and the first circulation channel is opened (S56). Further, the ozone generator 13 is operated (S57), and the mixing pump 12 is operated (S58). Then, the timer counter k is reset and started (S59). Then, the filtered water in the first reaction tank 31 circulates through the first circulation flow path, thereby reacting with ozone and proceeding with decolorization.

その後、オゾン発生器13のタイマカウンタkが設定時間t2に到達したか否かが判断される(S60)。ここで、タイマカウンタkの値が設定時間t2にまだ到達していない場合は(S60:NO)、第1反応槽31のろ過水が脱色水基準色度(例えば、100度)にまで脱色されていないと推測できる。よって、S60に戻り、循環脱色処理がそのまま継続される。そして、タイマカウンタkが設定時間t2に到達した場合は(S60:YES)、第1反応槽31のろ過水が脱色水基準色度にまで脱色されたと推測できるので、オゾン発生器13を停止せないで、電磁弁54が切り換えられ、脱色水供給流路が開放される(S61)。   Thereafter, it is determined whether or not the timer counter k of the ozone generator 13 has reached the set time t2 (S60). Here, when the value of the timer counter k has not yet reached the set time t2 (S60: NO), the filtered water in the first reaction tank 31 is decolored to the decolorized water reference chromaticity (for example, 100 degrees). I can guess that it is not. Therefore, the process returns to S60 and the cyclic decoloring process is continued as it is. When the timer counter k reaches the set time t2 (S60: YES), it can be assumed that the filtered water in the first reaction tank 31 has been decolored to the decolorized water reference chromaticity, so the ozone generator 13 is stopped. Without, the solenoid valve 54 is switched and the decolorized water supply flow path is opened (S61).

これにより、第1反応槽31内の脱色水は、図6に示すように、循環配管43、循環配管47を通過して、混合ポンプ12に吸引され、該混合ポンプ12ではさらにオゾンが混合される。そして、オゾンが混合された混合水は、循環配管45を介して脱色水供給管50に流れ込み、脱色水供給管50を通過する間にさらに脱色される。よって、脱色水供給管50の出口通過時には、脱色水は目標色度(例えば、30度)にまで脱色されるので、貯留槽9には目標色度の脱色水を供給できる。   As a result, the decolorized water in the first reaction tank 31 passes through the circulation pipe 43 and the circulation pipe 47 and is sucked into the mixing pump 12 as shown in FIG. 6, and ozone is further mixed in the mixing pump 12. The The mixed water mixed with ozone flows into the decolorized water supply pipe 50 via the circulation pipe 45 and is further decolorized while passing through the decolorized water supply pipe 50. Therefore, when passing through the outlet of the decolorized water supply pipe 50, the decolorized water is decolorized to the target chromaticity (for example, 30 degrees), so that the decolorized water having the target chromaticity can be supplied to the storage tank 9.

次いで、第1反応槽31の脱色水の水面が下限水位未満か否かが判断される(S62)。ここで、水位が下限水位以上の場合(S62:NO)、S62に戻り、脱色水が貯留槽9に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合は(S62:YES)、オゾン発生器13が停止され(S63)、混合ポンプ12が停止される(S64)。続いて、電磁弁54が切り換えられ、脱色水供給流路が閉塞される(S65)。さらに、後述する第2反応槽開始処理において、第1反応槽処理開始信号が出力されたか否かが判断される(S66)。この第1反応槽処理開始信号が出力されていない間は(S66:NO)、第2反応槽32にろ過水が供給されているので、S66に戻って待機状態とされる。そして、第2反応槽32へのろ過水の供給が終了され、第1反応槽処理開始信号が出力された場合(S66:YES)、S51に戻って処理が繰り返される。   Next, it is determined whether or not the water surface of the decolorized water in the first reaction tank 31 is less than the lower limit water level (S62). Here, when the water level is equal to or higher than the lower limit water level (S62: NO), the process returns to S62, the decolorized water is continuously supplied to the storage tank 9, and the water level is monitored. And when a water level falls below a minimum water level (S62: YES), the ozone generator 13 is stopped (S63) and the mixing pump 12 is stopped (S64). Subsequently, the electromagnetic valve 54 is switched, and the decolorized water supply flow path is closed (S65). Furthermore, in the second reaction tank start process described later, it is determined whether or not a first reaction tank process start signal is output (S66). While the first reaction tank treatment start signal is not output (S66: NO), the filtered water is supplied to the second reaction tank 32, so that the process returns to S66 and is in a standby state. And when supply of the filtered water to the 2nd reaction tank 32 is complete | finished and a 1st reaction tank process start signal is output (S66: YES), it returns to S51 and a process is repeated.

次に、第2反応槽脱色処理について説明する。まず、第2反応槽処理開始信号があったか否かが判断される(S71)。まだ、第2反応槽処理開始信号がない場合(S71:NO)、S71に戻って待機状態とされる。そして、第2反応槽処理開始信号があった場合(S71:YES)、続いて、第2反応槽32のろ過水の水位が上限水位未満か否かが判断される(S72)。ここで、第2反応槽32が上限水位以上の場合は(S72:NO)、第2反応槽32にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第1反応槽処理開始信号が出力される(S75)。また、上限水位未満の場合(S72:YES)、電磁弁51のろ過水配管39側の弁座が開かれ、ろ過水が第2反応槽32内に供給される(S73)。次いで、第2反応槽32内の水位が上限水位以上であるか否かが判断される(S74)。そして、水位が上限水位以上であると判断されない場合は(S74:NO)、S73に戻り、引き続き水位の監視が行われる。また、水位が上限水位以上と判断された場合は(S74:YES)、第2反応槽32の処理の開始を許可する第1反応槽処理開始信号が出力される(S75)。これにより、第1反応槽脱色処理において、第2反応槽脱色処理で出力された第1反応槽処理開始信号が認識されることで(図11に示すS66:YES)、第1反応槽脱色処理のS51からの処理が再び実行される。   Next, the second reaction tank decoloring process will be described. First, it is determined whether or not there is a second reaction tank processing start signal (S71). If there is no second reaction tank processing start signal yet (S71: NO), the process returns to S71 and enters a standby state. And when there exists a 2nd reaction tank process start signal (S71: YES), it is judged whether the water level of the filtrate of the 2nd reaction tank 32 is less than an upper limit water level (S72). Here, when the 2nd reaction tank 32 is more than an upper limit water level (S72: NO), since it is not necessary to supply filtered water to the 2nd reaction tank 32, the start of the process of the 2nd reaction tank 32 is permitted. A one-reactor process start signal is output (S75). Moreover, when it is less than an upper limit water level (S72: YES), the valve seat by the side of the filtrate water piping 39 of the solenoid valve 51 is opened, and filtrate water is supplied in the 2nd reaction tank 32 (S73). Next, it is determined whether or not the water level in the second reaction tank 32 is equal to or higher than the upper limit water level (S74). And when it is not judged that a water level is more than an upper limit water level (S74: NO), it returns to S73 and monitoring of a water level is performed continuously. Further, when it is determined that the water level is equal to or higher than the upper limit water level (S74: YES), a first reaction tank process start signal that permits the start of the process of the second reaction tank 32 is output (S75). Thereby, in the 1st reaction tank decoloring process, the 1st reaction tank process start signal outputted by the 2nd reaction tank decoloring process is recognized (S66: YES shown in Drawing 11), and the 1st reaction tank decoloring process The process from S51 is executed again.

次いで、第1反応槽31が循環脱色処理中か否かが判断される(S76)。そして、第1反応槽31が循環脱色処理中の場合は(S76:YES)、第2反応槽32を循環脱色できないので、S74に戻って待機状態とされる。また、第1反応槽31が循環脱色処理中でない場合は(S76:NO)、電磁弁52,53,54が切り換えられることで、第2循環流路が開放される(S77)。さらに、オゾン発生器13が運転され(S78)、混合ポンプ12が運転される(S79)。そして、タイマカウンタkがリセットされるとともにスタートされる(S80)。すると、第2反応槽32のろ過水が第2循環流路を循環することでオゾンと反応して脱色が進む。   Next, it is determined whether or not the first reaction tank 31 is in a circulation decoloring process (S76). And when the 1st reaction tank 31 is in the circulation decoloring process (S76: YES), since the 2nd reaction tank 32 cannot be circulated and decolored, it returns to S74 and will be in a standby state. Further, when the first reaction tank 31 is not in the circulation decoloring process (S76: NO), the second circulation flow path is opened by switching the electromagnetic valves 52, 53, 54 (S77). Further, the ozone generator 13 is operated (S78), and the mixing pump 12 is operated (S79). Then, the timer counter k is reset and started (S80). Then, the filtered water in the second reaction tank 32 circulates in the second circulation flow path, thereby reacting with ozone and proceeding with decolorization.

その後、オゾン発生器13の運転時間、即ち、タイマカウンタkが設定時間t2に到達したか否かが判断される(S81)。ここで、タイマカウンタkの値が設定時間t2にまだ到達していない場合は(S81:NO)、第1反応槽脱色処理と同様に、S81に戻り、循環脱色処理が継続されるとともに、タイマカウンタkの値が監視される。そして、タイマカウンタkの値が設定時間t2に到達した場合は(S81:YES)、オゾン発生器13を停止させないで、電磁弁54が切り換えられる(S82)。すると、循環配管45及び脱色水供給管50で構成される脱色水供給流路が開放される。   Thereafter, it is determined whether the operation time of the ozone generator 13, that is, whether the timer counter k has reached the set time t2 (S81). Here, when the value of the timer counter k has not yet reached the set time t2 (S81: NO), the process returns to S81 as in the first reaction tank decoloring process, and the circulation decoloring process is continued, and the timer The value of counter k is monitored. When the value of the timer counter k reaches the set time t2 (S81: YES), the solenoid valve 54 is switched without stopping the ozone generator 13 (S82). Then, the decolorized water supply flow path constituted by the circulation pipe 45 and the decolorized water supply pipe 50 is opened.

これにより、図8に示すように、第2反応槽32内の脱色水が、循環配管44、循環配管47を通過して、混合ポンプ12に吸引され、該混合ポンプ12ではさらにオゾンが混合される。そして、オゾンが混合された混合水は、循環配管45を介して脱色水供給管50に流れ込み、脱色水供給管50を通過する間にさらに脱色される。よって、脱色水供給管50の出口通過時には、脱色水は目標色度(例えば、30度)にまで脱色されるので、貯留槽9には目標色度の脱色水を供給することができる   As a result, as shown in FIG. 8, the decolorized water in the second reaction tank 32 passes through the circulation pipe 44 and the circulation pipe 47 and is sucked into the mixing pump 12, and ozone is further mixed in the mixing pump 12. The The mixed water mixed with ozone flows into the decolorized water supply pipe 50 via the circulation pipe 45 and is further decolorized while passing through the decolorized water supply pipe 50. Therefore, since the decolorized water is decolored to the target chromaticity (for example, 30 degrees) when passing through the outlet of the decolorized water supply pipe 50, the decolorized water having the target chromaticity can be supplied to the storage tank 9.

次に、第2反応槽32の水位が下限水位未満か否かが判断される(S83)。ここで、水位がまだ下限水位以上の場合は(S83:NO)、S83に戻り、脱色水が貯留槽9に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S83:YES)は、オゾン発生器13が停止され(S84)、混合ポンプ12が停止される(S85)。続いて、電磁弁54が切り換えられ、脱色水供給流路が閉塞される(S86)。その後、S71に戻って処理が繰り返される。   Next, it is determined whether the water level in the second reaction tank 32 is less than the lower limit water level (S83). Here, when the water level is still higher than the lower limit water level (S83: NO), the process returns to S83, the decolorized water is continuously supplied to the storage tank 9, and the water level is monitored. And when a water level falls below a minimum water level (S83: YES), the ozone generator 13 is stopped (S84) and the mixing pump 12 is stopped (S85). Subsequently, the electromagnetic valve 54 is switched, and the decolorized water supply flow path is closed (S86). Thereafter, the process returns to S71 and the process is repeated.

以上説明したように、第2の実施形態の循環式水洗トイレシステムでは、第1の実施形態の循環式水洗トイレシステム1と同じ構成を備えるが、CPU10aの制御動作が異なるものである。つまり、各反応槽に貯留されたろ過水が目標色度まで脱色される前に脱色水供給流路を開放し、脱色水供給管50の管内でもオゾンと反応させることができる。これにより、第1の実施形態では、各反応槽内の脱色水を貯留槽9に供給するためだけに使用していた時間を、第2の実施形態では省略できるので、オゾン脱色部8のろ過水のオゾン循環脱色にかかる処理時間を短縮することができる。   As described above, the circulating flush toilet system of the second embodiment has the same configuration as the circulating flush toilet system 1 of the first embodiment, but the control operation of the CPU 10a is different. That is, before the filtered water stored in each reaction tank is decolored to the target chromaticity, the decolorized water supply flow path can be opened and reacted with ozone in the decolorized water supply pipe 50. Thereby, in 1st Embodiment, since the time used only in order to supply the decoloring water in each reaction tank to the storage tank 9 can be abbreviate | omitted in 2nd Embodiment, the filtration of the ozone decoloring part 8 is carried out. The processing time required for the ozone circulation decoloration of water can be reduced.

次に、第3の実施形態である循環式水洗トイレシステムについて説明する。図13は、オゾン脱色部80及びコントローラ110の構成を示す構成図であり、図14は、CPU110aによる第1反応槽脱色処理の制御動作を示すフローチャートであり、図15は、CPU110aによる第2反応槽脱色処理の制御動作を示すフローチャートである。   Next, the circulation type flush toilet system which is 3rd Embodiment is demonstrated. FIG. 13 is a block diagram showing the configuration of the ozone decoloring unit 80 and the controller 110, FIG. 14 is a flowchart showing the control operation of the first reaction tank decoloring process by the CPU 110a, and FIG. 15 is the second reaction by the CPU 110a. It is a flowchart which shows the control operation | movement of a tank decoloring process.

この循環式水洗トイレシステムは、第2の実施形態の変形例であり、第1反応槽31及び第2反応槽32に、各槽内の脱色水の色度を直接検知できる色度センサ85,86をそれぞれ備えている。そして、それら色度センサ85,86の各検出値に基づいて、脱色水供給流路を開放するタイミングを制御することで、貯留槽9に供給される脱色水の色度をより正確かつ安定して保持できる点に特徴を備えている。   This circulating flush toilet system is a modification of the second embodiment, and the first reaction tank 31 and the second reaction tank 32 can be used to directly detect the chromaticity of decolorized water in each tank, 86 are provided. And based on each detection value of these chromaticity sensors 85 and 86, by controlling the timing which opens a decolored water supply flow path, the chromaticity of the decolorized water supplied to the storage tank 9 is made more accurate and stable. It has a feature in that it can be held.

なお、第3の実施形態の循環式水洗トイレシステムは、第1の実施形態である循環式水洗トイレシステム1の構造を基本的に備えているので、同じ構造部分に関しては同符号を付して説明を省略するとともに、異なる構造部分についてのみ説明する。   Since the circulating flush toilet system of the third embodiment basically includes the structure of the circulating flush toilet system 1 according to the first embodiment, the same structural parts are denoted by the same reference numerals. While omitting the description, only different structural parts will be described.

図13に示すように、この循環式水洗トイレシステムは、オゾン脱色部80と、コントローラ110とを備えている。このオゾン脱色部80は、第1の実施形態のオゾン脱色部8と同じ構造を備えている。そして、第1反応槽31において、フロート取付板35の略中段には、貯水の色度を検知する色度センサ85が取り付けられている。一方、第2反応槽32において、フロート取付板36の略中段には、色度センサ86が取り付けられている。これら色度センサ85,86は周知の色度センサである。これら色度センサ85,86は、後述するコントローラ110のI/Oインタフェイス110dに電気的に接続されている。よって、色度センサ85,86によって検知された色度値は検知信号に変換され、コントローラ110のCPU110aに入力される。   As shown in FIG. 13, this circulating flush toilet system includes an ozone decoloring unit 80 and a controller 110. The ozone decoloring unit 80 has the same structure as the ozone decoloring unit 8 of the first embodiment. And in the 1st reaction tank 31, the chromaticity sensor 85 which detects the chromaticity of stored water is attached to the approximate middle stage of the float mounting plate 35. On the other hand, in the second reaction tank 32, a chromaticity sensor 86 is attached to a substantially middle stage of the float attachment plate 36. These chromaticity sensors 85 and 86 are well-known chromaticity sensors. These chromaticity sensors 85 and 86 are electrically connected to an I / O interface 110d of the controller 110 described later. Therefore, the chromaticity values detected by the chromaticity sensors 85 and 86 are converted into detection signals and input to the CPU 110a of the controller 110.

コントローラ110は、中央演算処理装置としてのCPU110aと、該CPU110aを中心に相互に接続されたROM110bと、RAM110cとを備えている。さらに、CPU110aにはI/Oインタフェイス110dが設けられている。そして、このI/Oインタフェイス110dには、図示外の配線を介して、電磁弁51,52,53,54と、ブロワー18と、混合ポンプ12と、オゾン発生器13と、第1上限フロート70、第1下限フロート71、第2上限フロート73、第2下限フロート74と、色度センサ85,86が各々接続されている。なお、本実施形態では、オゾン発生器13の運転/停止のタイミングは、色度センサ85,86の検知色度に基づいて行われる。よって、コントローラ110には、第1の実施形態のコントローラ10のようなタイマを設けてはいない。   The controller 110 includes a CPU 110a as a central processing unit, a ROM 110b and a RAM 110c connected to each other around the CPU 110a. Further, the CPU 110a is provided with an I / O interface 110d. The I / O interface 110d is connected to the solenoid valves 51, 52, 53, 54, the blower 18, the mixing pump 12, the ozone generator 13, and the first upper limit float via wiring not shown. 70, a first lower limit float 71, a second upper limit float 73, a second lower limit float 74, and chromaticity sensors 85 and 86 are connected to each other. In the present embodiment, the operation / stop timing of the ozone generator 13 is performed based on the detected chromaticity of the chromaticity sensors 85 and 86. Therefore, the controller 110 is not provided with a timer like the controller 10 of the first embodiment.

そして、CPU110aは、第2の実施形態と同様の制御を行う。つまり、各反応槽のろ過水が脱色水基準色度まで脱色されたら脱色水供給流路を開放する。これにより、脱色水供給管50の管内でさらにオゾン脱色が行われるので、目標色度の脱色水を貯留槽9に供給することができる。なお、目標色度及び脱色水基準色度は、第2の実施形態と同様に設定される。   Then, the CPU 110a performs the same control as in the second embodiment. That is, when the filtered water in each reaction tank is decolored to the decolorized water reference chromaticity, the decolorized water supply flow path is opened. As a result, ozone decolorization is further performed within the pipe of the decolorized water supply pipe 50, so that decolorized water having the target chromaticity can be supplied to the storage tank 9. The target chromaticity and the decolorized water reference chromaticity are set in the same manner as in the second embodiment.

次に、CPU110aによるオゾン脱色部80の制御動作について、図14,図15に示す各フローチャートを参照して説明する。なお、本説明における処理開始時には、第1反応槽31及び第2反応槽32にはろ過水がまだ供給されていないものとする。はじめに、循環式水洗トイレシステムの起動スイッチ(図示外)がオンされると、第1反応槽脱色処理(図14参照)と、第2反応槽脱色処理(図15参照)とが同時に実行される。そして、第2の実施形態と同じように、第1反応槽脱色処理を第2反応槽脱色処理よりも先に進行させる。よって、図15に示す第2反応槽脱色処理では、まず、第1反応槽脱色処理において、第2反応槽32の処理開始を許可するための後述する第2反応槽処理開始信号が出力されたか否かが判断される(S111)。そして、第2反応槽処理開始信号が出力されるまでは(S111:NO)、S111に戻って、第2反応槽処理開始信号が出力されるまでは待機状態とされる。   Next, the control operation of the ozone decoloring unit 80 by the CPU 110a will be described with reference to the flowcharts shown in FIGS. It is assumed that filtered water is not yet supplied to the first reaction tank 31 and the second reaction tank 32 at the start of processing in this description. First, when the activation switch (not shown) of the circulating flush toilet system is turned on, the first reaction tank decoloring process (see FIG. 14) and the second reaction tank decoloring process (see FIG. 15) are performed simultaneously. . Then, as in the second embodiment, the first reaction tank decoloring process is advanced before the second reaction tank decoloring process. Therefore, in the second reaction tank decoloring process shown in FIG. 15, first, in the first reaction tank decoloring process, was the second reaction tank process start signal described later for permitting the start of the process of the second reaction tank 32 output? It is determined whether or not (S111). Then, until the second reaction tank processing start signal is output (S111: NO), the process returns to S111 and is in a standby state until the second reaction tank processing start signal is output.

まず、第1反応槽脱色処理について説明する。図14に示すように、はじめに、第1反応槽31が上限水位未満か否かが判断される(S91)。ここで、既に、第1反応槽31が上限水位以上であると判断された場合は(S91:NO)、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S94)。また、第1反応槽31のろ過水の水位が上限水位未満の場合(S91:YES)、電磁弁51におけるろ過水配管38側の弁座が開かれ、ろ過水が第1反応槽31内に供給される(S92)。   First, the 1st reaction tank decoloring process is demonstrated. As shown in FIG. 14, first, it is determined whether or not the first reaction tank 31 is less than the upper limit water level (S91). Here, when it is already determined that the first reaction tank 31 is equal to or higher than the upper limit water level (S91: NO), a second reaction tank process start signal for permitting the start of the process of the second reaction tank 32 is output. (S94). Moreover, when the water level of the filtrate of the 1st reaction tank 31 is less than an upper limit water level (S91: YES), the valve seat by the side of the filtrate water piping 38 in the solenoid valve 51 is opened, and filtrate water is in the 1st reaction tank 31. Is supplied (S92).

また、第1反応槽31内にろ過水が供給されると(S92)、次に、第1反応槽31内のろ過水が上限水位以上か否かが判断される(S93)。そして、第1反応槽31内のろ過水が上限水位以上でないと判断された場合は(S93:NO)、S92に戻って、ろ過水が引き続き供給される。さらに、ろ過水が供給され、第1反応槽31内のろ過水が上限水位以上と判断された場合は(S93:YES)、第1反応槽31にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S94)。   Moreover, if filtered water is supplied in the 1st reaction tank 31 (S92), it will be judged next whether the filtered water in the 1st reaction tank 31 is more than an upper limit water level (S93). And when it is judged that the filtered water in the 1st reaction tank 31 is not more than an upper limit water level (S93: NO), it returns to S92 and filtered water is supplied continuously. Furthermore, when filtered water is supplied and the filtered water in the first reaction tank 31 is determined to be equal to or higher than the upper limit water level (S93: YES), it is not necessary to supply filtered water to the first reaction tank 31, The 2nd reaction tank process start signal which permits the start of the process of the 2 reaction tank 32 is output (S94).

次いで、第2反応槽32が循環脱色処理中か否かが判断される(S95)。ここで、第2反応槽32のろ過水が循環脱色処理中である場合(S95:YES)、循環配管45,46,47を使用することができないので、S93に戻って待機状態とされる。また、第2反応槽32が循環脱色処理中でない場合は(S95:NO)、電磁弁52,53,54が切り換えられることで、第1循環流路が開放される(S96)。さらに、オゾン発生器13が運転され(S97)、混合ポンプ12が運転される(S98)。すると、第1反応槽31のろ過水が第1循環流路を循環するので、オゾンと反応して脱色が進む。   Next, it is determined whether or not the second reaction tank 32 is in a circulation decoloring process (S95). Here, when the filtered water in the second reaction tank 32 is in the circulation decolorization process (S95: YES), the circulation pipes 45, 46, and 47 cannot be used, so the process returns to S93 to be in a standby state. Further, when the second reaction tank 32 is not in the process of circulating decolorization (S95: NO), the first circulation channel is opened by switching the electromagnetic valves 52, 53, 54 (S96). Further, the ozone generator 13 is operated (S97), and the mixing pump 12 is operated (S98). Then, since the filtered water of the 1st reaction tank 31 circulates through a 1st circulation channel, it reacts with ozone and decoloring advances.

その後、第1循環流路を循環するろ過水の色度が検出される(S99)。具体的には、第1反応槽31内の色度センサ85が、第1反応槽31内のろ過水(脱色水)の色度を検出し、CPU110aにその検知信号が入力される。そして、その色度値が脱色水基準色度以下(例えば、100度以下)まで低下したか否かが判断される(S100)。ここで、まだ脱色水基準色度以下まで低下していない場合(S100:NO)、循環脱色処理がそのまま継続されるとともに、引き続き色度が監視される(S99,S100)。そして、ろ過水の色度が脱色水基準色度以下まで低下した場合(S100:YES)、オゾン発生器13を停止せないで、電磁弁54が切り換えられ、循環配管45及び脱色水供給管50で構成される脱色水供給流路が開放される(S101)。   Thereafter, the chromaticity of the filtered water circulating through the first circulation channel is detected (S99). Specifically, the chromaticity sensor 85 in the first reaction tank 31 detects the chromaticity of the filtered water (decolorized water) in the first reaction tank 31, and the detection signal is input to the CPU 110a. Then, it is determined whether or not the chromaticity value has decreased to a decolorized water reference chromaticity or less (for example, 100 degrees or less) (S100). Here, when it has not yet decreased below the decolorized water reference chromaticity (S100: NO), the circulating decoloring process is continued and the chromaticity is continuously monitored (S99, S100). And when the chromaticity of filtered water falls below the decolored water reference chromaticity (S100: YES), the solenoid valve 54 is switched without stopping the ozone generator 13, and the circulation pipe 45 and the decolorized water supply pipe 50 are switched. The decolorized water supply flow path constituted by is opened (S101).

これにより、第1反応槽31内の脱色水は、循環配管43、循環配管47を通過して、混合ポンプ12に吸引され、該混合ポンプ12ではさらにオゾンが混合される。そして、オゾンが混合された混合水は、脱色水供給管50を通過する間にさらに脱色され、脱色水供給管50の出口通過時には目標色度(例えば、30度)にまで脱色される。よって、貯留槽9に目標色度の脱色水を供給できる。   Thus, the decolorized water in the first reaction tank 31 passes through the circulation pipe 43 and the circulation pipe 47 and is sucked into the mixing pump 12, and ozone is further mixed in the mixing pump 12. The mixed water mixed with ozone is further decolorized while passing through the decolorized water supply pipe 50, and decolored to a target chromaticity (for example, 30 degrees) when passing through the outlet of the decolorized water supply pipe 50. Therefore, decolorized water having the target chromaticity can be supplied to the storage tank 9.

さらに、第1反応槽31の脱色水の水位が下限水位未満か否かが判断される(S102)。ここで、水位が下限水位以上の場合は(S102:NO)、S102に戻り、脱色水が貯留槽9に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S102:YES)は、オゾン発生器13が停止され(S103)、混合ポンプ12が停止される(S104)。続いて、電磁弁54が切り換えられ、脱色水供給流路が閉塞される(S105)。続いて、後述する第2反応槽開始処理において、第1反応槽処理開始信号が出力されたか否かが判断される(S106)。この第1反応槽処理開始信号が出力されていない間は(S106:NO)、第2反応槽32にろ過水が供給されているので、S106に戻って待機状態とされる。そして、第2反応槽32へのろ過水の供給が終了し、第1反応槽処理開始信号が出力された場合(S106:YES)、S91に戻って処理が繰り返される。   Further, it is determined whether or not the water level of the decolorized water in the first reaction tank 31 is less than the lower limit water level (S102). Here, when the water level is equal to or higher than the lower limit water level (S102: NO), the process returns to S102, the decolorized water is continuously supplied to the storage tank 9, and the water level is monitored. And when a water level falls below a minimum water level (S102: YES), the ozone generator 13 is stopped (S103) and the mixing pump 12 is stopped (S104). Subsequently, the solenoid valve 54 is switched, and the decolorized water supply flow path is closed (S105). Subsequently, in a second reaction tank start process described later, it is determined whether or not a first reaction tank process start signal is output (S106). While the first reaction tank processing start signal is not output (S106: NO), the filtered water is supplied to the second reaction tank 32, so that the process returns to S106 and enters a standby state. And when supply of the filtered water to the 2nd reaction tank 32 is complete | finished and the 1st reaction tank process start signal is output (S106: YES), it returns to S91 and a process is repeated.

次に、第2反応槽脱色処理について説明する。図15に示すように、まず、第2反応槽処理開始信号があったか否かが判断される(S111)。まだ、第2反応槽処理開始信号がない場合(S111:NO)、S111に戻って待機状態とされる。そして、第2反応槽処理開始信号があった場合(S111:YES)、続いて、第2反応槽32のろ過水の水位が上限水位未満か否かが判断される(S112)。ここで、第2反応槽32が上限水位以上の場合(S112:NO)は、第2反応槽32にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第1反応槽処理開始信号が出力される(S115)。また、上限水位未満の場合(S112:YES)、電磁弁51のろ過水配管39側の弁座が開かれ、ろ過水が第2反応槽32内に供給される(S113)。次いで、第2反応槽32内の水位が上限水位以上であるか否かが判断される(S114)。水位が上限水位以上と判断されない場合は(S114:NO)、S113に戻り、引き続き水位の監視が行われる。そして、水位が上限水位以上と判断された場合は(S114:YES)、第2反応槽32の処理の開始を許可する第1反応槽処理開始信号が出力される(S115)。これにより、第1反応槽脱色処理において、第2反応槽脱色処理で出力された第1反応槽処理開始信号が認識されることで(図14に示すS106:YES)、第1反応槽脱色処理のS91からの処理が実行される。   Next, the second reaction tank decoloring process will be described. As shown in FIG. 15, first, it is determined whether or not there is a second reaction tank processing start signal (S111). If there is no second reaction tank processing start signal yet (S111: NO), the process returns to S111 and enters a standby state. And when there exists a 2nd reaction tank process start signal (S111: YES), it is judged whether the water level of the filtered water of the 2nd reaction tank 32 is less than an upper limit water level (S112). Here, when the 2nd reaction tank 32 is more than an upper limit water level (S112: NO), since it is not necessary to supply filtered water to the 2nd reaction tank 32, the start of the process of the 2nd reaction tank 32 is permitted. A one-reactor process start signal is output (S115). Moreover, when it is less than an upper limit water level (S112: YES), the valve seat by the side of the filtrate water piping 39 of the solenoid valve 51 is opened, and filtrate water is supplied in the 2nd reaction tank 32 (S113). Next, it is determined whether or not the water level in the second reaction tank 32 is equal to or higher than the upper limit water level (S114). When it is not determined that the water level is equal to or higher than the upper limit water level (S114: NO), the process returns to S113 and the water level is continuously monitored. And when it is judged that a water level is more than an upper limit water level (S114: YES), the 1st reaction tank process start signal which permits the start of the process of the 2nd reaction tank 32 is output (S115). Thereby, in the 1st reaction tank decoloring process, the 1st reaction tank process start signal outputted by the 2nd reaction tank decoloring process is recognized (S106: YES shown in Drawing 14), and the 1st reaction tank decoloring process The process from S91 is executed.

次いで、第1反応槽31が循環脱色処理中か否かが判断される(S116)。そして、第1反応槽31が循環脱色処理中の場合は(S116:YES)、S114に戻って処理が繰り返される。また、第1反応槽31が循環脱色処理中でない場合は(S116:NO)、電磁弁52,53,54が切り換えられることで、第2循環流路が開放される(S117)。さらに、オゾン発生器13が運転され(S118)、混合ポンプ12が運転される(S119)。すると、第2反応槽32のろ過水が第2循環流路を循環するので、オゾンと反応して脱色が進む。   Next, it is determined whether or not the first reaction tank 31 is in a circulation decoloring process (S116). And when the 1st reaction tank 31 is performing the circulation decoloring process (S116: YES), it returns to S114 and a process is repeated. Further, when the first reaction tank 31 is not in the circulation decoloring process (S116: NO), the second circulation flow path is opened by switching the electromagnetic valves 52, 53, 54 (S117). Further, the ozone generator 13 is operated (S118), and the mixing pump 12 is operated (S119). Then, since the filtered water in the second reaction tank 32 circulates in the second circulation channel, it reacts with ozone and decolorization proceeds.

その後、第2循環流路を循環する脱色水の色度が検出される(S120)。具体的には、第2反応槽32内の色度センサ86によって、第2反応槽32内の脱色水の色度が検出され、CPU110aにその検知信号が入力される。そして、その色度値が脱色水基準色度以下(例えば、100度以下)まで低下したか否かが判断される(S121)。ここで、脱色水がまだ脱色水基準色度以下まで低下していない場合(S121:NO)、循環脱色処理がそのまま継続されるとともに、引き続き色度が監視される(S120)。そして、脱色水基準色度以下まで低下した場合(S121:YES)、オゾン発生器13が停止されないで、電磁弁54が切り換えられ、循環配管45及び脱色水供給管50で構成される脱色水供給流路が開放される(S122)。   Thereafter, the chromaticity of the decolorized water circulating through the second circulation channel is detected (S120). Specifically, the chromaticity sensor 86 in the second reaction tank 32 detects the chromaticity of the decolorized water in the second reaction tank 32, and the detection signal is input to the CPU 110a. Then, it is determined whether or not the chromaticity value has decreased to a decolorized water reference chromaticity or less (for example, 100 degrees or less) (S121). If the decolorized water has not yet decreased below the decolorized water reference chromaticity (S121: NO), the cyclic decoloring process is continued and the chromaticity is continuously monitored (S120). And when it falls to below decoloration water reference chromaticity (S121: YES), the ozone generator 13 is not stopped, the solenoid valve 54 is switched, and decoloration water supply comprised by the circulation piping 45 and the decolorization water supply pipe 50 is carried out. The flow path is opened (S122).

これにより、第2反応槽32内の脱色水は、循環配管44、循環配管47を通過して、混合ポンプ12に吸引され、該混合ポンプ12ではさらにオゾンが混合される。そして、オゾンが混合された混合水は、脱色水供給管50を通過する間にさらに脱色され、脱色水供給管50の出口通過時には目標色度(例えば、30度)にまで脱色される。よって、貯留槽9に目標色度の脱色水を供給できる。   Accordingly, the decolorized water in the second reaction tank 32 passes through the circulation pipe 44 and the circulation pipe 47 and is sucked into the mixing pump 12, and ozone is further mixed in the mixing pump 12. The mixed water mixed with ozone is further decolorized while passing through the decolorized water supply pipe 50, and decolored to a target chromaticity (for example, 30 degrees) when passing through the outlet of the decolorized water supply pipe 50. Therefore, decolorized water having the target chromaticity can be supplied to the storage tank 9.

さらに、第2反応槽32の脱色水の水位が下限水位未満か否かが判断される(S123)。ここで、水位が下限水位以上の場合は(S123:NO)、S123に戻り、脱色水が貯留槽9に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S123:YES)は、オゾン発生器13が停止される(S124)。さらに、混合ポンプ12が停止される(S125)。続いて、電磁弁54が切り換えられて脱色水供給流路が閉塞される(S126)。その後、S111に戻って処理が繰り返される。   Further, it is determined whether or not the water level of the decolorized water in the second reaction tank 32 is less than the lower limit water level (S123). Here, when the water level is equal to or higher than the lower limit water level (S123: NO), the process returns to S123, decolorized water is continuously supplied to the storage tank 9, and the water level is monitored. And when a water level falls below a minimum water level (S123: YES), the ozone generator 13 is stopped (S124). Further, the mixing pump 12 is stopped (S125). Subsequently, the solenoid valve 54 is switched to close the decolorized water supply channel (S126). Thereafter, the process returns to S111 and the process is repeated.

以上説明したように、第3の実施形態の循環式水洗トイレシステムでは、第1反応槽31及び第2反応槽32に色度センサ85,86をそれぞれ備えている。そして、CPU110aが、色度センサ85,86の各検出値に基づいて、脱色水供給流路を開放するタイミングを制御することで、貯留槽9に供給される脱色水の色度をより正確かつ安定して保持できる点に特徴を備えている。つまり、各反応槽の脱色水の色度を色度センサ85,86で直接検出できるので、第2の実施形態のようにオゾン発生器13の運転時間に基づいて制御する場合に比べて、より安定した目標色度の脱色水を貯留槽9に貯留することができる。   As described above, in the circulating flush toilet system of the third embodiment, the first reaction tank 31 and the second reaction tank 32 are provided with chromaticity sensors 85 and 86, respectively. And CPU110a controls the timing which opens a decolored water supply flow path based on each detection value of the chromaticity sensors 85 and 86, and more accurately and chromaticity of the decolorized water supplied to the storage tank 9 is obtained. It is characterized in that it can be held stably. That is, since the chromaticity of the decolorized water in each reaction tank can be directly detected by the chromaticity sensors 85 and 86, compared to the case of controlling based on the operation time of the ozone generator 13 as in the second embodiment. Decolorized water having a stable target chromaticity can be stored in the storage tank 9.

なお、第3の実施形態では、第2の実施形態と同様に、各反応槽のろ過水が脱色水基準色度まで脱色されたら、脱色水供給流路を開放し、脱色水供給管50の管内でもオゾン脱色を行うようにしたが、例えば、第1の実施形態の循環式水洗トイレシステム1のように、各反応槽内のろ過水を目標色度にまで完全に脱色してから、オゾン発生器13を停止させ、脱色水供給管50を介して貯留槽9に供給するようにしてもよい。   In the third embodiment, as in the second embodiment, when the filtered water in each reaction tank is decolored to the decolorized water reference chromaticity, the decolorized water supply channel is opened and the decolorized water supply pipe 50 is connected. Ozone decolorization was also performed in the tube. For example, as in the circulating flush toilet system 1 of the first embodiment, the filtered water in each reaction tank was completely decolored to the target chromaticity, and then the ozone decoloration was performed. The generator 13 may be stopped and supplied to the storage tank 9 via the decolorized water supply pipe 50.

次に、第4の実施形態の循環式水洗トイレシステム100について説明する。図16は、循環式水洗トイレシステム100の構成図であり、図17は、オゾン脱色部80及びコントローラ120の構成を示す構成図であり、図18は、CPU120aによる第1反応槽脱色処理の制御動作を示すフローチャートであり、図19は、CPU120aによる第1反応槽脱色処理の制御動作を示すフローチャートである。   Next, the circulation type flush toilet system 100 of 4th Embodiment is demonstrated. FIG. 16 is a configuration diagram of the circulating flush toilet system 100, FIG. 17 is a configuration diagram showing configurations of the ozone decoloring unit 80 and the controller 120, and FIG. 18 is a control of the first reaction tank decoloring process by the CPU 120a. FIG. 19 is a flowchart showing a control operation of the first reaction tank decoloring process by the CPU 120a.

この循環式水洗トイレシステム100は、貯留槽90に貯留された脱色水をオーバーフローさせて、生物処理槽6に供給する仕組みを備えるものである。そして、水洗便器5の使用頻度に応じて、休日夜間における脱色水のオーバーフロー水量を制御することができる。これにより、オゾン脱色部80に供給されるろ過水の色度を希釈して一定レベルに維持することができるので、オゾン脱色部80にかかる負荷を軽減できる。そして、第4の実施形態では、ろ過水の色度に基づいてオーバーフロー水量を制御する点に特徴を備えている。   The circulating flush toilet system 100 has a mechanism for overflowing the decolorized water stored in the storage tank 90 and supplying it to the biological treatment tank 6. And according to the use frequency of the flush toilet 5, the overflow amount of the decolorized water in the holiday night can be controlled. Thereby, since the chromaticity of the filtrate supplied to the ozone decoloring unit 80 can be diluted and maintained at a constant level, the load on the ozone decoloring unit 80 can be reduced. The fourth embodiment is characterized in that the amount of overflow water is controlled based on the chromaticity of filtered water.

なお、循環式水洗トイレシステム100は、図16,図17に示すように、第1の実施形態である循環式水洗トイレシステム1(図1参照)の構造を基本的に備えるとともに、オゾン脱色部80と、上記各実施形態とは異なる制御動作を行うコントローラ120とを備えている。そこで、構造が同じ部分については同符号を付して説明を省略し、構造の異なる部分を中心に説明する。また、以下説明において、貯留槽90の「オーバーフロー水」とは、貯留槽90が満水の時に、オゾン脱色部80の脱色水供給管50から脱色水が供給されることによって溢れ出た脱色水をいう。   As shown in FIGS. 16 and 17, the circulating flush toilet system 100 basically includes the structure of the circulating flush toilet system 1 (see FIG. 1) according to the first embodiment, and an ozone decoloring unit. 80 and a controller 120 that performs a control operation different from those of the above embodiments. Therefore, parts having the same structure are denoted by the same reference numerals, description thereof is omitted, and parts having different structures will be mainly described. In the following description, the “overflow water” of the storage tank 90 refers to decolorized water that has overflowed due to the supply of decolorized water from the decolorized water supply pipe 50 of the ozone decoloring section 80 when the storage tank 90 is full. Say.

図16に示すように、循環式水洗トイレシステム100は、水洗便器5と、生物処理槽6と、ろ過槽7と、オゾン脱色部80と、貯留槽90とを主体に構成されている。そして、貯留槽90と水洗便器5との間には洗浄水供給管15が設けられ、該洗浄水供給管15にはポンプ16が設けられている。さらに、循環式水洗トイレシステム100は、上記各処理槽における処理動作を制御するコントローラ120(図18)を備えている。なお、オゾン脱色部80は、第3の実施形態と同じ構造のものである。   As shown in FIG. 16, the circulating flush toilet system 100 is mainly composed of a flush toilet 5, a biological treatment tank 6, a filtration tank 7, an ozone decoloring unit 80, and a storage tank 90. A washing water supply pipe 15 is provided between the storage tank 90 and the flush toilet 5, and a pump 16 is provided in the washing water supply pipe 15. Further, the circulating flush toilet system 100 includes a controller 120 (FIG. 18) that controls the processing operation in each processing tank. The ozone decoloring unit 80 has the same structure as that of the third embodiment.

貯留槽90は、ろ過槽7に隣接して設けられている。さらに貯留槽90の内側には、貯留槽90の上部から中段まで延設されたフロート取付板37が配設されている。このフロート取付板37の上部には、貯留槽90に貯留された脱色水が満水になったか否かを検知する満水フロート75が固定されている。さらに、その貯留槽90と生物処理槽6との間には、貯留槽90のオーバーフロー水を生物処理槽6に供給するオーバーフロー水配管99が配設されている。また、ろ過装置17には、該ろ過装置17のろ過水を生物処理槽6にオーバーフローさせるろ過水オーバーフロー配管77が配設されている。   The storage tank 90 is provided adjacent to the filtration tank 7. Furthermore, a float mounting plate 37 extending from the upper part of the storage tank 90 to the middle stage is disposed inside the storage tank 90. A full water float 75 for detecting whether or not the decolorized water stored in the storage tank 90 is full is fixed to the upper part of the float mounting plate 37. Further, an overflow water pipe 99 for supplying the overflow water of the storage tank 90 to the biological treatment tank 6 is disposed between the storage tank 90 and the biological treatment tank 6. The filtration device 17 is provided with a filtered water overflow pipe 77 for overflowing the filtered water of the filtration device 17 to the biological treatment tank 6.

コントローラ120は、中央演算処理装置としてのCPU120aと、該CPU120aを中心に相互に接続されたROM120bと、RAM120cとを備えている。さらに、CPU120aにはI/Oインタフェイス120dが設けられている。そして、このI/Oインタフェイス120dには、図示外の配線を介して、電磁弁51,52,53,54と、ブロワー18と、混合ポンプ12と、オゾン発生器13と、第1上限フロート70、第1下限フロート71、第2上限フロート73、第2下限フロート74と、色度センサ85,86と、満水フロート75とが各々接続されている。   The controller 120 includes a CPU 120a as a central processing unit, a ROM 120b and a RAM 120c connected to each other around the CPU 120a. Further, the CPU 120a is provided with an I / O interface 120d. The I / O interface 120d is connected to the solenoid valves 51, 52, 53, 54, the blower 18, the mixing pump 12, the ozone generator 13, and the first upper limit float via wires not shown. 70, a first lower limit float 71, a second upper limit float 73, a second lower limit float 74, chromaticity sensors 85 and 86, and a full water float 75 are connected to each other.

次に、循環式水洗トイレシステム100のオーバーフロー水の流れについて説明する。休日夜間は、昼間に比べて水洗便器5の使用頻度が低い。この場合、生物処理槽6に汚水が流入しないので、この状態を放置すると、ろ過槽7への生物処理水の供給が止まるので、ろ過装置17周囲の生物処理水の流れが止まる。これにより、ろ過装置17のろ過膜が目詰まりを起こす恐れがある。そこで、休日夜間の場合、貯留槽90内の脱色水が減らずに満水となるので、オゾン脱色部80から脱色水を貯留槽90に供給することで、脱色水を槽外にオーバーフローさせる。このオーバーフロー水を、オーバーフロー水配管99を介して生物処理槽6に供給する。また、生物処理槽6にオーバーフロー水が供給されると、生物処理水が希釈されるので、水洗便器5の使用頻度によってろ過水の色度が高くなるのを防止できる。さらに、本実施形態では、オゾン脱色部80に供給されるろ過水の色度に応じて、このオーバーフロー水量を制御することで、オゾン脱色部80におけるオゾン脱色処理を効率的かつ安定して行うことができる。   Next, the flow of overflow water in the circulating flush toilet system 100 will be described. The frequency of use of the flush toilet 5 is lower during the holidays at night than during the daytime. In this case, since sewage does not flow into the biological treatment tank 6, if this state is left as it is, the supply of biological treatment water to the filtration tank 7 is stopped, and thus the flow of biological treatment water around the filtration device 17 is stopped. This may cause clogging of the filtration membrane of the filtration device 17. Therefore, in the case of a holiday at night, the decolorized water in the storage tank 90 is full without being reduced. Therefore, the decolorized water is supplied from the ozone decoloring unit 80 to the storage tank 90 to overflow the decolorized water to the outside of the tank. This overflow water is supplied to the biological treatment tank 6 through the overflow water pipe 99. Further, when the overflow water is supplied to the biological treatment tank 6, the biological treatment water is diluted, so that it is possible to prevent the chromaticity of the filtered water from increasing due to the frequency of use of the flush toilet 5. Furthermore, in this embodiment, the ozone decoloring process in the ozone decoloring unit 80 is performed efficiently and stably by controlling the amount of overflow water in accordance with the chromaticity of the filtrate water supplied to the ozone decoloring unit 80. Can do.

また、貯留槽9から脱色水をオーバーフローさせた直後は貯留槽90は満水ではなくなるので、生物処理槽6にオーバーフロー水を供給できない。この場合、ろ過装置17からろ過水をオーバーフローさせることで、ろ過水オーバーフロー配管77を介して生物処理槽6に供給されるようになっている。これにより、ろ過槽7には生物処理水が供給され、ろ過装置17周囲の生物処理水の流れが維持されるので、ろ過膜の目詰まりを防止できる。   Further, immediately after the decolorized water is overflowed from the storage tank 9, the storage tank 90 is not full, so that the overflow water cannot be supplied to the biological treatment tank 6. In this case, the filtrate is overflowed from the filtration device 17 so as to be supplied to the biological treatment tank 6 via the filtrate overflow pipe 77. Thereby, since the biologically treated water is supplied to the filtration tank 7 and the flow of the biologically treated water around the filtration device 17 is maintained, clogging of the filtration membrane can be prevented.

次に、水洗便器5の使用頻度とろ過水の色度との関係について説明する。例えば、水洗便器5の使用頻度が高い場合、生物処理槽6に流入する汚水量は多くなる。この場合、生物処理槽6では、汚水中の有機物を処理しきれないため、生物処理水には微生物分解できなかった有機物が残留して蓄積される。つまり、その残留する有機物が色度成分となるので、生物処理水をろ過して得られるろ過水の色度は高くなる傾向になる。これとは逆に、水洗便器5の使用頻度が低い場合、生物処理槽6に流入する汚水量は少なくなる。この場合、生物処理槽6では、汚水中の有機物を処理できるため、生物処理水には有機物が残留しない。よって、生物処理水をろ過して得られるろ過水の色度は低くなる傾向になる。つまり、第1反応槽31に供給されるろ過水の色度を検知することで、水洗便器5の使用頻度を推測できる。そして、本実施形態のCPU120aは、オゾン脱色部80に供給されたろ過水の色度に基づいて、オーバーフロー水量を制御することで、ろ過水の色度を一定レベルに安定して保つことができる。   Next, the relationship between the usage frequency of the flush toilet 5 and the chromaticity of filtered water will be described. For example, when the use frequency of the flush toilet 5 is high, the amount of sewage flowing into the biological treatment tank 6 increases. In this case, in the biological treatment tank 6, the organic matter in the sewage cannot be completely treated, and thus the organic matter that could not be decomposed by microorganisms remains and accumulates in the biological treatment water. That is, since the remaining organic matter becomes a chromaticity component, the chromaticity of filtered water obtained by filtering biologically treated water tends to increase. On the contrary, when the frequency of use of the flush toilet 5 is low, the amount of sewage flowing into the biological treatment tank 6 is reduced. In this case, the biological treatment tank 6 can treat the organic matter in the sewage, so that no organic matter remains in the biological treatment water. Therefore, the chromaticity of filtrate obtained by filtering biologically treated water tends to be low. That is, the usage frequency of the flush toilet 5 can be estimated by detecting the chromaticity of the filtered water supplied to the first reaction tank 31. And CPU120a of this embodiment can maintain chromaticity of filtered water stably to a fixed level by controlling the amount of overflow water based on the chromaticity of filtered water supplied to ozone decoloring part 80. .

次に、ろ過水基準色度と脱色水基準色度とについて説明する。ろ過水の色度は、図17に示す第1反応槽31の色度センサ85によって検知される。そして、ろ過水基準色度は、貯留槽90の脱色水をオーバーフローさせるか否かの基準となる色度値として設定される。よって、ろ過水基準色度は、オゾン脱色部80の規模や処理能力に応じて設定される。一方、脱色水基準色度は、第3の実施形態と同様に、目標色度(例えば、30度)の脱色水を脱色水供給管50の出口で得るために、脱色水供給流路を開放する際の色度(例えば、100度)として設定すればよい。   Next, the filtered water reference chromaticity and the decolorized water reference chromaticity will be described. The chromaticity of the filtered water is detected by the chromaticity sensor 85 of the first reaction tank 31 shown in FIG. The filtered water reference chromaticity is set as a chromaticity value that serves as a reference as to whether or not the decolorized water in the storage tank 90 is overflowed. Therefore, the filtered water reference chromaticity is set according to the scale and processing capacity of the ozone decoloring unit 80. On the other hand, the decolorized water reference chromaticity is opened in order to obtain decolorized water having the target chromaticity (for example, 30 degrees) at the outlet of the decolorized water supply pipe 50, as in the third embodiment. What is necessary is just to set as chromaticity (for example, 100 degree | times) at the time of doing.

次に、CPU120aによるオゾン脱色部80の制御動作について、図18,図19に示す各フローチャートを参照して説明する。はじめに、循環式水洗トイレシステム100の起動スイッチ(図示外)がオンされると、第1反応槽脱色処理(図18参照)と、第2反応槽脱色処理(図19参照)とが同時に実行される。そして、第1乃至第3の実施形態と同じように、第1反応槽脱色処理を第2反応槽脱色処理よりも先に進行させる。よって、図19に示す第2反応槽脱色処理では、まず、第1反応槽脱色処理において、第2反応槽32の処理開始を許可するための後述する第2反応槽処理開始信号が出力されたか否かが判断される(S151)。そして、第2反応槽処理開始信号が出力されるまでは(S151:NO)、処理を進行せず、第2反応槽処理開始信号が出力されるまでは待機状態とされる(S151)。   Next, the control operation of the ozone decoloring unit 80 by the CPU 120a will be described with reference to the flowcharts shown in FIGS. First, when the activation switch (not shown) of the circulating flush toilet system 100 is turned on, the first reaction tank decoloring process (see FIG. 18) and the second reaction tank decoloring process (see FIG. 19) are executed simultaneously. The And like 1st thru | or 3rd embodiment, a 1st reaction tank decoloring process is advanced before a 2nd reaction tank decoloring process. Therefore, in the second reaction tank decoloring process shown in FIG. 19, first, in the first reaction tank decoloring process, was the second reaction tank process start signal described later for permitting the start of the process of the second reaction tank 32 output? It is determined whether or not (S151). Then, the process does not proceed until the second reaction tank treatment start signal is output (S151: NO), and the standby state is maintained until the second reaction tank treatment start signal is output (S151).

まず、第1反応槽脱色処理について説明する。図18に示すように、はじめに、第1反応槽31が上限水位未満か否かが判断される(S131)。ここで、既に、第1反応槽31が上限水位以上であると判断された場合は(S131:NO)、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S134)。また、第1反応槽31のろ過水の水位が上限水位未満の場合(S131:YES)、電磁弁51におけるろ過水配管38側の弁座が開かれ、ろ過水が第1反応槽31内に供給される(S132)。   First, the 1st reaction tank decoloring process is demonstrated. As shown in FIG. 18, first, it is determined whether or not the first reaction tank 31 is lower than the upper limit water level (S131). Here, when it is already determined that the first reaction tank 31 is equal to or higher than the upper limit water level (S131: NO), a second reaction tank process start signal that permits the start of the process of the second reaction tank 32 is output. (S134). Moreover, when the water level of the filtrate of the 1st reaction tank 31 is less than an upper limit water level (S131: YES), the valve seat by the side of the filtrate water piping 38 in the solenoid valve 51 is opened, and filtrate water enters the 1st reaction tank 31. Is supplied (S132).

次に、第1反応槽31内のろ過水が上限水位以上か否かが判断される(S133)。そして、第1反応槽31内のろ過水が上限水位以上でないと判断された場合は(S133:NO)、S132に戻って、ろ過水が引き続き供給される。さらに、ろ過水が供給され、第1反応槽31内のろ過水が上限水位以上と判断された場合は(S133:YES)、第1反応槽31にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S134)。   Next, it is determined whether or not the filtered water in the first reaction tank 31 is equal to or higher than the upper limit water level (S133). And when it is judged that the filtered water in the 1st reaction tank 31 is not more than an upper limit water level (S133: NO), it returns to S132 and filtered water is supplied continuously. Furthermore, when filtrate water is supplied and the filtrate water in the 1st reaction tank 31 is judged to be more than an upper limit water level (S133: YES), since it is not necessary to supply filtrate water to the 1st reaction tank 31, 1st The 2nd reaction tank process start signal which permits the start of the process of the 2 reaction tank 32 is output (S134).

次いで、第2反応槽32が循環脱色処理中か否かが判断される(S135)。ここで、第2反応槽32のろ過水が循環脱色処理中である場合、循環配管45,47を使用できない。よって、第2反応槽32が循環脱色処理中の場合は(S135:YES)、S133に戻って処理が繰り返される。また、第2反応槽32が循環脱色処理中でない場合は(S135:NO)、第1反応槽31に貯留されたろ過水の色度が検出される(S136)。なお、第1反応槽31のろ過水の色度は、色度センサ85によって検知される。さらに、貯留槽90が満水であって、かつろ過水の色度がろ過水基準色度以下か否かが判断される(S137)。ここで、貯留槽90が満水でない場合は(S137:NO)、水洗便器5の使用頻度が高く、貯留槽90の脱色水が使用されているので、貯留槽90に脱色水を溜めるために通常の循環脱色が行われる。よって、電磁弁52,53,54が切り換えられ、第1循環流路が開放され(S138)、オゾン発生器13が運転され(S139)、混合ポンプ12が運転される(S140)。なお、貯留槽90が満水でないということは、水洗便器5の使用頻度の高い昼間であると推測される。   Next, it is determined whether or not the second reaction tank 32 is in a circulation decoloring process (S135). Here, when the filtered water in the second reaction tank 32 is in a circulation decolorization process, the circulation pipes 45 and 47 cannot be used. Therefore, when the 2nd reaction tank 32 is performing the circulation decoloring process (S135: YES), it returns to S133 and a process is repeated. Moreover, when the 2nd reaction tank 32 is not in the circulation decoloring process (S135: NO), the chromaticity of the filtrate stored in the 1st reaction tank 31 is detected (S136). The chromaticity of the filtered water in the first reaction tank 31 is detected by the chromaticity sensor 85. Further, it is determined whether or not the storage tank 90 is full and the chromaticity of the filtered water is equal to or lower than the filtered water reference chromaticity (S137). Here, when the storage tank 90 is not full (S137: NO), the flush toilet 5 is frequently used, and the decolorized water in the storage tank 90 is used, so that the decolored water is usually stored in the storage tank 90. Cyclic decolorization is performed. Therefore, the solenoid valves 52, 53, 54 are switched, the first circulation channel is opened (S138), the ozone generator 13 is operated (S139), and the mixing pump 12 is operated (S140). In addition, it is estimated that the storage tank 90 is not full is the daytime when the flush toilet 5 is used frequently.

一方、休日夜間のように水洗便器5が使用されない場合は、貯留槽90は満水になる。そして、貯留槽90が満水であって、ろ過水の色度がろ過水基準色度を超えている場合は(S137:NO)、昼間の水洗便器5の使用頻度が高かったと推測される。この場合、貯留槽90の脱色水をオーバーフローさせ、生物処理槽6の生物処理水を希釈して、ろ過水色度を下げるのが望ましい。そこで、貯留槽90からオーバーフローさせるために、
通常の循環脱色を行う。つまり、電磁弁52,53,54が切り換えられ、第1循環流路が開放され(S138)、オゾン発生器13が運転され(S139)、混合ポンプ12が運転される(S140)。
On the other hand, when the flush toilet 5 is not used as at night on a holiday, the storage tank 90 becomes full of water. And when the storage tank 90 is full of water and the chromaticity of filtered water exceeds the filtered water reference chromaticity (S137: NO), it is estimated that the frequency of use of the flush toilet 5 during the daytime was high. In this case, it is desirable to overflow the decolorized water in the storage tank 90 and dilute the biological treated water in the biological treatment tank 6 to lower the filtered water chromaticity. Therefore, in order to overflow from the storage tank 90,
Perform normal circulation decolorization. That is, the solenoid valves 52, 53, and 54 are switched, the first circulation passage is opened (S138), the ozone generator 13 is operated (S139), and the mixing pump 12 is operated (S140).

そして、第1循環流路を循環する脱色水の色度が検出される(S141)。そして、その色度値が脱色水基準色度以下(例えば、100度以下)まで低下したか否かが判断される(S142)。ここで、第1循環流路を循環する脱色水の色度がまだ脱色水基準色度以下まで低下していない場合(S142:NO)、S141に戻って、循環脱色処理がそのまま継続されるとともに、引き続き色度が監視される(S142)。そして、脱色水の色度が脱色水基準色度以下まで低下した場合(S142:YES)、オゾン発生器13を停止せないで、電磁弁54が切り換えられる(S143)。すると、循環配管45及び脱色水供給管50で構成される脱色水供給流路が開放される。   Then, the chromaticity of the decolorized water circulating through the first circulation channel is detected (S141). Then, it is determined whether or not the chromaticity value has decreased to a decolorized water reference chromaticity or less (for example, 100 degrees or less) (S142). Here, when the chromaticity of the decolorized water circulating through the first circulation channel has not yet decreased below the decolorized water reference chromaticity (S142: NO), the process returns to S141, and the circulation decoloring process is continued as it is. Subsequently, the chromaticity is monitored (S142). And when the chromaticity of decolored water falls below the decolorized water reference chromaticity (S142: YES), the solenoid valve 54 is switched without stopping the ozone generator 13 (S143). Then, the decolorized water supply flow path constituted by the circulation pipe 45 and the decolorized water supply pipe 50 is opened.

これにより、第1反応槽31内の脱色水は、循環配管43、循環配管47を通過して、混合ポンプ12ではさらにオゾンが混合され、脱色水供給管50を通過する間にさらに脱色される。よって、脱色水供給管50の出口通過時には、脱色水は目標色度(例えば、30度)にまで脱色されるので、貯留槽90に目標色度の脱色水を供給することができる。   Accordingly, the decolorized water in the first reaction tank 31 passes through the circulation pipe 43 and the circulation pipe 47, and ozone is further mixed in the mixing pump 12 and further decolorized while passing through the decolorized water supply pipe 50. . Therefore, when passing through the outlet of the decolorized water supply pipe 50, the decolorized water is decolorized to the target chromaticity (for example, 30 degrees), so that the decolorized water having the target chromaticity can be supplied to the storage tank 90.

そして、貯留槽90が満水の時に脱色水が供給されると、脱色水がオーバーフローするので、そのオーバーフロー水は、オーバーフロー水配管99を介して、生物処理槽6に供給される。これにより、生物処理槽6内の生物処理水が希釈されるので、ろ過槽7のろ過装置17から供給されるろ過水の色度を低下させることができる。   Then, if decolorized water is supplied when the storage tank 90 is full, the decolorized water overflows, and the overflow water is supplied to the biological treatment tank 6 via the overflow water pipe 99. Thereby, since the biological treatment water in the biological treatment tank 6 is diluted, the chromaticity of the filtered water supplied from the filtration apparatus 17 of the filtration tank 7 can be reduced.

次いで、第1反応槽31の脱色水の水位が下限水位未満か否かが判断される(S144)。ここで、水位が下限水位以上の場合は(S144:NO)、S144に戻り、脱色水が貯留槽90に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合は(S144:YES)、オゾン発生器13が停止され(S145)、混合ポンプ12が停止される(S146)。続いて、電磁弁54が切り換えられて脱色水供給流路が閉塞される(S147)。さらに、後述する第2反応槽開始処理において、第1反応槽処理開始信号が出力されたか否かが判断される(S148)。この第1反応槽処理開始信号が出力されていない間は(S148:NO)、第2反応槽32にろ過水が供給されているので、S148に戻って待機状態とされる。そして、第2反応槽32へのろ過水の供給が終了し、第1反応槽処理開始信号が出力された場合(S148:YES)、S131に戻って処理が繰り返される。   Next, it is determined whether or not the water level of the decolorized water in the first reaction tank 31 is less than the lower limit water level (S144). Here, when the water level is equal to or higher than the lower limit water level (S144: NO), the process returns to S144, the decolorized water is continuously supplied to the storage tank 90, and the water level is monitored. And when a water level falls below a minimum water level (S144: YES), the ozone generator 13 is stopped (S145) and the mixing pump 12 is stopped (S146). Subsequently, the solenoid valve 54 is switched to close the decolorized water supply channel (S147). Further, in the second reaction tank start process described later, it is determined whether or not a first reaction tank process start signal is output (S148). While the first reaction tank processing start signal is not output (S148: NO), the filtered water is supplied to the second reaction tank 32, so that the process returns to S148 and enters a standby state. And when supply of the filtered water to the 2nd reaction tank 32 is complete | finished and the 1st reaction tank process start signal is output (S148: YES), it returns to S131 and a process is repeated.

また、休日夜間に貯留槽90が満水になった時に、ろ過水の色度がろ過水基準色度以下の場合(S137:YES)、昼間の水洗便器5の使用頻度が低かったと推測される。この場合、ろ過水の色度は十分低いので、貯留槽90の脱色水をオーバーフローさせて生物処理槽6内の生物処理水を希釈する必要がない。この場合、オゾン循環脱色を行わずに、S133に戻って、ろ過水の色度と、貯留槽90の水位とが監視される。このように、貯留槽90には脱色水が十分にあって、ろ過水の色度が十分低い場合は、各反応槽の循環脱色処理を行わず、オーバーフローさせないので、オゾン発生器13及び混合ポンプ12等を無駄に運転させることがない。よって、オゾン脱色部80の動作にかかるオゾン発生器13及び混合ポンプ12の電力コストを節約できる。   In addition, when the storage tank 90 is full of water during the holidays, if the chromaticity of the filtrate is equal to or lower than the filtrate chromaticity (S137: YES), it is estimated that the frequency of use of the flush toilet 5 during the daytime was low. In this case, since the chromaticity of filtered water is sufficiently low, it is not necessary to overflow the decolorized water in the storage tank 90 and dilute the biological treatment water in the biological treatment tank 6. In this case, it returns to S133, without performing ozone circulation decoloring, and the chromaticity of filtered water and the water level of the storage tank 90 are monitored. Thus, when the decolorizing water is sufficient in the storage tank 90 and the chromaticity of the filtered water is sufficiently low, the circulation decoloring process of each reaction tank is not performed and the overflow is not caused, so the ozone generator 13 and the mixing pump 12 etc. are not made useless. Therefore, the power cost of the ozone generator 13 and the mixing pump 12 for the operation of the ozone decoloring unit 80 can be saved.

次に、第2反応槽脱色処理について説明する。図19に示すように、まず、第2反応槽処理開始信号があったか否かが判断される(S151)。まだ、第2反応槽処理開始信号がない場合(S151:NO)、第1反応槽31にろ過水が供給されていると推測できるので、S151に戻って待機状態とされる。そして、第2反応槽処理開始信号があった場合(S151:YES)、第1反応槽31へのろ過水供給が終了しているので、続いて、第2反応槽32のろ過水の水位が上限水位未満か否かが判断される(S152)。ここで、既に、第2反応槽32が上限水位以上であると判断された場合は(S152:NO)、第1反応槽31の処理の開始を許可する第1反応槽処理開始信号が出力される(S155)。また、上限水位未満の場合(S152:YES)、電磁弁51のろ過水配管39側の弁座を開くことで、ろ過水が第2反応槽32内に供給される(S153)。次いで、第2反応槽32のろ過水の水位が上限水位以上か否かが判断される(S154)。   Next, the second reaction tank decoloring process will be described. As shown in FIG. 19, first, it is determined whether or not there is a second reaction tank processing start signal (S151). If there is still no second reaction tank processing start signal (S151: NO), it can be assumed that filtered water is being supplied to the first reaction tank 31, so that the process returns to S151 and enters a standby state. And when there exists a 2nd reaction tank process start signal (S151: YES), since the filtered water supply to the 1st reaction tank 31 is complete | finished, the water level of the 2nd reaction tank 32 continues. It is determined whether it is less than the upper limit water level (S152). Here, when it is already determined that the second reaction tank 32 is equal to or higher than the upper limit water level (S152: NO), a first reaction tank process start signal that permits the start of the process of the first reaction tank 31 is output. (S155). Moreover, when it is less than an upper limit water level (S152: YES), filtrate water is supplied in the 2nd reaction tank 32 by opening the valve seat by the side of the filtrate water piping 39 of the solenoid valve 51 (S153). Next, it is determined whether or not the filtered water level in the second reaction tank 32 is equal to or higher than the upper limit water level (S154).

ここで、水位が上限水位以上でない場合は(S154:NO)、S153に戻り、第2反応槽32に引き続きろ過水が供給される。そして、第2反応槽32が上限水位以上の場合(S154:YES)は、第2反応槽32にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第1反応槽処理開始信号が出力される(S155)。これにより、第1反応槽脱色処理において、第2反応槽脱色処理で出力された第1反応槽処理開始信号を認識することによって(図18のS148:YES)、第1反応槽脱色処理のS131からの処理が実行される。   Here, when the water level is not equal to or higher than the upper limit water level (S154: NO), the process returns to S153, and the filtered water is continuously supplied to the second reaction tank 32. And when the 2nd reaction tank 32 is more than an upper limit water level (S154: YES), since it is not necessary to supply filtered water to the 2nd reaction tank 32, the start of the process of the 2nd reaction tank 32 is permitted. A reaction tank processing start signal is output (S155). Thus, in the first reaction tank decoloring process, by recognizing the first reaction tank process start signal output in the second reaction tank decoloring process (S148 in FIG. 18: YES), S131 of the first reaction tank decoloring process is performed. The process from is executed.

次いで、第1反応槽31が循環脱色処理中か否かが判断される(S156)。そして、第1反応槽31が循環脱色処理中の場合は(S156:YES)、S154に戻って処理が繰り返される。また、第1反応槽31が循環脱色処理中でない場合は(S156:NO)、第2反応槽32に貯留されたろ過水の色度が検出される(S157)。そして、貯留槽90が満水であって、かつろ過水の色度がろ過水基準色度以下か否かが判断される(S158)。ここで、貯留槽90がまだ満水でない場合(S158:NO)、貯留槽90に脱色水を溜めるために通常の循環脱色が行われる。つまり、電磁弁52,53,54が切り換えられて、第2循環流路が開放され(S159)、オゾン発生器13が運転され(S160)、混合ポンプ12が運転される(S161)。   Next, it is determined whether or not the first reaction tank 31 is in a circulation decoloring process (S156). And when the 1st reaction tank 31 is in the process of circulation decoloring (S156: YES), it returns to S154 and a process is repeated. Moreover, when the 1st reaction tank 31 is not in the circulation decoloring process (S156: NO), the chromaticity of the filtrate stored in the 2nd reaction tank 32 is detected (S157). Then, it is determined whether or not the storage tank 90 is full and the chromaticity of the filtered water is equal to or lower than the filtered water reference chromaticity (S158). Here, when the storage tank 90 is not yet full (S158: NO), normal circulation decolorization is performed to store decolorized water in the storage tank 90. That is, the solenoid valves 52, 53, and 54 are switched, the second circulation passage is opened (S159), the ozone generator 13 is operated (S160), and the mixing pump 12 is operated (S161).

また、貯留槽90が満水であって、ろ過水の色度がろ過水基準色度を超えている場合は(S158:YES)、第1反応槽オゾン脱色処理と同様に、貯留槽90からオーバーフローさせるために通常の循環脱色が行われる。つまり、電磁弁52,53,54が切り換えられて、第2循環流路が開放され(S159)、オゾン発生器13が運転され(S160)、混合ポンプ12が運転される(S161)。   Moreover, when the storage tank 90 is full and the chromaticity of filtered water exceeds the filtered water reference chromaticity (S158: YES), the overflow from the storage tank 90 is performed as in the first reaction tank ozone decolorization process. In order to achieve this, normal circulation decolorization is performed. That is, the solenoid valves 52, 53, and 54 are switched, the second circulation passage is opened (S159), the ozone generator 13 is operated (S160), and the mixing pump 12 is operated (S161).

その後、第2循環流路を循環するろ過水の色度が検出される(S162)。そして、その色度値が脱色水基準色度以下(例えば、100度以下)まで低下したか否かが判断される(S163)。ここで、第2循環流路を循環する脱色水の色度がまだ脱色水基準色度以下まで低下していない場合(S163:NO)、S162に戻って、循環脱色処理がそのまま継続されるとともに、引き続き色度が監視される(S163)。そして、脱色水の色度が脱色水基準色度以下まで低下した場合(S163:YES)、オゾン発生器13を停止せないで、電磁弁54が切り換えられる(S164)。すると、循環配管45及び脱色水供給管50で構成される脱色水供給流路が開放され、脱色水供給管50の出口通過時には、脱色水は目標色度(例えば、30度)にまで脱色されるので、貯留槽90に目標色度の脱色水を供給できる。   Thereafter, the chromaticity of the filtered water circulating through the second circulation channel is detected (S162). Then, it is determined whether or not the chromaticity value has decreased to a decolorized water reference chromaticity or less (for example, 100 degrees or less) (S163). Here, when the chromaticity of the decolorized water circulating through the second circulation channel has not yet decreased below the decolorized water reference chromaticity (S163: NO), the process returns to S162 and the circulation decolorization process is continued as it is. Subsequently, the chromaticity is monitored (S163). And when the chromaticity of decolored water falls below the decolorized water reference chromaticity (S163: YES), the solenoid valve 54 is switched without stopping the ozone generator 13 (S164). Then, the decolorized water supply flow path constituted by the circulation pipe 45 and the decolorized water supply pipe 50 is opened, and the decolorized water is decolored to the target chromaticity (for example, 30 degrees) when passing through the outlet of the decolorized water supply pipe 50. Therefore, decolorized water having the target chromaticity can be supplied to the storage tank 90.

そして、上記したように、貯留槽90が満水の時に脱色水が順次供給されると、脱色水がオーバーフローするので、そのオーバーフロー水は、オーバーフロー水配管99を介して、生物処理槽6に供給される。これにより、生物処理槽6内の生物処理水が希釈されるので、ろ過槽7のろ過装置17から供給されるろ過水の色度を低下させることができる。   As described above, when the decolorized water is sequentially supplied when the storage tank 90 is full, the decolorized water overflows. Therefore, the overflow water is supplied to the biological treatment tank 6 via the overflow water pipe 99. The Thereby, since the biological treatment water in the biological treatment tank 6 is diluted, the chromaticity of the filtered water supplied from the filtration apparatus 17 of the filtration tank 7 can be reduced.

さらに、第2反応槽32の脱色水の水位が下限水位未満か否かが判断される(S165)。ここで、水位が下限水位以上の場合は(S165:NO)、S165に戻り、脱色水が貯留槽90に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S165:YES)は、オゾン発生器13が停止され(S166)、混合ポンプ12が停止される(S167)。続いて、電磁弁54が切り換えられて脱色水供給流路が閉塞される(S168)。その後、S151に戻って処理が繰り返される。   Further, it is determined whether or not the water level of the decolorized water in the second reaction tank 32 is less than the lower limit water level (S165). Here, when the water level is equal to or higher than the lower limit water level (S165: NO), the process returns to S165, the decolorized water is continuously supplied to the storage tank 90, and the water level is monitored. And when a water level falls below a minimum water level (S165: YES), the ozone generator 13 is stopped (S166) and the mixing pump 12 is stopped (S167). Subsequently, the solenoid valve 54 is switched to close the decolorized water supply channel (S168). Thereafter, the process returns to S151 and the process is repeated.

以上説明したように、第4の実施形態の循環式水洗トイレシステム100は、貯留槽90の脱色水をオーバーフローさせて、生物処理槽6に供給する仕組みを備えている。そして、第1反応槽31又は第2反応槽32に供給されるろ過水の色度を検知し、その検知された色度に応じて、貯留槽90が満水時のオーバーフロー水量を制御することができる。これにより、オゾン脱色部80に供給されるろ過水の色度を一定レベルに維持できるので、オゾン脱色部80にかかるオゾン脱色処理を効率よく行うことができる。さらに、ろ過水の色度が低い場合は、オゾン脱色部80を動作させないことによって脱色水をオーバーフローさせないので、オゾン脱色部80の動作にかかる電力コストを低減することができる。   As described above, the circulating flush toilet system 100 of the fourth embodiment includes a mechanism for overflowing the decolorized water in the storage tank 90 and supplying it to the biological treatment tank 6. And the chromaticity of the filtered water supplied to the 1st reaction tank 31 or the 2nd reaction tank 32 is detected, and according to the detected chromaticity, the storage tank 90 controls the amount of overflow water when it is full. it can. Thereby, since the chromaticity of the filtered water supplied to the ozone decoloring part 80 can be maintained at a fixed level, the ozone decoloring process concerning the ozone decoloring part 80 can be performed efficiently. Furthermore, when the chromaticity of the filtered water is low, the decolorized water is not overflowed by not operating the ozone decoloring unit 80, so that the power cost for the operation of the ozone decoloring unit 80 can be reduced.

次に、第5の実施形態である循環式水洗トイレシステムについて説明する。図20は、オゾン脱色部80及びコントローラ150の構成を示す構成図であり、図21は、コントローラ150内のROM150bの記憶エリアを示す模式図であり、図22は、CPU150aによる第1反応槽脱色処理の制御動作を示すフローチャートであり、図23は、CPU150aによる第2反応槽脱色処理の制御動作を示すフローチャートであり、図24は、CPU150aによる満水時脱色処理の制御動作を示すフローチャートである。   Next, a circulating flush toilet system according to a fifth embodiment will be described. 20 is a block diagram showing the configuration of the ozone decoloring unit 80 and the controller 150, FIG. 21 is a schematic diagram showing the storage area of the ROM 150b in the controller 150, and FIG. 22 is the first reaction tank decoloring by the CPU 150a. FIG. 23 is a flowchart showing the control operation of the second reaction tank decoloring process by the CPU 150a, and FIG. 24 is a flowchart showing the control operation of the decoloring process at full water by the CPU 150a.

この循環式水洗トイレシステムは、第4の実施形態の循環式水洗トイレシステム100の変形例であり、水洗便器5の使用頻度に応じて休日夜間における脱色水のオーバーフロー水量を制御できるものである。そして、昼間における水洗便器5の使用頻度(即ち、オゾン脱色部80の脱色処理回数)に応じて、オーバーフロー水量を制御できる点に特徴を備えている。   This circulation flush toilet system is a modification of the circulation flush toilet system 100 according to the fourth embodiment, and can control the amount of overflow water of decolorized water during the holidays according to the frequency of use of the flush toilet 5. And it has the characteristics in that the amount of overflow water can be controlled according to the usage frequency of the flush toilet 5 in the daytime (that is, the number of times of decoloring treatment of the ozone decoloring unit 80).

なお、第5の実施形態の循環式水洗トイレシステムは、図20に示すように、第4の実施形態である循環式水洗トイレシステム100(図16参照)の構造を基本的に備え、オゾン脱色部80と、コントローラ120(図17参照)とは異なる制御動作を実行するコントローラ150とを備えている。そこで、第4の実施形態の循環式水洗トイレシステム100と構造が同じ部分については同符号を付して説明を省略し、コントローラ150と、そのCPU150aの制御動作を中心に説明する。   In addition, as shown in FIG. 20, the circulation flush toilet system of 5th Embodiment is fundamentally equipped with the structure of the circulation flush toilet system 100 (refer FIG. 16) which is 4th Embodiment, and ozone decoloration is carried out. And a controller 150 that executes a control operation different from that of the controller 120 (see FIG. 17). Therefore, portions having the same structure as the circulating flush toilet system 100 of the fourth embodiment are denoted by the same reference numerals, description thereof is omitted, and the controller 150 and the control operation of the CPU 150a will be mainly described.

まず、コントローラ150について説明する。図20に示すように、コントローラ150は、中央演算処理装置としてのCPU150aと、該CPU150aを中心に相互に接続されたROM150bと、RAM150cとを備えている。さらに、CPU150aにはI/Oインタフェイス150dが設けられている。このI/Oインタフェイス150dには、図示外の配線を介して、電磁弁51,52,53,54と、ブロワー18と、混合ポンプ12と、オゾン発生器13と、第1上限フロート70、第1下限フロート71、第2上限フロート73、第2下限フロート74と、色度センサ85,86と、満水フロート75とが各々接続されている。   First, the controller 150 will be described. As shown in FIG. 20, the controller 150 includes a CPU 150a as a central processing unit, a ROM 150b and a RAM 150c connected to each other around the CPU 150a. Further, the CPU 150a is provided with an I / O interface 150d. The I / O interface 150d is connected to electromagnetic valves 51, 52, 53, 54, a blower 18, a mixing pump 12, an ozone generator 13, a first upper limit float 70, via wiring not shown. A first lower limit float 71, a second upper limit float 73, a second lower limit float 74, chromaticity sensors 85 and 86, and a full water float 75 are connected to each other.

次に、ROM150bの各記憶エリアについて説明する。図21に示すように、ROM150bにはCPU150aが実行するプログラムを記憶したプログラム記憶エリア150b1と、昼間における脱色処理回数とそれに対応した夜間における脱色処理回数との関係を示した夜間処理回数テーブルを記憶する夜間処理回数テーブル記憶エリア150b2が各々設けられている。この夜間処理回数テーブルには、昼間の脱色処理回数の値が所定回数毎に区切られ、所定回数毎に区切られた昼間脱色処理回数に対応して、休日夜間に脱色処理させる夜間処理設定回数nが各々設定されている。例えば、昼間脱色処理回数は、0回以上d1回未満と、d1回以上d2回未満と、d2回以上との3つの範囲に区切られている。そして、夜間処理設定回数nは、昼間脱色処理回数が0回以上d1回未満の時に3回、昼間脱色処理回数(昼間処理回数カウンタpの値)がd1回以上d2回未満の時に5回、昼間脱色処理回数がd2回以上の時に10回に各々設定されている。なお、夜間処理回数テーブルにおける昼間脱色処理回数を各範囲に区切る数、昼間脱色処理回数の設定回数等は上記に限定されるものではない。   Next, each storage area of the ROM 150b will be described. As shown in FIG. 21, the ROM 150b stores a program storage area 150b1 for storing a program executed by the CPU 150a, and a night processing count table showing the relationship between the number of bleaching processes in the daytime and the corresponding number of bleaching processes at night. Each night processing count table storage area 150b2 is provided. In this night processing count table, the value of the number of daytime bleaching processes is divided every predetermined number of times, and the number of night processing setting times n for performing the color removal processing on holiday nights corresponding to the number of daytime bleaching processes divided every predetermined number of times. Is set for each. For example, the number of daytime decoloring processes is divided into three ranges of 0 or more and less than d1, d1 or more and less than d2, and d2 or more. The night processing setting number n is 3 times when the number of daytime decoloring processing is 0 or more and less than d1, and 5 times when the number of daytime decoloring processing (the value of the daytime processing number counter p) is d1 or more and less than d2, When the number of daytime decoloring processes is d2 or more, each is set to 10 times. It should be noted that the number of daytime decolorization processing times in the nighttime processing frequency table, the number of daytime decolorization processing times set, and the like are not limited to the above.

次に、昼間と休日夜間との判別方法について説明する。例えば、昼間は休日夜間に比べて、水洗便器5の使用頻度が高い。よって、貯留槽90に貯留された脱色水が洗浄水として利用される回数が多いので、貯留槽90に貯留された脱色水が満水になることはほとんどない。一方、休日夜間は、昼間に比べて、水洗便器5の使用頻度が低い。よって、貯留槽90に貯留された脱色水が洗浄水として利用される回数が少ないので、貯留槽90に貯留された脱色水が満水になることが多い。そこで、本実施形態におけるコントローラ150のCPU150aは、この貯留槽90における脱色水が満水か否かを満水フロート75で検知することで満水だったら休日夜間、満水でなかったら昼間と判断する。そして、CPU150aは、満水とならない昼間のオゾン脱色部80の脱色処理回数をカウントし、そのカウント値に基づいて、休日夜間における脱色処理回数を設定する。   Next, a method for distinguishing between daytime and holiday night will be described. For example, the frequency of use of the flush toilet 5 is higher in the daytime than on a holiday nighttime. Therefore, since the decolorized water stored in the storage tank 90 is frequently used as washing water, the decolorized water stored in the storage tank 90 is almost never full. On the other hand, the frequency of use of the flush toilet 5 is lower during the night on holidays than during the daytime. Therefore, since the number of times that the decolorized water stored in the storage tank 90 is used as washing water is small, the decolorized water stored in the storage tank 90 is often full. Therefore, the CPU 150a of the controller 150 according to the present embodiment detects whether the decolorized water in the storage tank 90 is full or not with the full water float 75, and determines that it is a holiday night when it is full and daytime when it is not full. Then, the CPU 150a counts the number of decoloring processes performed by the ozone decoloring unit 80 during the daytime when the water is not full, and sets the number of decoloring processes during the holiday night based on the count value.

次に、オゾン脱色部80における脱色処理回数のカウント方法について説明する。この脱色処理回数は、オゾン脱色部80から貯留槽90に脱色水を供給した回数、即ち、電磁弁54(図20参照)における脱色水供給流路を開いて閉じた回数でカウントされる。例えば、第1反応槽31の脱色処理が終了し、脱色水供給流路の開放により第1反応槽31の脱色水が貯留槽90に供給され、脱色水供給流路が閉じられることによって、脱色処理回数は1回とカウントされる。次いで、第2反応槽32の脱色処理が終了し、脱色水供給流路の開放により第2反応槽32の脱色水が貯留槽90に供給され、脱色水供給流路が閉じられることによって、脱色処理回数は2回とカウントされる。そして、貯留槽90が満水とならない昼間にこの脱色処理回数をカウントすることによって、昼間における水洗便器5の使用頻度を推測することができる。例えば、昼間の脱色処理回数が多い場合、水洗便器5の使用頻度は高く、ろ過水の色度が高いと推測される。一方、昼間の脱色回数が少ない場合、水洗便器5の使用頻度が低く、ろ過水の色度は低いと推測される。なお、昼間における脱色回数は、昼間処理回数カウンタpによってカウントされる。   Next, a method for counting the number of decoloring processes in the ozone decoloring unit 80 will be described. The number of decolorization treatments is counted by the number of times that decolorized water is supplied from the ozone decoloring unit 80 to the storage tank 90, that is, the number of times that the decolorized water supply flow path in the electromagnetic valve 54 (see FIG. 20) is opened and closed. For example, the decolorization process of the 1st reaction tank 31 is complete | finished, decoloring water of the 1st reaction tank 31 is supplied to the storage tank 90 by opening of a decoloring water supply flow path, and decoloring is performed by closing a decoloration water supply flow path. The number of processes is counted as one. Next, the decolorization process of the second reaction tank 32 is completed, and the decolorized water supply channel is opened, the decolorized water in the second reaction tank 32 is supplied to the storage tank 90, and the decolorized water supply channel is closed, thereby decolorizing. The number of processes is counted as two. And the frequency of use of the flush toilet 5 in the daytime can be estimated by counting the number of times of decoloring treatment in the daytime when the storage tank 90 is not full. For example, when the number of daytime decolorization treatments is large, the use frequency of the flush toilet 5 is high, and it is estimated that the chromaticity of filtered water is high. On the other hand, when the number of decolorizations in the daytime is small, the use frequency of the flush toilet 5 is low, and it is estimated that the chromaticity of filtered water is low. The number of decolorizations in the daytime is counted by the daytime processing number counter p.

次に、休日夜間における脱色処理回数の設定方法について説明する。上記したように、休日夜間は、脱色水が利用されないので貯留槽90は満水になる。よって、オゾン脱色部80から満水になった貯留槽90に脱色水が供給されると、貯留槽90の脱色水がオーバーフローするので、そのオーバーフロー水は、オーバーフロー水配管99を介して生物処理槽6に供給される。そこで、昼間の脱色処理回数に応じて、休日夜間における脱色水供給回数(脱色処理回数)を調整することで、休日夜間におけるオーバーフロー水量を制御できる。そして、昼間の脱色処理回数は水洗便器5の使用頻度に比例し、その使用頻度に比例してろ過水の色度が比例する。つまり、ろ過水の色度に応じて、オーバーフロー水量を制御することになるので、ろ過水の色度を一定レベルに維持できる。そして、本実施形態では、CPU150aが、ROM150bに設けられた夜間処理回数テーブル記憶エリア150b2に記憶された夜間処理回数テーブルに基づき、昼間にカウントされた昼間脱色処理回数に対応する休日夜間における夜間処理設定回数nが設定される。   Next, a method for setting the number of decoloring processes at night on holidays will be described. As described above, since the decolorized water is not used during the holidays, the storage tank 90 is full. Therefore, when the decolorized water is supplied from the ozone decoloring unit 80 to the full storage tank 90, the decolorized water in the storage tank 90 overflows, so that the overflow water passes through the overflow water pipe 99 and the biological treatment tank 6. To be supplied. Therefore, the amount of overflow water during holidays and nights can be controlled by adjusting the number of times of supply of decolorized water during holidays and nights (the number of decolorization processes) according to the number of decolorization processes during the daytime. The number of daytime decoloring treatments is proportional to the frequency of use of the flush toilet 5, and the chromaticity of filtered water is proportional to the frequency of use. That is, since the amount of overflow water is controlled according to the chromaticity of filtered water, the chromaticity of filtered water can be maintained at a constant level. In the present embodiment, the CPU 150a performs night processing on a holiday corresponding to the number of daytime decoloring processes counted in the daytime based on the nighttime processing count table stored in the nighttime processing count table storage area 150b2 provided in the ROM 150b. The set number n is set.

次に、CPU150aによるオゾン脱色部80の制御動作について、図22,図23,図24に示す各フローチャートを参照して説明する。はじめに、循環式水洗トイレシステムの起動スイッチ(図示外)がオンされると、第1反応槽脱色処理(図22参照)と、第2反応槽脱色処理(図23参照)とが同時に実行される。そして、第1乃至第4の実施形態と同様に、第1反応槽脱色処理を第2反応槽脱色処理よりも先に進行させる。よって、図23に示す第2反応槽脱色処理では、まず、第1反応槽脱色処理において、第2反応槽32の処理開始を許可するための後述する第2反応槽処理開始信号が出力されたか否かが判断される(S221)。そして、第2反応槽処理開始信号が出力されるまでは(S221:NO)、S221に戻って、処理を進行せず、第2反応槽処理開始信号が出力されるまでは待機状態とされる。   Next, the control operation of the ozone decoloring unit 80 by the CPU 150a will be described with reference to the flowcharts shown in FIG. 22, FIG. 23, and FIG. First, when the activation switch (not shown) of the circulating flush toilet system is turned on, the first reaction tank decoloring process (see FIG. 22) and the second reaction tank decoloring process (see FIG. 23) are performed simultaneously. . And like 1st thru | or 4th embodiment, a 1st reaction tank decoloring process is advanced before a 2nd reaction tank decoloring process. Therefore, in the second reaction tank decoloring process shown in FIG. 23, first, in the first reaction tank decoloring process, was the second reaction tank process start signal described later for permitting the start of the process of the second reaction tank 32 output? It is determined whether or not (S221). Then, until the second reaction tank processing start signal is output (S221: NO), the process returns to S221, the process does not proceed, and the standby state is maintained until the second reaction tank processing start signal is output. .

一方、第1反応槽脱色処理では、図22に示すように、はじめに、昼間の脱色処理回数をカウントする昼間処理回数カウンタpと、夜間における処理回数をカウントする夜間処理回数カウンタsとが共にリセットされる(S171)。次いで、第1反応槽31が上限水位未満か否かが判断される(S172)。ここで、第1反応槽31のろ過水の水位が上限水位未満の場合(S172:YES)、電磁弁51におけるろ過水配管38側の弁座が開かれ、ろ過水が第1反応槽31内に供給される(S173)。一方、第1反応槽31が上限水位以上の場合(S172:NO)は、第1反応槽31にろ過水を供給する必要がないので、第2反応槽32の処理の開始を許可する第2反応槽処理開始信号が出力される(S175)。   On the other hand, in the first reaction tank decoloring process, as shown in FIG. 22, first, both the daytime processing number counter p for counting the number of daytime decoloring processes and the nighttime processing number counter s for counting the number of nighttime processes are reset. (S171). Next, it is determined whether or not the first reaction tank 31 is less than the upper limit water level (S172). Here, when the water level of the filtrate water in the first reaction tank 31 is less than the upper limit water level (S172: YES), the valve seat on the filtrate water pipe 38 side in the electromagnetic valve 51 is opened, and the filtrate water is in the first reaction tank 31. (S173). On the other hand, when the 1st reaction tank 31 is more than an upper limit water level (S172: NO), since it is not necessary to supply filtered water to the 1st reaction tank 31, the start of the process of the 2nd reaction tank 32 is permitted. A reaction tank processing start signal is output (S175).

そして、第1反応槽31内にろ過水が供給され(S173)、第1反応槽31が上限水位以上か否かが判断される(S174)。ここで、まだ上限水位未満である場合は(S174:NO)、S173に戻り、脱色水が貯留槽9に引き続き供給され、水位の監視が行われる(S174)。その後、水位が上限水位以上になった場合は(S174:YES)、第2反応槽処理開始信号が出力される(S175)。次に、第2反応槽32が循環脱色処理中か否かが判断される(S176)。そして、第2反応槽32が循環脱色処理中の場合は(S176:YES)、第1反応槽31で循環脱色できないので、S174に戻って処理が繰り返される。   And filtered water is supplied in the 1st reaction tank 31 (S173), and it is judged whether the 1st reaction tank 31 is more than an upper limit water level (S174). If the water level is still below the upper limit water level (S174: NO), the process returns to S173, the decolorized water is continuously supplied to the storage tank 9, and the water level is monitored (S174). Thereafter, when the water level is equal to or higher than the upper limit water level (S174: YES), a second reaction tank processing start signal is output (S175). Next, it is determined whether or not the second reaction tank 32 is in a circulation decoloring process (S176). And when the 2nd reaction tank 32 is in the process of circulation decoloring (S176: YES), since it cannot circulate and decolor in the 1st reaction tank 31, it returns to S174 and a process is repeated.

また、第2反応槽32が循環脱色処理中でない場合は(S176:NO)、続いて、貯留槽90が満水か否かが判断される(S177)。ここで、昼間の場合について説明すると、貯留槽90のろ過水が洗浄水として随時利用されるので、貯留槽90が満水になることはない。つまり、貯留槽90が空にならないように脱色水を供給しなければならない。よって、貯留槽90が満水でない場合は(S177:NO)、電磁弁52,53,54が切り換えられて、第1循環流路が開放され(S178)、オゾン発生器13が運転され(S179)、混合ポンプ12が運転される(S180)。こうして、第1反応槽31のろ過水の循環脱色が開始される。   Further, when the second reaction tank 32 is not in the circulation decoloring process (S176: NO), it is subsequently determined whether or not the storage tank 90 is full (S177). Here, the daytime case will be described. Since the filtered water in the storage tank 90 is used as washing water as needed, the storage tank 90 will not be full. That is, decolorized water must be supplied so that the storage tank 90 does not become empty. Therefore, when the storage tank 90 is not full (S177: NO), the solenoid valves 52, 53, 54 are switched, the first circulation channel is opened (S178), and the ozone generator 13 is operated (S179). The mixing pump 12 is operated (S180). Thus, the circulating decolorization of the filtered water in the first reaction tank 31 is started.

そして、第1反応槽31のろ過水の循環脱色が開始されると、その後、第1循環流路を循環するろ過水の色度が検知される(S181)。さらに、検知された色度値が脱色水基準色度以下(例えば、100度以下)まで低下したか否かが判断される(S182)。ここで、第1循環流路を循環する脱色水の色度がまだ脱色水基準色度以下まで低下していない場合(S182:NO)、S181に戻って、循環脱色処理がそのまま継続され、引き続き色度が監視される(S182)。そして、脱色水の色度が脱色水基準色度以下まで低下した場合(S182:YES)、オゾン発生器13を停止せないで、電磁弁54が切り換えられる(S183)。すると、循環配管45及び脱色水供給管50で構成される脱色水供給流路が開放される。   Then, when circulating decolorization of the filtered water in the first reaction tank 31 is started, then the chromaticity of the filtered water circulating through the first circulation channel is detected (S181). Further, it is determined whether or not the detected chromaticity value has decreased to a decolorized water reference chromaticity or less (for example, 100 degrees or less) (S182). Here, when the chromaticity of the decolorized water circulating through the first circulation channel has not yet decreased below the decolorized water reference chromaticity (S182: NO), the process returns to S181, and the circulating decolorization process is continued as it is. The chromaticity is monitored (S182). And when the chromaticity of decolored water falls below the decolorized water reference chromaticity (S182: YES), the solenoid valve 54 is switched without stopping the ozone generator 13 (S183). Then, the decolorized water supply flow path constituted by the circulation pipe 45 and the decolorized water supply pipe 50 is opened.

これにより、第1反応槽31内の脱色水は、混合ポンプ12でさらにオゾンが混合され、脱色水供給管50を通過する間にさらに脱色される。そして、脱色水供給管50の出口通過時には、脱色水は目標色度(例えば、30度)にまで脱色され、貯留槽90に供給される。   Thereby, the decolorized water in the first reaction tank 31 is further decolorized while being mixed with ozone by the mixing pump 12 and passing through the decolorized water supply pipe 50. Then, when passing through the outlet of the decolorized water supply pipe 50, the decolorized water is decolored to a target chromaticity (for example, 30 degrees) and supplied to the storage tank 90.

次に、第1反応槽31の脱色水の水位が下限水位未満か否かが判断される(S184)。ここで、水位が下限水位以上の場合は(S184:NO)、S184に戻り、脱色水が貯留槽90に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S184:YES)は、オゾン発生器13が停止され(S185)、混合ポンプ12が停止され(S186)、電磁弁54が切り換えられて脱色水供給流路が閉塞される(S187)。そして、昼間処理回数カウンタpが1インクリメントされる(S188)。これにより、オゾン脱色部80における昼間の処理回数が1回としてカウントされる。   Next, it is determined whether or not the level of decolorized water in the first reaction tank 31 is less than the lower limit level (S184). Here, when the water level is equal to or higher than the lower limit water level (S184: NO), the process returns to S184, the decolorized water is continuously supplied to the storage tank 90, and the water level is monitored. If the water level drops below the lower limit water level (S184: YES), the ozone generator 13 is stopped (S185), the mixing pump 12 is stopped (S186), the solenoid valve 54 is switched, and the decolorized water supply flow The road is closed (S187). Then, the daytime processing number counter p is incremented by 1 (S188). Thereby, the number of times of daytime processing in the ozone decoloring unit 80 is counted as one time.

次いで、後述する第2反応槽開始処理において、第1反応槽処理開始信号が出力されたか否かが判断される(S189)。この第1反応槽処理開始信号が出力されていない間は(S189:NO)、第2反応槽32にろ過水が供給されているので、S189に戻って待機状態とされる。そして、第2反応槽32へのろ過水の供給が終了し、第1反応槽処理開始信号が出力された場合(S189:YES)、S172に戻って処理が繰り返される。   Next, in a second reaction tank start process described later, it is determined whether or not a first reaction tank process start signal is output (S189). While the first reaction tank processing start signal is not output (S189: NO), the filtered water is supplied to the second reaction tank 32, so the process returns to S189 and is in a standby state. And when supply of the filtered water to the 2nd reaction tank 32 is complete | finished and the 1st reaction tank process start signal is output (S189: YES), it returns to S172 and a process is repeated.

一方、第2反応槽脱色処理では、図23に示すように、まず、第2反応槽処理開始信号があったか否かが判断される(S221)。まだ、第2反応槽処理開始信号がない場合(S221:NO)、第1反応槽31にろ過水が供給されていると推測できるので、S221に戻って待機状態とされる。そして、第2反応槽処理開始信号があった場合(S221:YES)、第1反応槽31へのろ過水供給が終了しているので、続いて、第2反応槽32のろ過水の水位が上限水位未満か否かが判断される(S222)。ここで、第2反応槽32のろ過水の水位が上限水位以上の場合は(S222:NO)、第1反応槽31の処理を許可する第1反応槽処理開始信号が出力される(S225)。   On the other hand, in the second reaction tank decoloring process, as shown in FIG. 23, it is first determined whether or not there is a second reaction tank process start signal (S221). If there is still no second reaction tank processing start signal (S221: NO), it can be assumed that filtered water is being supplied to the first reaction tank 31, so the process returns to S221 and enters a standby state. And when there exists a 2nd reaction tank process start signal (S221: YES), since the filtered water supply to the 1st reaction tank 31 is complete | finished, the water level of the 2nd reaction tank 32 continues. It is determined whether the water level is lower than the upper limit water level (S222). Here, when the water level of the filtered water in the second reaction tank 32 is equal to or higher than the upper limit water level (S222: NO), a first reaction tank process start signal that permits the process of the first reaction tank 31 is output (S225). .

また、ろ過水の水位が上限水位未満の場合(S222:YES)、電磁弁51のろ過水配管39側の弁座が開かれ、ろ過水が第2反応槽32内に供給される(S223)。次いで、第2反応槽32のろ過水の水位が上限水位以上か否かが判断される(S224)。ここで、まだ上限水位以上でない場合は(S224:NO)、S223に戻り、第2反応槽32に引き続きろ過水を供給する。そして、第2反応槽32が上限水位以上の場合(S224:YES)は、第2反応槽32にろ過水を供給する必要がないので、第1反応槽処理開始信号が出力される(S225)。   Moreover, when the water level of filtrate water is less than an upper limit water level (S222: YES), the valve seat by the side of the filtrate water piping 39 of the solenoid valve 51 is opened, and filtrate water is supplied in the 2nd reaction tank 32 (S223). . Next, it is determined whether or not the filtered water level in the second reaction tank 32 is equal to or higher than the upper limit water level (S224). Here, when it is not more than an upper limit water level yet (S224: NO), it returns to S223 and supplies filtered water to the 2nd reaction tank 32 continuously. And when the 2nd reaction tank 32 is more than an upper limit water level (S224: YES), since it is not necessary to supply filtered water to the 2nd reaction tank 32, a 1st reaction tank process start signal is output (S225). .

次いで、第1反応槽31が循環脱色処理中か否かが判断される(S226)。そして、第1反応槽31が循環脱色処理中の場合は(S226:YES)、S224に戻って処理が繰り返される。また、第1反応槽31が循環脱色処理中でない場合は(S226:NO)、第1反応槽脱色処理と同様に、貯留槽90が満水か否かが判断される(S227)。ここで、例えば、昼間の場合、貯留槽90のろ過水が利用されるので、貯留槽90が満水にはならない。つまり、貯留槽90が空にならないように脱色水を供給しなければならないので、貯留槽90が満水でないと判断された場合は(S227:NO)、通常の循環脱色処理が行われる。よって、電磁弁52,53,54が切り換えられて、第2循環流路が開放され(S228)、オゾン発生器13が運転され(S229)、混合ポンプ12が運転される(S230)。これにより、第2反応槽32のろ過水の循環脱色が開始される。   Next, it is determined whether or not the first reaction tank 31 is in a circulation decoloring process (S226). And when the 1st reaction tank 31 is in the process of circulation decoloring (S226: YES), it returns to S224 and a process is repeated. Moreover, when the 1st reaction tank 31 is not in the circulation decoloring process (S226: NO), it is judged whether the storage tank 90 is full like the 1st reaction tank decoloring process (S227). Here, for example, in the daytime, the filtered water of the storage tank 90 is used, so the storage tank 90 does not become full. That is, since it is necessary to supply decolorized water so that the storage tank 90 does not become empty, when it is determined that the storage tank 90 is not full (S227: NO), normal circulation decoloration processing is performed. Therefore, the solenoid valves 52, 53, and 54 are switched, the second circulation passage is opened (S228), the ozone generator 13 is operated (S229), and the mixing pump 12 is operated (S230). Thereby, circulating decolorization of the filtrate of the 2nd reaction tank 32 is started.

そして、第2反応槽32の循環脱色が開始されると、続いて、第2循環流路を循環する脱色水の色度が検出される(S231)。そして、その色度値が脱色水基準色度以下(例えば、100度以下)まで低下したか否かが判断される(S232)。ここで、第2循環流路を循環する脱色水の色度がまだ脱色水基準色度以下まで低下していない場合(S232:NO)、S231に戻って、循環脱色処理がそのまま継続され、引き続き色度が監視される(S232)。そして、脱色水の色度が脱色水基準色度以下まで低下した場合(S232:YES)、オゾン発生器13を停止せないで、電磁弁54が切り換えられる(S233)。すると、循環配管45及び脱色水供給管50で構成される脱色水供給流路が開放される。   When the circulation decolorization of the second reaction tank 32 is started, the chromaticity of decolorized water circulating through the second circulation channel is subsequently detected (S231). Then, it is determined whether or not the chromaticity value has decreased to a decolorized water reference chromaticity or less (for example, 100 degrees or less) (S232). Here, when the chromaticity of the decolorized water circulating through the second circulation channel has not yet decreased below the decolorized water reference chromaticity (S232: NO), the process returns to S231, and the circulating decolorization process is continued as it is. The chromaticity is monitored (S232). And when the chromaticity of decolored water falls below the decolorized water reference chromaticity (S232: YES), the solenoid valve 54 is switched without stopping the ozone generator 13 (S233). Then, the decolorized water supply flow path constituted by the circulation pipe 45 and the decolorized water supply pipe 50 is opened.

これにより、第2反応槽32内の脱色水は、混合ポンプ12でさらにオゾンが混合され、脱色水供給管50を通過する間にさらに脱色される。そして、脱色水供給管50の出口通過時には、脱色水は目標色度(例えば、30度)にまで脱色され、貯留槽90に供給される。   Thereby, the decolorized water in the second reaction tank 32 is further decolorized while being mixed with ozone by the mixing pump 12 and passing through the decolorized water supply pipe 50. Then, when passing through the outlet of the decolorized water supply pipe 50, the decolorized water is decolored to a target chromaticity (for example, 30 degrees) and supplied to the storage tank 90.

さらに、第2反応槽32の脱色水の水位が下限水位未満か否かを判断する(S234)。ここで、水位が下限水位以上の場合は(S234:NO)、S234に戻り、脱色水が貯留槽9に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S234:YES)は、オゾン発生器13が停止される(S235)。さらに、混合ポンプ12が停止される(S236)。続いて、電磁弁54が切り換えられて脱色水供給流路が閉塞される(S237)。さらに、昼間処理回数カウンタpが1インクリメントされる(S238)。これにより、第1反応槽脱色処理における昼間の処理に続いて、昼間における脱色処理回数が2回としてカウントされる。次いで、S221に戻って処理が繰り返される。   Further, it is determined whether or not the water level of the decolorized water in the second reaction tank 32 is less than the lower limit water level (S234). Here, when the water level is equal to or higher than the lower limit water level (S234: NO), the process returns to S234, the decolorized water is continuously supplied to the storage tank 9, and the water level is monitored. And when a water level falls below a minimum water level (S234: YES), the ozone generator 13 is stopped (S235). Further, the mixing pump 12 is stopped (S236). Subsequently, the solenoid valve 54 is switched to close the decolorized water supply channel (S237). Further, the daytime processing number counter p is incremented by 1 (S238). Thereby, following the daytime process in the first reaction tank decoloring process, the number of decoloring processes in the daytime is counted as two. Next, the process returns to S221 and is repeated.

このように、水洗便器5の使用頻度の高い昼間では、貯留槽90の脱色水が洗浄水として随時利用される。そして、オゾン脱色部80では、上記したように、第1反応槽脱色処理と第2反応槽脱色処理とが交互に行われ、脱色水は貯留槽90に随時供給される。よって、昼間において、貯留槽90に脱色水を安定して確保することができる。   In this way, in the daytime when the flush toilet 5 is frequently used, the decolorized water in the storage tank 90 is used as washing water as needed. And in the ozone decoloring part 80, as above-mentioned, a 1st reaction tank decoloring process and a 2nd reaction tank decoloring process are performed alternately, and decolored water is supplied to the storage tank 90 at any time. Therefore, decolorized water can be stably secured in the storage tank 90 during the daytime.

次に、休日夜間における第1反応槽脱色処理と、第2反応槽脱色処理とについて説明する。まず、第1反応槽脱色処理では、例えば、休日夜間になると、貯留槽90の脱色水は利用されなくなるので、貯留槽90には脱色水が蓄積される。そして、図22に示すS171〜S176の処理が終了すると、貯留槽90が満水か否かが判断される(S177)。そして、貯留槽90が満水であると判断された場合は(S177:YES)、休日夜間における脱色処理を実行するための満水時脱色処理が行われる(S190)。   Next, the first reaction tank decoloring process and the second reaction tank decoloring process at night on holidays will be described. First, in the first reaction tank decoloring process, for example, when the night falls on a holiday, the decolorized water in the storage tank 90 is not used, so the decolorized water is accumulated in the storage tank 90. Then, when the processing of S171 to S176 shown in FIG. 22 is completed, it is determined whether or not the storage tank 90 is full (S177). When it is determined that the storage tank 90 is full of water (S177: YES), a full-color decoloring process is performed to execute a decoloring process during a holiday night (S190).

ここで、S190の満水時脱色処理について説明する。図24に示すように、満水時脱色処理では、まず、夜間処理回数カウンタsの値が0を超えているか否かが判断される(S251)。なお、夜間処理回数カウンタsは、休日夜間の貯留槽90が満水時において、電磁弁54が脱色水供給流路を開いて閉じた回数をカウントする。そして、貯留槽90が満水になってからろ過水の脱色処理をまだ行っていない場合(S251:NO)、続いて、昼間処理回数カウンタpの値が0回以上d1回未満であるか否かが判断される(S252)。そして、pの値が0回以上d1回未満であると判断された場合は(S252:YES)、満水時における脱色処理回数を設定する回数設定処理が行われる(S256)。この処理回数設定処理では、図21に示すROM150bの夜間処理回数テーブル記憶エリア150b2に記憶された夜間処理回数テーブルに基づいて、夜間における夜間処理設定回数nが設定される。この場合、pが0回以上d1回未満であるので、n=3回が設定される。また、pがd1以上d2未満である場合は(S252:NO、S253:YES)、回数設定処理ではn=5回が設定される(S255)。さらに、pがd2以上である場合は、処理回数設定処理ではn=10回が設定される(S254)。   Here, the full-color decoloring process in S190 will be described. As shown in FIG. 24, in the full-color decoloring process, it is first determined whether or not the value of the night processing number counter s exceeds 0 (S251). The night processing number counter s counts the number of times that the electromagnetic valve 54 opens and closes the decolorized water supply channel when the storage tank 90 is full on holidays. And when the decolorization process of filtered water has not yet been performed after the storage tank 90 is full (S251: NO), whether the value of the daytime processing number counter p is 0 or more and less than d1 is subsequently determined. Is determined (S252). If it is determined that the value of p is greater than or equal to 0 and less than d1 (S252: YES), a number setting process for setting the number of decoloring processes when water is full is performed (S256). In the processing number setting process, the night processing setting number n at night is set based on the night processing number table stored in the night processing number table storage area 150b2 of the ROM 150b shown in FIG. In this case, since p is 0 times or more and less than d1 times, n = 3 times is set. If p is greater than or equal to d1 and less than d2 (S252: NO, S253: YES), n = 5 is set in the number setting process (S255). Furthermore, when p is equal to or greater than d2, n = 10 is set in the process count setting process (S254).

こうして、S254〜S256の回数設定処理が終了すると、続いて、電磁弁52,53,54が切り換えられて、第1循環流路が開放される(S257)。そして、オゾン発生器13が運転され(S258)、混合ポンプ12が運転される(S259)。こうして、第1反応槽31のろ過水の循環脱色が開始される。   In this way, when the number setting process of S254 to S256 is completed, the electromagnetic valves 52, 53, and 54 are subsequently switched, and the first circulation channel is opened (S257). Then, the ozone generator 13 is operated (S258), and the mixing pump 12 is operated (S259). Thus, the circulating decolorization of the filtered water in the first reaction tank 31 is started.

次いで、第1循環流路を循環する脱色水の色度が検出される(S260)。そして、その色度値が脱色水基準色度以下(例えば、100度以下)まで低下したか否かが判断される(S261)。ここで、第1循環流路を循環する脱色水の色度がまだ脱色水基準色度以下まで低下していない場合(S261:NO)、S260に戻って、循環脱色処理をそのまま継続させ、引き続き色度が監視される(S261)。そして、脱色水の色度が脱色水基準色度以下まで低下した場合(S261:YES)、オゾン発生器13を停止せないで、電磁弁54が切り換えられ(S262)、脱色水供給流路が開放される。そして、混合ポンプ12では脱色水にさらにオゾンが混合されるので、脱色水供給管50を通過する間にさらに脱色され、貯留槽90に目標色度の脱色水が供給される。   Next, the chromaticity of decolorized water circulating through the first circulation channel is detected (S260). Then, it is determined whether or not the chromaticity value has decreased to a decolorized water reference chromaticity or less (for example, 100 degrees or less) (S261). Here, when the chromaticity of the decolorized water circulating through the first circulation channel has not yet decreased below the decolorized water reference chromaticity (S261: NO), the process returns to S260 to continue the cyclic decolorization process and continue. The chromaticity is monitored (S261). If the chromaticity of the decolorized water has decreased to the decolorized water reference chromaticity or less (S261: YES), the electromagnetic valve 54 is switched without stopping the ozone generator 13 (S262), and the decolorized water supply flow path is Opened. In the mixing pump 12, ozone is further mixed with the decolorized water. Therefore, the decolorized water is further decolored while passing through the decolorized water supply pipe 50, and the decolorized water having the target chromaticity is supplied to the storage tank 90.

そして、満水となった貯留槽90に脱色水が供給されると、脱色水がオーバーフローする。さらに、そのオーバーフロー水は、オーバーフロー水配管99を介して、生物処理槽6に供給される。次いで、第1反応槽31の脱色水の水位が下限水位未満か否かが判断される(S263)。ここで、水位が下限水位以上の場合は(S263:NO)、S263に戻り、脱色水が貯留槽9に引き続き供給され、水位の監視が行われる。そして、水位が下限水位未満まで低下した場合(S263:YES)は、オゾン発生器13が停止され(S264)、混合ポンプ12が停止される(S265)。続いて、電磁弁54が切り換えられて脱色水供給流路が閉塞された後に(S266)、夜間処理回数カウンタsの値が1インクリメントされる(S267)。これにより、夜間における脱色処理回数が1回とカウントされる。そして、図22に示す第1反応槽脱色処理のS191に移行する。   And if decoloring water is supplied to the storage tank 90 which became full, decoloring water will overflow. Further, the overflow water is supplied to the biological treatment tank 6 via the overflow water pipe 99. Next, it is determined whether or not the level of decolorized water in the first reaction tank 31 is less than the lower limit water level (S263). Here, when the water level is equal to or higher than the lower limit water level (S263: NO), the process returns to S263, the decolorized water is continuously supplied to the storage tank 9, and the water level is monitored. And when a water level falls below a minimum water level (S263: YES), the ozone generator 13 is stopped (S264) and the mixing pump 12 is stopped (S265). Subsequently, after the solenoid valve 54 is switched and the decolorized water supply channel is closed (S266), the value of the night processing number counter s is incremented by 1 (S267). Thereby, the number of decoloring processes at night is counted as one. And it transfers to S191 of the 1st reaction tank decoloring process shown in FIG.

次いで、図22に示すように、満水時脱色処理(S190)が終了し、夜間処理回数カウンタsの値が、回数設定処理(S254,S255,S256)で設定された夜間処理設定回数n未満か否かが判断される(S191)。ここでは、まだ夜間処理設定回数nに到達していないので(S191:YES)、S189の処理に進み、第1反応槽処理開始信号の出力を待って(S189)、処理が繰り返される。なお、夜間処理回数カウンタsの値が、夜間処理設定回数nに到達した場合(S191:NO)については後述する。   Next, as shown in FIG. 22, the decoloring process at full water (S190) ends, and the value of the night process count counter s is less than the night process set number n set in the number setting process (S254, S255, S256). It is determined whether or not (S191). Here, since the night processing set number n has not been reached yet (S191: YES), the process proceeds to S189, waits for the output of the first reaction tank process start signal (S189), and the process is repeated. Note that the case where the value of the night processing count counter s reaches the night processing set count n (S191: NO) will be described later.

一方、第2反応槽脱色処理(図23参照)でも同様に、貯留槽90が満水となった場合は(S227)、満水時脱色処理が行われる(S239)。そして、図24に示すフローチャートにしたがって満水時脱色処理が同様に実行される。そして、図24に示すように、夜間における脱色処理が既に実行中の場合は、夜間処理回数カウンタsの値は少なくとも1回以上であるので(S251:YES)、S251〜S256の処理が行われずに、S257に進んで第2循環流路が開放され、ろ過水の脱色処理が実行される(S258,S259)。さらに、第2循環流路を循環する脱色水の色度が検出され(S260)、その色度値が脱色水基準色度以下(例えば、100度以下)まで低下したか否かが判断される(S261)。ここで、第2循環流路を循環する脱色水の色度がまだ脱色水基準色度以下まで低下していない場合(S261:NO)、S260に戻って、循環脱色処理がそのまま継続され、引き続き色度が監視される(S261)。   On the other hand, similarly, in the second reaction tank decoloring process (see FIG. 23), when the storage tank 90 is full of water (S227), the decoloring process at the time of full water is performed (S239). Then, according to the flowchart shown in FIG. Then, as shown in FIG. 24, when the decoloring process at night is already being executed, the value of the night process count counter s is at least once or more (S251: YES), so the processes of S251 to S256 are not performed. Then, the process proceeds to S257, where the second circulation flow path is opened, and the decolorization process of the filtered water is executed (S258, S259). Further, the chromaticity of the decolorized water circulating through the second circulation channel is detected (S260), and it is determined whether or not the chromaticity value has decreased to the decolorized water reference chromaticity or less (for example, 100 degrees or less). (S261). Here, when the chromaticity of the decolorized water circulating through the second circulation channel has not yet decreased below the decolorized water reference chromaticity (S261: NO), the process returns to S260, and the circulating decolorization process is continued as it is. The chromaticity is monitored (S261).

そして、脱色水の色度が脱色水基準色度以下まで低下した場合(S261:YES)、オゾン発生器13を停止せないで、電磁弁54が切り換えられ(S262)、脱色水供給流路が開放されて脱色水が貯留槽90に供給される。次に、第2反応槽32の水位が下限数水位未満か否かが判断され(S263)、下限数水位未満まで低下しない間は(S263:NO)、S263に戻って処理が繰り返される。そして、第2反応槽32の水位が下限数水位未満まで減ったら(S263:YES)、オゾン発生器13、混合ポンプ12が停止され(S264,S265)、電磁弁54が切り換えられて脱色水供給流路が閉じられる(S266)。そして、夜間処理回数カウンタsの値が1インクリメントされる(S267)。よって、上述した第1反応槽脱色処理の満水時脱色処理(図22:S190)に引き続いて処理されたので、夜間における夜間処理回数は2回となる。そして、図23に示す第2反応槽脱色処理のS240に移行される。   If the chromaticity of the decolorized water has decreased to the decolorized water reference chromaticity or less (S261: YES), the electromagnetic valve 54 is switched without stopping the ozone generator 13 (S262), and the decolorized water supply flow path is It is opened and decolorized water is supplied to the storage tank 90. Next, it is determined whether or not the water level in the second reaction tank 32 is less than the lower limit number water level (S263), and while not decreasing below the lower limit number water level (S263: NO), the process returns to S263 and is repeated. When the water level in the second reaction tank 32 is reduced to below the lower limit number of water levels (S263: YES), the ozone generator 13 and the mixing pump 12 are stopped (S264, S265), and the solenoid valve 54 is switched to supply decolorized water. The flow path is closed (S266). Then, the value of the night processing count counter s is incremented by 1 (S267). Therefore, since it was processed subsequent to the above-mentioned decolorization process at the time of full water (FIG. 22: S190) of the first reaction tank decolorization process, the number of nighttime processing at night becomes two. And it transfers to S240 of the 2nd reaction tank decoloring process shown in FIG.

次いで、図23に示すように、満水時脱色処理(S239)が終了し、夜間処理回数カウンタsの値が、回数設定処理(S254,S255,S256)で設定された夜間処理設定回数n未満か否かが判断される(S240)。ここでは、まだ夜間処理設定回数nに到達していないので(S240:YES)、S221に戻って処理が繰り返される。   Next, as shown in FIG. 23, the decoloring process at full water (S239) is finished, and the value of the night processing number counter s is less than the night processing setting number n set in the number setting process (S254, S255, S256). It is determined whether or not (S240). Here, since the night processing set number n has not been reached yet (S240: YES), the process returns to S221 and is repeated.

このように、貯留槽90の満水時では、第1反応脱色処理における満水時脱色処理(図22に示すS190)と、第2反応槽脱色処理における満水時脱色処理(図23に示すS239)とが交互に実行される。そして、例えば、図22に示すように、第1反応槽脱色処理の満水時脱色処理(S190)が終了して、夜間処理回数カウンタsの値が夜間処理設定回数n未満か否かが判断され(S191)、夜間処理回数カウンタsの値が夜間処理設定回数nに到達したと判断された場合は(S191:NO)、続いて、貯留槽90がまだ満水であるか否かが検知される(S192)。そして、貯留槽90がまだ満水の場合(S192:YES)、貯留槽90の満水時に既にn回オーバーフローさせているので、これ以上は貯留槽90からオーバーフローさせる必要がない。よって、S192に戻って引き続き水位の監視が行われる。   Thus, when the storage tank 90 is full of water, the decolorization process at the time of full water in the first reaction decolorization process (S190 shown in FIG. 22), and the decolorization process at the time of full water in the second reaction tank decolorization process (S239 shown in FIG. 23) Are executed alternately. Then, for example, as shown in FIG. 22, the full-color decoloring process (S190) of the first reaction tank decoloring process is finished, and it is determined whether or not the value of the night processing number counter s is less than the night processing set number n. (S191) When it is determined that the value of the night processing number counter s has reached the night processing set number n (S191: NO), it is subsequently detected whether the storage tank 90 is still full. (S192). And when the storage tank 90 is still full (S192: YES), since it has already overflowed n times when the storage tank 90 is full, it is not necessary to overflow from the storage tank 90 any more. Therefore, returning to S192, the water level is continuously monitored.

そして、水洗便器5が再び使用され始めた場合、貯留槽90に貯留された脱色水が利用されるので、貯留槽90の水位が下がる。そこで、貯留槽90が満水でないと判断された場合は(S192:NO)、昼間処理回数カウンタpと、夜間処理回数カウンタsとが共にリセットされる(S193)。次いで、S189の処理に進み、第1反応槽処理開始信号の出力を待って、処理が繰り返される。   And when the flush toilet 5 begins to be used again, since the decolorized water stored in the storage tank 90 is utilized, the water level of the storage tank 90 falls. Therefore, when it is determined that the storage tank 90 is not full (S192: NO), both the daytime processing number counter p and the nighttime processing number counter s are reset (S193). Subsequently, it progresses to the process of S189 and waits for the output of the 1st reaction tank process start signal, and a process is repeated.

これとは別に、例えば、第2反応槽脱色処理の満水時脱色処理(S239)が終了して、夜間処理回数カウンタsの値が夜間処理設定回数n未満か否かが判断され(S240)、夜間処理回数カウンタsの値が夜間処理設定回数nに到達したと判断された場合は(S240:NO)、続いて、貯留槽90がまだ満水であるか否かが検知される(S241)。そして、貯留槽90がまだ満水のままの場合(S241:YES)、これ以上は貯留槽90からオーバーフローさせないため、S241に戻って引き続き水位の監視が行われる。   Separately from this, for example, the decolorization process at the time of full water (S239) of the second reaction tank decoloring process is finished, and it is determined whether or not the value of the night processing number counter s is less than the night processing set number n (S240), If it is determined that the value of the night processing number counter s has reached the night processing set number n (S240: NO), then it is detected whether the storage tank 90 is still full (S241). If the storage tank 90 is still full of water (S241: YES), no further overflow from the storage tank 90 is made, so the process returns to S241 and the water level is continuously monitored.

そして、水洗便器5が再び使用され始めると、貯留槽90に貯留された脱色水が利用される。よって、貯留槽90の水位が下がるので、貯留槽90が満水でない場合は(S241:NO)、昼間処理回数カウンタpと、夜間処理回数カウンタとが共にリセットされる(S242)。次いで、S221の処理に進み、第2反応槽処理開始信号の出力を待って、処理が繰り返される。   When the flush toilet 5 starts to be used again, the decolorized water stored in the storage tank 90 is used. Therefore, since the water level of the storage tank 90 is lowered, when the storage tank 90 is not full (S241: NO), both the daytime processing number counter p and the nighttime processing number counter are reset (S242). Subsequently, it progresses to the process of S221, waits for the output of the 2nd reaction tank process start signal, and a process is repeated.

以上説明したように、第5の実施形態の循環式水洗トイレシステムでは、コントローラ150のCPU150aが、貯留槽90が満水とならない昼間のオゾン脱色部80の脱色処理回数をカウントし、そのカウント値に基づいて、満水時の脱色処理回数を設定して、オーバーフロー水量を制御することができる。   As described above, in the circulating flush toilet system of the fifth embodiment, the CPU 150a of the controller 150 counts the number of decoloring processes of the ozone decoloring unit 80 in the daytime when the storage tank 90 is not full, and uses the count value. Based on this, it is possible to control the amount of overflow water by setting the number of decoloring treatments when the water is full.

このコントローラ150のCPU150aは、ROM150bに設けられた夜間処理回数テーブル記憶エリア150b2に記憶された夜間処理回数テーブルに基づき、昼間脱色処理回数に対応する休日夜間における夜間処理設定回数nを設定できる。この夜間処理設定回数nは、昼間脱色処理回数に比例するように各々設定されている。そして、その昼間脱色処理回数は水洗便器5の使用頻度に応じて比例するため、ろ過水の色度に比例する。つまり、ろ過水の色度に対応して、夜間処理設定回数nが設定されている。したがって、貯留槽90の満水時に、満水時設定処理で設定されたn回だけ脱色処理することで、n回オーバーフローさせることができるので、昼間の水洗便器5の使用頻度、即ち、ろ過水の色度に応じてオーバーフロー水を生物処理槽6に供給できる。これにより、ろ過水の色度を一定レベルに維持できるので、オゾン脱色部80を稼働させる消費電力を節約できる。   The CPU 150a of the controller 150 can set the night processing setting number n in the holiday night corresponding to the daytime bleaching processing number based on the night processing number table stored in the night processing number table storage area 150b2 provided in the ROM 150b. The night processing setting number n is set to be proportional to the number of daytime decoloring processing. And since the number of daytime decoloring treatments is proportional to the frequency of use of the flush toilet 5, it is proportional to the chromaticity of filtered water. That is, the night processing setting number n is set corresponding to the chromaticity of the filtered water. Therefore, when the storage tank 90 is full, it can be overflowed n times by decoloring the n times set in the full setting process, so that the frequency of use of the flush toilet 5 during the day, that is, the color of the filtered water Depending on the degree, overflow water can be supplied to the biological treatment tank 6. Thereby, since the chromaticity of filtered water can be maintained at a fixed level, the power consumption which operates the ozone decoloring part 80 can be saved.

なお、第1の実施形態において、オゾン発生器13が「オゾン発生手段」に相当し、電磁弁51が「ろ過水流路切換手段」に相当し、電磁弁54が「脱色水供給流路開閉手段」に相当し、第1上限フロート70及び第1下限フロート71が「第1水量検知手段」に相当し、第2上限フロート73及び第2下限フロート74が「第2水量検知手段」に相当する。そして、S20の処理を実行するCPU10aが「時間計測手段」に相当し、S23の処理を実行するCPU10aが「第1下限判断手段」に相当し、S11,S13の処理を実行するCPU10aが「第1上限判断手段」に相当し、S44の処理を実行するCPU10aが「第2下限判断手段」に相当し、S32,S34の処理を実行するCPU10aが「第2上限判断手段」に相当し、S12の処理を実行するCPU10aが「第1切換指示手段」に相当し、S33の処理を実行するCPU10aが「第2切換指示手段」に相当し、S18,S39の処理を実行するCPU10aが「ポンプ動作指示手段」に相当し、S16の処理を実行するCPU10aが「第1循環流路切換制御手段」に相当し、S37の処理を実行するCPU10aが「第2循環流路切換制御手段」に相当し、S17,S38の処理を実行するCPU10aが「オゾン発生指示手段」に相当し、S21,S42の処理を実行するCPU10aが「オゾン発生停止手段」に相当し、S22,S43の処理を実行するCPU10aが「脱色水供給流路開放指示手段」に相当し、S24,S45の処理を実行するCPU10aが「ポンプ停止手段」に相当する。   In the first embodiment, the ozone generator 13 corresponds to “ozone generating means”, the electromagnetic valve 51 corresponds to “filtrated water flow path switching means”, and the electromagnetic valve 54 corresponds to “decolorized water supply flow path opening / closing means”. The first upper limit float 70 and the first lower limit float 71 correspond to “first water amount detection means”, and the second upper limit float 73 and the second lower limit float 74 correspond to “second water amount detection means”. . The CPU 10a that executes the process of S20 corresponds to “time measuring means”, the CPU 10a that executes the process of S23 corresponds to “first lower limit determination means”, and the CPU 10a that executes the processes of S11 and S13 corresponds to “the first time”. The CPU 10a that executes the process of S44 corresponds to “second lower limit determination means”, the CPU 10a that executes the processes of S32 and S34 corresponds to “second upper limit determination means”, and corresponds to S12. The CPU 10a that executes the process of step S33 corresponds to "first switching instruction means", the CPU 10a that executes the process of step S33 corresponds to "second switching instruction means", and the CPU 10a that executes the processes of steps S18 and S39 performs "pump operation". The CPU 10a that corresponds to the “instruction means” and that executes the process of S16 corresponds to the “first circulation flow path switching control means” and that executes the process of S37. The CPU 10a that executes the processes of S17 and S38 corresponds to the “second circulation flow path switching control means”, corresponds to the “ozone generation instruction means”, and the CPU 10a that executes the processes of S21 and S42 “the ozone generation stop means”. The CPU 10a that executes the processes of S22 and S43 corresponds to “decolorized water supply flow path opening instruction means”, and the CPU 10a that executes the processes of S24 and S45 corresponds to “pump stop means”.

また、第2の実施形態において、S59,S80の処理を実行するCPU10aが「時間計測手段」に相当し、S60,S81の処理を実行するCPU10aが「時間判断手段」に相当し、S62の処理を実行するCPU10aが「第1下限判断手段」に相当し、S51,S53の処理を実行するCPU10aが「第1上限判断手段」に相当し、S83の処理を実行するCPU10aが「第2下限判断手段」に相当し、S72,S74の処理を実行するCPU10aが「第2上限判断手段」に相当し、S52の処理を実行するCPU10aが「第1切換指示手段」に相当し、S73の処理を実行するCPU10aが「第2切換指示手段」に相当し、S58,S79の処理を実行するCPU10aが「ポンプ動作指示手段」に相当し、S56の処理を実行するCPU10aが「第1循環流路切換制御手段」に相当し、S77の処理を実行するCPU10aが「第2循環流路切換制御手段」に相当し、S57,S78の処理を実行するCPU10aが「オゾン発生指示手段」に相当し、S61,S82の処理を実行するCPU10aが「脱色水供給流路開放指示手段」に相当し、S63,S84の処理を実行するCPU10aが「オゾン発生指示手段」に相当し、S64,S85の処理を実行するCPU10aが「ポンプ停止手段」に相当する。   In the second embodiment, the CPU 10a that executes the processes of S59 and S80 corresponds to “time measuring means”, the CPU 10a that executes the processes of S60 and S81 corresponds to “time determining means”, and the process of S62. The CPU 10a that executes the process corresponds to “first lower limit determination means”, the CPU 10a that executes the processes of S51 and S53 corresponds to “first upper limit determination means”, and the CPU 10a that executes the process of S83 performs “second lower limit determination means”. The CPU 10a that executes the processing of S72 and S74 corresponds to “second upper limit determination means”, the CPU 10a that executes the processing of S52 corresponds to “first switching instruction means”, and performs the processing of S73. The CPU 10a to be executed corresponds to “second switching instruction means”, the CPU 10a to execute the processes of S58 and S79 corresponds to “pump operation instruction means”, and The CPU 10a that executes the processing corresponds to "first circulation flow path switching control means", and the CPU 10a that executes the process of S77 corresponds to "second circulation flow path switching control means", and executes the processes of S57 and S78. The CPU 10a corresponds to “ozone generation instructing means”, the CPU 10a that executes the processes of S61 and S82 corresponds to “decolorized water supply flow path opening instructing means”, and the CPU 10a that executes the processes of S63 and S84 is “ozone generation instruction” The CPU 10a executing the processes of S64 and S85 corresponds to “pump stop means”.

さらに、第3の実施形態において、色度センサ85が「第1色度検知手段」に相当し、色度センサ86が「第2色度検知手段」に相当し、S102の処理を実行するCPU110aが「第1下限判断手段」に相当し、S91,S93の処理を実行するCPU110aが「第1上限判断手段」に相当し、S123の処理を実行するCPU110aが「第2下限判断手段」に相当し、S112,S114の処理を実行するCPU110aが「第2上限判断手段」に相当し、S100の処理を実行するCPU110aが「第1色度判断手段」に相当し、S121の処理を実行するCPU110aが「第2色度判断手段」に相当し、S92の処理を実行するCPU110aが「第1切換指示手段」に相当し、S113の処理を実行するCPU110aが「第2切換指示手段」に相当し、S98,S119の処理を実行するCPU110aが「ポンプ動作指示手段」に相当し、S96の処理を実行するCPU110aが「第1循環流路切換制御手段」に相当し、S117の処理を実行するCPU110aが「第2循環流路切換制御手段」に相当し、S97,S118の処理を実行するCPU110aが「オゾン発生指示手段」に相当し、S101,S122の処理を実行するCPU110aが「脱色水供給流路開放指示手段」に相当し、S103,S124の処理を実行するCPU110aが「オゾン発生停止手段」に相当し、S104,S125の処理を実行するCPU110aが「ポンプ停止手段」に相当する。   Further, in the third embodiment, the chromaticity sensor 85 corresponds to “first chromaticity detection means”, the chromaticity sensor 86 corresponds to “second chromaticity detection means”, and executes the processing of S102. Corresponds to the “first lower limit determination means”, the CPU 110a that executes the processes of S91 and S93 corresponds to “first upper limit determination means”, and the CPU 110a that executes the process of S123 corresponds to “second lower limit determination means”. The CPU 110a that executes the processes of S112 and S114 corresponds to the “second upper limit determination unit”, the CPU 110a that executes the process of S100 corresponds to the “first chromaticity determination unit”, and the CPU 110a that executes the process of S121. Corresponds to “second chromaticity determination means”, and the CPU 110a that executes the process of S92 corresponds to “first switching instruction means”, and the CPU 110a that executes the process of S113. The CPU 110a executing the processes of S98 and S119 corresponds to the “pump operation instruction means”, and the CPU 110a executing the process of S96 corresponds to the “first circulation flow path switching control means”. The CPU 110a that executes the process of S117 corresponds to the “second circulation flow path switching control means”, the CPU 110a that executes the processes of S97 and S118 corresponds to the “ozone generation instruction means”, and the processes of S101 and S122. The CPU 110a that executes the process corresponds to “decolorized water supply flow path opening instruction means”, the CPU 110a that executes the processes of S103 and S124 corresponds to “ozone generation stop means”, and the CPU 110a that executes the processes of S104 and S125 “ It corresponds to “pump stop means”.

また、第4の実施形態において、満水フロート75が「満水検知手段」に相当し、色度センサ85,86が「ろ過水色度検知手段」に相当する。   In the fourth embodiment, the full water float 75 corresponds to “full water detection means”, and the chromaticity sensors 85 and 86 correspond to “filtered water chromaticity detection means”.

さらに、第5の実施形態において、S188,S238の処理を実行するCPU150aが「脱色回数カウント手段」に相当し、S254,S255,S256の処理を実行するCPU150aが「オーバーフロー回数設定手段」に相当し、d1,d2が「所定回数」に相当する。   Further, in the fifth embodiment, the CPU 150a that executes the processes of S188 and S238 corresponds to the “color removal number counting means”, and the CPU 150a that executes the processes of S254, S255, and S256 corresponds to the “overflow number setting means”. , D1 and d2 correspond to the “predetermined number of times”.

なお、本発明は、上記の第1乃至第5の実施形態に限定されることなく、各種の変形が可能である。例えば、第1乃至第3の実施形態では、貯留槽9は、生物処理槽6、ろ過槽7とは独立した槽としたが、第4,第5の実施形態のように、各処理槽と一体となった貯留槽90としてもよい。また、これとは反対に、第4,第5の実施形態の貯留槽90を、各処理槽とは独立した槽としてもよい。   The present invention is not limited to the first to fifth embodiments described above, and various modifications can be made. For example, in the first to third embodiments, the storage tank 9 is a tank independent of the biological treatment tank 6 and the filtration tank 7, but as in the fourth and fifth embodiments, It is good also as the storage tank 90 united. On the contrary, the storage tank 90 of the fourth and fifth embodiments may be a tank independent of each processing tank.

また、第1乃至第3の実施形態の循環式水洗トイレシステムに、オーバーフロー水配管、ろ過水オーバーフロー水配管を設けても良い。   Moreover, you may provide an overflow water piping and filtered water overflow water piping in the circulation type flush toilet system of 1st thru | or 3rd Embodiment.

さらに、第4,第5の実施形態の循環式水洗トイレシステムでは、各反応槽の脱色処理において、各反応槽の脱色水の色度を検知することで、脱色水供給流路を開放するタイミングを決定しているが、第1,第2の実施形態のように、オゾン発生器13の運転時間で決定してもよい。   Furthermore, in the circulating flush toilet system of the fourth and fifth embodiments, the timing for opening the decolored water supply flow path by detecting the chromaticity of the decolorized water in each reaction tank in the decolorization process of each reaction tank. However, the operating time of the ozone generator 13 may be determined as in the first and second embodiments.

また、第3,第4,第5の実施形態の循環式水洗トイレシステムでは、第1反応槽31に色度センサ85を設け、第2反応槽32に色度センサ86を設け、各色度センサによって検出された各色度値に基づいて、第1反応槽31及び第2反応槽32の脱色処理を別々に行っているが、第1反応槽31及び第2反応槽32の何れか一方の槽内だけに色度センサを設置し、他方の槽においても同様の脱色処理を行うようにしてもよい。この場合、色度センサが1つで足りるのでコストを低減することができる。   In the circulating flush toilet system of the third, fourth, and fifth embodiments, the chromaticity sensor 85 is provided in the first reaction tank 31, the chromaticity sensor 86 is provided in the second reaction tank 32, and each chromaticity sensor is provided. The first reaction tank 31 and the second reaction tank 32 are separately decolorized based on the chromaticity values detected by the above, but either one of the first reaction tank 31 and the second reaction tank 32 is used. A chromaticity sensor may be installed only in the inside, and the same decoloring process may be performed in the other tank. In this case, since only one chromaticity sensor is sufficient, the cost can be reduced.

さらに、第1反応槽31若しくは第2反応槽32に設けられたフロート70〜74でろ過水量を測定することによって、ろ過装置17内のろ過膜の交換時期を推測してもよい。これにより、ろ過膜の目詰まりが起きる前にろ過膜を適宜交換することができる。   Furthermore, you may estimate the replacement | exchange time of the filtration membrane in the filtration apparatus 17 by measuring the amount of filtrate water with the floats 70-74 provided in the 1st reaction tank 31 or the 2nd reaction tank 32. FIG. Thereby, the filtration membrane can be appropriately replaced before the filtration membrane is clogged.

本発明の循環式水洗トイレシステムは、水洗便器を備えたトイレシステムのみならず、廃水を処理する廃水処理装置にも適用可能である。   The circulating flush toilet system of the present invention can be applied not only to a toilet system equipped with a flush toilet, but also to a wastewater treatment apparatus for treating wastewater.

循環式水洗トイレシステム1のブロック図である。1 is a block diagram of a circulating flush toilet system 1. FIG. 循環式水洗トイレシステム1の構成図である。1 is a configuration diagram of a circulating flush toilet system 1. FIG. オゾン脱色部8及びコントローラ10の構成を示す構成図である。FIG. 3 is a configuration diagram showing configurations of an ozone decoloring unit 8 and a controller 10. オゾン脱色部8における処理の流れを示す説明図(第1反応槽31にろ過水供給)である。It is explanatory drawing which shows the flow of the process in the ozone decoloring part 8 (filtrated water supply to the 1st reaction tank 31). オゾン脱色部8における処理の流れを示す説明図(第1反応槽31の循環脱色処理:第2反応槽32にろ過水供給)である。It is explanatory drawing (circulation decoloring process of the 1st reaction tank 31: Filtration water supply to the 2nd reaction tank 32) which shows the flow of the process in the ozone decoloring part. オゾン脱色部8における処理の流れを示す説明図(第1反応槽31から貯留槽9に脱色水供給)である。It is explanatory drawing which shows the flow of the process in the ozone decoloring part 8 (decolored water supply from the 1st reaction tank 31 to the storage tank 9). オゾン脱色部8における処理の流れを示す説明図(第2反応槽32の循環脱色処理:第1反応槽31にろ過水供給)である。It is explanatory drawing (circulation decoloring process of the 2nd reaction tank 32: Supplying filtered water to the 1st reaction tank 31) which shows the flow of the process in the ozone decoloring part. オゾン脱色部8における処理の流れを示す説明図(第2反応槽32から貯留槽9に脱色水供給)である。It is explanatory drawing (decolored water supply from the 2nd reaction tank 32 to the storage tank 9) which shows the flow of the process in the ozone decoloring part. CPU10aによる第1反応槽脱色処理の制御動作を示すフローチャート(第1の実施形態)である。It is a flowchart (1st Embodiment) which shows control operation | movement of the 1st reaction tank decoloring process by CPU10a. CPU10aによる第2反応槽脱色処理の制御動作を示すフローチャート(第1の実施形態)である。It is a flowchart (1st Embodiment) which shows control operation | movement of the 2nd reaction tank decoloring process by CPU10a. CPU10aによる第1反応槽脱色処理の制御動作を示すフローチャート(第2の実施形態)である。It is a flowchart (2nd Embodiment) which shows control operation | movement of the 1st reaction tank decoloring process by CPU10a. CPU10aによる第2反応槽脱色処理の制御動作を示すフローチャート(第2の実施形態)である。It is a flowchart (2nd Embodiment) which shows control operation | movement of the 2nd reaction tank decoloring process by CPU10a. オゾン脱色部80及びコントローラ110の構成を示す構成図である。It is a block diagram which shows the structure of the ozone decoloring part 80 and the controller 110. CPU110aによる第1反応槽脱色処理の制御動作を示すフローチャートである。It is a flowchart which shows control operation | movement of the 1st reaction tank decoloring process by CPU110a. CPU110aによる第2反応槽脱色処理の制御動作を示すフローチャートである。It is a flowchart which shows control operation | movement of the 2nd reaction tank decoloring process by CPU110a. 循環式水洗トイレシステム100の構成図である。1 is a configuration diagram of a circulating flush toilet system 100. FIG. オゾン脱色部80及びコントローラ120の構成を示す構成図である。It is a block diagram which shows the structure of the ozone decoloring part 80 and the controller 120. CPU120aによる第1反応槽脱色処理の制御動作を示すフローチャートである。It is a flowchart which shows control operation | movement of the 1st reaction tank decoloring process by CPU120a. CPU120aによる第2反応槽脱色処理の制御動作を示すフローチャートである。It is a flowchart which shows the control operation | movement of the 2nd reaction tank decoloring process by CPU120a. オゾン脱色部80及びコントローラ150の構成を示す構成図である。FIG. 3 is a configuration diagram showing configurations of an ozone decoloring unit 80 and a controller 150. コントローラ150内のROM150bの記憶エリアを示す模式図である。3 is a schematic diagram showing a storage area of a ROM 150b in a controller 150. FIG. CPU150aによる第1反応槽脱色処理の制御動作を示すフローチャートである。It is a flowchart which shows the control operation | movement of the 1st reaction tank decoloring process by CPU150a. CPU150aによる第2反応槽脱色処理の制御動作を示すフローチャートである。It is a flowchart which shows control operation | movement of the 2nd reaction tank decoloring process by CPU150a. CPU150aによる満水時脱色処理の制御動作を示すフローチャートである。It is a flowchart which shows the control operation | movement of the decoloring process at the time of water filling by CPU150a.

符号の説明Explanation of symbols

1 循環式水洗トイレシステム
5 水洗便器
6 生物処理槽
7 ろ過槽
8 オゾン脱色部
9 貯留槽
10a CPU
10e タイマ
12 混合ポンプ
13 オゾン発生器
25 ろ過水供給管
31 第1反応槽
32 第2反応槽
38 ろ過水配管
39 ろ過水配管
41〜47 循環配管
50 脱色水供給管
51〜54 電磁弁
70 第1上限フロート
71 第1下限フロート
73 第2上限フロート
74 第2下限フロート
75 満水フロート
80 オゾン脱色部
85,86 色度センサ
90 貯留槽
99 オーバーフロー水配管
100 循環式水洗トイレシステム
110a CPU
120a CPU
150a CPU
DESCRIPTION OF SYMBOLS 1 Circulation type flush toilet system 5 Flush toilet 6 Biological treatment tank 7 Filtration tank 8 Ozone decoloring part 9 Reservoir 10a CPU
10e timer 12 mixing pump 13 ozone generator 25 filtrate water supply pipe 31 first reaction tank 32 second reaction tank 38 filtrate water pipe 39 filtrate water pipe 41 to 47 circulation pipe 50 decolorized water supply pipe 51 to 54 solenoid valve 70 first Upper limit float 71 First lower limit float 73 Second upper limit float 74 Second lower limit float 75 Full water float 80 Ozone decoloring section 85,86 Chromaticity sensor 90 Reservoir 99 Overflow water piping 100 Circulating flush toilet system 110a CPU
120a CPU
150a CPU

Claims (13)

水洗便器と、当該水洗便器からの汚水を受け入れ、生物処理を行う生物処理槽と、当該生物処理槽で処理された生物処理水をろ過するろ過槽と、当該ろ過槽でろ過されたろ過水を受け入れる第1反応槽及び第2反応槽と、オゾンを発生するオゾン発生手段と、当該オゾン発生手段、前記第1反応槽及び前記第2反応槽に各々連結され、ろ過水にオゾンを混合して脱色反応させて脱色水を生成する混合脱色手段と、当該混合脱色手段によって生成した脱色水を受け入れて貯留する貯留槽とを備え、当該貯留槽に貯留された脱色水を洗浄水として前記水洗便器に循環させる循環式水洗トイレシステムにおいて、
前記混合脱色手段は、
前記オゾン発生手段に連結され、ろ過水にオゾンを混合させる混合ポンプと、
当該混合ポンプと、前記第1反応槽及び前記第2反応槽との間に設けられ、前記混合ポンプが動作することによってオゾンが混合されたろ過水が循環する循環配管と
から構成され、
前記ろ過槽と、前記第1反応槽及び前記第2反応槽との間に設けられたろ過水供給管と、
当該ろ過水供給管に設けられ、前記ろ過槽から前記第1反応槽への流路、又は前記ろ過槽から前記第2反応槽への流路に切換可能なろ過水流路切換手段と、
前記循環配管に設けられ、前記第1反応槽と前記混合ポンプとをつなぐ環状の循環流路、又は前記第2反応槽と前記混合ポンプとをつなぐ環状の循環流路に切換可能な循環流路切換手段と、
前記循環配管に接続され、前記第1反応槽又は前記第2反応槽内の脱色水を前記貯留槽に供給する脱色水供給管と、
当該脱色水供給管と前記循環配管との接続部分に設けられ、前記循環配管から前記脱色水供給管への流路を開閉する脱色水供給流路開閉手段と、
前記第1反応槽内の貯水量を検知する第1水量検知手段と、
前記第2反応槽内の貯水量を検知する第2水量検知手段と、
前記ポンプの動作時間を計測する時間計測手段と、
当該時間計測手段によって計測された計測時間が、所定時間以上か否かを判断する時間判断手段と、
前記第1水量検知手段の検知水量が下限水量以上か未満かを判断する第1下限判断手段と、
前記第1水量検知手段の検知水量が上限水量以上か未満かを判断する第1上限判断手段と、
前記第2水量検知手段の検知水量が下限水量以上か未満かを判断する第2下限判断手段と、
前記第2水量検知手段の検知水量が上限水量以上か未満かを判断する第2上限判断手段と、
前記第1上限判断手段が上限水量未満であると判断した場合に、前記第1反応槽への流路を開くように前記ろ過水流路切換手段を指示する第1切換指示手段と、
前記第2上限判断手段が上限水量未満であると判断した場合に、前記第2反応槽への流路を開くように前記ろ過水流路切換手段を指示する第2切換指示手段と、
前記第1上限判断手段、又は第2上限判断手段が上限水量以上であると判断した場合、前記混合ポンプの動作を指示するポンプ動作指示手段と、
前記第1上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第1反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第1循環流路切換制御手段と、
前記第2上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第2反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第2循環流路切換制御手段と、
前記第1上限判断手段、又は前記第2上限判断手段が上限水量以上であると判断した場合に、前記オゾン発生手段の動作を指示するオゾン発生指示手段と、
前記時間判断手段が所定時間以上であると判断した場合に、前記オゾン発生手段を停止させるオゾン発生停止手段と、
前記時間判断手段が所定時間以上であると判断した場合に、前記循環配管から前記脱色水供給管への流路を開くように、前記脱色水供給流路開閉手段を指示する脱色水供給流路開放指示手段と、
当該脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれ、前記第1反応槽又は前記第2反応槽内の脱色水が、前記脱色水供給管を介して前記貯留槽内に供給され、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記混合ポンプを停止させるポンプ停止手段と
を備えていることを特徴とする循環式水洗トイレシステム。
A flush toilet, a biological treatment tank that receives sewage from the flush toilet, performs biological treatment, a filtration tank that filters biological treated water treated in the biological treatment tank, and filtered water filtered in the filtration tank The first reaction tank and the second reaction tank to be received, the ozone generation means for generating ozone, the ozone generation means, the first reaction tank and the second reaction tank are connected to each other, and the filtered water is mixed with ozone. The flush toilet comprising: a mixed decoloring unit that generates decolored water through a decoloring reaction; and a storage tank that receives and stores the decolorized water generated by the mixed decoloring unit In the circulating flush toilet system that circulates in
The mixing and decoloring means includes
A mixing pump connected to the ozone generating means for mixing ozone with filtered water;
It is provided between the mixing pump and the first reaction tank and the second reaction tank, and is composed of a circulation pipe through which filtered water mixed with ozone is circulated by operating the mixing pump.
A filtered water supply pipe provided between the filtration tank and the first reaction tank and the second reaction tank;
A filtered water flow path switching means provided in the filtered water supply pipe and capable of switching to a flow path from the filtration tank to the first reaction tank or a flow path from the filtration tank to the second reaction tank;
A circulation flow path provided in the circulation pipe and switchable to an annular circulation flow path connecting the first reaction tank and the mixing pump or an annular circulation flow path connecting the second reaction tank and the mixing pump. Switching means;
A decolorized water supply pipe connected to the circulation pipe and supplying decolorized water in the first reaction tank or the second reaction tank to the storage tank;
A decolorized water supply flow path opening / closing means provided at a connection portion between the decolorized water supply pipe and the circulation pipe, and opening and closing a flow path from the circulation pipe to the decolorized water supply pipe;
First water amount detection means for detecting the amount of water stored in the first reaction tank;
Second water amount detection means for detecting the amount of water stored in the second reaction tank;
Time measuring means for measuring the operating time of the pump;
Time determination means for determining whether or not the measurement time measured by the time measurement means is equal to or greater than a predetermined time;
First lower limit determination means for determining whether the detected water amount of the first water amount detection means is equal to or less than a lower limit water amount;
First upper limit determination means for determining whether the detected water volume of the first water volume detection means is greater than or less than the upper limit water volume;
Second lower limit determining means for determining whether the detected water amount of the second water amount detecting means is equal to or less than the lower limit water amount;
Second upper limit determination means for determining whether the detected water amount of the second water amount detection means is greater than or less than the upper limit water amount;
A first switching instruction means for instructing the filtered water flow path switching means to open a flow path to the first reaction tank when the first upper limit determination means determines that the amount is less than the upper limit water amount;
A second switching instruction means for instructing the filtered water flow path switching means to open a flow path to the second reaction tank when the second upper limit determination means determines that the amount is less than the upper limit water amount;
A pump operation instruction means for instructing the operation of the mixing pump when the first upper limit determination means or the second upper limit determination means determines that the amount is equal to or greater than the upper limit water amount;
When the first upper limit determining means determines that the amount is equal to or greater than the upper limit water amount, the circulation flow path switching means is configured to switch the flow path of the circulation pipe to the flow path connecting the first reaction tank and the mixing means. First circulation flow path switching control means for instructing
When the second upper limit determining means determines that the amount of water is greater than or equal to the upper limit water amount, the circulation flow path switching means is configured to switch the flow path of the circulation pipe to the flow path connecting the second reaction tank and the mixing means. Second circulation flow path switching control means for instructing
Ozone generation instruction means for instructing the operation of the ozone generation means when the first upper limit determination means or the second upper limit determination means determines that the amount is equal to or greater than the upper limit water amount;
An ozone generation stop means for stopping the ozone generation means when the time determination means determines that the time is longer than a predetermined time;
When the time determining means determines that the predetermined time or longer, the decolorized water supply flow path that instructs the decolorized water supply flow path opening / closing means to open the flow path from the circulation pipe to the decolorized water supply pipe Opening instruction means;
A flow path from the circulation pipe to the decolorized water supply pipe is opened by an instruction from the decolorized water supply flow path opening instructing means, and the decolorized water in the first reaction tank or the second reaction tank is transferred to the decolorized water. And a pump stopping means for stopping the mixing pump when the first lower limit determining means or the second lower limit determining means determines that the amount is less than the lower limit water amount. A circulating flush toilet system.
前記所定時間は、前記第1反応槽及び前記第2反応槽内のろ過水が目標色度まで脱色されるのに要する時間に調整されたことを特徴とする請求項1に記載の循環式水洗トイレシステム。   The circulating water washing according to claim 1, wherein the predetermined time is adjusted to a time required for the filtered water in the first reaction tank and the second reaction tank to be decolored to a target chromaticity. Toilet system. 水洗便器と、当該水洗便器からの汚水を受け入れ、生物処理を行う生物処理槽と、当該生物処理槽で処理された生物処理水をろ過するろ過槽と、当該ろ過槽でろ過されたろ過水を受け入れる第1反応槽及び第2反応槽と、オゾンを発生するオゾン発生手段と、当該オゾン発生手段、前記第1反応槽及び前記第2反応槽に各々連結され、ろ過水にオゾンを混合して脱色反応させて脱色水を生成する混合脱色手段と、当該混合脱色手段によって生成した脱色水を受け入れて貯留する貯留槽とを備え、当該貯留槽に貯留された脱色水を洗浄水として前記水洗便器に循環させる循環式水洗トイレシステムにおいて、
前記混合脱色手段は、
前記オゾン発生手段に連結され、ろ過水にオゾンを混合させる混合ポンプと、
当該混合ポンプと、前記第1反応槽及び前記第2反応槽との間に設けられ、前記混合ポンプが動作することによってオゾンが混合されたろ過水が循環する循環配管と
から構成され、
前記ろ過槽と、前記第1反応槽及び前記第2反応槽との間に設けられたろ過水供給管と、
当該ろ過水供給管に設けられ、前記ろ過槽から前記第1反応槽への流路、又は前記ろ過槽から前記第2反応槽への流路に切換可能なろ過水流路切換手段と、
前記循環配管に設けられ、前記第1反応槽と前記混合ポンプとをつなぐ環状の循環流路、又は前記第2反応槽と前記混合ポンプとをつなぐ環状の循環流路に切換可能な循環流路切換手段と、
前記循環配管に接続され、前記第1反応槽又は前記第2反応槽内の脱色水を前記貯留槽に供給する脱色水供給管と、
当該脱色水供給管と前記循環配管との接続部分に設けられ、前記循環配管から前記脱色水供給管への流路を開閉する脱色水供給流路開閉手段と、
前記第1反応槽内の貯水量を検知する第1水量検知手段と、
前記第2反応槽内の貯水量を検知する第2水量検知手段と、
前記ポンプの動作時間を計測する時間計測手段と、
当該時間計測手段によって計測された計測時間が、所定時間以上か否かを判断する時間判断手段と、
前記第1水量検知手段の検知水量が下限水量以上か未満かを判断する第1下限判断手段と、
前記第1水量検知手段の検知水量が上限水量以上か未満かを判断する第1上限判断手段と、
前記第2水量検知手段の検知水量が下限水量以上か未満かを判断する第2下限判断手段と、
前記第2水量検知手段の検知水量が上限水量以上か未満かを判断する第2上限判断手段と、
前記第1上限判断手段が上限水量未満であると判断した場合に、前記第1反応槽への流路を開くように前記ろ過水流路切換手段を指示する第1切換指示手段と、
前記第2上限判断手段が上限水量未満であると判断した場合に、前記第2反応槽への流路を開くように前記ろ過水流路切換手段を指示する第2切換指示手段と、
前記第1上限判断手段、又は第2上限判断手段が上限水量以上であると判断した場合、前記混合ポンプの動作を指示するポンプ動作指示手段と、
前記第1上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第1反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第1循環流路切換制御手段と、
前記第2上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第2反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第2循環流路切換制御手段と、
前記第1上限判断手段、又は前記第2上限判断手段が上限水量以上であると判断した場合に、前記オゾン発生手段の動作を指示するオゾン発生指示手段と、
前記時間判断手段が所定時間以上であると判断した場合に、前記循環配管から前記脱色水供給管への流路を開くように、前記脱色水供給流路開閉手段を指示する脱色水供給流路開放指示手段と、
当該脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれた状態で、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記オゾン発生手段を停止させるオゾン発生停止手段と、
前記脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれた状態で、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記混合ポンプを停止させるポンプ停止手段と
を備えていることを特徴とする循環式水洗トイレシステム。
A flush toilet, a biological treatment tank that receives sewage from the flush toilet, performs biological treatment, a filtration tank that filters biological treated water treated in the biological treatment tank, and filtered water filtered in the filtration tank The first reaction tank and the second reaction tank to be received, the ozone generation means for generating ozone, the ozone generation means, the first reaction tank and the second reaction tank are connected to each other, and the filtered water is mixed with ozone. The flush toilet comprising: a mixed decoloring unit that generates decolored water through a decoloring reaction; and a storage tank that receives and stores the decolorized water generated by the mixed decoloring unit In the circulating flush toilet system that circulates in
The mixing and decoloring means includes
A mixing pump connected to the ozone generating means for mixing ozone with filtered water;
It is provided between the mixing pump and the first reaction tank and the second reaction tank, and is composed of a circulation pipe through which filtered water mixed with ozone is circulated by operating the mixing pump.
A filtered water supply pipe provided between the filtration tank and the first reaction tank and the second reaction tank;
A filtered water flow path switching means provided in the filtered water supply pipe and capable of switching to a flow path from the filtration tank to the first reaction tank or a flow path from the filtration tank to the second reaction tank;
A circulation flow path provided in the circulation pipe and switchable to an annular circulation flow path connecting the first reaction tank and the mixing pump or an annular circulation flow path connecting the second reaction tank and the mixing pump. Switching means;
A decolorized water supply pipe connected to the circulation pipe and supplying decolorized water in the first reaction tank or the second reaction tank to the storage tank;
A decolorized water supply flow path opening / closing means provided at a connection portion between the decolorized water supply pipe and the circulation pipe, and opening and closing a flow path from the circulation pipe to the decolorized water supply pipe;
First water amount detection means for detecting the amount of water stored in the first reaction tank;
Second water amount detection means for detecting the amount of water stored in the second reaction tank;
Time measuring means for measuring the operating time of the pump;
Time determination means for determining whether or not the measurement time measured by the time measurement means is equal to or greater than a predetermined time;
First lower limit determination means for determining whether the detected water amount of the first water amount detection means is equal to or less than a lower limit water amount;
First upper limit determination means for determining whether the detected water volume of the first water volume detection means is greater than or less than the upper limit water volume;
Second lower limit determining means for determining whether the detected water amount of the second water amount detecting means is equal to or less than the lower limit water amount;
Second upper limit determination means for determining whether the detected water amount of the second water amount detection means is greater than or less than the upper limit water amount;
A first switching instruction means for instructing the filtered water flow path switching means to open a flow path to the first reaction tank when the first upper limit determination means determines that the amount is less than the upper limit water amount;
A second switching instruction means for instructing the filtered water flow path switching means to open a flow path to the second reaction tank when the second upper limit determination means determines that the amount is less than the upper limit water amount;
A pump operation instruction means for instructing the operation of the mixing pump when the first upper limit determination means or the second upper limit determination means determines that the amount is equal to or greater than the upper limit water amount;
When the first upper limit determining means determines that the amount is equal to or greater than the upper limit water amount, the circulation flow path switching means is configured to switch the flow path of the circulation pipe to the flow path connecting the first reaction tank and the mixing means. First circulation flow path switching control means for instructing
When the second upper limit determining means determines that the amount of water is greater than or equal to the upper limit water amount, the circulation flow path switching means is configured to switch the flow path of the circulation pipe to the flow path connecting the second reaction tank and the mixing means. Second circulation flow path switching control means for instructing
Ozone generation instruction means for instructing the operation of the ozone generation means when the first upper limit determination means or the second upper limit determination means determines that the amount is equal to or greater than the upper limit water amount;
When the time determining means determines that the predetermined time or longer, the decolorized water supply flow path that instructs the decolorized water supply flow path opening / closing means to open the flow path from the circulation pipe to the decolorized water supply pipe Opening instruction means;
The first lower limit determination means or the second lower limit determination means is less than the lower limit water amount in a state where the flow path from the circulation pipe to the decolorization water supply pipe is opened by an instruction from the decolorization water supply flow path opening instruction means. Ozone generation stop means for stopping the ozone generation means when it is determined that
The first lower limit determination means or the second lower limit determination means is less than the lower limit water amount in a state where the flow path from the circulation pipe to the decolorization water supply pipe is opened by an instruction from the decolorization water supply flow path opening instruction means. A circulating flush toilet system comprising pump stop means for stopping the mixing pump when it is determined that
前記所定時間は、前記第1反応槽及び前記第2反応槽内のろ過水が目標色度よりも高い所定色度まで脱色されるのに要する時間に調整されていることを特徴とする請求項3に記載の循環式水洗トイレシステム。   The predetermined time is adjusted to a time required for the filtered water in the first reaction tank and the second reaction tank to be decolored to a predetermined chromaticity higher than a target chromaticity. 3. The circulating flush toilet system according to 3. 前記所定色度は、前記脱色水供給管の出口通過時の脱色水の色度が、前記目標色度にまで脱色されている程度に調整されていることを特徴とする請求項4に記載の循環式水洗トイレシステム。   The said predetermined chromaticity is adjusted to such an extent that the chromaticity of the decoloring water at the time of passing the exit of the said decoloring water supply pipe is decolored to the said target chromaticity. Circulating flush toilet system. 前記貯留槽と前記生物処理槽との間に設けられ、前記貯留槽内の脱色水を前記生物処理槽にオーバーフローさせるオーバーフロー水配管と、
前記貯留槽内の満水を検知する満水検知手段と
当該満水検知手段が満水を検知しない時に、前記第1反応槽及び前記第2反応槽における脱色処理回数をカウントする脱色回数カウント手段と、
当該脱色回数カウント手段のカウント値に基づいて、前記満水検知手段が満水を検知した時に、前記脱色水供給流路開閉手段を開放して、前記貯留槽の脱色水をオーバーフローさせるオーバーフロー回数を設定するオーバーフロー回数設定手段と
を備え、
前記脱色水供給流路開放指示手段は、前記満水検知手段が満水を検知した時に、前記オーバーフロー回数にしたがって、前記脱色水供給流路開閉手段の開放を指示することを特徴とする請求項1乃至5の何れかに記載の循環式水洗トイレシステム。
An overflow water pipe that is provided between the storage tank and the biological treatment tank, and causes the decolorized water in the storage tank to overflow into the biological treatment tank;
Full water detection means for detecting full water in the storage tank, and when the full water detection means does not detect full water, a decolorization frequency counting means for counting the number of decolorization processes in the first reaction tank and the second reaction tank,
Based on the count value of the decoloring frequency counting means, when the full water detecting means detects full water, the decoloring water supply flow path opening / closing means is opened to set the overflow number for overflowing the decolorizing water in the storage tank. An overflow number setting means,
The decolorized water supply flow path opening instruction means instructs the opening of the decolorized water supply flow path opening / closing means according to the number of overflows when the full water detection means detects full water. The circulating flush toilet system according to any one of 5.
前記オーバーフロー回数設定手段は、前記カウント値が所定回数以上の場合は、前記カウント値が所定回数未満の場合よりも、前記オーバーフロー回数を多く設定することを特徴とする請求項6に記載の循環式水洗トイレシステム。   The circulation type according to claim 6, wherein the overflow count setting means sets the overflow count larger when the count value is equal to or greater than the predetermined count than when the count value is less than the predetermined count. Flush toilet system. 前記脱色槽と前記生物処理槽との間に設けられ、前記貯留槽内の脱色水を前記生物処理槽にオーバーフローさせるオーバーフロー水配管と、
前記貯留槽に設けられ、前記貯留槽内における脱色水の満水を検知する満水検知手段と、
前記第1反応槽及び前記第2反応槽の少なくとも何れかに設けられ、前記第1反応槽又は前記第2反応槽内に供給されたろ過水の色度を検知するろ過水色度検知手段と
を備え、
前記ポンプ動作指示手段は、
前記満水検知手段が満水を検知し、かつ前記ろ過水色度検知手段の検知した色度が基準色度未満の場合、前記混合ポンプを動作させないことを特徴とする請求項1乃至5の何れかに記載の循環式水洗トイレシステム。
An overflow water pipe provided between the decolorization tank and the biological treatment tank, and overflowing the biological treatment tank with decolorized water in the storage tank;
A full water detection means provided in the storage tank for detecting the full water of decolorized water in the storage tank;
A filtered water chromaticity detecting means provided in at least one of the first reaction tank and the second reaction tank and detecting the chromaticity of the filtered water supplied into the first reaction tank or the second reaction tank; Prepared,
The pump operation instruction means includes
The mixing pump is not operated when the full water detection means detects full water and the chromaticity detected by the filtered water chromaticity detection means is less than a reference chromaticity. The circulating flush toilet system described.
水洗便器と、当該水洗便器からの汚水を受け入れ、生物処理を行う生物処理槽と、当該生物処理槽で処理された生物処理水をろ過するろ過槽と、当該ろ過槽でろ過されたろ過水を受け入れる第1反応槽及び第2反応槽と、オゾンを発生するオゾン発生手段と、当該オゾン発生手段、前記第1反応槽及び前記第2反応槽に各々連結され、ろ過水にオゾンを混合して脱色反応させて脱色水を生成する混合脱色手段と、当該混合脱色手段によって生成した脱色水を受け入れて貯留する貯留槽とを備え、当該貯留槽に貯留された脱色水を洗浄水として前記水洗便器に循環させる循環式水洗トイレシステムにおいて、
前記混合脱色手段は、
前記オゾン発生手段に連結され、ろ過水にオゾンを混合させる混合ポンプと、
当該混合ポンプと、前記第1反応槽及び前記第2反応槽との間に設けられ、前記混合ポンプが動作することによってオゾンが混合されたろ過水が循環する循環配管と
から構成され、
前記ろ過槽と、前記第1反応槽及び前記第2反応槽との間に設けられたろ過水供給管と、
当該ろ過水供給管に設けられ、前記ろ過槽から前記第1反応槽への流路、又は前記ろ過槽から前記第2反応槽への流路に切換可能なろ過水流路切換手段と、
前記循環配管に設けられ、前記第1反応槽と前記混合ポンプとをつなぐ環状の循環流路、又は前記第2反応槽と前記混合ポンプとをつなぐ環状の循環流路に切換可能な循環流路切換手段と、
前記循環配管に接続され、前記第1反応槽又は前記第2反応槽内の脱色水を前記貯留槽に供給する脱色水供給管と、
当該脱色水供給管と前記循環配管との接続部分に設けられ、前記循環配管から前記脱色水供給管への流路を開閉する脱色水供給流路開閉手段と、
前記第1反応槽内の貯水量を検知する第1水量検知手段と、
前記第2反応槽内の貯水量を検知する第2水量検知手段と、
前記第1反応槽内の貯水の色度を検知する第1色度検知手段と、
前記第2反応槽内の貯水の色度を検知する第2色度検知手段と、
前記第1水量検知手段の検知水量が下限水量以上か未満かを判断する第1下限判断手段と、
前記第1水量検知手段の検知水量が上限水量以上か未満かを判断する第1上限判断手段と、
前記第2水量検知手段の検知水量が下限水量以上か未満かを判断する第2下限判断手段と、
前記第2水量検知手段の検知水量が上限水量以上か未満かを判断する第2上限判断手段と、
前記第1色度検知手段の検知色度が所定色度以下か否かを判断する第1色度判断手段と、
前記第2色度検知手段の検知色度が所定色度以下か否かを判断する第2色度判断手段と、
前記第1上限判断手段が上限水量未満であると判断した場合に、前記第1反応槽への流路を開くように前記ろ過水流路切換手段を指示する第1切換指示手段と、
前記第2上限判断手段が上限水量未満であると判断した場合に、前記第2反応槽への流路を開くように前記ろ過水流路切換手段を指示する第2切換指示手段と、
前記第1上限判断手段、又は第2上限判断手段が上限水量以上であると判断した場合、前記混合ポンプの動作を指示するポンプ動作指示手段と、
前記第1上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第1反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第1循環流路切換制御手段と、
前記第2上限判断手段が上限水量以上であると判断した場合に、前記循環配管の流路を前記第2反応槽と前記混合手段とをつなぐ流路に切り換えるように、前記循環流路切換手段を指示する第2循環流路切換制御手段と、
前記第1上限判断手段、又は前記第2上限判断手段が上限水量以上であると判断した場合に、前記オゾン発生手段の動作を指示するオゾン発生指示手段と、
前記第1色度判断手段、又は前記第2色度判断手段が所定色度以下と判断した場合に、前記循環配管から前記脱色水供給管への流路を開くように、前記脱色水供給流路開閉手段を指示する脱色水供給流路開放指示手段と、
当該脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれた状態で、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記オゾン発生手段を停止させるオゾン発生停止手段と、
前記脱色水供給流路開放指示手段の指示によって、前記循環配管から前記脱色水供給管への流路が開かれた状態で、前記第1下限判断手段又は前記第2下限判断手段が下限水量未満であると判断した場合に、前記混合ポンプを停止させるポンプ停止手段と
を備えていることを特徴とする循環式水洗トイレシステム。
A flush toilet, a biological treatment tank that receives sewage from the flush toilet, performs biological treatment, a filtration tank that filters biological treated water treated in the biological treatment tank, and filtered water filtered in the filtration tank The first reaction tank and the second reaction tank to be received, the ozone generation means for generating ozone, the ozone generation means, the first reaction tank and the second reaction tank are connected to each other, and the filtered water is mixed with ozone. The flush toilet comprising: a mixed decoloring unit that generates decolored water through a decoloring reaction; and a storage tank that receives and stores the decolorized water generated by the mixed decoloring unit In the circulating flush toilet system that circulates in
The mixing and decoloring means includes
A mixing pump connected to the ozone generating means for mixing ozone with filtered water;
It is provided between the mixing pump and the first reaction tank and the second reaction tank, and is composed of a circulation pipe through which filtered water mixed with ozone is circulated by operating the mixing pump.
A filtered water supply pipe provided between the filtration tank and the first reaction tank and the second reaction tank;
A filtered water flow path switching means provided in the filtered water supply pipe and capable of switching to a flow path from the filtration tank to the first reaction tank or a flow path from the filtration tank to the second reaction tank;
A circulation flow path provided in the circulation pipe and switchable to an annular circulation flow path connecting the first reaction tank and the mixing pump or an annular circulation flow path connecting the second reaction tank and the mixing pump. Switching means;
A decolorized water supply pipe connected to the circulation pipe and supplying decolorized water in the first reaction tank or the second reaction tank to the storage tank;
A decolorized water supply flow path opening / closing means provided at a connection portion between the decolorized water supply pipe and the circulation pipe, and opening and closing a flow path from the circulation pipe to the decolorized water supply pipe;
First water amount detection means for detecting the amount of water stored in the first reaction tank;
Second water amount detection means for detecting the amount of water stored in the second reaction tank;
First chromaticity detection means for detecting the chromaticity of the water stored in the first reaction tank;
Second chromaticity detection means for detecting the chromaticity of the water stored in the second reaction tank;
First lower limit determination means for determining whether the detected water amount of the first water amount detection means is equal to or less than a lower limit water amount;
First upper limit determination means for determining whether the detected water volume of the first water volume detection means is greater than or less than the upper limit water volume;
Second lower limit determining means for determining whether the detected water amount of the second water amount detecting means is equal to or less than the lower limit water amount;
Second upper limit determination means for determining whether the detected water amount of the second water amount detection means is greater than or less than the upper limit water amount;
First chromaticity determination means for determining whether the detected chromaticity of the first chromaticity detection means is equal to or less than a predetermined chromaticity;
Second chromaticity determination means for determining whether the detected chromaticity of the second chromaticity detection means is equal to or less than a predetermined chromaticity;
A first switching instruction means for instructing the filtered water flow path switching means to open a flow path to the first reaction tank when the first upper limit determination means determines that the amount is less than the upper limit water amount;
A second switching instruction means for instructing the filtered water flow path switching means to open a flow path to the second reaction tank when the second upper limit determination means determines that the amount is less than the upper limit water amount;
A pump operation instruction means for instructing the operation of the mixing pump when the first upper limit determination means or the second upper limit determination means determines that the amount is equal to or greater than the upper limit water amount;
When the first upper limit determining means determines that the amount is equal to or greater than the upper limit water amount, the circulation flow path switching means is configured to switch the flow path of the circulation pipe to the flow path connecting the first reaction tank and the mixing means. First circulation flow path switching control means for instructing
When the second upper limit determining means determines that the amount of water is greater than or equal to the upper limit water amount, the circulation flow path switching means is configured to switch the flow path of the circulation pipe to the flow path connecting the second reaction tank and the mixing means. Second circulation flow path switching control means for instructing
Ozone generation instruction means for instructing the operation of the ozone generation means when the first upper limit determination means or the second upper limit determination means determines that the amount is equal to or greater than the upper limit water amount;
When the first chromaticity determination means or the second chromaticity determination means determines that the predetermined chromaticity is less than or equal to a predetermined chromaticity, the decolorized water supply flow is configured to open a flow path from the circulation pipe to the decolorized water supply pipe. Decolorized water supply flow path opening instruction means for instructing a path opening and closing means;
The first lower limit determination means or the second lower limit determination means is less than the lower limit water amount in a state where the flow path from the circulation pipe to the decolorization water supply pipe is opened by an instruction from the decolorization water supply flow path opening instruction means. Ozone generation stop means for stopping the ozone generation means when it is determined that
The first lower limit determination means or the second lower limit determination means is less than the lower limit water amount in a state where the flow path from the circulation pipe to the decolorization water supply pipe is opened by an instruction from the decolorization water supply flow path opening instruction means. A circulating flush toilet system comprising pump stop means for stopping the mixing pump when it is determined that
前記所定色度は、前記脱色水供給管の出口通過時の脱色水の色度が、前記目標色度にまで脱色されている程度に調整されていることを特徴とする請求項9に記載の循環式水洗トイレシステム。   The said predetermined chromaticity is adjusted to such an extent that the chromaticity of the decolored water at the time of passing the exit of the said decolorized water supply pipe is decolored to the said target chromaticity. Circulating flush toilet system. 前記貯留槽と前記生物処理槽との間に設けられ、前記貯留槽内の脱色水を前記生物処理槽にオーバーフローさせるオーバーフロー水配管と、
前記貯留槽内の満水を検知する満水検知手段と
当該満水検知手段が満水を検知しない時に、前記第1反応槽及び前記第2反応槽における脱色処理回数をカウントする脱色回数カウント手段と、
当該脱色回数カウント手段のカウント値に基づいて、前記満水検知手段が満水を検知した時に、前記脱色水供給流路開閉手段を開放して、前記貯留槽の脱色水をオーバーフローさせるオーバーフロー回数を設定するオーバーフロー回数設定手段と
を備え、
前記脱色水供給流路開放指示手段は、前記満水検知手段が満水を検知した時に、前記オーバーフロー回数にしたがって、前記脱色水供給流路開閉手段の開放を指示することを特徴とする請求項9又は10に記載の循環式水洗トイレシステム。
An overflow water pipe that is provided between the storage tank and the biological treatment tank, and causes the decolorized water in the storage tank to overflow into the biological treatment tank;
Full water detection means for detecting full water in the storage tank, and when the full water detection means does not detect full water, a decolorization frequency counting means for counting the number of decolorization processes in the first reaction tank and the second reaction tank,
Based on the count value of the decoloring frequency counting means, when the full water detecting means detects full water, the decoloring water supply flow path opening / closing means is opened to set the overflow number for overflowing the decolorizing water in the storage tank. An overflow number setting means,
The decolorized water supply flow path opening instruction means instructs opening of the decolorized water supply flow path opening / closing means according to the number of overflows when the full water detection means detects full water. 10. The circulating flush toilet system according to 10.
前記オーバーフロー回数設定手段は、前記カウント値が所定回数以上の場合は、前記カウント値が所定回数未満の場合よりも、前記オーバーフロー回数を多く設定することを特徴とする請求項11に記載の循環式水洗トイレシステム。   12. The circulation type according to claim 11, wherein the overflow count setting means sets the overflow count larger when the count value is equal to or greater than a predetermined count than when the count value is less than the predetermined count. Flush toilet system. 前記脱色槽と前記生物処理槽との間に設けられ、前記貯留槽内の脱色水を前記生物処理槽にオーバーフローさせるオーバーフロー水配管と、
前記貯留槽に設けられ、前記貯留槽内における脱色水の満水を検知する満水検知手段と、
前記第1反応槽及び前記第2反応槽の少なくとも何れかに設けられ、前記第1反応槽又は前記第2反応槽内に供給されたろ過水の色度を検知するろ過水色度検知手段と
を備え、
前記ポンプ動作指示手段は、
前記満水検知手段が満水を検知し、かつ前記ろ過水色度検知手段の検知した色度が基準色度未満の場合、前記混合ポンプを動作させないことを特徴とする請求項9又は10に記載の循環式水洗トイレシステム。
An overflow water pipe provided between the decolorization tank and the biological treatment tank, and overflowing the biological treatment tank with decolorized water in the storage tank;
A full water detection means provided in the storage tank for detecting the full water of decolorized water in the storage tank;
A filtered water chromaticity detecting means provided in at least one of the first reaction tank and the second reaction tank and detecting the chromaticity of the filtered water supplied into the first reaction tank or the second reaction tank; Prepared,
The pump operation instruction means includes
The circulation according to claim 9 or 10, wherein when the full water detection means detects full water and the chromaticity detected by the filtered water chromaticity detection means is less than a reference chromaticity, the mixing pump is not operated. Type flush toilet system.
JP2006097835A 2006-03-31 2006-03-31 Circulating flush toilet system Pending JP2007270524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097835A JP2007270524A (en) 2006-03-31 2006-03-31 Circulating flush toilet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097835A JP2007270524A (en) 2006-03-31 2006-03-31 Circulating flush toilet system

Publications (1)

Publication Number Publication Date
JP2007270524A true JP2007270524A (en) 2007-10-18

Family

ID=38673609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097835A Pending JP2007270524A (en) 2006-03-31 2006-03-31 Circulating flush toilet system

Country Status (1)

Country Link
JP (1) JP2007270524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113090B1 (en) 2011-08-12 2012-02-15 허명순 The handling methods of recycling type no discharge excretion
KR101113083B1 (en) 2011-08-12 2012-02-15 허명순 recycling type no discharge excretion handling establishment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113090B1 (en) 2011-08-12 2012-02-15 허명순 The handling methods of recycling type no discharge excretion
KR101113083B1 (en) 2011-08-12 2012-02-15 허명순 recycling type no discharge excretion handling establishment

Similar Documents

Publication Publication Date Title
EP2253594B1 (en) Water purification apparatus and method for using pressure filter and pore-control fiber filter
US7470365B2 (en) Sludge concentration system which have functions for automatically charging a coagulant and for automatically controlling the concentration of a sludge
US20070227976A1 (en) Ion exchange apparatus and method of controlling the same
US20070108125A1 (en) Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous
RU2006114449A (en) FLOW TANK FOR WATER TREATMENT
US6063279A (en) Waste water treatment method and equipment being able to treat hydrogen peroxide, phosphorus, fluorine and organic-matters with high efficiency
US20180221825A1 (en) Water treatment method and water treatment apparatus
CN113966249A (en) Filtering membrane cleaning device, filtering membrane cleaning method and water treatment system
CN109052838A (en) Sewage treatment strategy dynamic adjusting system
JP2007270524A (en) Circulating flush toilet system
CN109052837A (en) Sewage treatment strategy adjustment method based on dynamic scene
JP2920803B2 (en) Solid-liquid separator
JP6430091B1 (en) Membrane cleaning apparatus and membrane cleaning method
KR102378124B1 (en) Reverse osmosis desalination system and method for controlling water quality in the same
CN110498490A (en) A kind of electric flocculation reactor and its application
US7314568B2 (en) Water conditioning system
US7494588B2 (en) Wastewater purification system
CN109415230A (en) Method and apparatus for controlling the water hardness in house
KR20190055428A (en) Membrane filtration system and controlling method thereof
JP6887574B1 (en) Membrane cleaning equipment and membrane separation activated sludge system, and membrane cleaning method
KR101648504B1 (en) A system for regenerating ion exchange resin and regeneration method of the same
JPH09206760A (en) Method for dephosphorylating waste water and device therefor
US20220381759A1 (en) Liquid quality measurement apparatus and liquid quality measurement system
JPS60143825A (en) Reaction and maturation apparatus
JP6632192B2 (en) Blower and wastewater treatment system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080223